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A. I. Larkin, D. E. Khmelnitskii"

Landau Institute for Theoretical Physics
142432, Chernogolovka, Moscow Region, Russia

Received March 29, 2013

Friction of elastic bodies is connected with the passing through the metastable states that arise at the contact
of surfaces rubbing against each other. Three models are considered that give rise to the metastable states.
Friction forces and their dependence on the pressure are calculated. In Appendix A, the contact problem of
elasticity theory is solved with adhesion taken into account.
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1. INTRODUCTION

In the process of friction, when one rough surface
rubs against another, friction forces arise where sur-
faces come into contact. Therefore, there are two kinds
of problems connected with this phenomenon. The first
is, which processes occur at the contact of two surfaces;
and the second, in what way do the random forces aris-
ing at different points of contact add up to the total
friction force? In this paper, deformations at the con-
tact points are assumed to be elastic!).

If the deformation of two contacting surfaces is elas-
tic, then the surfaces are not changed by friction. The
work of friction forces hence results in radiation of
The energy of these sound waves dis-
sipates in the bulk of the rubbing bodies. The power
spent for the radiation of sound is proportional to ac-
celeration squared. When the relative velocities of the
rubbing bodies are small, a large acceleration, inde-
pendent of this velocity, arises only when the contact
turns from a metastable state into a stable one. The
aim of this paper is to elucidate the problem of how
metastable sates arise in an elastic medium. Two pos-
sibilities arise in this case: the metastability arises in
each contact separately, or the region of the surface
containing a large number of contacts transfers into a
metastable state.

sound waves.

The problem of reaction of an elastic structure with
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D 1t is believed [1, 2] that at low pressure, the friction force is
determined mainly by intermolecular forces, while at high pres-
sure, a plastic deformation (ploughing) is more essential.
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randomly arranged defects has been considered previ-
ously in connection with pinning of vortex lines in su-
perconductors [3-5]. The method developed in these
papers is applicable to the problem of dry friction.

This paper is arranged as follows. In Secs. 2 and
3, the case of individual pinning is considered, where
a separate contact can be in a metastable state. In
Sec. 2, the case is studied where the metastability is
caused by adhesion of contacts caused by intermolecu-
lar interaction. In Sec. 3, we examine the model of thin
and long contacts (the “brush” model). In this case, the
metastability arises due to the loss of stability. Section
4 is devoted to the study of collective pinning, when the
metastability of the surface containing a large number
of contacts is in a metastable state. Details of cal-
culations related to each section are presented in the
appendices.

2. ADHESION

The contact of rubbing surfaces is usually realised
on a small area and the rough points touch one another.
Therefore, a good model of a rough surface is that of
balls randomly scattered on the surface. The radii of
the balls R are assumed to be equal. We first consider
the strictly elastic case, where the forces arising at the
contact of the balls are uniquely defined by their mu-
tual location and the elastic properties of solids. These
forces are directed normally to the contact areas of the
balls, and therefore have components tangential to the
surface, averaged over roughness. The sum of these
forces is equal to the total normal force N. The direc-
tions of tangential forces are determined by the mutual
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arrangement, of the balls, and the total tangential force
is zero, because of the randomness of the arrangement.
Therefore, in the purely elastic case, the friction force
is zero.

A nonzero friction force can arise if, besides the elas-
tic forces, an adhesion due to molecular interaction of
two contacting bodies is taken into account. In this
case, the deformation of two contacting bodies is a mul-
tivalued function of their mutual position, and there-
fore the forces are also multivalued functions. Hence,
the forces arising at contacts depend not only on the
current arrangement of two rubbing bodies but also on
the prehistory of the formation of this arrangement. If
the balls are coming into contact, the force is zero until
they touch each other. If the balls are separating, they
remain in contact and the force is not zero even when
the distance between their centres exceeds the sum of
the radii. Therefore, at a relative shift of the surfaces,
there arises an averaged force, whose direction is oppo-
site to the shift.

To calculate the friction coefficient, it is convenient
to use the energy consideration. The work of friction
forces calculated per one contact is equal to the energy
required for breaking the balls in contact plus the en-
ergy of the balls in contact that have only once touched
one another. This energy is calculated in Appendix A

(Eq. (30)):

£ =1.05(ra)?/? (%)2/3 . (1)

The friction force depends on the distribution of heights
x of the tops perpendicular to the surface of sliding. If
C1 2(2) is the number of tops per unit area of the first
(second) body in a unit range of , then, as one body
shifts along another, the number of contacts per unit
of length is

h —
N(h)zS/dxl / deX
0 0

x C(z1)Cs(z2)alh — 21 — 22), (2)

where a(h) = VRh and S is the contact surface area.
Taking into account that the energy £ is dissipated at
any contact, we obtain the friction force

EN(h)

fir =g 3)

To determine the friction coefficient, the friction
force fr, should be divided by the pressure p; besides,

the value of the vertical shift h of the rubbing bod-
ies should be determined through the pressure. The
energy dissipated per unit area is

hfml

/hdxlc’l(xl) / dx202(x2)/27rpdpg(f),
0 0

2
= <h—1‘1—1‘2—2p—R>7

where £(h) is the energy at a single contact as a func-
tion of the vertical shift h. Calculated in Appendix A,
E(h) is a multivalued function that has a jump at h =0
and at h = hyi,. The energy in (4) includes the work
of forces of normal pressure and the energy jumps. In
order to calculate the pressure p, it is necessary to dif-
ferentiate the continuous part of energy (4) with respect
to h:

(4)

hle

h
p= 271'R/d56101(331) / dSUQCQ(SUQ) X
0 0

X{E(h—l‘l—l‘Q)—Ag}, (5)

where AE is the energy jump at the transition from
the metastable state and depends on prehistory. If the
pressure increases, then AE = £(h = 0). If it decreases,
then AE = E(hpmin). When the motion proceeds un-
der a constant pressure, the number of converging con-
tacts is equal to the number of diverging contacts, and
therefore AE = (E(hmin) + E(h =0)) /2. Hence, the
pressure p is a multivalued function of A. In any case,
a finite value h # 0 and, consequently, a finite friction
force correspond to zero pressure p = 0. We suppose

that ”
Clz)=C (é—>> .

Then the friction force, by the order of magnitude, is

a ) (4v+7)/3
X

Frr ~ Ea(h)Cy(R)Ca(h) ~ a (E
Cy CZR(2V+8)/3

(z)2v+2 - (6)

At p = 0, the friction force strongly depends on the con-
centration of the contacts and their spread in heights.
If there is no spread (v = —1), then

a? )
ff,. ~ ECHCQR . (7)

If the pressure is sufficiently high,

b

2R ) (2v+2)/3

5 p7\1/3 —2/3
p>>(aR) 0102E / (E(m>3
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then the dependences £(h) and a(h) can be determined
without taking adhesion into account:

o\ 1/3
er<R04 ) x
p

E?
4/(4v+9)
ATt (

C1C>RB/?
(z)2v+2
As can be seen from Eq. (8), the friction coefficient &y,
is pressure dependent. If the experimental value v = 2
is assumed, then

f

kg =

E

p

4/(4v+9)
) . ®)

kfr ~ p74/17.

3. THE “BRUSH”

In this section, we consider a model in which
metastable states of contacts arise when adhesion is
not taken into account. We suppose that the surface of
one of the bodies has noncompressible roughness with
the rounding-off radius R. Another surface resembles a
brush. It can be viewed as a rigid plate with elastic rods
emerging out of the plate. The length of each rod is [
and the area of its cross section is S. For convenience
of calculation, we assume that [ < R.

The successive arrangement of the rods in plates
passing from the left to the right is shown in Fig. la.
This figure shows that at the right slope of the rough-
ness, there are metastable states at which the rod is
bent to the left. When the plate moves along the the
right slope, the normal force F' is developed. When
this force slightly exceeds the Euler instability thresh-
old Fp = w2EI/41? (where I is moment of inertia of
the rod cross section), the rod jumps to the bend on the
right (dashed line in Fig. 1a). Elastic energies corre-
sponding to these two positions of the rod are different

[ T7

Fig. 1
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and this difference is transferred into heat. The differ-
ence of elastic energies £ is calculated in Appendix B.
It is equal to

e

The friction coefficient can be found using Eqs. (3) and
(5). For simplicity, we assume that Cy »(x) = Cy 20(x).
As a result, obtain the following expression for the fric-
tion coefficient:

4Slh
w2]

& =4SEh (9)

(PN —pe
ke =A (%) o, (10)
71'2 IR0102
e = g2 11
Pe=19""5p (1)
5\ 1/4 9 1/4
A=2 3 5 { )
71'10 E OlchS

It is important in deriving Eqs. (10) and (11) that some
positions of the fixed end of the rod correspond to the
position of a free rod. One of this positions is realized
in motion from left to right, and the other, in motion
from right to left. Quite a different picture is realized
at low pressures (see Fig. 1b), when the normal force
does not exceed the instability threshold Fg. In this
case, the elastic forces acting in the contact at symmet-
ric points of the roughness have equal and oppositely
directed tangential components. In calculating the to-
tal force, we should average over possible positions of
the fixed end of the rod. Such an averaging describes
both the sum of the forces arising at different moments
of the rod motion and the sum of the forces acting at
the system of randomly arranged rods at rest. If such
an averaging is performed in the situation shown in
Fig. 1b, the resulting force is zero. Therefore, the fric-
tion force does not arise in the “brush” model at low
pressure.

4. COLLECTIVE PINNING

In this section, we consider contact of two rough
surfaces similar to those considered in Sec. 2. The dif-
ference is that we here neglect the adhesion.

We assume that there is no metastable states in
each individual contact. The tangential forces f; acting
at the points of contact can be assumed to be random
and to depend on the position of the contact:

() =0, (fFf7) = (f2)6%5;.
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If the mutual influence of contacts is not taken into
consideration, the mean tangential force f¢, is

fre ~ VN(f?),

where N the number of contacts. Hence, the friction
force is proportional to the root of the area S, and the
friction coefficient k. is inversely proportional to VS:

kfr ~ %7
where L is the linear size of the surface if contact of
two rubbing bodies.

If the mutual influence of contacts is taken into ac-
count, then it turns out that for a sufficiently large sur-
face, the friction coefficient is independent of its area.

To determine the deformation arising due to the
force acting at the points of contact of the rubbing sur-
faces, we must find the Green’s function of the elasticity
theory. This Green’s function depends on the ratio of
compressibilities of the rubbing surfaces. For definite-
ness, we assume that the rubbing bodies have identical
elastic properties (the Young moduli E and the Poisson
coefficients o). In this case, the Green’s function can be
found in the problem to §8 in Ref. [6]. The tangential
displacement u; of the i-th contact is therefore related
to the forces f; acting at the j-th contact as

u; = ZG(I‘ij)f(I‘j - u;), (12)
i
1+o 3—4do rorf
af3 _ af
¢ (r)_Sﬂ'E (1-0) { r T r3 } (13)

Using Eq. (13), we estimate the mean square of dis-
placement (u?) due to the action of the forces applied
at a large number of contacts:

(W) =Y Ge)Ger)(fifi) ~ Y G (x))(f?) ~
ik i

C(f?)
E

In £ (14)
P
Here, L is the linear dimension of the area of rubbing
surfaces. Thus, if this area is large, then the collective
action of the forces applied to different contacts results
in a large displacement even if the forces at each indi-
vidual contact are small.
In the same way, we can calculate the mean square
of the relative displacement at points r and r':

LG
E2

o
ln|r r|.

p

([u(r) — u(x")])
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It is clear from this equation that the relative displace-
ment of distant points is large, although the solid bod-
ies are rigid. Therefore, a large surface can be divided
into areas of finite dimensions R, such that relative dis-
placements in one such region are less than or of the
order of the size p of a single contact. The relative
displacements of different regions are of the order of p
or even larger. FEach such region makes an indepen-
dent contribution to the friction force, which is there-
fore proportional to the number of regions and hence
to the total area. The friction coefficient k¢, in this
case is the same as for a separate region and inversely
proportional to R.. The correlation length R. can be
estimated as

Rc E2p2

- 0~
~

p G

Therefore, the correlation length R. depends exponen-
tially on the pressure p. The exponential is determined
in Appendix C. If the size R of the contact area of two
rubbing bodies is small (R < R.), then f;. ~ R. In
the opposite limit R > R., the contribution of each re-
gion of size R, is proportional to the correlation length.
Multiplying by the number of such regions, we obtain
the following estimate for the friction coefficient with

exponential precision:
< >8/5

5. CONCLUSION

In (15)

E

» (16)

kg ~ exp

The goal of this paper is mainly methodical. We
tried to answer the question of how the irreversible en-
ergy dissipation can arise in reversible elasticity the-
ory. For all the models considered, there can be only
one answer: “the energy dissipates in transitions from a
metastable state into a stable one”. On the other hand,
none of the proposed mechanisms yields the Coulomb—
Amontons law (the friction force is proportional to nor-
mal pressure). Apparently, this means that while con-
sidering the contact of a large number of real bodies,
it is impossible to use the elasticity theory, because
the arising deformations are plastic. Another inelastic
mechanism may be the breaking of parts of the body
when it sticks to another body. This mechanism may
be significantly weakened by applying the appropriate
boundary lubrication.

Although inelastic mechanisms are important, the
elastic mechanism of friction also exists. For the major-
ity of bodies, it seems to produce a small contribution



MIT®, Tom 144, Be. 3 (9), 2013

Elastic model of dry friction

to the friction force. But in the case where the fric-
tion force is determined by the elastic mechanism, the
friction coefficient strongly depends on pressure. This
dependence is different in different cases. In the model
with adhesion, the friction coefficient £z, is inversely
proportional to the pressure p (krr ~ A/p as p — 0).
The coefficient A strongly depends on the dimensions
of the surface roughness. In the “brush” model, the fric-
tion force arises under pressures exceeding the thresh-
old values determined by the Euler instability. Besides
the rough surfaces, this model may describe the phe-
nomena occurring with the boundary lubrication, if the
lubricant consists of long molecules that stick with their
ends to one of the bodies in contact.

The collective pinning should be taken into account
in cases where the friction force is small and other
mechanisms do not lead to friction. In this case, for
the surface of a characteristic size L, the friction coeffi-
cient is proportional to 1/L. If this dimension is large,
the friction coefficient does not depend on L and de-
pends on pressure exponentially. Equations (15) and
(16) therefore provide the least possible friction coeffi-
cient.

APPENDIX A

Contact problem in the elasticity theory with
for adhesion

H. Hertz solved the problem of the contact of two
elastic bodies (see [6]). He considered two balls with
radii Ry and Rs, with the Young moduli E; and F»
and the Poisson coefficients o; and 3. The balls are
compressed by the force F'. Such a problem turned out
to be equivalent to the problem of the contact of a ball
with the radius

T
R=|—+ — 17
=7 a7)
and the effective Young modulus
l—02 1-021""
0= L 2 18
B (15)

with a rigid plane. The size a of the contact area was
chosen such that the stress on its boundaries vanished.
The result is

a®> = Rh, (19)
where h is the maximum vertical shift.

In the Hertz problem, the elastic deformation en-
ergy E(a,h) can be calculated with the given contact
radius a and vertical deformation h. Adding the work
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of external forces to this energy and then minimizing
the sum with respect to a and h, the dependences a(h),
F(h), and E(h) can be determined. In the case where
adhesion is taken into account, the elastic deformation
energy for the given a and h should be calculated and
the work of external forces and the adhesion energy
maa? should be added to it (a is the surface energy
of adhesion). The total energy E(a,h) determined in
such a way should be minimized with respect to a, and
a(h) and E(h) should be found.

To fulfil this program, we have to solve the following
equation for the density of forces P(r) at the contact
area r < a:

7,2

2R

P(r1)

h—
|r —rq]

d7’1. (20)

Equation (20) resembles the electrostatic relation that
connects potential with the charge density. If a and h
are connected by relation (19), then

B s

In the general case, this solution can be written as a
linear combination of two expressions

/ r2 1
1-— and ——.
a? V1—r%/a?

Evaluating the integrals (also see [7]) finally gives the
expression

(21)

2a0 r2 0 a’ 1
P =2 (%) Ve P

The elastic force F is given by the integral over the
contact area with the integrand P(r):

E

The total energy includes the elastic deformation en-
ergy at h = hg = a?/R, the work of the force F' on
the way from hg to h at a fixed a, and the adhesion

energy maa’:

3
F:@Pah—g“—

W (23)

R2 2/3
E=Gaf () E@w, @)
5 9
E(x,y)=%—§ 2y +zy® — 2, (25)
where we introduce the dimensionless variables
e \'/* 0?2
=a| — =h|—=). 26
rea (ﬂ'ClR3> Y <7r2a2R> (26)
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g

Fig.2. Dimensionless energy £(z,y) under the condi-
tion 0€/0x = 0 as a function of y

The radius of the contact is determined from the energy
minimum condition:

_OE

0_833

= (2? —y)?* — 2. (27)
If this last equation is solved and its solution x(y) is
substituted in the expression for E(z,y), then we ob-
tain the y-dependence of the total energy. This depen-
dence is plotted in Fig. 2. The solid curve shows the
dependence E(y) under load, and the dotted line shows
E(y) under compression. The minimum value of y com-
patible with the equilibrium condition corresponds to
the breaking-off of the stuck ball:

At the instant of contact,
21/3
y=0, z=2"3 E0) = —3=— =—0.95. (29)
And finally, for the hysteresis energy, we find
RZ 2/3
E =1.05(ra)?/? (5) : (30)

APPENDIX B

We consider the “brush” model in the case where
the normal force F' only slightly exceeds the Euler in-
stability threshold:

(31)

472

At the top of the roughness, the force is equal to (see
Fig. 1a)

(32)

The bending of the bar is determined by the angle 6y,
which can be found from the equation

o
EI do
L= \/;0/ Vcos(0 — B) — cos(fy — ﬂ) %)

Expanding the cosines in Eq. (33) in 6, 6y, and  and
the force F' in F' — Fg, we obtain

F-F 2
63 — 86, 5_32_, (34)
E m
The solution 0(3) of Eq. (34) is single-valued if
72 [8 [4slh 3/2
B>BO—1—6 |:§ <—7r21_1):| . (35)

At smaller values of 3, Eq. (34) has three solutions,
which correspond to a metastable, a stable, and an un-
stable state.

In deriving Eqs. (34) and (35), the terms of the or-
der of Rj3? were neglected in comparison with . This
is justified if

4S1h 192 h\'/?
=7 > (? E) . (36)
At 8 = By, Eq. (34) has two solutions
2 F—FIg
B0 = (£3— 1)/ -
2= (#-1y/3 Fr
2 [4slh 1/2

The bending energy & is equal to the work of the
force F":

E=—Fl{cos(@ —p) — 1} =~

F16?
5 0, (38)

Therefore, the energy jump at the transition from the
metastable state to the stable one is equal to

_1],

APPENDIX C

4Slh
w2l

£ = %SEh [ (39)

We here present the procedure that allows replac-
ing a set of a large number of contacts by a single one.
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The forces acting on such enlarged contacts increase,
and large forces give rise to metastable states. In the
metastable states, the derivatives of the force with re-
spect to coordinates becomes infinite.

We begin with reproducing Eq. (12):

u; = Zé(l‘l - I‘j)f(l‘j - llj).

J#i

(40)

Here, r; is the position of a contact point under the con-
dition that the mutual influence of the contact is not
taken into account, and u; is the deformation caused by
such an influence. We seek the minimum of the energy

£ = Zf/‘(l‘l —I‘j) + % Zuié’ijuj.

J#i

(41)

The force f is linked to the energy £ by the usual rela-
tion
0

- 8ui

The mutual influence arises because the argument,
of the force f; depends on the displacement u;, which
is determined by forces acting at other contacts. The
displacement u(r;) can be represented as the sum

f(I‘i —

lll') g(l‘l - ui). (42)

u; = uz(.l) + WZ(»l), (43)
WEl) = Zéilf (I‘j — 117(:1) — ng)) , (44)
i
|I‘i - I‘j| S R1.

The first term in the sum (43) is equal to the displace-
ment caused by the influence of the forces acting at
distant contacts with |r; —r;| > Ry. The second term
determines the displacement caused by the influence
of the forces acting at the close contacts. If the dis-
placement w determined by Eq. (44) is substituted in
Eq. (41) for the elastic energy &, the latter becomes

1 .
£ = ZSR(ri — 1151)) + 5 Zugl)Gijug-l)a (45)
i i
oy 9
fR(I‘l u; ) = 81151) gR- (46)

In the process of enlargement, the effect of the forces
acting at more distant contacts is taken into account.
Passing from the scale Ry to a scale Ry > Ry, we obtain

):

=E&r, (ri — 1152)

(2)

i

(2)

Er, EE(ri—u -w;
(2.1)

). a7
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where

W(,271) = Zé’iijl (I‘i — 11(.2) — W(Q’l)) ,

=Y
Ry <|r1 —r2] < R».

(48)

If the difference between cut-offs R, and R; is very
large, then the displacements WEZ’l) are small and

expression (47) and (48) can be expanded in series
(2,1)
HE

It is convenient to consider not the forces but their
derivatives with respect to displacements,

in w

gﬁ _ 6fa IC%B’Y _ 62fa
6ug) 6u(ﬁl)8u9)

and so on. To see how the f* transform in passing
from a scale R; to a scale R, it is necessary to dif-
ferentiate expression (47) with respect to u§2), after its
expansion in wl@’l). The displacements wl@’l) them-
selves and their derivatives should be determined by
Eq. (48). As a result, in the second order with respect

to w, we obtain

af - 62
) = G
x { Er, (1) = Y Gif)° Q" (ij) p.  (49)

J
QU =110 =S"GU i =" G T, (50)
1 [

fo=ra.0), 27 = fR03).

The mean square f*° is a quantity convenient for
estimating the effects of mutual influence of the con-
tacts. Because the mean value of an arbitrary quantity
is zero, we obtain

P2 170) = =P = (1770eg) =
Lo;; (0°P670 + 670657 4 5°757%) .

(51)

To determine the variation of the effective charge I’

in passing from a scale R; to a scale Ra, expression (49)

must be substituted in Eq. (51). Retaining the powers
not exceeding four, taking into account that

boow

{

and performing the averaging, obtain the RG equation
for effective charge I in the form

1 1+0
T 8tEl-o

(3 —40)6%%  ropB
-3

G (r)

r
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FR2 = FR1 +Aln%a
2 ' (53)

A= (119 180(3—40) (1=0) 10}
87F -0 ’

where v is the number of contacts per unit area.

Renormalization group equation (53) is valid if
I'In(Ry/R;) < 1. The exact expression for the effec-
tive charge T'r if Eq. (53) is differentiated with respect
to In Ro,

d >
mf r = AT%. (54)

An initial condition for Eq. (54) can be obtained at
R = p (where p is the size of an individual contact):

O, = = g((divh)?), (55)

The solution of RG equation (54) with initial condition
(55) has the form

5
lp=—7—-——. 56
R T (Rp) (56)
Expression (56) is valid at R < R, where
1
Rczpexp{—ﬂ}. (57)

Equation (57) solves the problem of the exponential in
Eq. (16), if the dependence of the contact density v on
pressure is known. For the model of balls without a
scatter in heights, we obtain

217 1—

L=[80(3—40)(1—0)+9].

R%(16C,CyR? 1/5L},
(16CLCo R (58)

The result in this Appendix mainly repeats those in
Ref. [8]. The difference in the derivation is that a sim-
ilar results was obtain in Ref. [8] by summation of a
perturbation series, while the RG procedure is used
here.
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D. E. Khmelnitskii

Larkin and I were working on dry friction in Au-
tumn 1978-Winter 1979. From the very beginning of
his work on pinning, Tolya saw the analogy with fric-
tion and spoke about this at numerous occasions. Fi-
nally, he suggested that I join him and study dry fric-
tion of two solid bodies. After the paper was written,
we submitted it to JETP. Several days later, Tolya told
me that Evgenii Michailovich Lifshits had spoken to
him and asked to withdraw the paper:

I understand that you wrote a paper on physics. —
E. M. said — But if JETP publishes it, we will be
flooded by articles written by engineers.

So, Tolya, took the paper from the Editorial office® .
At about that time (March 1979), the text was trans-
lated by the staff translator at the Landau Institute and
printed out as a Landau Institute preprint. A bit later,
Tolya suggested to submit the English text to Physical
Review A. We submitted and received a report, which,
as I understand now, was pretty neutral on the sub-
ject matter and mentioned our poor English. Still, it
sounded a rejection to us. We were then involved in a
very exciting work with Lev Gorkov on weak localiza-
tion, and the paper on dry friction was left behind.

Since the preprint was published and the members
of the Landau Institute have spread around the globe,
this work was not completely forgotten. A number of
colleagues requested the preprint from me and it has
been cited in publications about dry friction®). Now,
34 years after it was written, this article can be avail-
able to the broad readership®).

2) Seven or eight years later, after E. M. had passed away and
I was appointed Deputy Editor at JETP, Tolya asked me with a
caustic smile whether I would reject the paper on dry friction if
it was submitted at that time.

3) Most notably, in the paper by C. Caroli and P. Noziéres,
Hysteresis and elastic interactions of micro-asperities in dry
friction, European Physical Journal B 4, 233-246 (1998).

4) This text is largely based on the English translation made in
1979 by L. I. Velyuts, with a small number of recent corrections.
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