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We investigate the thermodynamics at the apparent horizon of the FRW universe in f(R,T) theory in the
nonequilibrium description. The laws of thermodynamics are discussed for two particular models of the f(R,T)
theory. The first law of thermodynamics is expressed in the form of the Clausius relation T,dS), = 6Q, where
8Q) is the energy flux across the horizon and dS is the entropy production term. Furthermore, the conditions for
the generalized second law of thermodynamics to be preserved are established with the constraints of positive
temperature and attractive gravity. We illustrate our results for some concrete models in this theory.
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1. INTRODUCTION

Recent astrophysical observations indicate that ex-
pansion of the universe is presently in an accelerated
epoch. The most compelling evidence for this is found
in measurements of type-Ia supernovae (SNela) [1],
which is supported by renowned observations [2-5].
The mysterious component, of energy named dark ener-
gy (DE) is often introduced to explain this behavior of
the universe. However, the mechanism responsible for
the accelerated expansion is still under debate.

Two approaches have been used to illustrate the
issue of current cosmic acceleration. Introducing an
“exotic cosmic fluid” in the framework of the Einstein
gravity [6-8] is one direction to deal such issue, but this
approach did not fully explain the current empirical
data. The other way is to discuss the modified theories
of gravity such as f(R) [9, 10], f(7) [11], where T is the
torsion scalar in teleparallel, and f(R,T), where R and
T are the Ricci sclar and the trace of the energy-mo-
mentum tensor [12,13]. The f(R,T) theory modifies
the Einstein Lagrangian by coupling matter and geom-
etry. In fact, this modified gravity generalizes the f(R)
theory and necessitates an arbitrary function of R and
T. A comprehensive review of the problem of DE and
modified theories was recently presented in [14].
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Black hole thermodynamics suggests that there is a
fundamental connection between gravitation and ther-
modynamics [15]. Hawking radiation [16] together with
a proportionality relation between temperature and
surface gravity, as well as the connection between the
horizon entropy and the area of a black hole [17] fur-
ther support this idea. Jacobson [18] was the first to
deduce the Einstein field equations from the Clausius
relation

ThdS), = 6Q

together with the condition that the entropy is propor-
tional to the horizon area. In case of a general spheri-
cally symmetric spacetime, it was shown that the field
equations can be stated as the first law of thermody-
namics (FLT) [19].

The relation between the Friedmann-Robertson—
Walker (FRW) equations and the FLT was shown in
[20] for

)
T, = %m, Sy = %
The field equations for an FRW background were also
formulated in the Gauss—Bonnet and Lovelock theo-
ries by using the corresponding entropy relation for
static spherically symmetric black holes. It was shown
in [21] that the correct field equations cannot be found
by simply using the Clausius relation in nonlinear
theories of gravity. The authors of [21] remarked
that a nonequilibrium description of thermodynamics
is needed, whereby the Clausius relation is modified to

TydS), = 6Q + d, S,
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where d,S is the entropy production term. In
Refs. [22-26], it was shown that the FRW field equa-
tions in general relativity (GR) and modified theories
can be rewritten as

dE =T}, dSy, + W dV

(a unified FLT on the trapping horizon suggested
in [23]) with the work term

1

W=3(-p

A generalized procedure to construct the FLT and
the generalized second law of thermodynamics (GSLT)
at the apparent horizon of a Friedmann universe was
developed in [27]. The validity conditions of the GSLT
were studied in modified theories of gravity. In [28§], it
was shown that equilibrium thermodynamics is achie-
vable for extended theories of gravity and entropy cor-
rection terms can be confined to mass-like functions.
Other alternative approaches [29-33] have also been
developed to reinterpret the nonequilibrium correction.
In [34], we have explored the GSLT in the f(R,T) the-
ory and found necessary conditions for its validity. It
was shown that the equilibrium description is not fea-
sible by redefining the dark energy components in the
f(R,T) theory.

In this paper, the thermodynamics laws are exam-
ined for two particular models of the f(R,T) theory.
We show that the FRW equations can be rewritten in
the form of FLT

Thdgh + Thdjgh = —dE + WiordV.

We formulate the GSLT and explore the conditions to
validate this law. The paper is arranged as follows. In
Sec. 2, we present a brief introduction to the f(R,T)
theory. Section 3 is devoted to a discussion of the FLT
and GSLT corresponding to the Friedmann equations
of particular f(R,T) models. Finally, concluding re-
marks are given in Sec. 4.

2. f(R,T) GRAVITY: AN OVERVIEW

The f(R,T) modified gravity is described by the
action [12]
f(R,T)

I:/dx4\/—_g[ o (1)

where k = 87G and L, defines the matter substances
of the universe. The matter energy—momentum tensor

TO(E) is defined as [35]

+£m:|7

2 5(V=5Lm)

T(m) —
V=g g7

ap

(2)
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The field equations can be found by varying the action
of the f(R,T) gravity with respect to the metric tensor,

1
RanR(R7 T) - igozﬁf(Ra T) +
+ (gaﬁlj - vavﬁ)fR(RaT) =
=8tGT\ — fr(R,T)T — fr(R,T)Ous, (3)

where fr and fp are derivatives of f(R,T) with respect
to R and T'. The field equations depend on the source
term ©,,, and hence every selection of L, generates a
particular set of field equations.

We consider the perfect fluid as a matter source
with the matter Lagrangian £, = p;,, whence O3 is
given by

@aB (4)

2TV + pmgas.

Substituting this value in Eq. (3) yields

1
Ragfr = 5906f + (90580 = VaVi) fr =
= 87GT + T fr — pmgas fr. (5)

The spatially homogeneous and isotropic, (n + 1)-di-
mensional FRW universe is defined as

ds? = hogde®dz® + 72O

n—1»

(6)

where
hap = diag(—1,a*/(1 — kr?))

is the 2-dimensional metric, a(t) is the scale factor, and
k is the cosmic curvature;

F=a(t)yr, 2°=t, =,
and dQ22_, is the metric of a (n—1)-dimensional sphere.
For n = 3, we have the (3 4+ 1)-dimensional FRW met-
ric in the Einstein gravity, while one can have n > 4 in

other gravity theories.
3. THERMODYNAMICS IN THE f(R,T)

GRAVITY

We now discuss the laws of thermodynamics for two
particular choices of an f(R,T) gravity [12].

3.1. f(R,T) = f1(R) + f2(T)
We consider the f(R,T) model with

f(R,T) = fi(R) + f2(T),
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where f; and fo are arbitrary functions of R and T.
The corresponding field equations are

R i (R) =3 005 1 (R)+(3050-Va V) fin(R) =
:%Gﬁ?+2$%ﬂﬂ+%%mﬂﬂ,(&
where
IR S ]

The choice f2(T') = 0 implies the field equation of the
f(R) gravity. In the FRW background, the field equa-
tions become

k 167G E gy
2 M\ _ 107GEsy
<H + ag) n(n _ 1) (pm + pdc)? (9)
gk _ _8mGry
<H a2> - (n — 1) (pm + Pde +pd0)7 (10)
where
1 f2T>
G =— |G+ —=—],
Eff fir < 1
and
__t JLlp HR 11
) 5( fir—fi—f2)-nHRfirr|, (11)
- |Lg +
Pic = g5 |~ 5 fir — fi = f2)
+ (n—1)HRfirr + Rfirr + R’ firrr|, (12)
and
_ f2T(R7T)
D= (1 + —a )

Substituting Eqs. (11) and (12) in the conservation
equation [34], we obtain
ﬁﬂ)

()

Clearly, this reduces to the energy transfer relation in
the f(R) theory if

n(n —1)
167G

k

a2

qr = (13)

f(R,T) = fi(R)

(see [32, 33]). If the effective gravitational coupling is
constant, we obtain

g+ = 0.
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3.1.1. First law of thermodynamics

We now construct the FLT for the above f(R,T)
model. The condition

R0, FONF = 0

gives the radius 74 of the apparent horizon as

= ( >/

The associated temperature is

k
2
H+?

|“sg|
T, = —=
h o )
where
1
_ NN
nsg—Q\/__hau (\/ hh 8,,7'A)
1, Ldws
TP 2H dt

is the surface gravity [20]. The temperature

Ty = 1-—
h 27rfA( n)
is positive for
1 d[In74]
= — 1.
TS3E A

Applying the definition of 74, we express the positivity
condition for T}, as

: k 5 k
H—?>—2<H +§). (14)
In GR, the horizon entropy is defined as
A
Sh = e

(see [15-17]), where
A = QY = na/2[0(n/2 4+ 1)] 710t

is the area of the apparent horizon. It was proposed
in [36] that in modified gravitational theories, the hori-
zon entropy is associated with a Noether charge en-
tropy. In [37], the Wald entropy was shown to be equiv-

alent to
A

where G gyr is the effective gravitational coupling. We
can define the Wald entropy in the f(R,T) theory
as [34]

Sh

A
4Gy’

A~

Sh

(15)
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where
GD(R,T)

fir
for the first f(R,T) model. Following [34], we can ob-
tain the FLT in the form

TydS), = 6Q,

Gry =

where the energy flux Q) is
5Q = —dE + gfg—l(pt — pe) dia +

nQu(n — %2 fir)
* 167G d F )

= —dE + W;dV + Vq,dt + Ty Spd <J%R> (16)

and
1o 1
Wi = —§T(t)“ hyy = §(Pt — D)

is the total work density [23]. Thus, the FLT can be
expressed as

ThdSh + Thd, Sy = —dE + Wi dV, (17)

where

) L (1=m)/2 o
i, <H2 N —> ((n+ 1) H? +H+n§> d(fir/D)

is the entropy production term developed for this
model. This characterizes a nonequilibrium treatment
of thermodynamics. The FLT for a flat FRW universe
in the f(R) theory [32, 33] can be retrieved from this
result. For f(R,T) = R, the term djgh vanishes, which
leads to the FLT in the Einstein gravity.

3.1.2. Generalized second law of
thermodynamics

We now investigate the validity of the GSLT in
f(R,T) theory for this model. The FLT determines
the horizon entropy given by Eq. (17). The composi-
tion of the entire matter and energy fluids within the
horizon is given by Gibb’s equation [39]

Ttdgt = dEt +pth, (18)

where T} and S't are the temperature and entropy of all
contents within the horizon. The temperature within
the horizon is related to T} [27] as

Tt = bTha
where
0<b<1
to ensure that
0< Ty < Ty

We consider S to be the sum of matter entropy within
the horizon, the horizon entropy, and the nonequilib-
rium entropy production term.

The GSLT states that the time derivative of the
total entropy is not decreasing with time, i.e.,

Thé = Th(éh + djéh + St) 2 07 (19)

4G <2H2 +H+ %)
a

where

d,S, = 8,(d,Sh).

Inserting Eqs. (17) and (18) in the above inequality, we
obtain

% [2H7 4 [(b—1) + 74} (2 = b)] x
y (%) + (1= ) Hiad, (%Rﬂ >0, (20)
where

Fa=—i73H (H - a—’Z) :

We can impose the constraint
D/fir >0

for G'g s to be positive. Using the positive temperature
condition

.k
H——2>—2<H2+%>
a a

with the temperature parameter b < 1 then relation
(20) becomes

R k —n/2+1
2
n(n—1)Q, (H + ?>

167GD x
flR

Y O
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Hence, the GSLT can be satisfied if

6t(f1R/D) > 0.

If
O(fir/D) <0,

then the GSLT is protected only if

8t(f1R/D)‘< 4H
flR/D S1-0b

If the gravitational coupling constant is indeed a con-
stant, i.e.,

9 (fir/D) =0,

then the GSLT always holds. The condition to preserve
the GSLT in the f(R) theory can be reproduced if

f(R,T) = fi(R).

For

kZO, fZ(T):07

we obtain the inequality already constructed in [27]
in nonlinear gravity. In the thermal-equilibrium limit
b ~ 1, the constraint to protect the GSLT is

) |\ ~(7/241)
nn—1)Q, (H2 + —2>
a X

167GD
kN2

Relation (22) depends on the choice of f(R,T); for in-
stance,

>0. (22)

fl(R) =R, fz(T) =0

results in

—(n/2+1
n(n—1)Q <H2+£> e

X

kN2
X [H(H—¥> ] >0,

which is the GSLT validity condition in the Einstein
gravity.

Here, we discuss the validity of the GSLT for some
particular forms of f(R,T) gravity:

() fi(R) = f(R), fo(T) =T,

(i) f1(R) = R, fo(T)=2f(T).
In the first case, we consider the f(R,T) model corre-
sponding to the power-law solution a(t) = agt™ [13]

167G

f(R,T) = ap,(—R)* + AT, (23)

where

Oy =
| 932k3R LA ((4k—3(14+w)) ! ~F (1+w) 22
B k2(6w+8)—k(9w+13)+3(w+1)

For this model, the Hubble and deceleration parame-

ters are

2k
H=_——
3(1+w)

and 31 )
+w
SR A et
LT
The validity of the GSLT in the (3+1)-dimensional flat

FRW universe for model (23) requires the condition

. 2
7,8 = 9(1 + w)~ U
8k2G
Ak[4k — 3(1+w
3(1 + w)2t2

”)“ >0, (24)

where

. A
G=G+g.

We present some constraints for the particular values
k=-2-1,1,2.

For k = 1, this solution represents the ACDM model
and the constraint on the GSLT is given by

2
901 +Eu) A 50,
8G
which is true if A > 0 with w < 3.
For k = 2, the GSLT is valid if

. _ 2
7,8 = A0 -3
2Gt2

7,5 =

which requires A < 0. )

For k = —1,—2, we find T,S > 0 if A > 0 with
w > 0. This choice would favor the expanding universe
because ¢ < —1.

The higher powers of curvature can be made avail-
able for larger values of k, and we can examine the va-
lidity of the GSLT. If we consider the dust case w = 0,
then the possible role of A and k can be seen from the
graphical description shown in Fig. 1.

In the second case, the GSLT for the

f(R,T) = R +2f(T)
model requires the following inequality to be satisfied:

;. 2
1,5 = =
2HAG

20,
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10 —10

10 -10

Fig.1. Evolution of the GSLT for different values of the parameters k£ and )\ (a) for the present epoch z = 0 and (b) for
z=-0.9

where

G=c4 20
&r

Here, we consider the power-law solution of the form
f(T)=aiT + asTF,

where a; and ay are parameters. Following [13] for the

dust case, we set,

23—2k3k—1k3—2k

-1
“w= 1+ 2k

as =

Then the above inequality takes the form

~

TS =
97 (4 + 2k) N
k2[(4 + 2k) (3G +1)+23—2k3F—1A—2kTk-1] Z

This shows that the GSLT holds for the f(T') power-law
model, and its validity is shown in Fig. 2.

0.

3.2. f(R,T) = f1(R) + f2(R) f3(T)

A more general f(R,T) gravity model is of the
form [12]

f(R,T) = fi(R) + f2(R) f3(T), (25)

where f; (i = 1,2) are functions of R and f3 is function
of T. For a dust matter source, the field equation is
obtained as

Rasliun + fonfs) = 30081 +
+ (9050 = VaVi)[fir + forf3] =

m m 1
= SFGTéﬂ) + T;B)f2f3T + igaﬁf2f3- (26)

5
k 10

Fig.2. Evolution of GSLT for case (ii) versus T and k

An equivalent Einstein field equation can be obtained

with ) ot
Gryr = G+ = 3T> ,
EIE T fiR+ farfs ( 8m
whereas
flde) _ 1

S " fin+t fonfs
X %gag(fl + f2f3) — R(fir + f2rf3)) +
+ (VaVs = gap0)(fir + forf3)] . (27)
In the discussion in what follows, we set
J(R,T) = fir(R) + far(R) f3(T).

For this f(R,T) model, the field equations are iden-
tical to Eqs. (9), (10), whereas

296
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R 1
Pde = 32GB

X E(RJ— fi — f2f3) —nH(RJR +T.7T)] ;o (28)

bae =9 GB |2

+(n—1)H(RJr +TJr) + RJTr +

! {_E(Rj—fl — faf3) +

+ R?Jrr + 2RT Jrr + T J7r + T2\7TT} (29)

and

B(R,T) = <1+M),

8rG

which includes contributions from both matter and ge-
ometry. The total energy exchange term for this model
is given by

_> e ((n +1)H>+ H + na—k2> d(7/B)

We now analyze the validity of the FLT and GSLT for
the above model.

3.2.1. First law of thermodynamics

The Wald entropy S, = A/4G gy for function (25)
becomes

N nan‘ﬁ_lj

In this case, the FLT involves the energy flux 6@ and
entropy production terms of the form [34]

S (P .
0Q = —dE + -} Y(ptot — prot) dia +

n(n - 1) ~n—2 Z _
t org d(zs) -

= —dE + Wit dV + Viordt + T Snd <%> ;o (32)

a2

A 1 J
dySp = —T—hVQtotdt — Spd <E) =-

The f(R,T) gravity model with

f(R,T) = fi(R) + fo(R) f3(T)

involves the explicit nonminimal gravitational coupling
between matter and curvature. Results obtained using
this theory would be different from other models such
as the f(R) theory. The coupling of matter and geome-
try reveals that the matter energy—momentum tensor is
no longer conserved and there is an energy transfer be-
tween the two components. Due to this interaction, the
energy exchange term ¢; is nonzero, and hence the en-
tropy production term would be an additional term in
this modified gravity. Hence, the FLT is established in
a more general f(R,T) gravity and entropy production
is induced in a nonequilibrium treatment of thermo-
dynamics [21, 34]. It was shown in recent papers [33]
that the entropy production term can be incorporated
by a redefinition of the field equations. However, in
this theory, such a treatment is not useful, as shown
in [34].

— (33)
4G <2H2 +H + —2>
a

3.2.2. Generalized second law of
thermodynamics

To develop the GSLT for the second model, we con-
sider Gibbs equation (18). The horizon entropy is de-
termined from the FLT. The necessary constraint for
the validity of the GSLT is shown in Eq. (19). For the
f(R,T) model in (25), we obtain

% [QH Fa[(b=1) +7afy (2 - b)] x

« (%) + (1= b)HF40, <%>] >0, (34)

L ~—3 - K
TA=—T4 H(H—?).
The effective gravitational coupling constant for
this model is

where

GB
We can impose the condition B/7 > 0 to keep Ggpr >

> 0. For the positive-temperature condition

ok .k
H—§>—2<H +§>
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with b < 1, Eq. (34) reduces to
. k —n/2+1
n(n — 1), <H2 + ;)
167GB
X {4Hj+ (1 —=0)Bo (%)] >0. (35)
This shows that the GSLT is valid only if
o (T/B) > 0.

If the gravitational coupling constant is indeed a con-
stant, the GSLT is always protected. If

(T /B) <0,
then the GSLT can hold only if
a(IT/B)|
J/B | T 1-b
The GSLT in the f(R) theory can be retrieved for
f3(T) =0. If Ty ~ Ty, then condition (35) becomes

. , & —(n/2+1)
n(n — 1), (H + ?>

X

4H

X

. EkN?
x lH(H——2> j] > 0.
a
We consider the f(R,T) model in (25) with
fl(R):Ra f2(R):Rpa

167GB

and

fs(R) =T (p,q>0);
then in 4-dimensional flat FRW metric, the GSLT be-
comes

. H2(1 +pR”*1T")

TS = > 0. (36)
RPT1
2H*G (1
( + 8rG )
For the power law dependence
a(t) = apt™

with
P = poa_37

this can be written as
1,5 =
87l + p(6m(2m — 1)t 2P~ (pot—3™)4
©2m2[87G + (6m(2m — 1)t=2)P=1(pot—3m)a] =
>0. (37)

We have examined the validity of relation (37) and de-
veloped constraints on the parameters m, p, and ¢. The
results are shown in Figs. 3 and 4.

Fig.3. Evolution of the GSLT for model (36) with

m = 2. The curve with a larger slope corresponds to

z = —0.9, while the other curve represents the present
value (z = 0)

4. CONCLUSIONS

In this paper, the thermodynamic properties have
been discussed in a more general f(R,T) theory. The
nonequilibrium treatment of thermodynamics is ad-
dressed for two particular models of the f(R,T') grav-
ity. In this modified theory, accelerated expansion can
result not just from the scalar-curvature part of the en-
tire energy density of the universe, but can include a
matter component as well. The consequences of the
f(R,T) theory may contribute to significant results
when compared to other modified gravitational theo-
ries, applicable to various problems of contemporary
interest such as accelerated cosmic expansion, gravi-
tational collapse, dark matter, and the detection of
gravitational waves [40]. The detection of gravitational
waves could be an excellent way to test general relati-
vity and modified theories of gravity. Corda [40] has
investigated the detection of gravitational waves in the
f(R) theory, and it would be appealing to explore this
issue in the f(R,T) theory.

It is shown that the representation of equilibrium
thermodynamics is not executable in this theory [34].
Hence, the nonequilibrium treatment of thermodyna-
mics is used to discuss the laws of thermodynamics.
Here, we studied two particular models of the f(R,T)
theory to show the consequences of explicit coupling of
matter and geometry. The gravitational coupling be-
tween matter and higher-derivative terms of curvature
describes a transfer of energy and momentum beyond
that normally existing in curved spaces. This interac-
tion leads to the entropy production term in this modi-
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Fig.4. We can choose the specific value of one parameter and vary the others. In the left panel, we choose p = 1 and show
the constraints on m and ¢. The right panel represents the parametric values of m and p for the fixed ¢ = 1

fied gravity. The FLT is formulated by using the Wald
entropy relation. We remark that an entropy produc-
tion term is produced in this work but no such term is
present in GR, Gauss-Bonnet [22], Lovelock [22], and
braneworld [24] theories of gravity.

The validity of the GSLT has also been investigated
in this work. We have found that the GSLT holds
under the conditions of the attractive nature of gravity
and temperature being positive. In fact, it is natural to
assume the relation T; = 0T}, and the proportionality
constant b can be considered equal to unity, implying
that the system is in thermal equilibrium. Generally,
the horizon temperature cannot match the temper-
ature of all energy sources within the horizon, and
the two mechanisms must experience interaction for
some interval of time ahead of achieving the thermal
equilibrium. Moreover, the gravitational curvature—
matter coupling in the f(R,T) theory can produce
the unscripted flow of energy between the horizon and
the fluid. Also, the energy fluid of dark components
does not permit the effective gravitational constant to
be an approximate constant. In the limited choice of
thermal equilibrium, we assume that T; is very close
to T,. We find that the GSLT is satisfied in both
phantom and quintessence regimes of the universe,
which seems to be consistent with the results in [41].
Furthermore, we have also developed constraints
on some concrete f(R,T) models corresponding to
power-law solutions. It is significant to remark that
the equilibrium treatment of thermodynamics in the
f(R,T) theory would benefit from further study.

The authors thank the Higher Education Com-
mission, Islamabad, Pakistan for its financial support
through the Indigenous Ph.D. 5000 Fellowship Program
Batch-VII.
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