ОСОБЕННОСТИ МАГНИТОСОПРОТИВЛЕНИЯ ПРИ ПЕРЕХОДЕ АНТИФЕРРОМАГНЕТИК–ПАРАМАГНЕТИК В $Tm_{1-x}Yb_xB_{12}$

Н. Е. Случанко^а^{*}, А. Н. Азаревич^{а,b}, А. В. Богач^а, В. В. Глушков^{а,b},

С. В. Демишев^{а,b}, А. В. Левченко^с, В. Б. Филиппов^с, Н. Ю. Шицевалова^с

^а Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

> ^b Московский физико-технический институт 141700, Долгопрудный, Московская обл., Россия

^с Институт проблем материаловедения им. И. Н. Францевича Национальной академии наук Украины 03680, Киев, Украина

> Статья написана по материалам доклада на 36-м Совещании по физике низких температур (Санкт-Петербург, 2-6 июля 2012 г.)

При низких температурах в магнитном поле до $80 ext{ к}$ Э исследовано поперечное магнитосопротивление $\Delta
ho/
ho(H,T)$ монокристаллов $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$ в интервале концентраций иттербия, отвечающем переходу антиферромагнетик-парамагнетик. Построена магнитная фазовая H-T-диаграмма антиферромагнитного состояния для твердых растворов замещения $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$ с $x\leq 0.1$. Выполнено разделение вкладов в магнитосопротивление в антиферромагнитной и парамагнитной фазах исследуемых додекаборидов. Обнаружено, что в магнитосопротивления вида $-\Delta
ho/
ho\propto H^2$, наблюдается компонента $\Delta
ho/
ho\propto H$, линейно изменяющаяся в магнитном поле. Анализ отрицательного вклада в магнитосопротивление $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$ в этих соединениях.

Выполненные

DOI: 10.7868/S0044451013050261

1. ВВЕДЕНИЕ

Свойства редкоземельных (P3) додекаборидов семейства RB_{12} вызывают значительный интерес исследователей, поскольку при сохранении общего характера зоны проводимости в этих проводниках со структурой каркасного стекла [1] изменяется заполнение внутренней 4f-оболочки P3-ионов при движении от TbB_{12} к LuB₁₂ вдоль ряда P3-элементов. Это приводит к подавлению антиферромагнетизма (A Φ) с уменьшением температуры Нееля от $T_N(TbB_{12}) \approx 22$ К до $T_N(Tm_{0.74}Yb_{0.26}B_{12}) = 0.8$ К [2,3], с переходом от A Φ -металла к парамагнитному диэлектрику YbB₁₂ с сильными электронными корреляциями [3,4] и далее к сверхпроводимости в LuB₁₂ с $T_c \approx 0.4$ K [5]. фекта Холла в твердых растворах замещения $Tm_{1-x}Yb_xB_{12}$ в широкой окрестности переходов металл-диэлектрик и антиферромагнетик-парамагнетик ($0 \le x \le 0.81$) показали [6], что основными факторами, определяющими рассеяние носителей заряда при низких температурах в этих РЗ-додекаборидах, являются локальные спиновые 4f-5d-флуктуации вблизи РЗ-ионов и квантовые флуктуации, возникающие в окрестности квантового фазового перехода при $x_c \approx 0.3 \ (T_N = 0).$ Результатом интерференции этих двух типов флуктуаций являются формирование из РЗ-ионов кластеров наноразмера и электронное фазовое расслоение, которое наблюдается в $Tm_{1-x}Yb_xB_{12}$ в интервале составов в окрестности квантовой критической точки $x \ge x_c \approx 0.3$ [7]. Представляет интерес детально исследовать особенности зарядового транспорта в диапазоне $x < x_c$, отвечающем основному АФ-состоянию и развитию АФ-неустойчивости в

недавно

исследования

эф-

^{*}E-mail: nes@lt.gpi.ru

системе $\operatorname{Tm}_{1-x}\operatorname{Yb}_x\operatorname{B}_{12}$. С этой целью в настоящей работе выполнены измерения поперечного магнитосопротивления $\Delta\rho/\rho = f(H,T_0)$ при низких температурах $T \leq 30$ К в твердых растворах замещения $\operatorname{Tm}_{1-x}\operatorname{Yb}_x\operatorname{B}_{12}$ в интервале составов $x \leq 0.1$ в магнитном поле до 80 кЭ и представлен анализ полученных экспериментальных результатов.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Используемые для измерений монокристаллы твердых растворов замещения $Tm_{1-x}Yb_xB_{12}$ выращивались методом вертикального бестигельного индукционного зонного плавления с многократным переплавом в атмосфере инертного газа на установке, подробно описанной в работе [8]. Для исследований поперечного магнитосопротивления в ориентации измерительного тока І || (110) в магнитном поле Н || (001) в работе применялись монокристаллические образцы, вырезанные электроискровым методом из тех же слитков, что и в работах [6,7]. Непосредственно перед изготовлением электрических контактов для удаления нарушенного в процессе подготовки образцов поверхностного слоя было выполнено их травление в кипящем водном растворе (1:1) азотной кислоты. Контроль качества кристаллов осуществлялся с помощью рентгеноструктурного, оптического и микроанализа образцов. Измерения магнитосопротивления $\Delta \rho / \rho = f(H, T)$ были выполнены на постоянном токе четырехконтактным методом на экспериментальной установке оригинальной конструкции, описанной ранее [9]. Точность стабилизации температуры при измерениях полевых зависимостей $\Delta \rho / \rho$ составляла не менее 0.02 K.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Полученные в работе при измерениях в интервале 1.9–30 К температурные зависимости удельного сопротивления $\rho(T)$ додекаборидов $\operatorname{Tm}_{1-x}\operatorname{Yb}_x\operatorname{B}_{12}$ ($0 \leq x \leq 0.1$) представлены на рис. 1. Для сравнения на рис. 1 показаны также зависимости $\rho(T)$, измеренные в магнитном поле 80 кЭ. В отсутствие внешнего поля для составов $\operatorname{Tm}_{1-x}\operatorname{Yb}_x\operatorname{B}_{12}$ с малыми значениями x при промежуточных температурах наблюдается характерное для металла поведение кривых $\rho(T)$ с уменьшением удельного сопротивления с температурой (на рис. 1 в качестве примера показана кривая для x = 0.004). С ростом x на кривых $\rho(T)$ в широком интервале температур перед

Рис.1. Температурные зависимости удельного сопротивления $\rho(T)$ твердых растворов $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$ ($0\leq x\leq 0.1$) в отсутствие внешнего магнитного поля (верхние кривые) и в поле 80 кЭ (нижние кривые)

АФ-переходом появляются участки роста сопротивления с понижением температуры. Кроме того, для всех составов с $x \leq 0.1$ на кривых $\rho(T)$ при гелиевых температурах наблюдаются особенности, связанные с переходом в АФ-состояние (на рис. 1 отмечены температуры Нееля T_N соответствующих переходов). Внешнее магнитное поле H = 80 кЭ приводит к подавлению АФ-упорядочения и заметному уменьшению удельного сопротивления, причем в поле 80 кЭ эффект отрицательного магнитосопротивления (OMC)

$$\frac{\Delta\rho}{\rho} = \frac{\rho(H = 80 \text{ k}\Im) - \rho(0)}{\rho(0)} = f(H = 80 \text{ k}\Im, T)$$

наблюдается для всех составов с $x \leq 0.1$ во всем интервале 1.9–30 К и достигает максимальных значений при гелиевых температурах.

Рис.2. Полевые зависимости магнитосопротивления $\Delta \rho / \rho = f(H, T_0)$ для x = 0.004 (a) в магнитных полях a - do 80 кЭ (для удобства восприятия каждая следующая кривая смещена относительно предыдущей по вертикали на 0.05) и $\delta - do 25$ кЭ. e) Температурные зависимости локальной магнитной восприимчивости $\chi_{loc}^{-1}(T)$ $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$ ($0 \le x \le 0.1$), полученные из анализа ОМС-вклада в рамках соотношения (2). На рис. 2a стрелками у кривой $T_0 = 2$ К показаны особенности, отвечающие ориентационным фазовым переходам (H_m) и переходу антиферромагнетик-парамагнетик (H_N). На рис. 2δ стрелки вдоль кривых отмечают направление изменения магнитного поля, область гистерезиса магнитосопротивления заштрихована; на рис. 2δ прямые отчевают аппроксимации $\chi_{loc}^{-1}(T)$ кюри-вейссовской зависимостью магнитосопротивления (3)

Поведение магнитосопротивления в твердых растворах $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$ с малой концентрацией иттербия исследовалось нами также при измерениях полевых зависимостей $\Delta \rho / \rho = f(H, T_0)$ в магнитном поле до 80 кЭ. Для примера на рис. 2 а показано семейство кривых $\Delta \rho / \rho = f(H, T_0)$, полученных для состава с x = 0.004, в АФ-фазе, в парамагнитной фазе и при фазовых переходах в магнитном поле. Особенности на зависимостях магнитосопротивления от магнитного поля, указанные стрелками для кривой $T_0 = 2$ К (см. рис. 2*a*), соответствуют ориентационным фазовым переходам (H_m) и переходу антиферромагнетик-парамагнетик (H_N) . Как видно из данных рис. 2*a*, в парамагнитной фазе основным эффектом является ОМС. В то же время в области полей $H \leq 25$ кЭ в АФ-фазе надежно регистрируется положительный вклад в $\Delta \rho / \rho$, по абсолютной величине не превышающий 0.8 %, с максимумами в окрестности 4–6 кЭ и 17–20 кЭ в зависимости от температуры (см. рис. 2*a* и 2*b*). Кроме того, в малых полях при низких температурах на кривых $\Delta \rho / \rho = f(H, T_0)$ наблюдаются также области гистерезиса поперечного магнитосопротивления (см. рис. 2*b*).

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Достигнутая в работе высокая точность резистивных измерений позволила выполнить численное дифференцирование измеренных нами полевых зависимостей $\Delta \rho / \rho = f(H, T_0)$. Примеры производных магнитосопротивления $d(\Delta \rho / \rho)/dH = f(H, T_0)$, полученных для состава с x = 0.004, показаны на

Рис.3. а) Производные магнитосопротивления $d(\Delta\rho/\rho)/dH = f(H,T_0)$ для состава x = 0.004 (для удобства восприятия каждая следующая кривая смещена относительно предыдущей по вертикали на 0.01). Участки прямых показывают аппроксимацию производных линейными зависимостями вида $d(\Delta\rho/\rho)/dH = -2BH + A$ в парамагнитной фазе (кривая $T_0 = 3.5$ K, A = 0) и АФ-фазе (A > 0). Стрелками у кривой $T_0 = 2$ K показаны особенности, отвечающие ориентационным фазовым переходам и переходу антиферромагнетик-парамагнетик. б) Магнитная фазовая H-T-диаграмма АФ-состояния соединения $\text{Tm}_{0.996} \text{Yb}_{0.004} \text{B}_{12}$ (область гистерезиса магнитосопротивления заштрихована, AF1, AF2 и P — соответственно две АФ-фазы и парамагнитная фаза)

рис. За. Отметим, что в парамагнитной фазе при температурах $T \ge 20$ К практически во всем интервале полей до 80 кЭ, а также при гелиевых температурах ($T_N < T \le 4.2$ К) в полях до 20 кЭ (см., например, рис. За, кривая $T_0 = 3.5$ К) наблюдаются линейные зависимости производных $d(\Delta \rho / \rho)/dH = f(H, T_0)$, отвечающие квадратичному ОМС-вкладу вида $-\Delta \rho / \rho = BH^2$. В сильных магнитных полях при гелиевых температурах в парамагнитной фазе на кривых ОМС появляется тенденция к насыщению (см. рис. 2a), которой соответствует значительное уменьшение производной магнитосопротивления с ростом поля (см. рис. 3a).

Подобное поведение ОМС наблюдалось ранее в редкоземельных додекаборидах RB_{12} (R = Ho, Er, Tm) [10] и интерпретировалось в рамках модели Йо-

сиды [11], описывающей рассеяние носителей заряда в металле на локализованных магнитных моментах *d*-состояний магнитной примеси. В работе [10] было показано, что эффект ОМС в парамагнитной фазе АФ-семейства RB₁₂ достаточно хорошо описывается соотношением

$$-\frac{\Delta\rho}{\rho} = 0.61 \frac{\langle M \rangle^2}{S^2} = \beta M_{loc}^2, \tag{1}$$

связывающим между собой магнитосопротивление и локальную намагниченность M_{loc} ($\langle M \rangle$ и S — соответственно средний момент и спин магнитной примеси). В малых магнитных полях соотношение (1) можно представить в виде

$$-\Delta\rho/\rho = \beta\chi_{loc}^2 H^2.$$
⁽²⁾

В работе [10] было показано, что эффект ОМС

в додекаборидах с металлической проводимостью и магнитными центрами, присутствующими в каждой элементарной ячейке кристаллической структуры RB₁₂, следует связать с поляризацией в магнитном поле локализованных магнитных моментов РЗ-ионов и спинов зонных носителей и, вследствие этого, с подавлением процессов рассеяния с переворотом спина. При этом наиболее адекватным для описания ОМС додекаборидов RB₁₂ представляется спин-поляронный подход, связывающий эффект ОМС с формированием в результате быстрых спиновых 4f-5d-флуктуаций областей магнитной поляризации в 5*d*-полосе в окрестности РЗ-центров и с их подавлением внешним магнитным полем. На основе полученных экспериментальных результатов холловских измерений и выполненных оценок радиуса локализации $a_p \approx 5-9\,\mathrm{\AA}$ многочастичных спин-поляронных состояний в 5*d*-полосе в окрестности РЗ-центров, в работе [6] был найден характерный пространственный размер d_{sc}^m области магнитного рассеяния носителей заряда:

$$d_{sc}^m \approx a \le a_p \approx 10 \,\text{\AA}$$

 $(a - \text{постоянная решетки}, a \approx 7.5 \text{ Å}),$ который существенно превосходит радиус локализации 4*f*-оболочки ($r_{4f} \approx 0.3-0.5$ Å). Следует отметить также, что области ближнего магнитного порядка в магнитных додекаборидах были обнаружены в экспериментах по диффузному рассеянию нейтронов в парамагнитной фазе соединений RB₁₂ (R = Ho, Er, Tm) [12–14], причем было установлено [14], что сильные корреляции между моментами РЗ-ионов вдоль направления [111] сохраняются вплоть до температур $T \approx 3T_N$. Таким образом, возникновение ближнего порядка и связанных с этим областей спиновой поляризации 5d-состояний, по-видимому, следует считать причиной роста удельного сопротивления с понижением температуры при T < 30 К в соединениях $Tm_{1-x}Yb_{x}B_{12}$.

Оценки поведения локальных магнитных характеристик $M_{loc}(H, T_0)$ и $\chi_{loc}(H, T_0)$ из экспериментальных данных ОМС (рис. 2, 3) были выполнены нами в рамках соотношений (1), (2) с использованием процедуры численного дифференцирования полевых зависимостей магнитосопротивления. На рис. 26 для примера показаны температурные зависимости обратной локальной магнитной восприимчивости $\chi_{loc}^{-1}(T)$, полученные из соотношения (2) для соединений $\text{Tm}_{1-x} \text{Yb}_x B_{12}$ ($x \leq 0.1$) в парамагнитной фазе по результатам измерений в малых магнитных полях H < 10 кЭ. Как видно из рис. 26, кюри-вейссовская зависимость вида

$$\chi_{loc}(T) \sim \chi(T) \approx N \mu_{eff}^2 / 3V k_B (T + \Theta_p) \qquad (3)$$

ЖЭТФ, том 143, вып. 5, 2013

 $(\mu_{eff}$ — эффективный магнитный момент, Θ_p парамагнитная температура Кюри, k_B — постоянная Больцмана) является хорошим приближением для описания поведения локальной восприимчивости $\mathrm{Tm}_{1-x}\mathrm{Yb}_{x}\mathrm{B}_{12}$ в интервале температур T_{N} < < T < 10 К. Найденные из аппроксимации кривой $\chi_{loc}^{-1}(T)$ кюри-вейссовской зависимостью (3) значения парамагнитной температуры Кюри Θ_n^{MR} в соединениях $\mathrm{Tm}_{1-x}\mathrm{Yb}_x\mathrm{B}_{12}$ в пределах экспериментальной точности составляют -(2.5...3) К (см. рис. 2в) и свидетельствуют об АФ-характере обмена через электроны проводимости. В то же время практически неизменное значение Θ_p^{MR} для составов 0 < x ≤ 0.1 при уменьшении температуры Нееля от T_N $(x = 0.004) \approx 3.2$ К до T_N $(x = 0.096) \approx 2.1$ К позволяет высказать предположение о наличии наряду с РККИ-обменом дополнительных факторов, определяющих магнитное взаимодействие редкоземельных ионов. Кроме того, оценки Θ_p^{MR} по данным измерений магнитосопротивления приводят к существенно меньшим абсолютным значениям, по сравнению с результатами кюри-вейссовского анализа магнитных данных ($\Theta_p^M \approx -20$ K [3]).

По-видимому, причиной уменьшения Θ_p^{MR} относительно Θ_p^M является различие объемной M и локальной M_{loc} намагниченностей в соединениях $Tm_{1-x}Yb_{x}B_{12}$. При этом, в отличие от средней по объему намагниченности M, параметр M_{loc} характеризует величину эффективного магнитного поля на носителе заряда в зоне проводимости, имеющей преимущественно 5*d*-характер [15, 16]. Для объяснения полученных экспериментальных результатов (см. рис. 2, 3) также следует предположить наличие спиновой поляризации (спин-поляронный эффект) в 5*d*-полосе и формирования АФ-нанокластеров РЗ-ионов (ближний порядок), которые приводят к частичной компенсации среднего магнитного момента на ячейку кристаллической структуры RB₁₂, ослаблению взаимодействия и, вследствие этого, к уменьшению абсолютных значений парамагнитной температуры Кюри.

В АФ-фазе магнитосопротивление становится знакопеременным (см. рис. 2δ). Для анализа аномалий $\Delta \rho / \rho = f(H, T_0)$, связанных с фазовыми переходами в магнитном поле, нами также исследовались полевые зависимости производных магнитосопротивления. На рис. 3a для примера показаны особенности производных $d(\Delta \rho / \rho)/dH = f(H, T_0)$, регистрируемые при ориентационных магнитных переходах и переходе в парамагнитное состояние для соста-

Рис. 4. Температурные зависимости коэффициентов при линейном A(T) (*a*) и отрицательном квадратичном B(T) (*b*) вкладах в магнитосопротивление твердых растворов $Tm_{1-x}Yb_xB_{12}$ при x = 0.004 (\bullet), 0.044 (\triangle), 0.092 (\circ)

ва $\text{Tm}_{0.996}$ Yb_{0.004} B₁₂ в интервале температур 2–3 K. Аномалии на зависимостях $d(\Delta \rho / \rho)/dH = f(H, T_0)$, отвечающие резкой смене режима рассеяния носителей заряда, были сопоставлены магнитным фазовым переходам и использовались в работе для построения магнитной фазовой H–T-диаграммы исследуемых антиферромагнетиков. На рис. 3 показан пример такого сопоставления фазовым границам особых точек производной магнитосопротивления, полученной при $T_0 = 2$ K для состава с x = 0.004, и представлена построенная нами магнитная фазовая H–T-диаграмма (стрелками с различными символами на рис. 3a отмечено положение фазовых границ для данного значения T_0 , представленное на рис. 3δ).

Следует подчеркнуть, что измерение магнитосопротивления в экспериментах с возрастанием и уменьшением напряженности внешнего магнитного поля позволило выявить участки гистерезиса на кривых $\Delta \rho / \rho$. Наиболее наглядно этот эффект показан для магнитосопротивления $\Delta \rho / \rho = f(H, T_0)$ состава x = 0.004 (рис. 26, $T_0 = 2$ K). Как видно из рис. 36, магнитная фазовая H-T-диаграмма додекаборидов $Tm_{1-x}Yb_xB_{12}$ оказывается значительно более сложной, чем следует ожидать для случая ГЦК-решетки магнитных центров.

Для объяснения природы промежуточных фаз в АФ-состоянии HoB₁₂ была предложена [14] модель, основанная на учете эффектов фрустрации в ГЦК-решетке RB₁₂. В то же время, если принять во внимание слабосвязанное состояние РЗ-ионов в матрице додекаборидов, а также переход в состояние каркасного стекла при азотных температу-

рах в RB₁₂ [1] и возникновение беспорядка в расположении магнитных центров в исследуемых соединениях, то естественное объяснение получает также перестройка структуры АФ-состояния внешним магнитным полем. Действительно, позиционный беспорядок в расположении РЗ-ионов в ячейках В₂₄ приводит к значительной дисперсии обменных констант (РККИ-взаимодействие), что в сочетании с поляризацией 5*d*-состояний зоны проводимости (спин-поляронный эффект) вызывает образование существенно более сложной магнитной структуры в АФ-фазе и, вследствие этого, более сложной Н-Т-диаграммы. Кроме того, спин-поляронная компонента магнитной структуры (зонный антиферромагнетизм) оказывается крайне чувствительной к внешнему магнитному полю, которое подавляет спиновые 4*f*-5*d*-флуктуации, «замораживая» канал рассеяния с переворотом спина зонных носителей. Дополнительным аргументом в пользу предположения о смешанном 4f-5d-характере магнитоупорядоченного состояния в RB₁₂, на наш взгляд, может служить вывод, сделанный по результатам µSR-экспериментов [17], о присутствии значительного спинового беспорядка в АФ-фазе ErB₁₂ на шкале порядка пяти постоянных решетки.

Следует отметить, что присутствие зонной компоненты с волной спиновой плотности в магнитной $A\Phi$ -структуре $Tm_{1-x}Yb_xB_{12}$ может быть обнаружено также в возникновении наряду с квадратичным ОМС линейного положительного вклада в магнитосопротивление составов с $x \leq 0.1$ при $T < T_N$. При этом наиболее известной трехмерной системой с основным $A\Phi$ -состоянием с волной спиновой плотности является металлический хром, в котором при низких температурах в аналогичной несоизмеримой фазе линейный эффект положительного магнитосопротивления (ПМС) достигает 180% в магнитном поле $H = 12 \text{ к}\Im$ [18]. Для соединений $\text{Tm}_{1-x}\text{Yb}_x\text{B}_{12}$ на рис. 4 для примера показаны полученные разделением вкладов в рамках соотношения

$$\Delta \rho / \rho = f(H, T_0) = -BH^2 + AH + C$$

коэффициенты A и B, определяющие соответственно отмеченную выше линейную составляющую и квадратичную ОМС-составляющую магнитосопротивления. Как видно из рис. 4, линейное ПМС возникает в АФ-фазе твердых растворов с $x \leq 0.1$, причем коэффициенты A и B скачком меняются при ориентационном переходе AF1–AF2 (см. также рис. 3δ) в сильном магнитном поле.

5. ЗАКЛЮЧЕНИЕ

В работе выполнено комплексное исследование поперечного магнитосопротивления додекаборидов $Tm_{1-x}Yb_xB_{12}$ ($x \leq 0.1$) при низких температурах в интервале 1.9-30 К в магнитном поле до 80 кЭ с разделением вкладов и их анализом. Показано, что в парамагнитной фазе доминирующим является эффект ОМС, обусловленный спиновыми 4f-5d-флуктуациями. При переходе в А Φ -состояние наряду с отрицательным магнитосопротивлением наблюдается линейное ПМС, по-видимому, связанное с рассеянием носителей на волне спиновой плотности, а также участки гистерезиса $\Delta \rho / \rho$ в слабом магнитном поле. Предложено объяснение сложных H-T-диаграмм магнетиков $Tm_{1-x}Yb_xB_{12}$ в терминах формирования комплексного магнитоупорядоченного состояния локализованных 4f-моментов РЗ-ионов и областей спиновой поляризации зонных 5*d*-состояний (спиновых поляронов), участвующих в образовании волны спиновой плотности.

Авторы признательны И. Станкиевич (J. Stankiewicz) и Г. Е. Гречневу за полезные обсуждения. Работа выполнена при финансовой поддержке программы ОФН РАН «Сильнокоррелированные электроны в металлах, полупроводниках и магнитных материалах» и РФФИ (грант № 10-02-00998-а).

ЛИТЕРАТУРА

- Н. Е. Случанко, А. Н. Азаревич, А. В. Богач и др., ЖЭТФ 140, 536 (2011).
- A. Czopnik, N. Shitsevalova, A. Krivchikov et al., J. Sol. St. Chem. 177, 507 (2004).
- Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., Письма в ЖЭТФ 89, 298 (2009).
- B. Gorshunov, P. Haas, O. Ushakov et al., Phys. Rev. B 73, 145207 (2006).
- K. Flachbart, S. Gabani, K. Gloos et al., J. Low Temp. Phys. 140, 339 (2005).
- Н. Е. Случанко, А. Н. Азаревич, А. В. Богач и др., Письма в ЖЭТФ 91, 81 (2010).
- 8. Н. Ю. Шицевалова, Дисс. канд. физ.-матем. наук, Вроцлав (2001).
- Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., ЖЭТФ 125, 906 (2004).
- Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., ЖЭТФ 135, 766 (2009).
- 11. K. Yosida, Phys. Rev. 107, 396 (1957).
- K. Siemensmeyer, K. Flachbart, S. Gabani et al., J. Sol. St. Chem. 179, 2748 (2006).
- 13. K. Flachbart, E. Bauer, S. Gabani et al., J. Magn. Magn. Mater. 310, 1727 (2007).
- 14. K. Siemensmeyer, K. Habicht, Th. Lonkai et al., J. Low Temp. Phys. 146, 581 (2007).
- M. Heinecke, K. Winzer, J. Noffke et al., Z. Phys. B 98, 231 (1995).
- 16. B. Jäger, S. Paluch, O. J. Zogałet et al., J. Phys.: Condens. Matter 18, 2525 (2006).
- 17. G. M. Kalvius, D. R. Noakes, N. Marcano et al., Physica B 326, 398 (2003).
- 18. S. Arajs and G. R. Dunmyre, J. Appl. Phys. 36, 3555 (1965).