ТЕПЛОЕМКОСТЬ $Ce_xLa_{1-x}B_6$ В ПРЕДЕЛЕ МАЛОЙ КОНЦЕНТРАЦИИ ЦЕРИЯ x < 0.03

М. А. Анисимов^а^{*}, В. В. Глушков^а, А. В. Богач^а, С. В. Демишев^а, Н. А. Самарин^а,

С. Ю. Гаврилкин^b, К. В. Мицен^b, Н. Ю. Шицевалова^c, А. В. Левченко^c,

В. Б. Филиппов^с, С. Габани^{d**}, К. Флахбарт^{d**}, Н. Е. Случанко^а

^а Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

^b Физический институт им. П. Н. Лебедева Российской академии наук 119991, Москва, Россия

^с Институт проблем материаловедения им. И. Н. Францевича Национальной академии наук Украины 03680, Киев, Украина

> ^d Centre of Low Temperature Physics, IEP SAS SK-04001, Košice, Slovakia

Статья написана по материалам доклада на 36-м Совещании по физике низких температур (Санкт-Петербург, 2-6 июля 2012 г.)

На высококачественных монокристаллах $Ce_x La_{1-x} B_6$ (x = 0, 0.01, 0.03) выполнено исследование теплоемкости в диапазоне температур 0.4–300 К. Для оценки влияния вакансий бора изучены образцы LaB_6 с различным изотопическим составом (^{10}B , ^{11}B , ^{nat}B). Анализ экспериментальных данных позволил корректно учесть электронную компоненту в условиях перенормировки электронной плотности состояний при T < 8 К, вклад квазилокальной колебательной моды редкоземельного (P3) иона с температурой Эйнштейна $\Theta_E \approx 152$ К, дебаевский вклад от жесткого каркаса из атомов бора с температурой Дебая $\Theta_D \approx 1160$ К и низкотемпературный вклад Шоттки, связанный с присутствием 1.5–2.3 % вакансий бора в редкоземельных гексаборидах. Показано, что наблюдаемые низкотемпературные аномалии теплоемкости могут быть интерпретированы в терминах формирования двухуровневых систем с энергией $\Delta E = 92-98$ K, обусловленных смещением P3-ионов из центросимметричного положения. Для систем с магнитной примесью церия предположен альтернативный кондовскому сценарий образования тяжелых фермионов.

DOI: 10.7868/S0044451013050078

1. ВВЕДЕНИЕ

Среди редкоземельных (P3) гексаборидов RB₆ (R = La–Nd, Sm–Ho, Yb) особое место занимает гексаборид лантана LaB₆. Благодаря малой работе выхода ($A \approx 2.66$ эВ) в сочетании с высокой температурой плавления ($T_L = 2483$ °C) данное соединение нашло широкое практическое применение в качестве одного из наиболее эффективных термоэлектронных эммитеров в катодных узлах приборов разного назначения [1]. Вместе с тем LaB₆ оказывается важным объектом фундаментальных исследований и используется в качестве реперной немагнитной системы для оценки параметров магнитного вклада других соединений RB₆ и твердых растворов замещения R_xLa_{1-x}B₆.

Как и другие гексабориды, LaB₆ кристаллизуется в простую ОЦК-структуру типа CsCl (пространственная группа $Pm\bar{3}m-O_h^1$), в которой РЗ-ионы помещаются в вершинах куба, а октаэдры из атомов бора расположены в центре (рис. 1*a*). Таким образом, ячейка RB₆ содержит 7 атомов. Вследствие ма-

^{*}E-mail: anisimov.m.a@gmail.com

^{**}S. Gabani, K. Flachbart

Рис. 1. а) Кристаллическая структура RB_6 . δ) Федоровский кубооктаэдр B_{24} с редкоземельным ионом. Параметры кристаллической структуры LaB_6 представлены в табл. 1. *в*) Температурные зависимости теплоемкости для LaB_6 (^{10}B , ^{11}B , ^{nat}B) и $Ce_xLa_{1-x}B_6$ (x = 0.01, 0.03). На вставке схематично показан двухъямный потенциал

878

лой величины радиуса иона \mathbb{R}^{3+} (см. табл. 1) по сравнению с размером полостей в федоровских кубооктаэдрах \mathbb{B}_{24} (рис. 16), РЗ-ионы оказываются слабосвязанными с жестким каркасом из атомов бора, и в результате колебания РЗ-иона носят квазинезависимый характер (эйнштейновский осциллятор). Напротив, атомы бора связаны друг с другом жесткими ковалентными связями, формируя дебаевскую подрешетку. По этой причине гексабориды являются удобными модельными объектами для изучения термодинамических свойств металлов и полупроводников [3–7].

В данной работе исследуется теплоемкость немагнитного соединения LaB₆ и классической системы Ce_xLa_{1-x}B₆ с тяжелыми фермионами. К настоящему времени известно значительное число статей, посвященных изучению теплоемкости Ce_xLa_{1-x}B₆, однако авторы большинства из них ограничиваются лишь детальным обсуждением данных для $x \ge 0.5$ (см., например, работу [8]). Как правило, мотивация таких исследований определяется возможностью построения концентрационной фазовой х-Т-диаграммы для более детального изучения природы основного состояния гексаборида церия. На наш взгляд, отдельного внимания заслуживает область малых концентраций магнитных центров ($x \leq 0.03$) в соединениях Ce_xLa_{1-x}B₆, свойства которых во многом определяются реперным соединением LaB₆. При этом исследование твердых растворов замещения $Ce_x La_{1-x} B_6$ в пределе $x \leq 0.03$ представляет интерес с точки зрения изучения особенностей формирования тяжелофермионных состояний в режиме слабовзаимодействующих магнитных примесей.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

В работе выполнено исследование теплоемкости систем $Ce_xLa_{1-x}B_6$ при постоянном давлении в широком диапазоне температур 0.4–300 К на установках PPMS-9 (Quantum Design CША). Изучаемые монокристаллы высокого качества $Ce_xLa_{1-x}B_6$ $(0 \le x \le 0.03)$ были выращены методом вертикального бестигельного индукционного зонного плавления в атмосфере аргона на специализированной установке, описанной в [9]. Дополнительно для оценки влияния вакансий бора в работе исследовались образцы La^NB_6 с различным изотопным составом по бору, включая изотопически чистые (N = 10, 11) и (N = nat) с естественным содержанием бора (81.1 % ¹¹В и 18.9 % ¹⁰В). Контроль качества об-

$a({ m LaB}_6)$	$r(\mathrm{La}^{3+})$	$r(\text{La-B}_{24})$	r(B-4B)	$r_1(B-1B)$	$r_2(B-1B)$
$4.156~{ m \AA}$	$1.17{ m \AA}$	3.054 Å	$1.766{ m \AA}$	$1.659{ m \AA}$	$2.498{\rm \AA}$

Таблица 1. Параметры кристаллической структуры LaB₆ по данным работы [2]

разцов проводился с использованием электронной микроскопии, а также методами микрозондового и рентгеноструктурного анализа.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 в приведены температурные зависимости удельной теплоемкости $La^N B_6$ (N = 10, 11, nat) и твердых растворов замещения $Ce_x La_{1-x} B_6$ (x = = 0.01, 0.03). Полученные данные совпадают между собой и согласуются с результатами предыдущих исследований LaB₆ [4, 7] в области промежуточных температур T > 40 К. Для составов с магнитной примесью с понижением температуры ниже 8 К на кривых $C_P(T)$ регистрируется участок роста с характерным широким максимумом в окрестности 0.4-0.5 К (рис. 1 в), который достаточно хорошо совпадает с низкотемпературной особенностью зависимости C(T), найденной в работах [10, 11]. Обнаружено, что значение теплоемкости в максимуме увеличивается пропорционально росту концентрации церия.

При анализе вкладов в теплоемкость $Ce_xLa_{1-x}B_6$ нами использовался подход, аналогичный применявшемуся ранее [5,7,12]. Для оценки электронного вклада $C_{el} = \gamma T$ в LaB₆ в нашей работе применялось значение $\gamma_0 \approx 2.4 \text{ мДж/моль} \text{-K}^2$, близкое к результатам, полученным авторами работ [7,10,13]. Напротив, в системах с магнитной примесью при низких температурах доминирующим является магнитный вклад (рис. 1в), вследствие чего, принимая во внимание перенормировку плотности электронных состояний на уровне Ферми, необходимо учитывать зависимость коэффициента Зоммерфельда γ от температуры. Отметим, что указанное изменение $\gamma(T)$ отвечает интервалу T < 8 K, в котором обычный анализ дает сильно завышенные значения (например, $\gamma \approx 15.5 \ \text{Дж/моль} \, \text{Ce} \, \text{K}^2$ для состава с x(Ce) = 0.03 [11]). В качестве другого примера завышенных значений электронного вклада укажем на результаты работ [7,14], посвященных исследованию теплоемкости в системах $Nd_{1-x}Ca_xB_6$ (x < 0.4) и $La_{1-x}Nd_xB_6$ (x \leq 0.06).

В частности, полученное авторами работ [7,14] для антиферромагнетика NdB₆ большое значение ≈ 90 мДж/моль ${
m K}^2$ должно соответствовать нехарактерной для NdB₆ эффективной массе 50m₀ носителей заряда (m₀ — масса свободного электрона). Для сравнения, в экспериментах по изучению эффекта де Гааза-Ван Альфена в NdB₆ была найдена величина, не превышающая $1.5m_0$ (см. обсуждение в [7] и работу [15]). Возвращаясь к описанию электронного вклада в системах $\operatorname{Ce}_{x}\operatorname{La}_{1-x}\operatorname{B}_{6},$ заметим, что при T > 10 К исходные кривые теплоемкости составов с магнитной примесью в пределах экспериментальной точности совпадают с данными для LaB₆ (рис. 1*в*). В результате естественно предположить, что при указанных температурах значение $\gamma_0 \approx 2.4$ мДж/моль· K^2 является общим постоянным значением для всех исследуемых соединений $Ce_x La_{1-x} B_6$.

Анализ фононной составляющей $C_{ph} = C - \gamma_0 T$ теплоемкости LaB₆ представлен на рис. 2*a*. Выполненная обработка кривой C_{ph}/T^3 позволила корректно разделить дебаевский вклад C_D от жесткого каркаса из атомов бора (для RB₆ число атомов бора r = 6),

$$C_D = 9rR\left(\frac{T}{\Theta_D}\right)^3 \int_0^{\Theta_D/T} e^x x^4 (e^x - 1)^{-2} dx, \qquad (1)$$

и эйнштейновский вклад C_E от квазилокальной колебательной моды РЗ-иона,

$$C_E = 3R \left(\frac{\Theta_E}{T}\right)^2 \exp\left(\frac{\Theta_E}{T}\right) \times \\ \times \left[\exp\left(\frac{\Theta_E}{T}\right) - 1\right]^{-2}, \quad (2)$$

где R — универсальная газовая постоянная.

Оцененные из соотношений (1), (2) температуры Эйнштейна Θ_E и Дебая Θ_D представлены для LaB₆ и Ce_xLa_{1-x}B₆ (рис. 26) соответственно в табл. 2 и 3. Полученные значения температуры Эйнштейна $\Theta_E \approx 150-152.5$ К согласуются с данными работ [4,7,14] и с результатами исследований динамики решетки (см. обзор [16]). Напротив, к настоящему времени для LaB₆ зарегистри-

	$\gamma,$ мДж $/$ моль $\cdot\mathrm{K}^2$	Θ_E, K	Θ_D, K	N_1	$\Delta E_1, \mathrm{K}$	N_2	$\Delta E_2, \mathrm{K}$
$La^{nat}B_6$	2.4	152.5	1160	$9.2 \cdot 10^{-4}$	29	0.06	92
$\mathrm{La^{10}B_6}$	2.43	150.0	1160	$4.9 \cdot 10^{-4}$	24	0.06	92
$\mathrm{La}^{11}\mathrm{B}_{6}$	2.36	152.5	1160	$9.4 \cdot 10^{-4}$	29	0.06	92

Таблица 2. Параметры, полученные при анализе вкладов в теплоемкость LaB₆ с помощью формул (1)-(3)

Таблица 3. Параметры, полученные при анализе вкладов в теплоемкость $\mathrm{Ce}_x\mathrm{La}_{1-x}\mathrm{B}_6$

$Ce_xLa_{1-x}B_6$	Θ_E, \mathbf{K}	Θ_D, \mathbf{K}	N_M	$\Delta E_M, \mathbf{K}$	N_1	$\Delta E_1, \mathbf{K}$	N_2	$\Delta E_2, \mathrm{K}$
x = 0.01	152.5	1160	0.01	1	$1.5 \cdot 10^{-3}$	29	0.09	98
x = 0.03	152.0	1160	0.03	1	$2.6 \cdot 10^{-3}$	29	0.07	94

Рис.2. Разделение вклада $(C - \gamma_0 T)/T^3$ в теплоемкость LaB₆ (a) и Ce_xLa_{1-x}B₆ (b) на дебаевскую C_D/T^3 и эйнштейновскую C_E/T^3 составляющие. Результаты анализа представлены в табл. 2 и табл. 3

рован значительный разброс значений температуры Дебая $\Theta_D \approx 404-1160$ К. Величина $\Theta_D \approx 1160$ К, на наш взгляд, оказывается более предпочтительной, поскольку она, с одной стороны, сов-

880

падает с результатами расчетов теплоемкости LaB₆ [5,7], а, с другой стороны, согласуется с данными $\Theta_D \approx 1160-1190$ К, полученными в [12,17] для немагнитного аналога гексаборида лантана — додекаборида лютеция LuB₁₂. Кроме того, значение $\Theta_D \approx 1160$ К оказывается сопоставимым с температурой $\Theta_D \approx 1250-1370$ К, определенной для β -бора методом рентгеновской дифракции [17].

Остаточный член C_{res}/T^3 , полученный при вычитании из кривой C_{ph}/T^3 суммы вкладов C_D/T^3 и C_E/T^3 , описывает низкотемпературную дефектную моду в LaB₆, вызванную влиянием вакансий бора [18]. Действительно, результаты рентгеновских и нейтронных исследований RB6 указывают на наличие примерно 1-9% вакансий в подрешетке бора в зависимости от метода выращивания монокристалла [2,19,20]. Наличие вакансий бора в сочетании со слабой связью РЗ-иона с жестким ковалентным каркасом В₆ (см. табл. 1) приводит к смещению части ионов R³⁺ из центросимметричного положения в полостях кубооктаэдров В₂₄ (см. рис. 16). Возникающий вследствие этого беспорядок в расположении РЗ-ионов усиливается с понижением температуры, причем в зависимости от концентрации собственных дефектов в RB6 и типа примесей следует ожидать появления нескольких неэквивалентных устойчивых положений для иона R³⁺. Воспользовавшись аналогией с аморфными веществами и стеклами [21], следует предположить в LaB₆ формирование типичных для соединений с беспорядком двухуровневых систем (ДУС). Образование ДУС эквивалентно формированию двухъямного потенциала с барьером ΔE_i (см. вставку на рис. 1*в*). Для оценки

Рис. 3. Анализ остаточного вклада C_{res}/T^3 для соединения La¹¹B₆ с помощью соотношения Шоттки для различных схем уровней ДУС: a — синглеттриплет; δ — триплет-синглет, e — дублет-дублет (две последние схемы дают завышенные значения концентрации ДУС₂)

характеристик ДУС нами выполнен анализ остаточного вклада с помощью соотношения Шоттки

$$\frac{C_i^{Sh}}{T^3} = \frac{N_i g_{0i} g_{1i}}{T^3} \left(\frac{\Delta E_i}{T}\right)^2 \exp\left(\frac{\Delta E_i}{T}\right) \times \\ \times \left[g_{0i} \exp\left(\frac{\Delta E_i}{T}\right) + g_{1i}\right]^{-2}, \quad (3)$$

где g_i — кратность вырождения, N_i — концентрация ДУС. Полученные значения C_{res}/T^3 для LaB₆ аппроксимировались соотношением (3) с двумя типами ДУС_i (i = 1, 2), состоящих из синглетных и триплетных состояний (рис. 3a, табл. 2). Обнаружено, что ДУС₂ отвечает величине барьера $\Delta E_2 = 92$ К, которая практически не зависит от изотопного состава по бору. Полученное значение $N_2 \approx 0.06$ для приведенной концентрации ячеек с двухъямным потенциалом данного типа, по-видимому, следует связать с вакансиями бора в структуре RB₆. При этом каждая вакансия приводит к смещению

5 ЖЭТФ, вып.5

из центросимметричного положения РЗ-ионов в четырех соседних кубооктаэдрах B_{24} , поэтому реальная концентрация вакансий определяется с учетом нормировки на число соседних ячеек $n_{vac} = N_2/4$. Таким образом, концентрации ДУС₂ соответствует величина $n_{vac} = 0.015$, которая свидетельствует о сравнительно небольшом числе вакансий в исследуемых монокристаллах LaB₆. Напротив, представляется естественным связать наблюдаемые нами различия в данных для ДУС₁ ($\Delta E_1 \approx 24$ –29 K, $N_1 \approx (4.9–9.4) \cdot 10^{-4}$) с вкладом дивакансий, количество которых зависит от особенностей получения монокристаллов La^NB₆. Оценка концентрации дивакансий при условии их случайного расположения приводит к значению

$$n_d = n_{vac} [1 - (1 - n_{vac})^z] \approx 9 \cdot 10^{-1}$$

(z = 4 -координационное число), которое хорошо согласуется с полученной концентрацией ДУС в монокристаллах LaB₆.

На рис. З также представлены результаты анализа кривой C_{res}/T^3 для La¹¹B₆ с помощью соотношения Шоттки (3) для различных схем уровней в двухъямном потенциале, включая триплет–синглет (рис. 36) и дублет–дублет (рис. 36). Установлено, что указанные схемы уровней аппроксимируют экспериментальные данные на рис. 3 с неправдоподобно большими значениями концентрации ДУС₂: $N_2 \approx 0.5$ (рис. 36) и $N_2 \approx 0.17$ (рис. 36), что не находит объяснения при условии высокого качества изучаемых монокристаллов.

Таким образом, в работе показано, что схема синглет-триплет ($g_{0i} = 1, g_{1i} = 3$) описывает поведение низкотемпературной теплоемкости гексаборида лантана. Подчеркнем, что выполненный нами микроанализ образцов La^NB₆ позволяет оценить концентрацию примесей различной природы значением не выше 100 ppm, что предоставляет дополнительные аргументы в пользу предложенного механизма формирования ДУС в RB₆.

Заметим, что наличие двухуровневых систем было экспериментально обнаружено в другом классе соединений на основе каркасных структур из нанокластеров бора — в РЗ-додекаборидах LuB₁₂ [12] и ZrB₁₂ [22]. При этом в работе [12] помимо теплоемкости также исследовались спектры комбинационного рассеяния (КР) света на монокристаллах Lu^NB₁₂ с различным изотопическим составом (N == 10, 11, *nat*). На полученных КР-спектрах LuB₁₂ наблюдается бозонный пик при азотных температурах в низкочастотной области, что является характеристикой систем с сильным структурным беспоряд-

$Ce_x La_{1-x} B_6$	N_1	$\Delta E_1, \mathrm{K}$	N_2	$\Delta E_2, \mathrm{K}$	Схема уровней для соотношения (3)
x = 0.01	$1.5 \cdot 10^{-3}$	29	0.09	98	$g_{0i} = 1, \ g_{1i} = 3$
	$4.3 \cdot 10^{-3}$	29	0.22	93	$g_{0i} = 2, g_{1i} = 2$
	0.012	28	0.64	93	$g_{0i} = 3, g_{1i} = 1$
x = 0.03	$2.6 \cdot 10^{-3}$	29	0.07	94	$g_{0i} = 1, \ g_{1i} = 3$
	$6.4 \cdot 10^{-3}$	26.5	0.17	89	$g_{0i} = 2, \ g_{1i} = 2$
	0.017	25.5	0.51	89	$g_{0i} = 3, g_{1i} = 1$

Таблица 4. Параметры анализа остаточного вклада C_{res0} соединений $Ce_x La_{1-x}B_6$ (x = 0.01, 0.03) с помощью соотношения (3) для ДУС_{1,2} с различными схемами уровней (см. текст).

 $C_{res0}, \, \operatorname{Дж/моль} \cdot \operatorname{K}$

Рис. 4. Анализ остаточного вклада C_{res0} для твердых растворов замещения $Ce_{0.01}La_{0.99}B_6$ (*a*) и $Ce_{0.03}La_{0.97}B_6$ (*б*). Сплошные линии соответствуют аппроксимации соотношением Шоттки (3) в схемах, приведенных на верхнем рисунке. Результаты анализа представлены в табл. 3. Треугольниками показана температурная зависимость коэффициента Зоммерфельда $\gamma(T)$

ком. Для объяснения свойств RB₁₂ авторами работы [12] была предложена модель каркасного стекла с фазовым переходом при $T^* = 50-70$ K.

Переходя к анализу остаточного вклада в теплоемкость $Ce_xLa_{1-x}B_6$, подчеркнем, что в системах

с магнитной примесью аналитический вид зависимости C_{res0}/T^3 $(C_{res0} = C - C_D - C_E)$ определяется аналогично C_{res}/T^3 для LaB₆, однако вследствие обсуждавшейся выше перенормировки плотности электронных состояний, проводится без вычитания электронного вклада $\gamma_0 T$. Анализ кривых $C_{res0}(T)$ для составов с x = 0.01 и x = 0.03 представлен на рис. 4. При аппроксимации остаточного вклада суммой электронной компоненты и компоненты Шоттки в диапазоне температур выше 2–3 К нами были получены результаты, аналогичные случаю LaB₆. Значения параметров, найденные для ДУС_{1,2} в схеме уровней синглет-триплет, представлены в табл. 3. Как и в случае LaB₆, наименьшей концентрации ДУС_{1,2} соответствует схема уровней синглет-триплет (табл. 4). При этом высота барьера в двухъямном потенциале $ДУС_1$ и $ДУC_2$ практически совпадает с результатом для LaB₆ (см. рис. 3*a*). Наиболее интересной представляется особенность на кривых $C_{res0}(T)$ в виде широкого максимума, вызванного ростом вклада магнитной примеси с концентрацией N_M в ДУС_M при гелиевых температурах. Аппроксимация указанного максимума в рамках соотношения (3) также представлена на рис. 4 и в табл. 3. Выполненный анализ показал, что низкотемпературный магнитный вклад может быть описан только в схеме уровней из двух дублетов с энергией $\Delta E_M \approx 1$ K, совпадающей с известным значением температуры спиновых флуктуаций в ${\rm CeB}_6$ и в твердых растворах $\operatorname{Ce}_{x}\operatorname{La}_{1-x}\operatorname{B}_{6}$. Критерием достоверности расчета ДУС $_M$ является тот факт, что его амплитуда определяется номинальной концентрацией магнитной примеси в образцах $Ce_x La_{1-x} B_6$ (см. табл. 3), причем оказывается невозможным описать широкий магнитный максимум выражением (3) с энергией $\Delta E_M \sim 1$ К в рамках двух других схем уровней.

Таким образом, в результате последовательного вычитания из кривой $C_{res0}(T)$ суммы шоттки-вкладов ДУС_{1,2,М} представляется возможным оценить перенормировку значений $\gamma(T)$ (см. рис. 4). Как видно из данных рис. 4, низкотемпературный рост функции $\gamma(T)$ происходит лишь при T < 8 К. Заметим, что полученное для $Ce_x La_{1-x} B_6$ квартетное магнитное состояние $ДУС_M$ с расщеплением $\Delta E \sim 1$ К отличается от обычного квартетного основного состояния Γ_8 в мультиплете ${}^2F_{5/2}$ иона Ce³⁺ [23]. Выполненный нами детальный анализ остаточного вклада в теплоемкость для систем с магнитной примесью Се с x = 0.01 и 0.03 позволяет, таким образом, предположить альтернативный кондовскому механизм формирования тяжелых фермионов в $Ce_x La_{1-x} B_6$. При этом на основе полученных результатов можно сделать вывод о том, что в исследуемых системах $Ce_xLa_{1-x}B_6$ появление тяжелых фермионов оказывается непосредственно связанным с формированием двухъямного потенциала с величиной энергетического барьера $\Delta E_M \sim 1$ К. Туннелирование между двумя дублетными состояниями в двухъямном потенциале вызывает быстрые спиновые флуктуации в ячейках, сформированных кубооктаэдрами В₂₄ с ионами Се³⁺. Примечательно, что спин-поляронный режим формирования тяжелых фермионов в СеВ6 был предложен ранее в работе [24]. Из транспортных данных авторами работы [24] были выполнены расчеты, позволившие оценить величину эффективной массы $m \approx 400 m_0$ для многочастичных состояний в СеВ₆ непосредственно перед переходом в антиферромагнитную фазу.

4. ЗАКЛЮЧЕНИЕ

В работе проведены исследования теплоемкости соединений ${\rm La}^N {\rm B}_6~(N=10,11,nat)$ и систем с магнитной примесью Ce_xLa_{1-x}B₆ в режиме малых концентраций x = 0.01, 0.03 в диапазоне температур 0.4-300 К. Полученные результаты позволили обнаружить наличие низкотемпературной дефектной моды, вызванной смещением РЗ-ионов из центросимметричного положения в полостях кубооктаэдров B₂₄ в жестком ковалентном каркасе атомов бора. Показано, что наблюдаемые низкотемпературные аномалии теплоемкости могут быть интерпретированы в терминах формирования двухуровневых систем с энергией $\Delta E = 92-98$ K, обусловленных присутствием 1.5-2.3 % вакансий в подрешетке бора. Для систем с магнитной примесью получена оценка перенормировки электронной плотности $\gamma(T)$ на

уровне Ферми при низких температурах. Предложен альтернативный кондовскому спин-поляронный сценарий формирования тяжелых фермионов в $\operatorname{Ce}_x \operatorname{La}_{1-x} B_6$, связанный с туннелированием между состояниями в двухъямном потенциале.

Авторы признательны Г. Е. Гречневу, А. В. Кузнецову и И. Станкиевич (J. Stankiewicz) за полезные обсуждения. Работа выполнена при финансовой поддержке Программы ОФН РАН «Сильнокоррелированные электроны в металлах, полупроводниках и магнитных материалах», Словацкого Агентства VEGA (проект 2/0106/13), Словацкого Агентства исследований и разработок (APVV0132-11) и Центра мастерства Словацкой академии наук (CFNT MVEP). А. В. Богач и М. А. Анисимов признательны Институту экспериментальной физики Словацкой академии наук за поддержку краткосрочных научно-исследовательских визитов; К. В. Мицен благодарит Программу «Кадры» Министерства образования и науки РФ.

ЛИТЕРАТУРА

- M. Bakr, R. Kinjo, Y. W. Choi et al., Phys. Rev. STAB 14, 060708 (2011).
- M. M. Korsukova, T. Lundstrom, V. N. Gurin et al., Z. Kristallogr. 168, 299 (1984).
- H. G. Smith, G. Dolling, and T. Goto, Sol. St. Comm. 53, 15 (1985).
- Y. Peyson, C. Ayache, B. Salce et al., J. Magn. Magn. Mater. 47-48, 63 (1985).
- D. Mandrus, B. C. Sales, and R. Jin, Phys. Rev. B 64, 012302 (2001).
- T. Gürel and R. Eryiğit, Phys. Rev. B 82, 104302 (2010).
- J. Stankiewicz, M. Evangelisti, and Z. Fisk, Phys. Rev. B 83, 113108 (2011).
- S. Nakamura, T. Goto, O. Suzuki et al., Phys. Rev. B 61, 15203 (2000).
- Y. Paderno, V. Filippov, and N. Shitsevalova, in Proc. 10th Int. Symp. Boron, Borides, and Related Compounds, AIP, New York (1991), p. 460.
- 10. H. Grühl and K. Winzer, Sol. St. Comm. 57, 67 (1986).
- N. Sato, M. Takahashi, T. Kashima et al., J. Magn. Magn. Mater. 52, 250 (1985).
- 12. Н. Е. Случанко, А. Н. Азаревич, А. В. Богач и др., ЖЭТФ 140, 536 (2011).

- H. D. Landford, W. M. Temmerman, and G. A. Gehring, J. Phys.: Condens. Matter 2, 559 (1990).
- 14. J. Stankiewicz, M. Evangelisti, Z. Fisk et al., Phys. Rev. Lett. 108, 257201 (2012).
- Y. Onuki, A. Umezawa, W. K. Kwok et al., Phys. Rev. B 40, 11195 (1989).
- **16**. Д. Ю. Чернышев, М. М. Корсукова, А. Л. Малышев и др., ФТТ **36**, 1078 (1994).
- A. Czopnik, N. Shitsevalova, V. Pluzhnikov et al., J. Phys.: Condens. Matter 17, 5971 (2005).
- 18. K. Takegahara and T. Kasuya, Sol. St. Comm. 53, 21 (1985).

- 19. V. A. Trunov, A. L. Malyshev, D. Yu. Chernyshov et al., J. Phys.: Condens. Matter 5, 2479 (1993).
- 20. M. K. Blomberg, M. J. Merisalo, M. M. Korsukova et al., J. Alloys Comp. 217, 123 (1995).
- 21. Д. А. Паршин, ФТТ 36, 1809 (1994).
- **22**. Н. Е. Случанко, А. Н. Азаревич, А. В. Богач и др., Письма в ЖЭТФ **94**, 685 (2011).
- 23. M. Loewenhaupt and M. Prager, Z. Phys. B 62, 195 (1986).
- 24. Н. Е. Случанко, А. В. Богач, В. В. Глушков и др., ЖЭТФ 131, 133 (2007).