КОЛЛЕКТИВНЫЕ КОЛЕБАНИЯ МАГНИТНЫХ МОМЕНТОВ ЦЕПОЧКИ СФЕРИЧЕСКИХ МАГНИТНЫХ НАНОЧАСТИЦ С ОДНООСНОЙ МАГНИТНОЙ АНИЗОТРОПИЕЙ

С. А. Дзян^а, Б. А. Иванов^{а, b*}

^а Киевский Национальный университет им. Тараса Шевченко 03127, Киев, Украина

^b Институт магнетизма Национальной академии наук Украины 03142, Киев, Украина

Поступила в редакцию 17 января 2013 г.

Свободно перемещающиеся в жидкости магнитные частицы могут организовывать плотные фазы, объемные кластеры или линейные цепочки. Исследован спектр магнитных колебаний цепочки сферических магнитных наночастиц с учетом магнитной анизотропии отдельной частицы при произвольном соотношении анизотропии и энергии дипольного взаимодействия частиц. Для любого соотношения этих энергий спектр содержит три ветви коллективных колебаний, высокочастотную ветвь и слабо расщепленный дублет низкочастотных ветвей. Частота высокочастотной ветви определяется более сильным взаимодействием, а частоты низкочастотных ветвей, напротив, определяются наиболее слабым взаимодействием. Соответственно, дисперсия максимальна для колебаний, формирующихся дипольным взаимодействием частиц, высокочастотных при сильном дипольном взаимодействии или низкочастотных при сильной анизотропии.

DOI: 10.7868/S0044451013060128

Основным взаимодействием в физике магнетизма является обменное взаимодействие, приводящее к магнитному упорядочению при комнатных температурах [1–3]. Однако в течение многих десятилетий не ослабевало внимание к дипольным магнетикам, т.е. к таким спиновым системам, в которых превалирует дальнодействующее магнитное дипольное взаимодействие [4-6]. В частности, к таким системам относятся наноструктурированные материалы [8–12], а также плотные конгломераты частиц, которые формируются в результате самоорганизации частиц в магнитной жидкости [13]. Простейшим вариантом такой системы является цепочка, составленная из сферических магнитных наночастиц, которые взаимодействуют за счет магнитного дипольного взаимодействия. Такие цепочки стабильны в присутствии внешнего магнитного поля, но и в отсутствие поля они являются устойчивыми (метастабильными), см. недавние работы и обзор литературы в них [14, 15].

В системе магнитных частиц, образующих цепочку, но способных поворачиваться, должны существовать различные собственные моды колебаний. В нашей недавней работе эти моды были исследованы для частиц с большой магнитной анизотропией [14], в предположении, что магнитный момент жестко связан с выделенной осью частицы, что имеет место, например, для часто используемых частиц магнетита $\mathrm{Fe}_3\mathrm{O}_4$. Было показано, что в случае предельно большой анизотропии в цепочке присутствуют различные ветви коллективных колебаний акустического типа со смещением частиц из положения равновесия, и магнитных, отвечающих колебаниям магнитных моментов частиц с относительно низкой частотой (порядка сотен мегагерц) и заметной дисперсией. Магнитные ветви отвечают поворотам частиц как целого вокруг их центров масс, их частоты определяются характерной величиной $\omega_0 = \mu_0 / \sqrt{Ia^3} \sim M_s / (\sqrt{\rho}a)$, где μ_0 — магнитный момент частицы, а и I — ее диаметр и момент инерции, ρ и M_s — плотность и намагниченность насыщения материала, из которого сделана частица (здесь выражение для ω_0^2 отличается множителем $ma^2/I = 10$

^{*}E-mail: bor.a.ivanov@gmail.com, bivanov@i.com.ua

от того, что было принято в работе [14], новое определение более удобно для анализа колебаний, связанных с поворотом частиц). Для этих мод определяющим является инерционная вращательная динамика, гироскопические свойства магнитного момента проявляются только в слабом расщеплении частот для колебаний с правой и левой круговыми поляризациями. Отмечалось, что частоты этих мод лежат существенно ниже частоты стандартных спиновых колебаний с частотами порядка гигагерц, которой отвечает прецессия магнитного момента неподвижной частицы вокруг оси легкого намагничивания с частотой $\gamma(H_a + H)$, где H_a — поле анизотропии, $H_a = K/\mu_0, K$ — энергия анизотропии частицы, H внешнее поле, γ — гиромагнитное отношение.

Наличие сильной одноосной магнитной анизотропии частиц, предположенное в предыдущей работе [14], не является необходимым для стабильности цепочек; для формирования цепочки необходимо только присутствие у частицы магнитного момента. В данном сообщении рассмотрены чисто магнитные ветви колебаний, не связанные со смещениями частиц. Показано, что при любом соотношении характерных энергий — энергии дипольного взаимодействия μ_0^2/a^3 и энергии магнитной анизотропии К — в системе присутствуют три коллективные моды магнитных колебаний. Этим модам отвечают связанные колебания магнитных моментов частиц относительно их осей анизотропии и направлений осей анизотропии для различных частиц. При предельно сильной анизотропии, $H_a/M_s \to \infty$, частота колебаний моментов не имеет дисперсии и совпадает с частотой магнитного резонанса $\gamma(H_a + H)$, а частоты двух нижних ветвей совпадают с частотами найденного ранее слабо расщепленного дублета [14].

Рассмотрим систему одинаковых частиц сферической формы с однородным распределением плотности ρ и намагниченности M_s , составляющих бесконечную цепочку. Для определенности считаем, что цепочка ориентирована вдоль оси x и положение *i*-й частицы определяется радиус-вектором $\mathbf{r}_{i} = a(i, 0, 0),$ где a — диаметр частицы. Направление магнитного момента i-й частицы μ_i можно описать единичным вектором $\mathbf{m}_i = \boldsymbol{\mu}_i / \mu_0$. Будем считать, что частица имеет анизотропию типа легкая ось, и при повороте частицы ось анизотропии поворачивается. Направление оси анизотропии для i-й частицы задается единичным вектором \mathbf{n}_i . Энергия такой системы $W = W(\mathbf{n}_i, \boldsymbol{\mu}_i) = W_{dd} + W_a + W_H$ включает энергию магнитного дипольного взаимодействия частиц W_{dd}, энергию одноосной анизотропии W_D и зеемановскую энергию W_H , которая описывает взаимодействие магнитного момента частицы с внешним магнитным полем $\mathbf{H} = H \mathbf{e}_x,$

$$W_{dd} = \frac{\mu_0^2}{2} \sum_{j \neq i} \frac{\mathbf{m}_i \cdot \mathbf{m}_j - 3 \left(\mathbf{m}_i \cdot \boldsymbol{\nu}_{ij} \right) \left(\mathbf{m}_j \cdot \boldsymbol{\nu}_{ij} \right)}{r_{ij}^3},$$

$$W_a = -\frac{K}{2} \sum_i \left(\mathbf{m}_i \cdot \mathbf{n}_i \right)^2,$$

$$W_H = -\mu_0 \sum_i \mathbf{m}_i \cdot \mathbf{H},$$

(1)

где $r_{ij} = |\mathbf{r}_{ij}|$, $\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i$, $\nu_{ij} = \mathbf{r}_{ij}/r_{ij}$, суммирование в W_{dd} распространяется по всем парам различных частиц. Для упрощения расчетов взаимодействие протяженных магнитных частиц заменено взаимодействием точечных диполей, расположенных в центре частицы, что дает хорошее приближение и не влияет на основные особенности задачи [7, 16, 17].

Динамика такой системы включает как колебания магнитного момента относительно оси анизотропии частицы, так и повороты самой оси, связанные с поворотами частицы. В основном состоянии направления **m** и **n** параллельны оси цепочки. Для описания динамики вектора **m** относительно неподвижной частицы используем уравнение Ландау – Лифшица

$$\partial \mathbf{m}_n / \partial t = -\gamma \left[\mathbf{m}_n, \mathbf{H}_{n, eff} \right], \quad \mu_0 \mathbf{H}_{n, eff} = -\partial W / \partial \mathbf{m}_n.$$

Динамика вектора **n**, т.е. поворот частицы, может быть описана стандартным механическим уравнением, в котором кинетическая часть определяется тензором моментов инерции частицы I_{ij} , в нашем случае $I_{ij} = I\delta_{ij}$, $I = ma^2/10$, m — масса частицы. В линейном приближении, когда отклонения обоих векторов **m** и **n** от оси цепочки малы, можно использовать в качестве независимых переменных двумерные векторы $\phi = m_y \mathbf{e}_y + m_z \mathbf{e}_z$ и $\psi = n_y \mathbf{e}_y + n_z \mathbf{e}_z$, при этом $m_x \approx 1 - \phi^2/2$ и $n_x \approx 1 - \psi^2/2$. Линейная динамика системы в этих переменных описывается функцией Лагранжа вида

$$\begin{split} L_m^{(tot)} &= \frac{\mu_0}{2\gamma} \sum_n \left(\mathbf{e}_x \left[\phi_n, \frac{d\phi_n}{dt} \right] \right) + \\ &+ \frac{I}{2} \sum_n \left(\frac{d\psi_n}{dt} \right)^2 - W \left(\phi_n, \psi_n \right), \end{split}$$
(2)

где первое слагаемое определяет стандартный вид гироскопического слагаемого, приводящего (в линейном приближении) к уравнению Ландау – Лифшица для магнитного момента **m**, второе — кинетическую энергию вращения частицы, $W = W(\phi_n, \psi_n)$ — энергия системы, записанная с точностью до слагаемых, квадратичных по компонентам ϕ_n и ψ_n ,

$$W = \frac{\mu_0^2}{2a^3} \sum_n \left[(h + 2\zeta_3) \phi_n^2 + \sum_{\Delta=1}^{\infty} \frac{(\phi_{n+\Delta}^2 + \phi_{n-\Delta}^2)}{\Delta^3} + \phi_n \sum_{\Delta=1}^{\infty} \frac{(\phi_{n+\Delta} + \phi_{n-\Delta})}{\Delta^3} \right] + \frac{K}{2} \sum_n (\phi_n - \psi_n)^2, \quad (3)$$

где ζ_3 — дзета-функция Римана, $h = Ha^3/\mu_0$ — безразмерное магнитное поле. Далее легко записать уравнения движения в виде

$$\frac{\eta}{\omega_0} \left[\mathbf{e}_x, \frac{d\phi_n}{dt} \right] + \frac{\omega_a^2}{\omega_0^2} \left(\phi_n - \psi_n \right) + \left[h + 2\zeta \left(3 \right) \right] \phi_n + \\ + \frac{1}{2} \sum_{\Delta=1}^{\infty} \frac{\phi_{n+\Delta} + \phi_{n-\Delta}}{\Delta^3} = 0 , \\ \frac{d^2 \psi_n}{dt^2} + \omega_a^2 \left(\psi_n - \phi_n \right) = 0, \quad (4)$$

где $\omega_0^2 = \mu_0^2/Ia^3$, $\omega_a^2 = K/I$, $\eta = \mu_0/\gamma I\omega_0 = (1/\gamma) \times \sqrt{10a/m}$.

Решение этих уравнений можно искать в виде блоховских функций, $\phi_n, \psi_n \propto \exp(iqn - i\omega t)$, с заданным квазиимпульсом q. В рассмотренном ранее случае предельно сильной анизотропии [14], что отвечает условию $K \gg \mu_0^2/a^3$, система (4) имеет решение $\phi_n \approx \psi_n$ и описывает дублет низкочастотных мод с законом дисперсии вида $\omega_{1,2} = \pm \omega_q - \eta \omega_0/2$,

$$\omega_q^2 = \omega_0^2 \left[h + 2\zeta(3) + 2\sum_{\Delta=1}^{\infty} \frac{\cos\left(q\Delta\right)}{\Delta^3} \right],$$

различные знаки частот отвечают различным направлениям вращения магнитных моментов в этих модах. В интересующем нас случае произвольного соотношения параметров K и μ_0^2/a^3 , т.е. ω_a^2 и ω_0^2 , условие существования нетривиального решения полной системы (4) дает дисперсионное уравнение в виде кубического уравнения относительно ω :

$$\eta\omega_0\omega^3 - \left(\omega_a^2 + \omega_q^2\right)\omega^2 - \eta\omega\omega_0\omega_a^2 + \omega_a^2\omega_q^2 = 0.$$
 (5)

Это уравнение независимо от значений параметров имеет три вещественных решения, т.е. в системе всегда существуют три моды коллективных колебаний. Для стандартных частиц феррожидкости параметр η мал, при этом два первых корня $|\omega_{1,2}|$ близки, а третий, $\omega = \omega_3$, удален в область высоких частот. Для цепочки высокоспиновых молекул значение η может быть больше и далее будет считаться, что $\eta \leq 1$, без использования сильного неравенства,

см. оценки ниже. Соотношения между величинами ω_a и ω_q будут считаться произвольными.

Для анализа дисперсионного соотношения при выходе за рамки приближения сильной анизотропии удобно представить частоты $\omega_{1,2}$ в виде $\omega_1 = = \bar{\omega} - \Delta/2$, $\omega_2 = -\bar{\omega} - \Delta/2$, где положительная величина $\bar{\omega}$ определяет среднее значение частоты в нижнем дублете, Δ определяет расщепление дублета. Будем считать, что частота ω_3 является самой высокой, а значение Δ наименьшее среди характерных частот. Чтобы не использовать громоздкую формулу для корней кубического уравнения, применим теорему Виета, которая дает точную формулу $\omega_3 = (\omega_a^2 + \omega_q^2) / \eta \omega_0 + \Delta$. С хорошей точностью можно пренебречь слагаемым Δ и считать, что

$$\omega_3 = \frac{\omega_a^2 + \omega_q^2}{\eta \omega_0} = \gamma \left(H_a + \frac{\pi}{6} M_s \alpha_q \right), \tag{6}$$

откуда следует оценка $\omega_3 = (1/\eta\omega_0) \max\{\omega_a^2, \omega_q^2\}$. Таким образом, в реальном случае сильной, но конечной анизотропии для верхней ветви появляется дисперсия, обусловленная дипольным взаимодействием, напомним, что $\omega_q = \omega_0 \sqrt{\alpha_q}$, и значения функции α_q уменьшаются от значения 3.606 при q = 0 до величины порядка 1.5 на границе зоны Бриллюэна. Только в формальном пределе $\omega_a/\omega_q \to \infty$ получается формула $\omega_3 = \gamma H_a$ работы [14]. Два остальных соотношения теоремы Виета можно переписать в виде

$$\bar{\omega}^2 - \frac{\Delta^2}{4} = \frac{\omega_a^2 \omega_q^2}{\omega_a^2 + \omega_q^2},$$

$$\bar{\omega}^2 + \frac{3\Delta^2}{4} + \frac{\omega_a^2 + \omega_q^2}{\eta\omega_0}\Delta = \omega_a^2$$
(7)

и получить замкнутые выражения для $\bar{\omega}$ и Δ . Отметим, что даже простые формулы, полученные из формулы (7) в основном приближении по $\Delta/\bar{\omega}$,

$$\bar{\omega} = \frac{\omega_a \omega_q}{\sqrt{\omega_a^2 + \omega_q^2}}, \quad \Delta = \eta \omega_0 \frac{\omega_a^4}{(\omega_a^2 + \omega_q^2)^2}, \quad (8)$$

хорошо описывают ответ для случая, когда ω_a и ω_q различаются достаточно сильно. В частности, сравнивая (6) и (8), легко видеть, что

$$\bar{\omega} = \min\{\omega_a, \omega_q\} \ll \omega_3 \sim (1/\eta\omega_0) \max\{\omega_a^2, \omega_q^2\},\$$

и если ω_a и ω_q не близки, то даже при $\eta \sim 1$ частоты $\bar{\omega}$ и ω_3 достаточно далеко разнесены друг от друга.

Обсудим частные случаи для различных соотношений параметров ω_a и ω_q . Если энергия анизотропии велика, $\omega_a \gg \omega_q$, то результаты работы [14] справедливы в нулевом приближении по ω_q/ω_a . В другом

Зависимость частот трех ветвей спектра, ω_3 , $|\omega_2|$ и ω_1 , $\omega_3 > |\omega_2| > \omega_1$ (точки); для значений параметров $\eta = 1$ и $\omega_a = 1.5\omega_0$ (штриховая линия), что примерно соответствует среднему значению функции ω_q (штрихпунктирная линия). Все частоты даны в единицах ω_0 , магнитное поле равно нулю

предельном случае малой анизотропии $\omega_a \ll \omega_q \sim (1.2-2)\omega_0$ ситуация прямо противоположна той, что имеет место при сильной анизотропии, в частности, роль двух взаимодействий в формировании мод изменяется принципиально. Для верхней ветви $\omega_3 = \omega_q^2/\eta\omega_0 = \pi\gamma M_s\alpha_q/6$ и ее дисперсия достаточно существенная, $\alpha_{q=0} \approx 3.61$ и $\alpha_{q=\pi} \approx 1.5$, см. рисунок. В то же время при $\omega_a \ll \omega_q$ частота нижнего дублета мала, дисперсия мод в дублете слабая, а расщепление дублета практически отсутствует,

$$\bar{\omega} = \omega_a - \frac{\omega_a^3}{2\omega_q^2}, \quad \Delta = \eta \omega_0 \left(\frac{\omega_a}{\omega_q}\right)^4 \ll \bar{\omega}.$$
 (9)

Оказалось, что полученные выше простые формулы (6), (8) применимы не только в предельных случаях, но и тогда, когда энергия магнитного дипольного взаимодействия и энергия анизотропии сравнимы. В частности, частоты верхней ветви ω_3 и дублета $\bar{\omega}$ остаются сильно разнесенными и в случае, когда $\omega_a \sim \omega_q$. Для малых значений $\eta \ll 1$ различие определяется большим параметром $1/\eta$, что обеспечивает хорошую применимость приближенных формул (6), (8), но даже в случае $\eta \sim 1$ частоты ω_3 и $\bar{\omega}$ различаются в 3–5 раз, см. рисунок, и неплохо описываются простыми формулами (6), (8) (расхождение с точным решением кубического уравнения не превышает 2 %).

Оценим характерные параметры задачи. «Инерционные» частоты $\omega_a=\sqrt{K/Ia^3}$ и $\omega_q=\omega_0\sqrt{\alpha_q}\sim$

 $\sim \omega_0 = \sqrt{\mu_0^2/Ia^3}$ обратно пропорциональны диаметру частицы, в то время как «гироскопические» частоты γH_a и γM_s зависят только от внутренних параметров материала. Для этих характерных частот справедливо соотношение $\omega_a/\omega_0 \sim \sqrt{H_a/M_s}$. Соотношение двух различных частот, определяющихся той же энергией, описывается параметром η , например, $\omega_0 \sim \eta \gamma M_s$. Соотношение между частотами ветвей в значительной мере определяется величиной безразмерного параметра $\eta = \mu_0 / \gamma I \omega_0 =$ $= (1/\gamma)\sqrt{10a/m}$. Для частицы с однородным распределением массы и магнитного момента μ_0 = $= \pi a^3 M_s/6$, $I = ma^2/10 = \pi \rho a^5/60$ и величина $\eta = a_*/a$ обратно пропорциональна диаметру частицы а, коэффициент пропорциональности $a_* =$ $= (m_e c/e) \sqrt{60/\pi \rho}$ можно записать через плотность материала и заряд электрона е, массу электрона m_e и скорость света в вакууме с.

Используя типичное значение плотности $\rho = 5 \text{ г/см}^3$ получаем, что величина a_* мала, $a_* \approx \approx 1$ нм. Размеры частиц в феррожидкости обычно меняются от единиц нанометров до 10–20 нм, в силу чего для этой системы $\eta \sim 0.1$ –0.2 и частоты ω_1 , $|\omega_2|$ не превышают сотен мегагерц. С другой стороны, величина a_* сравнима с размером высокоспиновых молекул, которые могут иметь магнитный момент порядка десятков магнетонов Бора μ_B и в принципе могут образовывать цепочечные структуры [18]. В этом случае частоты низколежащего дублета могут достигать гигагерц, всегда оставаясь, однако, ниже величины ω_3 , см. рисунок.

Таким образом, при произвольном соотношении между энергией анизотропии для частицы и энергией дипольного взаимодействия магнитных моментов частиц спектр магнитных колебаний цепочки магнитных наночастиц содержит три моды коллективных колебаний, а именно, высоко лежащий синглет с $\omega = \omega_3$ и слабо расщепленный низкочастотный дублет с частотами ω_1 и $|\omega_2|$. Частота и дисперсия высокочастотной ветки ω_3 слабо зависят от размера частицы и определяются той «гироскопической» частотой, что отвечает наиболее сильному взаимодействию, $\omega_3 \sim \gamma \max\{H_a, M_s\},$ в силу чего ω_3 лежит в диапазоне гигагерц. Напомним, что для каждого из взаимодействий (анизотропии или дипольного взаимодействия) при малом η «гироскопические» частоты выше «инерционных» частот. При малой анизотропии, $H_a \ll M_s,$ ветвь ω_3 имеет сильную дисперсию и частоту порядка γM_s , см. уравнение (6). Для низкочастотных ветвей, образующих дублет, ситуация полностью противоположная: их частоты определяются более низкой «инерционной» частотой, отвечающей наиболее слабому взаимодействию. Соответственно, эффекты дисперсии ощутимы для низкочастотных веток спектра только тогда, когда $H_a \gg M_s$ и частоты этих ветвей формируются магнитным дипольным взаимодействием. В случае слабой анизотропии, $H_a \ll M_s$, основной вклад в частоты дублета дает анизотропия, тогда для них эффекты дисперсии и величина расщепления дублета пренебрежимо малы.

Работа выполнена в рамках Государственной программы Украины «Нанотехнологии и наноматериалы» (проект № 1.1.3.27).

ЛИТЕРАТУРА

- 1. А. И. Ахиезер, В. Г. Барьяхтар, С. В. Пелетминский, *Спиновые волны*, Наука, Москва (1967).
- Е. А. Туров, А. В. Колчанов, В. В. Меньшенин, И. Ф. Мирсаев, В. В. Николаев, Симметрия и физические свойства антиферромагнетиков, Наука, Москва (2001).
- **3**. А. Ф. Андреев, В. И. Марченко, УФН **130**, 39 (1980).
- 4. J. M. Luttinger and L. Tisza, Phys. Rev. 70, 954 (1946).
- 5. П. И. Белобров, Р. С. Гехт, В. А. Игнатченко, ЖЭТФ 84, 1097 (1983).

- В. М. Розенбаум, В. М. Огенко, А. А. Чуйко, УФН 161, 79 (1991).
- P. Politi and M. G. Pini, Phys. Rev. B 66, 214414 (2002).
- J. E. L. Bishop, A. Yu. Galkin, and B. A. Ivanov, Phys. Rev. B 65, 174403 (2002).
- 9. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003); Advanced Magnetic Nanostructures, ed. by D. J. Sellmyer and R. Skomski, Springer, New York (2006).
- А. Ю. Галкин, Б. А. Иванов, А. Ю. Меркулов, ЖЭТФ 128, 1260 (2005).
- 11. Б. А. Иванов, ФНТ 31, 841 (2005).
- П. В. Бондаренко, А. Ю. Галкин, Б. А. Иванов, ЖЭТФ 139, 1127 (2011).
- **13**. R. E. Rosensweig, *Ferrohydrodynamics*, Cambridge University Press, Cambridge (1985).
- **14**. С. А. Дзян, Б. А. Иванов, ЖЭТФ **142**, 969 (2012).
- А. Ю. Зубарев, Л. Ю. Искакова, ЖЭТФ 143, 329 (2013).
- 16. A. Yu. Galkin, B. A. Ivanov, and C. E. Zaspel, Phys. Rev. B 74, 144419 (2006).
- M. O. Dvornik, P. V. Bondarenko, B. A. Ivanov, and V. V. Kruglyak, J. Appl. Phys. **109**, 07B912 (2011).
- 18. W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001).