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Strongly correlated Fermi systems are among the most intriguing and fundamental systems in physics. We show
that the herbertsmithite ZnCus(OH)gCl2 can be regarded as a new type of strongly correlated electrical insulator
that possesses properties of heavy-fermion metals with one exception: it resists the flow of electric charge. We
demonstrate that herbertsmithite's low-temperature properties are defined by a strongly correlated quantum
spin liquid made with hypothetic particles such as fermionic spinons that carry spin 1/2 and no charge. Our
calculations of its thermodynamic and relaxation properties are in good agreement with recent experimental
facts and allow us to reveal their scaling behavior, which strongly resembles that observed in heavy-fermion
metals. Analysis of the dynamic magnetic susceptibility of strongly correlated Fermi systems suggests that there

exist at least two types of its scaling.
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Strongly correlated Fermi systems represented
by heavy-fermion (HF) metals are well studied
experimentally but received an adequate theoretical
description only recently [1]. The Landau Fermi liquid
(LFL) theory is highly successful in the condensed
matter physics. The key point of this theory is the
existence of fermionic quasiparticles defining the
thermodynamic, relaxation, and dynamic properties
of conventional metals. But strongly correlated Fermi
systems encompass a variety of systems that display
behavior not easily understood within the Fermi liquid
theory and called non-Fermi-liquid (NFL) behavior.
A paradigmatic example of the NFL behavior is
demonstrated by HF metals, where a quantum phase
transition (QPT) induces a transition between LFL
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and NFL [1,2]. QPT can be tuned by different
parameters, such as the chemical composition, the
pressure, and the magnetic field. Magnetic materials,
and insulators in particular, are interesting subjects
of study due to a quantum spin liquid (QSL) that
may develop in them, defining their low-temperature
properties. Exotic QSL is formed with hypothetic
particles such as fermionic spinons, carrying spin 1/2
and no charge. A search for the materials is a challenge
for condensed matter physics [3].

In zero and high magnetic fields B [4-13],
the  experimental studies of  herbertsmithite
ZnCu3(OH)gCly have discovered gapless excitations
analogous to quasiparticle excitations near the Fermi
surface in HF metals, indicating that ZnCuz(OH)sCly
is the promising system to investigate its QPTs
and QSLs [14-16]. The observed behavior of the
thermodynamic properties of ZnCus(OH)sCly strongly
resembles that in HF metals because a simple kagome
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lattice has a dispersionless topologically protected
branch of the spectrum with zero excitation energy
[14, 17, 18]. This indicates that the QSL formed by
the ideal kagome lattice and located near the fermion
condensation quantum phase transition (FCQPT) can
be considered a strongly correlated quantum spin liquid
(SCQSL). This observation allows establishing a close
connection between ZnCus(OH)gCly with its SCQSL
and HF metals whose HF system is located near the
FCQPT and therefore exhibits a universal scaling
behavior [1, 14, 15]. Thus, the FCQPT represents a
QPT of ZnCu3(OH)¢Cly and both herbertsmithite
and HF metals can be treated in the same framework,
while SCQSL is composed of spinons, which, with zero
charge and spin 0 = £1/2, occupy the corresponding
Fermi sphere with the Fermi momentum pp [1, 14-16].

In this paper, we show that both NFL and
scaling behavior of strongly correlated Fermi
systems such as HF metals and ZnCuz(OH)gCl,y
can be described in the framework of the FCQPT
theory. Analyzing experimental data obtained in
measurements on strongly correlated Fermi systems
with different microscopic properties, we have found
that they demonstrate a universal NFL behavior.
Our analysis of the dynamic magnetic susceptibility
of strongly correlated Fermi systems suggests that
there exist at least two types of scaling. We calculate
the thermodynamic and relaxation properties of
herbertsmithite and HF metals. The calculations
are in good agreement with experimental data and
allow detecting the low-temperature behavior of
ZnCu3(OH)gCly defined by SCQSL as that observed
in HF metals.

To study the low-temperature thermodynamic,
relaxation, and scaling properties of herbertsmithite
theoretically, we use the model of a homogeneous HF
liquid [1]. This model permits avoiding complications
associated with the crystalline anisotropy of solids.
Similarly to the electronic liquid of HF metals, the
SCQSL is composed of chargeless fermions (spinons)
with S 1/2 occupying the corresponding two
Fermi spheres with the Fermi momentum pp. The
ground-state energy FE(n) is given by the Landau
functional depending on the quasiparticle distribution
function n,(p), where p is the momentum and o is the
spin index. The effective mass M™* is governed by the
Landau equation [1,19]
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where we write the quasiparticle distribution function
as

ne(p, B,T) =ngs(p,B =0,T =0) + dn,(p, B, T).

The Landau amplitude F' is completely defined by the
fact that the system has to be at a FCQPT [1,20-22]
(see [20-22] for details of solving Eq. (1)). The sole
role of the Landau amplitude is to bring the system
to the FCQPT point, where the Fermi surface alters
its topology such that the effective mass acquires
temperature and field dependences. At this point, the
term 1/M* vanishes, Eq. (1) becomes homogeneous
and can be solved analytically [1, 20]. At B = 0,
the effective mass, being strongly 7T-dependent,
demonstrates the NFL behavior given by Eq. (1),

M*(T) ~ apT~%/3, (2)

where ap is a constant. At finite 7T, under the
application of a magnetic field B, the two Fermi
spheres due to the Zeeman splitting are displaced
by opposite amounts, the final chemical potential g
remaining the same to within corrections of the order
of B2. As a result, the field B drives the system to the
LFL region, and again it follows from Eq. (1) that

M*(B) ~ agB~%/3, (3)

where ap is a constant. It follows from Eqs. (2) and
(3) that effective mass diverges at the FCQPT. At
finite B and T', solutions M*(B,T) of Eq. (1) can be
well approximated by a simple universal interpolating
function. This interpolation occurs between the LFL
regime, given by Eq. (3), and the NFL regime given
by Eq. (2) [1, 20]. Experimental facts and calculations
show that M*(B,T) as a function of T' at a fixed B
reaches its maximum value M}, at Tas (see, e.g., [1]).

To study the universal scaling behavior of strongly
correlated Fermi systems, it is convenient to introduce
the normalized effective mass My, and the normalized
temperature T by dividing the effective mass M*
and temperature 7" by their values at the maximum,
My, and Ths. In the same way, we can normalize
other thermodynamic functions such as the spin
susceptibility vy and the heat capacity C. As a result,
we obtain

xn & (C/T)n = My, (4)

where xn and (C/T)n are the normalized values of x
and C'/T. We note that our calculations of M3 based
on Eq. (1) do not contain any fitting parameters. The
normalized effective mass

M3 = M* /M3,
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as a function of the normalized temperature
y=Tn=T/Tu
is given by the interpolating function [1]

1+ cy?

My (y) ® co—————
~() 001+02y8/37

where
Cco = (]_ + 02)/(1 + 01),

c1, and co are fitting parameters. Because the magnetic
field B enters Eq. (1) only in the combination
Bup/kgT, we have Tp.. o B [20, 1], where up
is the Bohr magneton and kp is the Boltzmann
constant. Hence, for finite magnetic fields, the variable
y becomes

Because the variables T' and B enter symmetrically,
Eq. (5) is valid for

Yy = /JBB/kBT.

To construct the dynamic spin susceptibility

x(a,w,T) =x(qw,T) +ix"(q,w,T)

as a function of the momentum ¢, frequency w,
and temperature T, we again use the model of a
homogeneous HF liquid located near the FCQPT. To
deal with the dynamic properties of Fermi systems,
we can use the transport equation describing a slowly
varying disturbance dn,(q,w) of the quasiparticle
distribution function ng(p), and n = dén + ng. We
consider the case where the disturbance is induced by
the application of an external magnetic field

B = BO + ABl(q,W)

with By being a static field and AB; a w-dependent
field with A — 0. As long as the transferred energy

w < qpr/M* < p,

where M™* is the effective mass and p is the chemical
potential, the quasiparticle distribution function
n(q,w) satisfies the transport equation [23]

on
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where pp is the Bohr magneton and e, is the
single-particle spectrum. In the field By, the two Fermi
surfaces are displaced by opposite amounts, +Byup,
and
M = pp(dny —don_),

where the two spin orientations with respect to
the magnetic field are denoted by “£” and the
magnetization

ng = Z on+(p).

The spin susceptibility y is given by

M
0B B:BO'

In fact, transport equation (7) reduces to two
equations, which can be solved for each direction “+”
and allow calculating dny and the magnetization. The
response to the application of ABj(q,w) can be found
by expanding the solution of Eq. (7) in a power series
with respect to M*w/qpr. As a result, we obtain the
imaginary part of the spin susceptibility

_ s w(M *)? 1
el 2mq (14 Fg)?’

where F§ is the dimensionless spin-antisymmetric
quasiparticle interaction [23]. The interaction F{ is
found to saturate at F§ ~ —0.8 [24, 25], and therefore
the factor (1 + F§) in Eq. (8) is finite and positive. It
can be seen from Eq. (8) that the second term is an odd
function of w. Therefore, it does not contribute to the

X" (q,w) (8)

real part x' and forms the imaginary part y”. Taking
into account that at relatively high frequencies

w > qpr/M* < p

in the hydrodynamic approximation, y' oc 1/w? [26],
we conclude that the expression

I M~*pr

2 a * i (9)
TURE) )y M
apr(1+ Fg)
yields a simple approximation for the susceptibility v
and satisfies the Kramers—Kronig relation connecting
the real and imaginary parts of y.

To understand how Y and y respectively given
by Egs. (8) and (9) can depend on the temperature T
and magnetic field B, we recall that near the FCQPT
point, the effective mass M* depends on T" and B. To
elucidate the scaling behavior of y, we use Eq. (2) to
describe the temperature dependence of y. It follows
from Egs. (9) and (2) that

x(q,w) =

ai

T23(T,w) &~ ————
X(T,w) [T i

(10)
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where a; and a, are constants absorbing irrelevant
values and
E =w/(kpT)??.

As a result, the imaginary part y"(T,w) satisfies the
equation

a3E

T2/3 "er ~
X ( 70‘)) 1+a4E27

(11)
where a3 and a4 are constants. It follows from Eq. (11)
that T2/3\"(T,w) has a maximum (T2/3x"(T,w))mazs
at some F,,,. and depends on the only variable
E. Equation (11) is in accordance with the scaling
behavior of Y"T°6 experimentally established in
Ref. [7]. As it was done for the effective mass
when constructing (5), we introduce the dimensionless
function

(TZ/SXII)N _ T2/3X”/(T2/3X”)maz

and the dimensionless variable Ey = E/E.., after
which Eq. (11) becomes

b En

T2/3 n ~ 7
(TX)n 1+ by 2,

(12)
where b; and be are fitting parameters to be chosen
such that the function in the right-hand side of Eq. (12)
reaches its maximum value 1 at E,, = 1.

We next construct the schematic T' — B phase
diagram of ZnCus(OH)gCly reported in Fig. 1. At
T = 0 and B = 0, the system is near the FCQPT
without tuning. It can also be shifted from the FCQPT
by the application of a magnetic field B. The magnetic
field B and temperature T play the role of control
parameters, driving the system from the NFL to LFL
regions as shown by the vertical and horizontal arrows.
At afixed B and increasing T', the system transits along
the vertical arrow from the LFL region to the NFL
one, crossing the transition region. On the contrary,
increasing B at a fixed T drives the system along the
horizontal arrow from the NFL region to the LFL one.
The inset demonstrates the universal behavior of the
normalized effective mass M3, versus the normalized
temperature Tn given by Eq. (5). It follows from
Eq. (5) and can be seen from Fig. 1 that the total width
W of the NFL and the transition region, shown by the
arrow in Fig. 1, tends to zero as T and B decrease,
because W «x T « B.

A few remarks are in order here. Equation (11) is
valid if the system approaches the FCQPT from the
disordered side as shown in phase diagram 1. If the
system is located on the ordered side, then at B = 0

980

Transition region

/ FCQPT ZnCu;(OH)Cl,

B
Puc. 1. Schematic T-B phase diagram of
ZnCu3(OH)eCly located on the disordered side

of the FCQPT. The solid circle at the origin shown by
an arrow represents FCQPT. Vertical and horizontal
arrows show the respective LFL-NFL and NFL-LFL
transitions at fixed B and T'. The total width W of the
NFL and the transition region is shown by the arrow.
The inset demonstrates the behavior of the normalized
effective mass My versus the normalized temperature
Tn given by Eq. (5). Temperatures Ty ~ 1 signify
a transition region between the LFL regime with an
almost constant effective mass and the NFL regime,
given by an T~2/3 dependence. The transition region,
where My reaches its maximum at 7'/Tmae = 1, is
shown by the arrows and hatched area both in the
main panel and in the inset

the behavior of the effective mass as a function of T is
given by [1, 28]

M*(T) ~ a, T *, (13)
where a, is a constant. Taking Eq. (13) into account
and proceeding in the same way as in deriving Eq. (11),
we obtain that the imaginary part v (T, w) is given by

a5E

TX"(T,w) ~ Tt agk?’

(14)
where as and ag are constants and E = w/kpT. Tt
follows from Eq. (14) that Tx"(T,w) depends on the
only variable E. Thus, Eqs. (11) and (14) establish two
types of scaling behavior of "' (w,T). Since the scaling
behavior of \"'(w,T) is defined by the dependence of
M* on T, we can expect new types of scaling, especially
in the transition region shown in Fig. 1.

Figure 2 reports the behavior of the normalized y n
and specific heat (C/T)n respectively extracted from
measurements on ZnCus(OH)sCly [7] and YbRhySiy
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xv» ZnCuy(OH)Cly  (C/T)y, YORh;3Sig
1.00 - v B=3T = B=4T
<4 B=5T o B=6T
» B=7T A B=S8T
e B=10T v B=10T
0.75F e B=14T 6 B=12T
» B=14T
¢ B=16T
0.50 * B=18T
0.25r
| | |
0 4 8 12
Ty
Puc.2. The experimental data on measurements of
xv = (C/T)n =~ My and our calculations of

My at fixed magnetic field are respectively shown in
the legends by points of different shape and a solid
curve. It is clearly seen that the data collected on
both ZnCus(OH)sCl: [7] and YbRh,Siz [27] merge
into the same curve, obeying a scaling behavior. This
demonstrates that the SCQSL of herbertsmithite is
close to the FCQPT and behaves like an HF liquid of
YbRhSis in magnetic fields

[27]. It follows from Fig. 2 that in accordance with
Eq. (4), the behavior of yn coincides with that of

In Fig. 3, the normalized xyn and (C/T') n, extracted
from measurements on ZnCuz(OH)gCly [5,7], are
depicted. To extract the specific heat C' coming from
the contribution of SCQSL from the total specific heat
C¢(T) measured on ZnCuz(OH)gCly, we approximate
Cy(T) at T > 2 K by the function [15]

Cy(T) = ayT? + a,T'/?, (15)

where the first term proportional to a; is due to
the lattice (phonon) contribution and the second is
determined by the SCQSL when it exhibits the NFL

behavior in accordance with Eq. (2),
C o TM* T3

Taking into account that the phonon contribution is
B-field independent, we obtain

O(B,T) = Ct(B,T) - a1T3.
It can be seen from Figs. 2 and 3 that
(C/T)N = xN

(C/Dys An
1.2
‘ (C/Dy
v B=3T
& B=5T
B 4 B=7T

0.8 » B=10T
* B=14T

04

ZnCu,(OH)Cl, *
| 1 1 |

0 4 8 12

Puc. 3. The normalized susceptibility yn ~ My and

the normalized specific heat (C/T)n ~ My of SCQSL

versus the normalized temperature Ty as a function

of the magnetic fields shown in the legends. yn and

(C/T)n are respectively extracted from the data in [7]
and [5]

displays the same scaling behavior as (C/T)n
measured on the HF metal YbRh,Sis. Therefore, the
scaling behavior of the thermodynamic functions of
herbertsmithite is an intrinsic feature of the compound.

In Fig. 4, consistent with Eq. (12), the scaling
of the normalized dynamic susceptibility (72/3y")x
extracted from the inelastic neutron scattering
spectrum of both herbertsmithite [7] (Fig. 4a), and
the HF metal 060.925La0.075RUQSi2 [29] (Flg 4b), is
displayed. In Fig. 4¢ the dynamic susceptibility Ty"
extracted from measurements of the inelastic neutron
scattering spectrum on the HF metal YbRh»Sis [30] is
shown. The data for Ty" exhibit the scaling behavior
over three decades of the variation of both the
function and the variable, thus confirming the validity
of Eq. (14). The scaled data obtained in measurements
on such quite different strongly correlated systems as
ZHCUg(OH)ﬁClQ, 060.925L30.075RUQ812, and YthgSlg
collapse fairly well onto a single curve over almost
three decades of the scaled variables. Our calculations
shown by the solid curves are in good agreement with
the experimental facts.

Some remarks on the role of both the disorder and
the anisotropy are in order. The anisotropy is supposed
to be related to the Dzyaloshinskii-Moriya interaction,
exchange anisotropy, or out-of-plane impurities.
Measurements of the susceptibility on a single crystal
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Puc. 4. Panels a and b: (T?%\")x plotted against the
dimensionless ratio Ex = w/(kpT)* ®Epmax. The data
are extracted from measurements on ZnCus(OH)sCls
[7] (a) and CepossLao.orsRusSia (b) at Qi [29].
The solid curves, panels a and b, are fits with the
function given by Eq. (12). Panel ¢: Tx" plotted
against £ = w/kpT. The data are extracted from
measurements on YbRhSiz [30], with the function
given by Eq. (14)
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of herbertsmithite have shown that it closely follows
that measured on a powder sample [8, 13]. At low
temperatures 77 < 70 K, the single-crystal data do
not show substantial magnetic anisotropy [8, 13]. It
is seen from Figs. 2, 3, and 4 that in accordance with
Eqgs. (4) and (5), (Chag/T)~n = xn, and displays the
same scaling behavior as does (C'/T)x measured on
the HF metal YbRh,Sis>. These observations show that
extra Cu spins outside the kagome planes regarded
as paramagnetic weakly interacting impurities can
hardly be responsible for both the scaling behavior
and the divergence of the susceptibility. Indeed, in
such a case, the extra Cu spins would be completely
polarized by a relatively weak magnetic field, while
the extra Cu spins do not contribute significantly to
the specific heat. Hence, one could scarcely expect that
the scaling behavior of (Cpag/T)n in magnetic fields
should coincide with that of yn. On the other hand,
as can be seen from Fig. 3, these functions exhibit the
same scaling behavior. Moreover, it follows from Fig. 2
that the same scaling is demonstrated by (C/T)n
obtained in measurements on YbRhsSis. Therefore,
our consideration evidences that the stoichiometry,
disorder, and anisotropy contribute very little to the
measurements on ZnCuz(OH)gCly at relatively low
temperatures. These observations are in agreement
with the general consideration of scaling behavior of
HF metals in [1, 15].

In summary, we have considered the non-Fermi
liquid behavior and the scaling behavior of
strongly correlated Fermi systems such as insulator
ZHCU3(OH)6012 and HF metals Ceo_925La0_075RuQSi2
and YbRh>Sis, and shown that these are described in
the framework of the FCQPT theory. Our analysis
of the dynamic magnetic susceptibility of strongly
correlated Fermi systems suggests that there exist
at least two types of its scaling. We calculate
the thermodynamic and relaxation properties of
herbertsmithite and HF metals. The calculations
are in good agreement with experimental data and
allow identifying the low-temperature behavior of
ZnCu3(OH)gCly determined by SCQSL as that
observed in HF metals. Therefore, herbertsmithite
can be regarded as a new type of strongly correlated
electrical insulator that has the properties of HF metals
with one exception: it resists the flow of electric charge.

KGP acknowledges funding from the Ural Branch
of the Russian Academy of Sciences, basic research
program Ne12-U-1-1010, and the Presidium of the
Russian Academy of Sciences, program Ne12-P1-1014.
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