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DYNAMICAL INSTABILITY OF COLLAPSING RADIATING FLUIDM. Sharif a*, M. Azam a;b**aDepartment of Mathematis, University of the PunjabLahore-54590, PakistanbDepartment of Mathematis, University of EduationLahore-54590, PakistanReeived Deember 3, 2012We take the ollapsing radiative �uid to investigate the dynamial instability with ylindrial symmetry. Wemath the interior and exterior ylindrial geometries. Dynamial instability is explored at radiative and non-radiative perturbations. We onlude that the dynamial instability of the ollapsing ylinder depends on theritial value � < 1 for both radiative and nonradiative perturbations.DOI: 10.7868/S00444510130600501. INTRODUCTIONThe subjet of dynamial instability of self-gravita-ting objets has attrated many astrophysiists due toexplosions and evolution of these objets. The evolu-tion of di�erent self-gravitating objets during gravita-tional ollapse for di�erent ranges of instability is animportant feature of dynamial instability. The statistellar model would be interesting if it remains stableunder �utuations. In this senario, Chandrasekhar [1℄found the instability range � < 4=3 for the spheriallysymmetri spaetime with isotropi �uid. After that,many people investigated the e�ets of physial prop-erties of the �uid in the onset of dynamial instabilitywith spherial symmetry.In [2℄, it was found that dissipation at Newtonian(N) limit redues the stability of the sphere and boostsat post-Newtonian (pN) limit. The onlusion in [3℄was that the e�ets of radiation appears similar to dissi-pation in the N and pN limits. The same authors [4℄ ex-amined the instability of a spherially symmetri spae-time with shear visosity and found that it dereasesthe instability of the �uid. The dynamial instabilityof a ollapsing radiating star would be inreased due tothe presene of anisotropi pressure and shear visos-ity [5℄.Cylindrially symmetri spaetimes are idealizedmodels in general relativity. The study of gravitational*E-mail: msharif.math�pu.edu.pk**E-mail: azammath�gmail.om

ollapse of these astrophysial objets is an importantproblem. Some reent work [6�10℄ indiate great inte-rest in ylindrial gravitational ollapse with di�erent�uids with and without an eletromagneti �eld. Re-ently, Sharif and his ollaborators [11℄ investigated thedynamial instability for spherially and ylindriallysymmetri spaetimes in general relativity and f(R)gravity in the N and pN regimes, respetively. Theyhave shown that the eletromagneti �eld, pressureanisotropy, dissipation, and f(R) models have greatrelevane in the range of instability. The same au-thors [12℄ have also explored this problem for the thin-shell wormholes in nonlinear eletrodynamis.In this paper, we explore the dynamial instabilityof a ollapsing radiating ylinder in the N and pN ap-proximations. The paper is organized as follows. InSe. 2, the �eld equations and mathing onditions aredeveloped. In Se. 3, we formulate the dynamial in-stability at nonradiative and radiative perturbations.Finally, we disuss our results in Se. 4.2. FIELD EQUATIONS AND MATCHINGCONDITIONSThe matter under onsideration is assumed to beloally isotropi with pure radiation inside a ylindri-al surfae �. The energy�momentum tensor for suha �uid has the formT�� = (�+ p)w�w� + pg�� + "l�l�; (1)1056
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m(r; t) = 18 241 + _YW !2 ��Y 0X �235 : (9)For the radiative �uid, the onservation of the stress�energy tensor, (T��);� = 0;yields_�+ _"+�2W 0W + Y 0Y + "0" � "WY + (�+ p+ ")�� _XX + _YY !+ " _XX = 0; (10)p0 + _" XW + (�+ p+ 2")W 0W + "Y 0Y ++ 2 _XX + _YY ! " XW + "0 = 0: (11)We use the Darmois onditions [15℄ for the onti-nuity of inner and outer manifolds. The ylindrialmanifold in the exterior region is [16℄ds2 = ���2MR � d�2 � 2d� dR ++R2(d�2 + 2dz2); (12)where � is known as the retarded time oordinate and has the dimension of 1=r. From the Darmois ondi-tions, as disussed in [11℄, it follows thatm�M �= 18 ; p �= 0: (13)This shows that the di�erene of interior and exteriormasses is equal to 1=8 at the boundary surfae and theisotropi pressure vanishes.3. THE PERTURBATION SCHEME ANDDYNAMICAL INSTABILITYWe perturb the �eld equations, onservation equa-tions, and physial funtions of the �uid (initiallyin hydrostati equilibrium) up to the �rst order in0 < �� 1. We use the perturbation sheme [11℄W (t; r) =W0(r) + �T (t)w(r); (14)X(t; r) = X0(r) + �T (t)x(r); (15)Y (t; r) = rX(t; r)[1 + �T (t)�y(r)℄; (16)�(t; r) = �0(r) + ���(t; r); (17)p(t; r) = p0(r) + ��p(t; r); (18)"(t; r) = ��"(t; r); (19)m(t; r) = m0(r) + � �m(t; r): (20)3 ÆÝÒÔ, âûï. 6 1057



M. Sharif, M. Azam ÆÝÒÔ, òîì 143, âûï. 6, 2013The stati (unperturbed) and perturbed forms ofEqs. (3)�(5) are given by��0 = 1X20 "�X 00X0�2 � 1r X 00X0 � X 000X0 # ; (21)�p0 = 1X20 W 00W0 �X 00X0 + 1r� ; (22)�(��+ �") = � TX20 "� xX0 � �y��X 00X0�2 ++ 1X0 �(�yX 00)0 + (rx0)0r � + 2r ��y0 + r�y002 � �� X 00X0 �2x0X0 � �yr�#� � TX20 � 3xX0 + �y��0; (23)�W0X0�" = "� xW0X0�0 +� �yW0�0 ++ �1r + X 00X0�� �yW0�# _T ; (24)�(�p+ �") = �� xX0 + �y� �TW 20 + TX20 "�1r + X 00X0� �� � wW0�0 + W 00W0 � xX0 + �y�0#� 2�TxX0 p0: (25)Similarly, Eqs. (10) and (11) turn out to beW 00W0 = � p00(�0 + p0) ; (26)_��+ _�"+�2W 00W0 + X 00X0 + 1r + �"0�" � �"W0X0 ++ (�0 + p0)�2 xX0 + �y� _T = 0; (27)�p0 + �"0 + _�"X0W0 + (�0 + p0)T � wW0�0 ++ �"�1r + X 00X0�+ (��+ �p+ 2�")W 00W0 = 0: (28)Inserting Eq. (24) in (27) and integrating, we obtain�� = �� 2xX0 + �y� (�0 + p0)T �� 1�X20 ��0 +�X0W0 + 1r + W 00W0���T; (29)

where�(r) = "� xW0X0�0 +� �yW0�0 ++ �1r + X 00X0�� �yW0�# : (30)The unperturbed form of the mass funtion beomesm0 = 18 "1� �1r + X 00X0�2# ; (31)whih an be rewritten asX 00X0 = �1r +p1� 8m0: (32)Now we an write the di�erential equation by on-sidering Eqs. (24) and (25) and using the onditionp0 �= 0as  T � 2� _T �= �T ; (33)where (r) �= �W0X0 �2� xX0 + �y��1 "�1r + X 00X0� �� � wW0�0 + W 00W0 � xX0 + �y�0# ; (34)�(r) �= 12W0X0 � xX0 + �y��1 "� xW0X0�0 ++ � �yW0�0 +�1r + X 00X0�� �yW0�# : (35)The solution of the above equation yieldsT (t) = � exp����� +q � + �2� � t� ; (36)where we hoose  � > 0; �� < 0for the solution to be real. Aording to the aboveequation, the ylinder proeeds to ollapse at t = �1and ontinues with the inrease in t.To �nd dynamial instability, we introdue the adi-abati index � de�ned in [2℄:�p = �� p0�0 + p0� ��; (37)1058
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3.1. Nonradiative perturbationFor a nonradiative perturbation, we assume that" = 0. Then the integration of Eq. (24) leads tox =W0X0; �y0 = ��y� p00�0 + p0 +p1� 8m0� : (41)Using this fat, we see from Eqs. (30) and (35) that�(r) = 0; �(r) = 0:Substituting these results in Eq. (40), we obtain theinstability equation as���2 xX0 + �y��p0�0 + (�0 + p0)�1r + X 00X0��1 �� "�p0xX0 + X20W 20 � xX0 + �y� �TT �� ��2 xX0 + �y��p0X20 � W 00W0 � xX0 + �y�0#���2 xX0 + �y� (�0 + p0 +�p0)W 00W0 = 0: (42)3.1.1. Newtonian approximationTo �nd the instability range in the N approxima-tion, we use that W0 = 1; X0 = 1;and ignore terms like p0=�0 that are of the order ofm0=r in Eq. (42), whih gives�2p00�+ 2p00 +  ��0 = 0; (43)assuming p00 < 0 for the ollapsing �uid. Consequently,the instability ondition turns out to be� < 1: (44)This equation shows that the instability of the ollaps-ing �uid depends on the ritial value 1.3.1.2. Post-Newtonian approximationIn the pN approximation, we assume thatW0 = 1� m0r ; X0 = 1 + m0r ;and take the terms of the order of m0=r. Consequently,Eq. (42) beomes� (2 + �y)p00�+ 2p00 +�p0 +  �(1 + �y)�0r �� �(2 + �y)��0p0 + ��0p0 = 0; (45)1059 3*



M. Sharif, M. Azam ÆÝÒÔ, òîì 143, âûï. 6, 2013and the instability range in this limit turns out to be� < 1 + 1jp00j �12��0p0 � �02r (1 + �y) �� : (46)In the above inequality, the third term, whih omesfrom the stati bakground of energy density, enhanesthe instability and is dereased by the last term.3.2. Radiative perturbationIn the radiative ase, we take " 6= 0, and hene wean write the perturbed solution of Eq. (41) asx(r) =W0X0 [1 + �f(r)℄ ; (47)where � > 0 is an arbitrary funtion. Substituting thisresult in Eqs. (30) and (35), we �nd that �(r) and �(r)are of the relativisti order m0=r.3.2.1. Newtonian approximationConsidering the restritions similar to those used inthe above ase, we have the instability ondition for theradiative perturbation in the N approximation in theform�(2+2�f)p00�+(2+2�f)p00+(1+�f)�0 � = 0: (48)It is known that for a ollapsing �uid, _T < 0 and �" > 0,leading to �y < 0 and f 0 < 0 in aordane with Eq. (24).In this limit, the orresponding range is� < 1 + ��0 ��jf j2jp00j � ; (49)whih shows that the radiation density inreases theinstability range in the Newtonian limit. This result isanalogous for the heat ondution [6℄.3.2.2. Post-Newtonian approximationThe instability equation in the pN approximationturns out to be� (2 + 2�f + �y)p00�+ (2 + 2�f + �y)p00 �� (2 + 2�f + �y)���0p0 + (1 + �f + �y)�0 � ++ ��0p0 + �0�f 0p00 + 2�f 0p0� = 0; (50)where we useW0 = 1� m0r ; X0 = 1 + m0r ;

and the relativisti orretion terms. We require p00 < 0for the instability ondition. Therefore, we an write� < 1 + ���0p02jp00j + �0 ��jf j2jp00j �� �0�jf 0j2jp00j � (1 + �y)�0 �2rjp00j � : (51)Here, we see that relativisti orretion terms due toradiation inrease and derease the instability range.These results show the e�et that di�erent matterterms have on the instability of the system.4. CONCLUSIONWe have explored the dynamial instability of a ol-lapsing �uid produing pure radiation with ylindrialsymmetry. We have used the N and pN approximationsfor nonradiative and radiative perturbations. The rit-ial value (instability range) is found to be 1 for theisotropi perfet �uid in the N regime. Thus, the sta-bility or instability of the system orresponds to therespetive value of adiabati index � > 1 or � < 1.We have seen from Eqs. (44) and (46) that the in-stability range is 1 for the isotropi perfet �uid andis inreased by the relativisti orretion terms of thestati bakground on�guration. Also, the free stream-ing radiation inreases the instability of the system asshown in Eqs. (49) and (51). We note that the e�ets ofradiation look qualitatively similar to the one obtainedfor the radial heat �ux.We thank the Higher Eduation Commission, Is-lamabad, Pakistan, for its �nanial support throughthe Indigenous Ph.D. 5000 Fellowship ProgramBath-VII. One of us (MA) thanks the University ofEduation, Lahore for the study leave.REFERENCES1. S. Chandrasekhar, Astrophys. J. 140, 417 (1964).2. L. Herrera, N. O. Santos, and G. Le Denmat, Mon.Not. R. Astron. So. 237, 257 (1989).3. R. Chan, L. Herrera, and N. O. Santos, Mon. Not. R.Astron. So. 265, 533 (1993).4. R. Chan, L. Herrera, and N. O. Santos, Mon. Not. R.Astron. So. 267, 637 (1994).5. R. Chan, Mon. Not. R. Astron. So. 316, 588 (2000).6. S. A. Hayward, Class. Quantum Grav. 17, 1749 (2000).1060
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