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ELASTIC MODEL OF DRY FRICTIONA. I. Larkin, D. E. Khmelnitskii *Landau Institute for Theoreti
al Physi
s142432, Chernogolovka, Mos
ow Region, RussiaRe
eived Mar
h 29, 2013Fri
tion of elasti
 bodies is 
onne
ted with the passing through the metastable states that arise at the 
onta
tof surfa
es rubbing against ea
h other. Three models are 
onsidered that give rise to the metastable states.Fri
tion for
es and their dependen
e on the pressure are 
al
ulated. In Appendix A, the 
onta
t problem ofelasti
ity theory is solved with adhesion taken into a

ount.DOI: 10.7868/S00444510131000341. INTRODUCTIONIn the pro
ess of fri
tion, when one rough surfa
erubs against another, fri
tion for
es arise where sur-fa
es 
ome into 
onta
t. Therefore, there are two kindsof problems 
onne
ted with this phenomenon. The �rstis, whi
h pro
esses o

ur at the 
onta
t of two surfa
es;and the se
ond, in what way do the random for
es aris-ing at di�erent points of 
onta
t add up to the totalfri
tion for
e? In this paper, deformations at the 
on-ta
t points are assumed to be elasti
1).If the deformation of two 
onta
ting surfa
es is elas-ti
, then the surfa
es are not 
hanged by fri
tion. Thework of fri
tion for
es hen
e results in radiation ofsound waves. The energy of these sound waves dis-sipates in the bulk of the rubbing bodies. The powerspent for the radiation of sound is proportional to a
-
eleration squared. When the relative velo
ities of therubbing bodies are small, a large a

eleration, inde-pendent of this velo
ity, arises only when the 
onta
tturns from a metastable state into a stable one. Theaim of this paper is to elu
idate the problem of howmetastable sates arise in an elasti
 medium. Two pos-sibilities arise in this 
ase: the metastability arises inea
h 
onta
t separately, or the region of the surfa
e
ontaining a large number of 
onta
ts transfers into ametastable state.The problem of rea
tion of an elasti
 stru
ture with*E-mail: dek12�
am.a
.uk1) It is believed [1, 2℄ that at low pressure, the fri
tion for
e isdetermined mainly by intermole
ular for
es, while at high pres-sure, a plasti
 deformation (ploughing) is more essential.

randomly arranged defe
ts has been 
onsidered previ-ously in 
onne
tion with pinning of vortex lines in su-per
ondu
tors [3�5℄. The method developed in thesepapers is appli
able to the problem of dry fri
tion.This paper is arranged as follows. In Se
s. 2 and3, the 
ase of individual pinning is 
onsidered, wherea separate 
onta
t 
an be in a metastable state. InSe
. 2, the 
ase is studied where the metastability is
aused by adhesion of 
onta
ts 
aused by intermole
u-lar intera
tion. In Se
. 3, we examine the model of thinand long 
onta
ts (the �brush� model). In this 
ase, themetastability arises due to the loss of stability. Se
tion4 is devoted to the study of 
olle
tive pinning, when themetastability of the surfa
e 
ontaining a large numberof 
onta
ts is in a metastable state. Details of 
al-
ulations related to ea
h se
tion are presented in theappendi
es. 2. ADHESIONThe 
onta
t of rubbing surfa
es is usually realisedon a small area and the rough points tou
h one another.Therefore, a good model of a rough surfa
e is that ofballs randomly s
attered on the surfa
e. The radii ofthe balls R are assumed to be equal. We �rst 
onsiderthe stri
tly elasti
 
ase, where the for
es arising at the
onta
t of the balls are uniquely de�ned by their mu-tual lo
ation and the elasti
 properties of solids. Thesefor
es are dire
ted normally to the 
onta
t areas of theballs, and therefore have 
omponents tangential to thesurfa
e, averaged over roughness. The sum of thesefor
es is equal to the total normal for
e N . The dire
-tions of tangential for
es are determined by the mutual467 2*
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eis zero, be
ause of the randomness of the arrangement.Therefore, in the purely elasti
 
ase, the fri
tion for
eis zero.A nonzero fri
tion for
e 
an arise if, besides the elas-ti
 for
es, an adhesion due to mole
ular intera
tion oftwo 
onta
ting bodies is taken into a

ount. In this
ase, the deformation of two 
onta
ting bodies is a mul-tivalued fun
tion of their mutual position, and there-fore the for
es are also multivalued fun
tions. Hen
e,the for
es arising at 
onta
ts depend not only on the
urrent arrangement of two rubbing bodies but also onthe prehistory of the formation of this arrangement. Ifthe balls are 
oming into 
onta
t, the for
e is zero untilthey tou
h ea
h other. If the balls are separating, theyremain in 
onta
t and the for
e is not zero even whenthe distan
e between their 
entres ex
eeds the sum ofthe radii. Therefore, at a relative shift of the surfa
es,there arises an averaged for
e, whose dire
tion is oppo-site to the shift.To 
al
ulate the fri
tion 
oe�
ient, it is 
onvenientto use the energy 
onsideration. The work of fri
tionfor
es 
al
ulated per one 
onta
t is equal to the energyrequired for breaking the balls in 
onta
t plus the en-ergy of the balls in 
onta
t that have only on
e tou
hedone another. This energy is 
al
ulated in Appendix A(Eq. (30)): ~E = 1:05(��)5=3�R2E �2=3 : (1)The fri
tion for
e depends on the distribution of heightsx of the tops perpendi
ular to the surfa
e of sliding. IfC1;2(x) is the number of tops per unit area of the �rst(se
ond) body in a unit range of x, then, as one bodyshifts along another, the number of 
onta
ts per unitof length isN(h) = S hZ0 dx1 h�x1Z0 dx2 �� C1(x1)C2(x2)a(h� x1 � x2); (2)where a(h) = pRh and S is the 
onta
t surfa
e area.Taking into a

ount that the energy ~E is dissipated atany 
onta
t, we obtain the fri
tion for
effr = ~EN(h)S : (3)To determine the fri
tion 
oe�
ient, the fri
tionfor
e ffr should be divided by the pressure p; besides,

the value of the verti
al shift h of the rubbing bod-ies should be determined through the pressure. Theenergy dissipated per unit area ishZ0 dx1C1(x1) h�x1Z0 dx2C2(x2) Z 2�� d�E(�);� = �h� x1 � x2 � �22R� ; (4)where E(h) is the energy at a single 
onta
t as a fun
-tion of the verti
al shift h. Cal
ulated in Appendix A,E(h) is a multivalued fun
tion that has a jump at h = 0and at h = hmin. The energy in (4) in
ludes the workof for
es of normal pressure and the energy jumps. Inorder to 
al
ulate the pressure p, it is ne
essary to dif-ferentiate the 
ontinuous part of energy (4) with respe
tto h:p = 2�R hZ0 dx1C1(x1) h�x1Z0 dx2C2(x2)�� fE(h� x1 � x2)��Eg ; (5)where �E is the energy jump at the transition fromthe metastable state and depends on prehistory. If thepressure in
reases, then �E = E(h = 0). If it de
reases,then �E = E(hmin). When the motion pro
eeds un-der a 
onstant pressure, the number of 
onverging 
on-ta
ts is equal to the number of diverging 
onta
ts, andtherefore �E = (E(hmin) + E(h = 0)) =2. Hen
e, thepressure p is a multivalued fun
tion of h. In any 
ase,a �nite value h 6= 0 and, 
onsequently, a �nite fri
tionfor
e 
orrespond to zero pressure p = 0. We supposethat C(x) = C � xhxi�� :Then the fri
tion for
e, by the order of magnitude, isffr � ~Ea(h)C1(h)C2(h) � � � �E�(4�+7)=3 �� C1C2R(2�+8)=3hxi2�+2 : (6)At p = 0, the fri
tion for
e strongly depends on the 
on-
entration of the 
onta
ts and their spread in heights.If there is no spread (� = �1), thenffr � �2E C1C2R2: (7)If the pressure is su�
iently high,p� ��5R7�1=3 C1C2E�2=3 � �2REhxi3�(2�+2)=3 ;468
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 model of dry fri
tionthen the dependen
es E(h) and a(h) 
an be determinedwithout taking adhesion into a

ount:kfr = ffrp � �R�2E2�1=3 ���C1C2R(3=2hxi2�+2 �4=(4�+9)�Ep �4=(4�+9) : (8)As 
an be seen from Eq. (8), the fri
tion 
oe�
ient kfris pressure dependent. If the experimental value � = 2is assumed, then kfr � p�4=17:3. THE �BRUSH�In this se
tion, we 
onsider a model in whi
hmetastable states of 
onta
ts arise when adhesion isnot taken into a

ount. We suppose that the surfa
e ofone of the bodies has non
ompressible roughness withthe rounding-o� radius R. Another surfa
e resembles abrush. It 
an be viewed as a rigid plate with elasti
 rodsemerging out of the plate. The length of ea
h rod is land the area of its 
ross se
tion is S. For 
onvenien
eof 
al
ulation, we assume that l � R.The su

essive arrangement of the rods in platespassing from the left to the right is shown in Fig. 1a.This �gure shows that at the right slope of the rough-ness, there are metastable states at whi
h the rod isbent to the left. When the plate moves along the theright slope, the normal for
e F is developed. Whenthis for
e slightly ex
eeds the Euler instability thresh-old FE = �2EI=4l2 (where I is moment of inertia ofthe rod 
ross se
tion), the rod jumps to the bend on theright (dashed line in Fig. 1a). Elasti
 energies 
orre-sponding to these two positions of the rod are di�erent
a b

h

β

Fig. 1

and this di�eren
e is transferred into heat. The di�er-en
e of elasti
 energies ~E is 
al
ulated in Appendix B.It is equal to ~E = 4SEh �4Slh�2I � 1� : (9)The fri
tion 
oe�
ient 
an be found using Eqs. (3) and(5). For simpli
ity, we assume that C1;2(x) = C1;2Æ(x).As a result, obtain the following expression for the fri
-tion 
oe�
ient:kfr = A� pE�1=4 p� p
p ; (10)p
 = �212E IRC1C2Sl2 ; (11)A = 2� 35�10�1=4 SE � l9C1C2RS�1=4 :It is important in deriving Eqs. (10) and (11) that somepositions of the �xed end of the rod 
orrespond to theposition of a free rod. One of this positions is realizedin motion from left to right, and the other, in motionfrom right to left. Quite a di�erent pi
ture is realizedat low pressures (see Fig. 1b ), when the normal for
edoes not ex
eed the instability threshold FE . In this
ase, the elasti
 for
es a
ting in the 
onta
t at symmet-ri
 points of the roughness have equal and oppositelydire
ted tangential 
omponents. In 
al
ulating the to-tal for
e, we should average over possible positions ofthe �xed end of the rod. Su
h an averaging des
ribesboth the sum of the for
es arising at di�erent momentsof the rod motion and the sum of the for
es a
ting atthe system of randomly arranged rods at rest. If su
han averaging is performed in the situation shown inFig. 1b, the resulting for
e is zero. Therefore, the fri
-tion for
e does not arise in the �brush� model at lowpressure. 4. COLLECTIVE PINNINGIn this se
tion, we 
onsider 
onta
t of two roughsurfa
es similar to those 
onsidered in Se
. 2. The dif-feren
e is that we here negle
t the adhesion.We assume that there is no metastable states inea
h individual 
onta
t. The tangential for
es fi a
tingat the points of 
onta
t 
an be assumed to be randomand to depend on the position of the 
onta
t:hfii = 0; hf�i f�j i = hf2iÆ��Æij :469



A. I. Larkin, D. E. Khmelnitskii ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013If the mutual in�uen
e of 
onta
ts is not taken into
onsideration, the mean tangential for
e ffr isffr �pNhf2i;where N the number of 
onta
ts. Hen
e, the fri
tionfor
e is proportional to the root of the area S, and thefri
tion 
oe�
ient kfr is inversely proportional to pS:kfr � 1L;where L is the linear size of the surfa
e if 
onta
t oftwo rubbing bodies.If the mutual in�uen
e of 
onta
ts is taken into a
-
ount, then it turns out that for a su�
iently large sur-fa
e, the fri
tion 
oe�
ient is independent of its area.To determine the deformation arising due to thefor
e a
ting at the points of 
onta
t of the rubbing sur-fa
es, we must �nd the Green's fun
tion of the elasti
itytheory. This Green's fun
tion depends on the ratio of
ompressibilities of the rubbing surfa
es. For de�nite-ness, we assume that the rubbing bodies have identi
alelasti
 properties (the Young moduli E and the Poisson
oe�
ients �). In this 
ase, the Green's fun
tion 
an befound in the problem to � 8 in Ref. [6℄. The tangentialdispla
ement ui of the i-th 
onta
t is therefore relatedto the for
es fj a
ting at the j-th 
onta
t asui =Xj 6=i Ĝ(rij)f(rj � uj); (12)G��(r) = 1 + �8�E (1� �) �3� 4�r Æ�� + r�r�r3 � : (13)Using Eq. (13), we estimate the mean square of dis-pla
ement hu2i due to the a
tion of the for
es appliedat a large number of 
onta
ts:hu2i =Xjk G(rj)G(rk)hfjfki �Xj G2(rj)hf2i �� Chf2iE ln L� : (14)Here, L is the linear dimension of the area of rubbingsurfa
es. Thus, if this area is large, then the 
olle
tivea
tion of the for
es applied to di�erent 
onta
ts resultsin a large displa
ement even if the for
es at ea
h indi-vidual 
onta
t are small.In the same way, we 
an 
al
ulate the mean squareof the relative displa
ement at points r and r0:h[u(r) � u(r0)℄2i � C1hf2iE2 ln jr� r0j� :

It is 
lear from this equation that the relative displa
e-ment of distant points is large, although the solid bod-ies are rigid. Therefore, a large surfa
e 
an be dividedinto areas of �nite dimensions R
 su
h that relative dis-pla
ements in one su
h region are less than or of theorder of the size � of a single 
onta
t. The relativedispla
ements of di�erent regions are of the order of �or even larger. Ea
h su
h region makes an indepen-dent 
ontribution to the fri
tion for
e, whi
h is there-fore proportional to the number of regions and hen
eto the total area. The fri
tion 
oe�
ient kfr in this
ase is the same as for a separate region and inverselyproportional to R
. The 
orrelation length R
 
an beestimated as ln R
� � E2�2C1hf2i2 : (15)Therefore, the 
orrelation length R
 depends exponen-tially on the pressure p. The exponential is determinedin Appendix C. If the size R of the 
onta
t area of tworubbing bodies is small (R � R
), then ffr � R. Inthe opposite limit R� R
, the 
ontribution of ea
h re-gion of size R
 is proportional to the 
orrelation length.Multiplying by the number of su
h regions, we obtainthe following estimate for the fri
tion 
oe�
ient withexponential pre
ision:kfr � exp"��Ep �8=5# : (16)5. CONCLUSIONThe goal of this paper is mainly methodi
al. Wetried to answer the question of how the irreversible en-ergy dissipation 
an arise in reversible elasti
ity the-ory. For all the models 
onsidered, there 
an be onlyone answer: �the energy dissipates in transitions from ametastable state into a stable one�. On the other hand,none of the proposed me
hanisms yields the Coulomb�Amontons law (the fri
tion for
e is proportional to nor-mal pressure). Apparently, this means that while 
on-sidering the 
onta
t of a large number of real bodies,it is impossible to use the elasti
ity theory, be
ausethe arising deformations are plasti
. Another inelasti
me
hanism may be the breaking of parts of the bodywhen it sti
ks to another body. This me
hanism maybe signi�
antly weakened by applying the appropriateboundary lubri
ation.Although inelasti
 me
hanisms are important, theelasti
 me
hanism of fri
tion also exists. For the major-ity of bodies, it seems to produ
e a small 
ontribution470
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 model of dry fri
tionto the fri
tion for
e. But in the 
ase where the fri
-tion for
e is determined by the elasti
 me
hanism, thefri
tion 
oe�
ient strongly depends on pressure. Thisdependen
e is di�erent in di�erent 
ases. In the modelwith adhesion, the fri
tion 
oe�
ient kfr is inverselyproportional to the pressure p (kfr � A=p as p ! 0).The 
oe�
ient A strongly depends on the dimensionsof the surfa
e roughness. In the �brush� model, the fri
-tion for
e arises under pressures ex
eeding the thresh-old values determined by the Euler instability. Besidesthe rough surfa
es, this model may des
ribe the phe-nomena o

urring with the boundary lubri
ation, if thelubri
ant 
onsists of long mole
ules that sti
k with theirends to one of the bodies in 
onta
t.The 
olle
tive pinning should be taken into a

ountin 
ases where the fri
tion for
e is small and otherme
hanisms do not lead to fri
tion. In this 
ase, forthe surfa
e of a 
hara
teristi
 size L, the fri
tion 
oe�-
ient is proportional to 1=L. If this dimension is large,the fri
tion 
oe�
ient does not depend on L and de-pends on pressure exponentially. Equations (15) and(16) therefore provide the least possible fri
tion 
oe�-
ient. APPENDIX AConta
t problem in the elasti
ity theory withfor adhesionH. Hertz solved the problem of the 
onta
t of twoelasti
 bodies (see [6℄). He 
onsidered two balls withradii R1 and R2, with the Young moduli E1 and E2and the Poisson 
oe�
ients �1 and �2. The balls are
ompressed by the for
e F . Su
h a problem turned outto be equivalent to the problem of the 
onta
t of a ballwith the radius R = � 1R1 + 1R2 ��1 (17)and the e�e
tive Young modulus� = �1� �21E1 + 1� �22E2 ��1 (18)with a rigid plane. The size a of the 
onta
t area was
hosen su
h that the stress on its boundaries vanished.The result is a2 = Rh; (19)where h is the maximum verti
al shift.In the Hertz problem, the elasti
 deformation en-ergy E(a; h) 
an be 
al
ulated with the given 
onta
tradius a and verti
al deformation h. Adding the work

of external for
es to this energy and then minimizingthe sum with respe
t to a and h, the dependen
es a(h),F (h), and E(h) 
an be determined. In the 
ase whereadhesion is taken into a

ount, the elasti
 deformationenergy for the given a and h should be 
al
ulated andthe work of external for
es and the adhesion energy��a2 should be added to it (� is the surfa
e energyof adhesion). The total energy E(a; h) determined insu
h a way should be minimized with respe
t to a, anda(h) and E(h) should be found.To ful�l this program, we have to solve the followingequation for the density of for
es P (r) at the 
onta
tarea r < a: h� r22R = � Z P (r1)jr � r1jdr1: (20)Equation (20) resembles the ele
trostati
 relation that
onne
ts potential with the 
harge density. If a and hare 
onne
ted by relation (19), thenP (r) /r1� r2a2 : (21)In the general 
ase, this solution 
an be written as alinear 
ombination of two expressionsr1� r2a2 and 1p1� r2=a2 :Evaluating the integrals (also see [7℄) �nally gives theexpressionP (r) = 2a��R r1�r2a2+ ��a �h�a2R � 1p1�r2=a2 : (22)The elasti
 for
e F is given by the integral over the
onta
t area with the integrand P (r):F = � �2ah� 23 a3R � : (23)The total energy in
ludes the elasti
 deformation en-ergy at h = h0 = a2=R, the work of the for
e F onthe way from h0 to h at a �xed a, and the adhesionenergy ��a2:E = (��)5=3 �R2� �2=3E(x; y); (24)E(x; y) = x55 � 23 x3y + xy2 � x2; (25)where we introdu
e the dimensionless variablesx = a� ���R3�1=3 ; y = h� �2�2�2R� : (26)471
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ε

y

Fig. 2. Dimensionless energy E(x; y) under the 
ondi-tion �E=�x = 0 as a fun
tion of yThe radius of the 
onta
t is determined from the energyminimum 
ondition:0 = �E�x = (x2 � y)2 � 2x: (27)If this last equation is solved and its solution x(y) issubstituted in the expression for E(x; y), then we ob-tain the y-dependen
e of the total energy. This depen-den
e is plotted in Fig. 2. The solid 
urve shows thedependen
e E(y) under load, and the dotted line showsE(y) under 
ompression. The minimum value of y 
om-patible with the equilibrium 
ondition 
orresponds tothe breaking-o� of the stu
k ball:ymin = �0:5; E(ymin) = 0:1: (28)At the instant of 
onta
t,y = 0; x = 21=3; E(0) = �321=35 = �0:95: (29)And �nally, for the hysteresis energy, we �ndE = 1:05(��)5=3�R2� �2=3 : (30)APPENDIX BWe 
onsider the �brush� model in the 
ase wherethe normal for
e F only slightly ex
eeds the Euler in-stability threshold: FE = �24 EIl2 : (31)

At the top of the roughness, the for
e is equal to (seeFig. 1a) F = SEhl : (32)The bending of the bar is determined by the angle �0,whi
h 
an be found from the equationl =rEI2F �0Z0 d�p
os(� � �)� 
os(�0 � �) : (33)Expanding the 
osines in Eq. (33) in �, �0, and � andthe for
e F in F � FE , we obtain�30 � 8�0F � FEFE � 32�� = 0: (34)The solution �(�) of Eq. (34) is single-valued if� > �0 = �216 �83 �4slh�2 I � 1��3=2 : (35)At smaller values of �, Eq. (34) has three solutions,whi
h 
orrespond to a metastable, a stable, and an un-stable state.In deriving Eqs. (34) and (35), the terms of the or-der of R�2 were negle
ted in 
omparison with h. Thisis justi�ed if 4Slh�2I � �192�2 hR�1=3 : (36)At � = �0, Eq. (34) has two solutions�1;2 = (�3� 1)r23 F � FEFE == (�3� 1)�23 �4slh�2I � 1��1=2 : (37)The bending energy E is equal to the work of thefor
e F : E = �F l f
os(� � �)� 1g � F l�202 : (38)Therefore, the energy jump at the transition from themetastable state to the stable one is equal to~E = 329 SEh �4Slh�2I � 1� : (39)APPENDIX CWe here present the pro
edure that allows repla
-ing a set of a large number of 
onta
ts by a single one.472
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 model of dry fri
tionThe for
es a
ting on su
h enlarged 
onta
ts in
rease,and large for
es give rise to metastable states. In themetastable states, the derivatives of the for
e with re-spe
t to 
oordinates be
omes in�nite.We begin with reprodu
ing Eq. (12):ui =Xj 6=i Ĝ(ri � rj)f(rj � uj): (40)Here, ri is the position of a 
onta
t point under the 
on-dition that the mutual in�uen
e of the 
onta
t is nottaken into a

ount, and ui is the deformation 
aused bysu
h an in�uen
e. We seek the minimum of the energyE =Xi E(ri � rj) + 12Xj 6=i uiĜijuj : (41)The for
e f is linked to the energy E by the usual rela-tion f(ri � ui) = ��ui E(ri � ui): (42)The mutual in�uen
e arises be
ause the argumentof the for
e fi depends on the displa
ement ui, whi
his determined by for
es a
ting at other 
onta
ts. Thedispla
ement u(ri) 
an be represented as the sumui = u(1)i +w(1)i ; (43)w(1)i =Xj 6=i Ĝij f �rj � u(1)i �w(1)i � ; (44)jri � rj j � R1:The �rst term in the sum (43) is equal to the displa
e-ment 
aused by the in�uen
e of the for
es a
ting atdistant 
onta
ts with jri � rj j > R1. The se
ond termdetermines the displa
ement 
aused by the in�uen
eof the for
es a
ting at the 
lose 
onta
ts. If the dis-pla
ement w determined by Eq. (44) is substituted inEq. (41) for the elasti
 energy E , the latter be
omesE =Xi ER(ri � u(1)i ) + 12Xi 6=j u(1)i Ĝiju(1)j ; (45)fR(ri � u(1)i ) = ��u(1)i ER: (46)In the pro
ess of enlargement, the e�e
t of the for
esa
ting at more distant 
onta
ts is taken into a

ount.Passing from the s
ale R1 to a s
ale R2 > R1, we obtainER2 � E �ri � u(2)i �w(2)i � == ER1 �ri � u(2)i �w(2;1)i � ; (47)

wherew(2;1)i =Xi3j Ĝij fR1 �ri � u(2)i �w(2;1)i � ;R1 � jr1 � r2j � R2: (48)If the di�eren
e between 
ut-o�s R2 and R1 is verylarge, then the displa
ements w(2;1)i are small andexpression (47) and (48) 
an be expanded in seriesin w(2;1)i .It is 
onvenient to 
onsider not the for
es but theirderivatives with respe
t to displa
ements,f��R = �f��u(1)� ; f��
R = �2f��u(1)� �u(1)
 ;and so on. To see how the f��::: transform in passingfrom a s
ale R1 to a s
ale R2, it is ne
essary to dif-ferentiate expression (47) with respe
t to u(2)i , after itsexpansion in w(2;1)i . The displa
ements w(2;1)i them-selves and their derivatives should be determined byEq. (48). As a result, in the se
ond order with respe
tto w, we obtainf��R2 (i) = �2�u(1)� �u(1)
 ��8<:ER1(i)�Xj G(ij)
ÆQ
Æ(ij)9=; ; (49)Q
Æij = f
i fÆj �Xl G��il f
�i fÆj �Xl G��jl f
j f�Æl ; (50)f�i = f�R1(i); f��i = f��R1 (i):The mean square f�� is a quantity 
onvenient forestimating the e�e
ts of mutual in�uen
e of the 
on-ta
ts. Be
ause the mean value of an arbitrary quantityis zero, we obtainhf��i f
Æj i = �hf��
i fÆj i = hf��
Æi Eji == �Æij �Æ��Æ
Æ + Æ�ÆÆ�
 + Æ�
Æ�Æ� : (51)To determine the variation of the e�e
tive 
harge �in passing from a s
ale R1 to a s
ale R2, expression (49)must be substituted in Eq. (51). Retaining the powersnot ex
eeding four, taking into a

ount thatG��(r) = 18�E 1 + �1� � � (3� 4�)Æ��r � r�r�r3 � ; (52)and performing the averaging, obtain the RG equationfor e�e
tive 
harge � in the form473



A. I. Larkin, D. E. Khmelnitskii ÆÝÒÔ, òîì 144, âûï. 3 (9), 2013�R2 = �R1 +A ln R2R1 ;A = �� � 18�E 1+�1���2 f80(3�4�)(1��)+9g ; (53)where � is the number of 
onta
ts per unit area.Renormalization group equation (53) is valid if� ln(R2=R1) � 1. The exa
t expression for the e�e
-tive 
harge �R if Eq. (53) is di�erentiated with respe
tto lnR2, dd lnR�R = A�2R: (54)An initial 
ondition for Eq. (54) 
an be obtained atR = � (where � is the size of an individual 
onta
t):�� = 
 = 18 h(div f)2i: (55)The solution of RG equation (54) with initial 
ondition(55) has the form�R = 
1�A
 ln(R=�) : (56)Expression (56) is valid at R < R
, whereR
 � � exp�� 1
A� : (57)Equation (57) solves the problem of the exponential inEq. (16), if the dependen
e of the 
onta
t density � onpressure is known. For the model of balls without as
atter in heights, we obtainkfr � exp��217(1��)3 R2(16C1C2R2)1=5L� ;L = [80(3� 4�)(1� �) + 9℄ : (58)The result in this Appendix mainly repeats those inRef. [8℄. The di�eren
e in the derivation is that a sim-ilar results was obtain in Ref. [8℄ by summation of aperturbation series, while the RG pro
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tion in Au-tumn 1978�Winter 1979. From the very beginning ofhis work on pinning, Tolya saw the analogy with fri
-tion and spoke about this at numerous o

asions. Fi-nally, he suggested that I join him and study dry fri
-tion of two solid bodies. After the paper was written,we submitted it to JETP. Several days later, Tolya toldme that Evgenii Mi
hailovi
h Lifshits had spoken tohim and asked to withdraw the paper:I understand that you wrote a paper on physi
s. �E. M. said � But if JETP publishes it, we will be�ooded by arti
les written by engineers.So, Tolya, took the paper from the Editorial o�
e2).At about that time (Mar
h 1979), the text was trans-lated by the sta� translator at the Landau Institute andprinted out as a Landau Institute preprint. A bit later,Tolya suggested to submit the English text to Physi
alReview A. We submitted and re
eived a report, whi
h,as I understand now, was pretty neutral on the sub-je
t matter and mentioned our poor English. Still, itsounded a reje
tion to us. We were then involved in avery ex
iting work with Lev Gorkov on weak lo
aliza-tion, and the paper on dry fri
tion was left behind.Sin
e the preprint was published and the membersof the Landau Institute have spread around the globe,this work was not 
ompletely forgotten. A number of
olleagues requested the preprint from me and it hasbeen 
ited in publi
ations about dry fri
tion3). Now,34 years after it was written, this arti
le 
an be avail-able to the broad readership4).2) Seven or eight years later, after E. M. had passed away andI was appointed Deputy Editor at JETP, Tolya asked me with a
austi
 smile whether I would reje
t the paper on dry fri
tion ifit was submitted at that time.3) Most notably, in the paper by C. Caroli and P. Nozières,Hysteresis and elasti
 intera
tions of mi
ro-asperities in dryfri
tion, European Physi
al Journal B 4, 233�246 (1998).4) This text is largely based on the English translation made in1979 by L. I. Velyuts, with a small number of re
ent 
orre
tions.474


