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ELASTIC MODEL OF DRY FRICTIONA. I. Larkin, D. E. Khmelnitskii *Landau Institute for Theoretial Physis142432, Chernogolovka, Mosow Region, RussiaReeived Marh 29, 2013Frition of elasti bodies is onneted with the passing through the metastable states that arise at the ontatof surfaes rubbing against eah other. Three models are onsidered that give rise to the metastable states.Frition fores and their dependene on the pressure are alulated. In Appendix A, the ontat problem ofelastiity theory is solved with adhesion taken into aount.DOI: 10.7868/S00444510131000341. INTRODUCTIONIn the proess of frition, when one rough surfaerubs against another, frition fores arise where sur-faes ome into ontat. Therefore, there are two kindsof problems onneted with this phenomenon. The �rstis, whih proesses our at the ontat of two surfaes;and the seond, in what way do the random fores aris-ing at di�erent points of ontat add up to the totalfrition fore? In this paper, deformations at the on-tat points are assumed to be elasti1).If the deformation of two ontating surfaes is elas-ti, then the surfaes are not hanged by frition. Thework of frition fores hene results in radiation ofsound waves. The energy of these sound waves dis-sipates in the bulk of the rubbing bodies. The powerspent for the radiation of sound is proportional to a-eleration squared. When the relative veloities of therubbing bodies are small, a large aeleration, inde-pendent of this veloity, arises only when the ontatturns from a metastable state into a stable one. Theaim of this paper is to eluidate the problem of howmetastable sates arise in an elasti medium. Two pos-sibilities arise in this ase: the metastability arises ineah ontat separately, or the region of the surfaeontaining a large number of ontats transfers into ametastable state.The problem of reation of an elasti struture with*E-mail: dek12�am.a.uk1) It is believed [1, 2℄ that at low pressure, the frition fore isdetermined mainly by intermoleular fores, while at high pres-sure, a plasti deformation (ploughing) is more essential.

randomly arranged defets has been onsidered previ-ously in onnetion with pinning of vortex lines in su-perondutors [3�5℄. The method developed in thesepapers is appliable to the problem of dry frition.This paper is arranged as follows. In Ses. 2 and3, the ase of individual pinning is onsidered, wherea separate ontat an be in a metastable state. InSe. 2, the ase is studied where the metastability isaused by adhesion of ontats aused by intermoleu-lar interation. In Se. 3, we examine the model of thinand long ontats (the �brush� model). In this ase, themetastability arises due to the loss of stability. Setion4 is devoted to the study of olletive pinning, when themetastability of the surfae ontaining a large numberof ontats is in a metastable state. Details of al-ulations related to eah setion are presented in theappendies. 2. ADHESIONThe ontat of rubbing surfaes is usually realisedon a small area and the rough points touh one another.Therefore, a good model of a rough surfae is that ofballs randomly sattered on the surfae. The radii ofthe balls R are assumed to be equal. We �rst onsiderthe stritly elasti ase, where the fores arising at theontat of the balls are uniquely de�ned by their mu-tual loation and the elasti properties of solids. Thesefores are direted normally to the ontat areas of theballs, and therefore have omponents tangential to thesurfae, averaged over roughness. The sum of thesefores is equal to the total normal fore N . The dire-tions of tangential fores are determined by the mutual467 2*



A. I. Larkin, D. E. Khmelnitskii ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013arrangement of the balls, and the total tangential foreis zero, beause of the randomness of the arrangement.Therefore, in the purely elasti ase, the frition foreis zero.A nonzero frition fore an arise if, besides the elas-ti fores, an adhesion due to moleular interation oftwo ontating bodies is taken into aount. In thisase, the deformation of two ontating bodies is a mul-tivalued funtion of their mutual position, and there-fore the fores are also multivalued funtions. Hene,the fores arising at ontats depend not only on theurrent arrangement of two rubbing bodies but also onthe prehistory of the formation of this arrangement. Ifthe balls are oming into ontat, the fore is zero untilthey touh eah other. If the balls are separating, theyremain in ontat and the fore is not zero even whenthe distane between their entres exeeds the sum ofthe radii. Therefore, at a relative shift of the surfaes,there arises an averaged fore, whose diretion is oppo-site to the shift.To alulate the frition oe�ient, it is onvenientto use the energy onsideration. The work of fritionfores alulated per one ontat is equal to the energyrequired for breaking the balls in ontat plus the en-ergy of the balls in ontat that have only one touhedone another. This energy is alulated in Appendix A(Eq. (30)): ~E = 1:05(��)5=3�R2E �2=3 : (1)The frition fore depends on the distribution of heightsx of the tops perpendiular to the surfae of sliding. IfC1;2(x) is the number of tops per unit area of the �rst(seond) body in a unit range of x, then, as one bodyshifts along another, the number of ontats per unitof length isN(h) = S hZ0 dx1 h�x1Z0 dx2 �� C1(x1)C2(x2)a(h� x1 � x2); (2)where a(h) = pRh and S is the ontat surfae area.Taking into aount that the energy ~E is dissipated atany ontat, we obtain the frition foreffr = ~EN(h)S : (3)To determine the frition oe�ient, the fritionfore ffr should be divided by the pressure p; besides,

the value of the vertial shift h of the rubbing bod-ies should be determined through the pressure. Theenergy dissipated per unit area ishZ0 dx1C1(x1) h�x1Z0 dx2C2(x2) Z 2�� d�E(�);� = �h� x1 � x2 � �22R� ; (4)where E(h) is the energy at a single ontat as a fun-tion of the vertial shift h. Calulated in Appendix A,E(h) is a multivalued funtion that has a jump at h = 0and at h = hmin. The energy in (4) inludes the workof fores of normal pressure and the energy jumps. Inorder to alulate the pressure p, it is neessary to dif-ferentiate the ontinuous part of energy (4) with respetto h:p = 2�R hZ0 dx1C1(x1) h�x1Z0 dx2C2(x2)�� fE(h� x1 � x2)��Eg ; (5)where �E is the energy jump at the transition fromthe metastable state and depends on prehistory. If thepressure inreases, then �E = E(h = 0). If it dereases,then �E = E(hmin). When the motion proeeds un-der a onstant pressure, the number of onverging on-tats is equal to the number of diverging ontats, andtherefore �E = (E(hmin) + E(h = 0)) =2. Hene, thepressure p is a multivalued funtion of h. In any ase,a �nite value h 6= 0 and, onsequently, a �nite fritionfore orrespond to zero pressure p = 0. We supposethat C(x) = C � xhxi�� :Then the frition fore, by the order of magnitude, isffr � ~Ea(h)C1(h)C2(h) � � � �E�(4�+7)=3 �� C1C2R(2�+8)=3hxi2�+2 : (6)At p = 0, the frition fore strongly depends on the on-entration of the ontats and their spread in heights.If there is no spread (� = �1), thenffr � �2E C1C2R2: (7)If the pressure is su�iently high,p� ��5R7�1=3 C1C2E�2=3 � �2REhxi3�(2�+2)=3 ;468



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Elasti model of dry fritionthen the dependenes E(h) and a(h) an be determinedwithout taking adhesion into aount:kfr = ffrp � �R�2E2�1=3 ���C1C2R(3=2hxi2�+2 �4=(4�+9)�Ep �4=(4�+9) : (8)As an be seen from Eq. (8), the frition oe�ient kfris pressure dependent. If the experimental value � = 2is assumed, then kfr � p�4=17:3. THE �BRUSH�In this setion, we onsider a model in whihmetastable states of ontats arise when adhesion isnot taken into aount. We suppose that the surfae ofone of the bodies has nonompressible roughness withthe rounding-o� radius R. Another surfae resembles abrush. It an be viewed as a rigid plate with elasti rodsemerging out of the plate. The length of eah rod is land the area of its ross setion is S. For onvenieneof alulation, we assume that l � R.The suessive arrangement of the rods in platespassing from the left to the right is shown in Fig. 1a.This �gure shows that at the right slope of the rough-ness, there are metastable states at whih the rod isbent to the left. When the plate moves along the theright slope, the normal fore F is developed. Whenthis fore slightly exeeds the Euler instability thresh-old FE = �2EI=4l2 (where I is moment of inertia ofthe rod ross setion), the rod jumps to the bend on theright (dashed line in Fig. 1a). Elasti energies orre-sponding to these two positions of the rod are di�erent
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and this di�erene is transferred into heat. The di�er-ene of elasti energies ~E is alulated in Appendix B.It is equal to ~E = 4SEh �4Slh�2I � 1� : (9)The frition oe�ient an be found using Eqs. (3) and(5). For simpliity, we assume that C1;2(x) = C1;2Æ(x).As a result, obtain the following expression for the fri-tion oe�ient:kfr = A� pE�1=4 p� pp ; (10)p = �212E IRC1C2Sl2 ; (11)A = 2� 35�10�1=4 SE � l9C1C2RS�1=4 :It is important in deriving Eqs. (10) and (11) that somepositions of the �xed end of the rod orrespond to theposition of a free rod. One of this positions is realizedin motion from left to right, and the other, in motionfrom right to left. Quite a di�erent piture is realizedat low pressures (see Fig. 1b ), when the normal foredoes not exeed the instability threshold FE . In thisase, the elasti fores ating in the ontat at symmet-ri points of the roughness have equal and oppositelydireted tangential omponents. In alulating the to-tal fore, we should average over possible positions ofthe �xed end of the rod. Suh an averaging desribesboth the sum of the fores arising at di�erent momentsof the rod motion and the sum of the fores ating atthe system of randomly arranged rods at rest. If suhan averaging is performed in the situation shown inFig. 1b, the resulting fore is zero. Therefore, the fri-tion fore does not arise in the �brush� model at lowpressure. 4. COLLECTIVE PINNINGIn this setion, we onsider ontat of two roughsurfaes similar to those onsidered in Se. 2. The dif-ferene is that we here neglet the adhesion.We assume that there is no metastable states ineah individual ontat. The tangential fores fi atingat the points of ontat an be assumed to be randomand to depend on the position of the ontat:hfii = 0; hf�i f�j i = hf2iÆ��Æij :469



A. I. Larkin, D. E. Khmelnitskii ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013If the mutual in�uene of ontats is not taken intoonsideration, the mean tangential fore ffr isffr �pNhf2i;where N the number of ontats. Hene, the fritionfore is proportional to the root of the area S, and thefrition oe�ient kfr is inversely proportional to pS:kfr � 1L;where L is the linear size of the surfae if ontat oftwo rubbing bodies.If the mutual in�uene of ontats is taken into a-ount, then it turns out that for a su�iently large sur-fae, the frition oe�ient is independent of its area.To determine the deformation arising due to thefore ating at the points of ontat of the rubbing sur-faes, we must �nd the Green's funtion of the elastiitytheory. This Green's funtion depends on the ratio ofompressibilities of the rubbing surfaes. For de�nite-ness, we assume that the rubbing bodies have identialelasti properties (the Young moduli E and the Poissonoe�ients �). In this ase, the Green's funtion an befound in the problem to � 8 in Ref. [6℄. The tangentialdisplaement ui of the i-th ontat is therefore relatedto the fores fj ating at the j-th ontat asui =Xj 6=i Ĝ(rij)f(rj � uj); (12)G��(r) = 1 + �8�E (1� �) �3� 4�r Æ�� + r�r�r3 � : (13)Using Eq. (13), we estimate the mean square of dis-plaement hu2i due to the ation of the fores appliedat a large number of ontats:hu2i =Xjk G(rj)G(rk)hfjfki �Xj G2(rj)hf2i �� Chf2iE ln L� : (14)Here, L is the linear dimension of the area of rubbingsurfaes. Thus, if this area is large, then the olletiveation of the fores applied to di�erent ontats resultsin a large displaement even if the fores at eah indi-vidual ontat are small.In the same way, we an alulate the mean squareof the relative displaement at points r and r0:h[u(r) � u(r0)℄2i � C1hf2iE2 ln jr� r0j� :

It is lear from this equation that the relative displae-ment of distant points is large, although the solid bod-ies are rigid. Therefore, a large surfae an be dividedinto areas of �nite dimensions R suh that relative dis-plaements in one suh region are less than or of theorder of the size � of a single ontat. The relativedisplaements of di�erent regions are of the order of �or even larger. Eah suh region makes an indepen-dent ontribution to the frition fore, whih is there-fore proportional to the number of regions and heneto the total area. The frition oe�ient kfr in thisase is the same as for a separate region and inverselyproportional to R. The orrelation length R an beestimated as ln R� � E2�2C1hf2i2 : (15)Therefore, the orrelation length R depends exponen-tially on the pressure p. The exponential is determinedin Appendix C. If the size R of the ontat area of tworubbing bodies is small (R � R), then ffr � R. Inthe opposite limit R� R, the ontribution of eah re-gion of size R is proportional to the orrelation length.Multiplying by the number of suh regions, we obtainthe following estimate for the frition oe�ient withexponential preision:kfr � exp"��Ep �8=5# : (16)5. CONCLUSIONThe goal of this paper is mainly methodial. Wetried to answer the question of how the irreversible en-ergy dissipation an arise in reversible elastiity the-ory. For all the models onsidered, there an be onlyone answer: �the energy dissipates in transitions from ametastable state into a stable one�. On the other hand,none of the proposed mehanisms yields the Coulomb�Amontons law (the frition fore is proportional to nor-mal pressure). Apparently, this means that while on-sidering the ontat of a large number of real bodies,it is impossible to use the elastiity theory, beausethe arising deformations are plasti. Another inelastimehanism may be the breaking of parts of the bodywhen it stiks to another body. This mehanism maybe signi�antly weakened by applying the appropriateboundary lubriation.Although inelasti mehanisms are important, theelasti mehanism of frition also exists. For the major-ity of bodies, it seems to produe a small ontribution470



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Elasti model of dry fritionto the frition fore. But in the ase where the fri-tion fore is determined by the elasti mehanism, thefrition oe�ient strongly depends on pressure. Thisdependene is di�erent in di�erent ases. In the modelwith adhesion, the frition oe�ient kfr is inverselyproportional to the pressure p (kfr � A=p as p ! 0).The oe�ient A strongly depends on the dimensionsof the surfae roughness. In the �brush� model, the fri-tion fore arises under pressures exeeding the thresh-old values determined by the Euler instability. Besidesthe rough surfaes, this model may desribe the phe-nomena ourring with the boundary lubriation, if thelubriant onsists of long moleules that stik with theirends to one of the bodies in ontat.The olletive pinning should be taken into aountin ases where the frition fore is small and othermehanisms do not lead to frition. In this ase, forthe surfae of a harateristi size L, the frition oe�-ient is proportional to 1=L. If this dimension is large,the frition oe�ient does not depend on L and de-pends on pressure exponentially. Equations (15) and(16) therefore provide the least possible frition oe�-ient. APPENDIX AContat problem in the elastiity theory withfor adhesionH. Hertz solved the problem of the ontat of twoelasti bodies (see [6℄). He onsidered two balls withradii R1 and R2, with the Young moduli E1 and E2and the Poisson oe�ients �1 and �2. The balls areompressed by the fore F . Suh a problem turned outto be equivalent to the problem of the ontat of a ballwith the radius R = � 1R1 + 1R2 ��1 (17)and the e�etive Young modulus� = �1� �21E1 + 1� �22E2 ��1 (18)with a rigid plane. The size a of the ontat area washosen suh that the stress on its boundaries vanished.The result is a2 = Rh; (19)where h is the maximum vertial shift.In the Hertz problem, the elasti deformation en-ergy E(a; h) an be alulated with the given ontatradius a and vertial deformation h. Adding the work

of external fores to this energy and then minimizingthe sum with respet to a and h, the dependenes a(h),F (h), and E(h) an be determined. In the ase whereadhesion is taken into aount, the elasti deformationenergy for the given a and h should be alulated andthe work of external fores and the adhesion energy��a2 should be added to it (� is the surfae energyof adhesion). The total energy E(a; h) determined insuh a way should be minimized with respet to a, anda(h) and E(h) should be found.To ful�l this program, we have to solve the followingequation for the density of fores P (r) at the ontatarea r < a: h� r22R = � Z P (r1)jr � r1jdr1: (20)Equation (20) resembles the eletrostati relation thatonnets potential with the harge density. If a and hare onneted by relation (19), thenP (r) /r1� r2a2 : (21)In the general ase, this solution an be written as alinear ombination of two expressionsr1� r2a2 and 1p1� r2=a2 :Evaluating the integrals (also see [7℄) �nally gives theexpressionP (r) = 2a��R r1�r2a2+ ��a �h�a2R � 1p1�r2=a2 : (22)The elasti fore F is given by the integral over theontat area with the integrand P (r):F = � �2ah� 23 a3R � : (23)The total energy inludes the elasti deformation en-ergy at h = h0 = a2=R, the work of the fore F onthe way from h0 to h at a �xed a, and the adhesionenergy ��a2:E = (��)5=3 �R2� �2=3E(x; y); (24)E(x; y) = x55 � 23 x3y + xy2 � x2; (25)where we introdue the dimensionless variablesx = a� ���R3�1=3 ; y = h� �2�2�2R� : (26)471
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Fig. 2. Dimensionless energy E(x; y) under the ondi-tion �E=�x = 0 as a funtion of yThe radius of the ontat is determined from the energyminimum ondition:0 = �E�x = (x2 � y)2 � 2x: (27)If this last equation is solved and its solution x(y) issubstituted in the expression for E(x; y), then we ob-tain the y-dependene of the total energy. This depen-dene is plotted in Fig. 2. The solid urve shows thedependene E(y) under load, and the dotted line showsE(y) under ompression. The minimum value of y om-patible with the equilibrium ondition orresponds tothe breaking-o� of the stuk ball:ymin = �0:5; E(ymin) = 0:1: (28)At the instant of ontat,y = 0; x = 21=3; E(0) = �321=35 = �0:95: (29)And �nally, for the hysteresis energy, we �ndE = 1:05(��)5=3�R2� �2=3 : (30)APPENDIX BWe onsider the �brush� model in the ase wherethe normal fore F only slightly exeeds the Euler in-stability threshold: FE = �24 EIl2 : (31)

At the top of the roughness, the fore is equal to (seeFig. 1a) F = SEhl : (32)The bending of the bar is determined by the angle �0,whih an be found from the equationl =rEI2F �0Z0 d�pos(� � �)� os(�0 � �) : (33)Expanding the osines in Eq. (33) in �, �0, and � andthe fore F in F � FE , we obtain�30 � 8�0F � FEFE � 32�� = 0: (34)The solution �(�) of Eq. (34) is single-valued if� > �0 = �216 �83 �4slh�2 I � 1��3=2 : (35)At smaller values of �, Eq. (34) has three solutions,whih orrespond to a metastable, a stable, and an un-stable state.In deriving Eqs. (34) and (35), the terms of the or-der of R�2 were negleted in omparison with h. Thisis justi�ed if 4Slh�2I � �192�2 hR�1=3 : (36)At � = �0, Eq. (34) has two solutions�1;2 = (�3� 1)r23 F � FEFE == (�3� 1)�23 �4slh�2I � 1��1=2 : (37)The bending energy E is equal to the work of thefore F : E = �F l fos(� � �)� 1g � F l�202 : (38)Therefore, the energy jump at the transition from themetastable state to the stable one is equal to~E = 329 SEh �4Slh�2I � 1� : (39)APPENDIX CWe here present the proedure that allows repla-ing a set of a large number of ontats by a single one.472



ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013 Elasti model of dry fritionThe fores ating on suh enlarged ontats inrease,and large fores give rise to metastable states. In themetastable states, the derivatives of the fore with re-spet to oordinates beomes in�nite.We begin with reproduing Eq. (12):ui =Xj 6=i Ĝ(ri � rj)f(rj � uj): (40)Here, ri is the position of a ontat point under the on-dition that the mutual in�uene of the ontat is nottaken into aount, and ui is the deformation aused bysuh an in�uene. We seek the minimum of the energyE =Xi E(ri � rj) + 12Xj 6=i uiĜijuj : (41)The fore f is linked to the energy E by the usual rela-tion f(ri � ui) = ��ui E(ri � ui): (42)The mutual in�uene arises beause the argumentof the fore fi depends on the displaement ui, whihis determined by fores ating at other ontats. Thedisplaement u(ri) an be represented as the sumui = u(1)i +w(1)i ; (43)w(1)i =Xj 6=i Ĝij f �rj � u(1)i �w(1)i � ; (44)jri � rj j � R1:The �rst term in the sum (43) is equal to the displae-ment aused by the in�uene of the fores ating atdistant ontats with jri � rj j > R1. The seond termdetermines the displaement aused by the in�ueneof the fores ating at the lose ontats. If the dis-plaement w determined by Eq. (44) is substituted inEq. (41) for the elasti energy E , the latter beomesE =Xi ER(ri � u(1)i ) + 12Xi 6=j u(1)i Ĝiju(1)j ; (45)fR(ri � u(1)i ) = ��u(1)i ER: (46)In the proess of enlargement, the e�et of the foresating at more distant ontats is taken into aount.Passing from the sale R1 to a sale R2 > R1, we obtainER2 � E �ri � u(2)i �w(2)i � == ER1 �ri � u(2)i �w(2;1)i � ; (47)

wherew(2;1)i =Xi3j Ĝij fR1 �ri � u(2)i �w(2;1)i � ;R1 � jr1 � r2j � R2: (48)If the di�erene between ut-o�s R2 and R1 is verylarge, then the displaements w(2;1)i are small andexpression (47) and (48) an be expanded in seriesin w(2;1)i .It is onvenient to onsider not the fores but theirderivatives with respet to displaements,f��R = �f��u(1)� ; f��R = �2f��u(1)� �u(1) ;and so on. To see how the f��::: transform in passingfrom a sale R1 to a sale R2, it is neessary to dif-ferentiate expression (47) with respet to u(2)i , after itsexpansion in w(2;1)i . The displaements w(2;1)i them-selves and their derivatives should be determined byEq. (48). As a result, in the seond order with respetto w, we obtainf��R2 (i) = �2�u(1)� �u(1) ��8<:ER1(i)�Xj G(ij)ÆQÆ(ij)9=; ; (49)QÆij = fi fÆj �Xl G��il f�i fÆj �Xl G��jl fj f�Æl ; (50)f�i = f�R1(i); f��i = f��R1 (i):The mean square f�� is a quantity onvenient forestimating the e�ets of mutual in�uene of the on-tats. Beause the mean value of an arbitrary quantityis zero, we obtainhf��i fÆj i = �hf��i fÆj i = hf��Æi Eji == �Æij �Æ��ÆÆ + Æ�ÆÆ� + Æ�Æ�Æ� : (51)To determine the variation of the e�etive harge �in passing from a sale R1 to a sale R2, expression (49)must be substituted in Eq. (51). Retaining the powersnot exeeding four, taking into aount thatG��(r) = 18�E 1 + �1� � � (3� 4�)Æ��r � r�r�r3 � ; (52)and performing the averaging, obtain the RG equationfor e�etive harge � in the form473



A. I. Larkin, D. E. Khmelnitskii ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013�R2 = �R1 +A ln R2R1 ;A = �� � 18�E 1+�1���2 f80(3�4�)(1��)+9g ; (53)where � is the number of ontats per unit area.Renormalization group equation (53) is valid if� ln(R2=R1) � 1. The exat expression for the e�e-tive harge �R if Eq. (53) is di�erentiated with respetto lnR2, dd lnR�R = A�2R: (54)An initial ondition for Eq. (54) an be obtained atR = � (where � is the size of an individual ontat):�� =  = 18 h(div f)2i: (55)The solution of RG equation (54) with initial ondition(55) has the form�R = 1�A ln(R=�) : (56)Expression (56) is valid at R < R, whereR � � exp�� 1A� : (57)Equation (57) solves the problem of the exponential inEq. (16), if the dependene of the ontat density � onpressure is known. For the model of balls without asatter in heights, we obtainkfr � exp��217(1��)3 R2(16C1C2R2)1=5L� ;L = [80(3� 4�)(1� �) + 9℄ : (58)The result in this Appendix mainly repeats those inRef. [8℄. The di�erene in the derivation is that a sim-ilar results was obtain in Ref. [8℄ by summation of aperturbation series, while the RG proedure is usedhere. REFERENCES1. F. P. Bowden and D. Tabor, Frition and Lubriationof Solids, Oxford (1950).2. I. V. Kragelskii, M. N. Dobyhin, and V. S. Kombalov,Foundations of Calulations for Frition and Wear,Mashinostroenie, Mosow (1977).3. A. I. Larkin and Yu. N. Ovhinnikov, ZhETP 38, 854(1974).4. A. I. Larkin and Yu. N. Ovhinnikov, JETP Lett. 27,280 (1978).

5. A. I. Larkin and Yu. N. Ovhinnikov, J. Low Temp.Phys. 34, 409 (1979).6. L. D. Landau and E. M. Lifshits, Theory of Elastiity,Butterworth-Heinemann (1984).7. L. D. Landau and E. M. Lifshits, Eletrodynamis ofContinuous Media, Butterworth-Heinemann (1984).8. K. B. Efetov and A. I. Larkin, JETP 45, 1276 (1977).COMMENTS, MARCH 2013D. E. KhmelnitskiiLarkin and I were working on dry frition in Au-tumn 1978�Winter 1979. From the very beginning ofhis work on pinning, Tolya saw the analogy with fri-tion and spoke about this at numerous oasions. Fi-nally, he suggested that I join him and study dry fri-tion of two solid bodies. After the paper was written,we submitted it to JETP. Several days later, Tolya toldme that Evgenii Mihailovih Lifshits had spoken tohim and asked to withdraw the paper:I understand that you wrote a paper on physis. �E. M. said � But if JETP publishes it, we will be�ooded by artiles written by engineers.So, Tolya, took the paper from the Editorial o�e2).At about that time (Marh 1979), the text was trans-lated by the sta� translator at the Landau Institute andprinted out as a Landau Institute preprint. A bit later,Tolya suggested to submit the English text to PhysialReview A. We submitted and reeived a report, whih,as I understand now, was pretty neutral on the sub-jet matter and mentioned our poor English. Still, itsounded a rejetion to us. We were then involved in avery exiting work with Lev Gorkov on weak loaliza-tion, and the paper on dry frition was left behind.Sine the preprint was published and the membersof the Landau Institute have spread around the globe,this work was not ompletely forgotten. A number ofolleagues requested the preprint from me and it hasbeen ited in publiations about dry frition3). Now,34 years after it was written, this artile an be avail-able to the broad readership4).2) Seven or eight years later, after E. M. had passed away andI was appointed Deputy Editor at JETP, Tolya asked me with aausti smile whether I would rejet the paper on dry frition ifit was submitted at that time.3) Most notably, in the paper by C. Caroli and P. Nozières,Hysteresis and elasti interations of miro-asperities in dryfrition, European Physial Journal B 4, 233�246 (1998).4) This text is largely based on the English translation made in1979 by L. I. Velyuts, with a small number of reent orretions.474


