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THE PROBLEM OF THE UNIVERSAL DENSITY FUNCTIONALAND THE DENSITY MATRIX FUNCTIONAL THEORYV. B. Bobrov a;b*, S. A. Trigger a;**aJoint Institute for High Temperatures Russian Aademy of Sienes125412, Mosow, Russiab National Researh University �MPEI�111250, Mosow, RussiaEindhoven University of TehnologyP.O. Box 513, MB 5600 Eindhoven, The NetherlandsReeived Otober 4, 2012The analysis in this paper shows that the Hohenberg�Kohn theorem is the onstellation of two statements:i) the mathematially rigorous Hohenberg�Kohn lemma, whih demonstrates that the same ground-state den-sity annot orrespond to two di�erent potentials of an external �eld, and ii) the hypothesis of the existene ofthe universal density funtional. Based on the obtained expliit expression for the nonrelativisti partile energyin a loal external �eld, we prove that the energy of the system of more than two noninterating eletronsannot be a funtional of the inhomogeneous density. This result is generalized to the system of interatingeletrons. It means that the Hohenberg�Kohn lemma annot provide justi�ation of the universal density fun-tional for fermions. At the same time, statements of the density funtional theory remain valid when onsideringany number of noninterating ground-state bosons due to the Bose ondensation e�et. In the framework ofthe density matrix funtional theory, the hypothesis of the existene of the universal density matrix funtionalorresponds to the ases of noninterating partiles and to interation in the Hartree�Fok approximation.DOI: 10.7868/S00444510130401251. INTRODUCTIONThe main point of the Hohenberg�Kohn seminalpaper [1℄, devoted to the justi�ation of the densityfuntional theory (DFT), is the statement that the ex-ternal �eld potential �v(r) is (to within a onstant)a unique funtional of n(r)�. The funtion n(r) isan inhomogeneous ground-state density of the eletrongas plaed in an external stati �eld v(r). On theground of this statement, the seond statement is for-mulated [1℄: �sine, in turn, v(r) �xes H , we see thatthe full many-partile ground state is a unique fun-tional of v(r)�, where H is the expliit Hamiltonian ofthe interating eletron system in the stati external�eld v(r). The seond statement in quotes is trivialif the �rst one is true. Below, we show that the �rst*E-mail: vi5907�mail.ru**E-mail: satron�mail.ru

(and the main) statement that v(r) is a unique fun-tional of n(r) is not equivalent to the statement, provedin [1℄, that the same inhomogeneous density n(r) an-not orrespond to two di�erent loal potentials v1(r)and v2(r) of the external �eld in the ground state ofthe nonrelativisti system of eletrons (exept the asev1(r)�v2(r) = onst) [1; 2℄. The last statement is rigor-ous and we all it the Hohenberg�Kohn lemma in whatfollows. Hene, the inhomogeneous density n(r) of theground-state nonrelativisti eletron system uniquelyorresponds to the potential v(r) (to within an additiveonstant). In the ase of ground state degeneration, thelemma relates to the density n(r) of any ground state.At the same time, the statement �v(r) is (to within aonstant) a unique funtional of n(r)� is not true forthe system of more than two interating eletrons (or,more general, Fermi partiles).Aording to the Hohenberg�Kohn paper [1℄, it fol-lows from the statement of the lemma that the external�eld potential v(r) is an inhomogeneous density fun-tional729



V. B. Bobrov, S. A. Trigger ÆÝÒÔ, òîì 143, âûï. 4, 2013n(r) = n(r; [v℄)! v(r) = v(r; [n℄) + onst: (1)The existene of the funtional (the square brakets in(1)) means that there is a universal rule aording towhih the value of the external �eld potential v(r) ateah point r an be found if the inhomogeneous densityn(r) orresponding to the ground state of the system isknown. This means that, in priniple, there exists (al-though annot be expliitly found or indiated) a rulefor determining the funtion v(r) by the known fun-tion n(r) whose struture is independent of the expliitform of v(r) and n(r). We emphasize that this verystrong statement has not yet been alled into question.In fat, in the general ase, there is no one-to-one or-respondene between the Hohenberg�Kohn lemma andrelation (1) on a funtional dependene. It only followsfrom the Hohenberg�Kohn lemma that quite a de�niteexternal �eld v(r) an be put in orrespondene witheah funtion n(r) (up to a onstant fator). But thisdoes not mean that suh a orrespondene is estab-lished by the uni�ed rule v(r) = v(r; [n℄) universal forany external �eld [3℄.In other words, eah external �eld determines aunique density (it is lear, e. g., on the basis of theuniversal rules of the perturbation theory), and eahdensity determines a unique external �eld on the ba-sis of the Hohenberg�Kohn lemma. However, the rulefor the last orrespondene an be nonuniversal. Thisrule in general depends on the onrete form of thedensity. The possibility of suh a nonuniversality ofthe rule of orrespondene for the �inverse� funtionalv(r) = v(r; [n℄) was not onsidered in [1℄. The existeneof this nonuniversality violates the Hohenberg�Kohntheorem, although the Hohenberg�Kohn lemma is un-doubtedly orret. Below, we show that the universaldensity funtional does not exist in the ase where thenumber of fermions is greater than two.2. FORMULATION OF THE PROBLEMFor the reasons disussed in the Introdution, wenote that the inhomogeneous density n(r) is a fun-tional n(r; [v℄) by de�nition,n(r) = h	0j	y(r)	(r)j	0i:The ground-state wave funtion 	0 is a funtional ofthe external �eld v(r), 	0 = 	0[v℄. Here, 	y(r) and	(r) are the �eld reation and annihilation operators.This means that at eah point, the inhomogeneousdensity is determined by the external �eld potential.Hene, the orrespondene rule between the density

n(r) and the �eld v(r) is established based on the solu-tion of the orresponding Shrödinger equation for thewave funtion 	0 in a given external �eld v(r) and on�nding the inhomogeneous density n(r).Then, it only follows from the lemma proved byHohenberg and Kohn [1℄ that the funtional n(r; [v℄) isunique (taking the ondition n(r; [v℄) = n(r; [v+onst℄)into aount). It is lear that the funtional n(r; [v℄) isessentially nonlinear in the external �eld v(r). Thismeans that two possibilities are admissible without vi-olating the Hohenberg�Kohn lemma: (i) the inverseproblem of �nding the dependene of v(r) on n(r) hasindividual solutions for eah pair of funtions n(r) andv(r) (or for ertain types (lasses) of pairs of funtionsn(r) and v(r)); (ii) the inverse problem has a universalsolution v(r) = v(r; [n℄). As noted above, this dilemmais not usually onsidered, and it is assumed that thereis the universal solution v(r; [n℄) valid for any external�eld and any number of partiles, i. e., possibility (ii)is always realized [3℄.The essene of the problem under onsideration anbe expressed in other words. We introdue the operatorP that establishes the relation between the funtionsn(r) and v(r): n(r) = Pv(r):The operator P then provides the equalityPv(r) = Pfv(r) + onstg:In addition, it follows from the de�nition of the inhomo-geneous density n(r) that the operator P is nonlinear.Therefore, the problem of �nding the inverse opera-tor P�1 that establishes the relation between v(r) andn(r), v(r) = P�1n(r), has no unique solution. Thedi�ulty is just in the nonlinearity of the relation bet-ween the funtions n(r) and v(r), otherwise the inverseoperator P�1, as is known, should be unique.In fat, as follows from the above, the Hohenberg�Kohn lemma is insu�ient for the statement about theexistene of the universal solution v(r; [n℄). However,it seems impossible to disprove the statement aboutthe universality in the general form. We therefore usethe proof by ontradition. We assume that the fun-tional v(r) = v(r; [n℄) exists and analyze onsequenesof this statement. With the example of noninteratingfermions, we show that suh an assumption leads to aontradition.If we aept the validity of statement (1), then theground-state energy E0 of the system of N interatingeletrons with a Hamiltonian H in the external �eldwith the potential v(r), whih is haraterized by thewave funtion 	0, an be written as730



ÆÝÒÔ, òîì 143, âûï. 4, 2013 The problem of the universal density funtional : : :E0 � h	0jH j	0i = E0(N; [	0℄; [v℄) == E0([n℄; [v℄); N = Z n(r) d3r: (2)Here, it is taken into aount that h	0j	0i = 1 and	0 = 	0[v℄ = 	0[v+onst℄. In turn, it immediately fol-lows from (2) that the quantity F [n℄ = h	0jT +U j	0i,whih de�nes the system ground-state energyE0([n℄; [v℄) = F [n℄ + Z v(r)n(r) d3r; (3)is a funtional of only the density n(r) (�universal� den-sity funtional). In this ase, it is admissible to use theterm "universal" in the sense of the independene ofits expliit form of the external �eld potential [1; 2℄, al-though this requires onsidering the v-representabilityand N -representability of the inhomogeneous density.The operators T and U are respetively the kinetiand interpartile interation energy operators. State-ment (3) is the basis of the DFT widely used in var-ious areas of physis and hemistry (see, e. g., [4; 5℄).However, the exat form of this universal funtional isstill unknown even for noninterating eletrons (U = 0,N > 1). It is lear that there is a one-to-one orre-spondene between the statements about the existeneof the funtionals v(r; [n℄) and F [n℄, i. e., the existeneof one of the these funtionals predetermines the ex-istene of the other. Hene, if the funtional F [n℄ in(3) does not exist, the funtional v(r; [n℄) also does notexist [3℄.3. THE DENSITY FUNCTIONAL PROBLEMFOR NONINTERACTING ELECTRONSIn view of the foregoing, we onsider one nonrel-ativisti eletron of mass m in a stati external �eldv(r). Then the eletron steady state haraterized bya ertain set of quantum numbers �, inluding the spinquantum number �, is ompletely de�ned by the wavefuntion ��(r) that satis�es the Shrödinger equation�� ~22m�r + v(r)���(r) = ����(r); (4)where �� is the eletron energy in the orrespondingstate. Beause the eletron energy is independent ofspin, eah value of �� is doubly degenerate in the spinquantum number, as are other physial quantities, in-luding the inhomogeneous density n�(r). It is ustom-ary to solve Eq. (4) for eigenvalues with the boundaryondition ��(jrj ! 1) = 0 (the so-alled onditionat in�nity [6℄). With the possibility of onsidering the

system in a �nite volume V , the boundary onditionfor Eq. (4) in the most general form is written as��(r! S) = 0; (5)where S is the surfae bounding the volume V . Wefurther take into aount that the wave funtion ��(r)an be onsidered a real funtion [6℄. Thenn�(r) = j��(r)j2 = �2�(r); (6)rrn�(r) = 2��(r)rr��(r);�rn�(r) = 2��(r)�r��(r) ++2(rr��(r))(rr��(r)): (7)It immediately follows from Eqs. (4)�(7) that the in-homogeneous density n�(r) satis�es the equation foreigenvalues� ~24m�rn�(r) + ~28mn�(r) (rrn�(r)) �� (rrn�(r)) + v(r)n�(r) = ��n�(r) (8)with the boundary onditionsn�(r! S) = 0; rrn�(r)jr!S = 0: (9)We now integrate Eq. (8) over the volume oupied bythe system, using the normalization onditionZ n�(r) dV = 1 (10)that immediately follows from (6). From (8), we then�nd the density funtional for the energy ��:��([n℄; [v℄℄ = F (1)[n�℄ + Z v(r)n�(r) dV; (11)F (1)[n�℄ = F (1)0 [n�℄ + F (1)W [n�℄; (12)F (1)0 [n�℄ = � ~24m Z �rn�(r) dV;F (1)W [n�℄ = ~28m Z (rrn�(r))(rrn�(r))n�(r) dV; (13)where F (1)[n�℄ is the universal density funtional F [n℄in Eq. (3) for one partile (supersript (1)). The fun-tional F (1)[n�℄ is written in (12) in the form of twoterms for two reasons. First, beause of the Gauss for-mula and the seond boundary ondition in (9), thefuntional F (1)0 [n�℄ vanishes,F (1)0 [n�(r)℄ = � ~24m Z �rn�(r) dV == � ~24m I rrn�(r) dS = 0: (14)731



V. B. Bobrov, S. A. Trigger ÆÝÒÔ, òîì 143, âûï. 4, 2013Seond, the funtional expliit form F (1)W [n�℄ in (13) isformally exatly idential to the so-alled Weizsäkerorretion to the Thomas�Fermi kineti energy fun-tional [7℄ (see Refs. [4; 5℄ for more details). In ontrastto the Weizsäker orretion, the expression F (1)W [n�℄in (13) in this problem is an exat expression for the�universal� funtional of the inhomogeneous density forone partile. Hene, in this ase, the �universal� den-sity funtional F (1)[n�℄ exists, is found exatly, and iswritten as F (1)[n�℄ = F (1)W [n�℄: (15)By diret alulation (see, e. g., [5℄), it is easy to verifythatÆF (1)W [n�℄Æn�(r) = � ~24mn�(r)�rn�(r) ++ ~28mn2�(r) (rrn�(r))(rrn�(r)): (16)Therefore, Eq. (8) for energy eigenvalues �(1) of onepartile in the external �eld v(r) with boundary ondi-tions (9) is a onsequene of the variation equation forthe energy �(1)([n(1); [v℄) as the inhomogeneous densityfuntional n(1)(r) of one partile in the spei�ed exter-nal �eld v(r), Æ�(1)[n(1)℄ = 0: (17)Indeed, using normalization ondition (10) and theLegendre transform, from (17), we �ndÆ�(1)[n(1)℄Æn(1) = onst: (18)To determine the onstant in Eq. (18), we take intoaount that, aording to (11)�(16),ÆF (1)[n(1)℄Æn(1)(r) + v(r) = onst = �(1): (19)Thus, variation equation (17) is equivalent to (8) andis ompletely idential to the orresponding equationfor the wave funtion funtional in quantum mehanis(see, e. g., [6℄). Hene, in the one-partile ase underonsideration, there exists a density funtional v(r; [n℄)for the external �eld potential, determined up to a on-stant fator,v(r; [n(1)℄) + onst = ÆF (1)[n(1)℄Æn(1)(r) == ~24mn(1)(r)�rn(1)(r) � ~28m[n(1)(r)℄2 �� (rrn(1)(r))(rrn(1)(r)): (20)

Therefore, as noted above, the existene of the fun-tional F (1)[n(1)℄ in (15) predetermines the existene ofthe funtional v(r; [n(1)℄) in (20), and vie versa.We note an essential irumstane. Aordingto (20), in the ase of one eletron, the funtionalv(r; [n(1)℄) is loal: v(r; [n(1)℄) = v[n(1)(r)℄, i. e., thevalue of the potential v(r) at a point r is determined (upto a onstant) by the inhomogeneous density n(1)(r) atthat oordinate. In the general ase, if we assume theexistene of the density funtional, this loality is evi-dently absent.Taking into aount that the Hohenberg�Kohnlemma proof, as well as statements (1) and (3), areby no means independent of a partiular value of thenumber of partiles N in the system, the assumptionon the existene of the �universal� density funtionalallows extending the results obtained to the ase of anarbitrary number of noninterating eletrons.For this, we onsider a system of N noninteratingeletrons in the external �eld v(r). To aount for theidentity of eletrons, it is most onvenient to use theseondary quantization formalism (see Refs. [4�6℄ formore details). We note that this onsideration is fullyequivalent to the use of Slater determinants to desribethe wave funtion of the system of noninterating ele-trons and to implement the Young sheme [5; 6℄. Anystate of the system of N noninterating idential ele-trons is then haraterized by a set of the so-alled �o-upied� single-partile states �1; : : : ; �N (see (4)) and,by virtue of the Pauli priniple,�i 6= �j for i 6= j: (21)Then the energy E(0) and inhomogeneous densityn(0)(r) in a orresponding state are given by [5; 6℄E(0)(�1; : : : ; �N ) =X�i ��i ;n(0)(r; �1; : : : ; �N ) =X�i n�i(r): (22)Here, ��i = ��i([n�i ℄; [v℄) (see (11)�(13)), and ��i1 == N . It then immediately follows from (21) and (22)that the energy E(0) of the system of N(N � 3) nonin-terating idential eletrons, inluding the ground-stateenergy E(0)0 , annot be the density funtional n(0)(r)in the spei�ed external �eld due to the nonlinearity ofthe funtional F (1)W [n�i ℄ in (13). It is lear that a sim-ilar statement also holds for the universal funtionalh	0jT j	0i. This is a onsequene of the fat that theexternal �eld potential v(r) for N � 3 annot be pre-sented as the density funtional n(r) (see (20)).In the ase of two noninterating ground-stateeletrons, the DFT statements remain valid due to732



ÆÝÒÔ, òîì 143, âûï. 4, 2013 The problem of the universal density funtional : : :the double degeneray in the spin quantum number(n(r) = 2n(1)(r); see, e. g., [8℄). We also note that theseresults are diretly assoiated with the Pauli priniple,whih applies only to fermions. In the ase of ground-state bosons, whih are �aumulated� at one lowestenergy level (Bose ondensation), the DFT statementsremain valid at an arbitrary number of noninteratingbosons.Thus, for more than two noninterating fermionsin the inhomogeneous ground state, the external �eldpotential v(r) is not the density funtional n(r), i. e.,v(r) 6= v(r; [n℄).4. THE DENSITY FUNCTIONAL PROBLEMFOR INTERACTING ELECTRONSWe now show that the obtained results leadstraightforwardly to the validity of an analogous on-lusion for the system of interating eletrons. TheHamiltonian of the system of inhomogeneous eletronsan be written asH� = T + Z dr v(r)n̂(r) + �U; (23)where n̂(r) is the eletron density operator,h	0jn̂(r)j	0i = n(r), and U is the operator ofthe eletron interation energy. Then the energy E0(�)of the ground state 	0(�) satis�es the equality (see,e. g., [9℄)�E0(�)�� = h	0(�)j�H��� j	0(�)i == h	0(�)jU j	0(�)i: (24)This straightforwardly implies an expliit relation forthe ground-state energy of the system of interatingeletrons: E0 �E(0)0 = 1Z0 d�� hUi�; (25)where E(0)0 is the ground-state energy of the inhomoge-neous eletron gas without interation, whih has beenalulated above, and hUi� is the average potential en-ergy of the inhomogeneous eletron system with Hamil-tonian (23). We next reall that if the density fun-tional v(r; [n℄) exists, the average kineti energy, as wellas average potential energy, of the inhomogeneous ele-tron system is the universal density funtional [10℄. Itis obvious that presene of the parameter � in Hamil-tonian (23) has no e�et on this statement as well asthe integration in Eq. (25). It then diretly follows

from (25) that for the existene of the universal den-sity funtional F [n℄ (see (3)) requires the existene ofthe universal density funtional for the inhomogeneouseletron system without interation. This is impossible,as was shown above, for more than two Fermi partiles.In a di�erent way, the impossibility of the exis-tene of the density funtional of an inhomogeneouseletron system follows from the fat that the terms inthe perturbation theory series for energy, whih ontainthe interation potential, have a di�erent nature thanthe terms without interation. Therefore, they annotompensate the �non-universality� of the kineti energyof noninterating eletrons.5. THE DENSITY MATRIX FUNCTIONALTHEORYAs a result, we ome to the onlusion that theHohenberg�Kohn lemma [1; 2℄ annot be a justi�ationof the existene of a �universal� density funtional as apreise statement or a theorem. At the same time, invarious approximations (e. g., in the limit of weak inho-mogeneity of the external �eld or in the semilassiallimit for the eletron gas), the �universal� funtionalan exist. In this relation, we note the following. Theleading approximation for density funtional onstru-tion is the so-alled loal density approximation (LDA)(see [4; 5; 10℄ for the details). The basis of LDA is thedependene of the energy of a homogeneous eletrongas on the average density n, whih is equal to the ra-tio of the total number N of eletrons to the volumeV , n = N=V . The analysis of an homogeneous ele-tron gas is in turn based on use of the thermodynamilimit transition N ! 1, V ! 1, N=V ! n 6= 0 (see,e. g., [9℄). This means that the model of a homogeneouseletron system annot be used as the initial approahfor onsidering a �nite number of eletrons in an exter-nal �eld (in partiular, in the ase of eletrons in the�eld of one or several nulei, when the onditions of thethermodynami limit transition are not valid even fora nulear harge Z � 1).In this relation, we note that the Hohenberg�Kohnlemma is orret not only for an inhomogeneous densityn(r) but also for the single-partile density matrix�(1)(r; r0) = h	0j	y(r)	(r0)j	0i (26)(see [11; 12℄ for the details). This is easy to verifytaking into aount that the inhomogeneous densityn(r) = �(1)(r; r) is ompletely determined if the den-sity matrix is known (the opposite statement is, in gen-eral, inorret). Then, instead statement (1) whih, as733



V. B. Bobrov, S. A. Trigger ÆÝÒÔ, òîì 143, âûï. 4, 2013shown above, is the basis of the DFT, we an use asimilar statement for the single-partile density matrix�(1)(r; r0),�(1)(r; r0) = �(1)(r; r0; [v℄)! v(r) + onst == v(r; [�(1)℄): (27)6. CONCLUSIONSThe approah in this paper is the basis of the theoryof the density matrix funtional (TDMF), originatedfrom Hilbert's theorem [13℄ (the abbreviation TDMFmust be distinguished from DMFT for the dynamimean �eld theory). In the TDMF framework, the valueF in (3) beomes the universal density matrix fun-tional: F = F [�(1)℄ [14℄. However, as in ase (1), it isimpossible to prove statement (27) in the general ase.Nevertheless, the TDMF has a wide appliation for thestudy of the inhomogeneous eletron gas properties(see, e. g., [15; 16℄ and the referenes therein). Thisis beause the TDMF, in ontrast to the DFT [17℄,provides the orret desription of the inhomogeneouseletron gas in both the ideal gas approah and theself-onsistent Hartree�Fok approximation [14�16℄.The situation under onsideration is similar to the onefor lassial liquids, where numerous losed equationsfor the pair orrelation funtion an be formulatedwith various hoies for the generating funtionals(see, e. g., [18℄). Suh a hoie is limited only bythe onditions of a onsistent theory and agreementwith experimental data. The ful�llment of the seondrequirement in the ase of an inhomogeneous eletrongas is restrited beause there is no diret way toexperimentally measure the inhomogeneous densityn(r) (and the single-partile density matrix �(1)(r; r0))as a funtion of the oordinate. We an be guidedonly by the energeti harateristis of the systems ofinterating partiles, whih are integral values basedon loal funtions n(r) and �(1)(r; r0). Therefore, theondition of a self-onsistent theoretial foundationplays a primary role. The above onsideration showsthat the TDMF approah is preferable in this sense.This study was supported by the NetherlandsOrganization for Sienti� Researh (NWO) and theRussian Foundation for Basi Researh (projetsNos. 12-08-00822 and 12-02-90433-Ukr-a). The au-
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