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DYNAMICS OF AN N-VORTEX STATE AT SMALL DISTANCES
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We investigate the dynamics of a state of IV vortices, placed at the initial instant at small distances from some
point, close to the “weight center” of vortices. The general solution of the time-dependent Ginsburg—Landau
equation for N vortices in a large time interval is found. For N = 2, the position of the “weight center” of

two vortices is time independent.

For N > 3, the position of the “weight center” weakly depends on time

and is located in the range of the order of a®, where a is a characteristic distance of a single vortex from the

“weight center”.

For N = 3, the time evolution of the N-vortex state is fixed by the position of vortices at any
time instant and by the values of two small parameters.

For N > 4, a new parameter arises in the problem,

connected with relative increases in the number of decay modes.
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1. INTRODUCTION

The nonlinear Schrédinger equation
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has a solution of particle-like excitations, vortices. At
large distances between vortices, the energy F can be

represented in the leading approximation in the form
(see, e.g., Ref. [1])

E= ZE +Y By,
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where Fj; is the self energy of a separate vortex, Fj;
is the pair interaction energy, and R is the cut-off dis-

tance. As a result, the equation of motion of such a
system of vortices can be taken in the form
or; 1 _0OF
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where .J is the simplectic matrix
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and n; is the “charge” of a vortex.

In the next approximation, the emission of sound-
like excitations should be taken into account [2, 3]. Sys-
tem of equations (3) can be integrated analytically only
in simplest symmetric cases.
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If the distances between vortices are small, the ap-
proximation of pair interaction is incorrect even in the
leading approximation. Nevertheless, the N-vortex so-
lution of Eq. (1) can be found in an explicit form if the
distances between all vortices are small. As a result,
the evolution of the N-vortex state can be estimated
in a large time scale. The initial state is determined
by the positions of all N vortices and by any number
of free parameters. The number of free parameters de-
pends on the number of “decay” modes, generated by
Eq. (1).

The solution of the eigenvalue problem for N = 2
was given in Refs. [2,3]. Here, we investigate the gen-
eral case for any value of NV.

We note that for N = 2, the position of the “weight
center” of vortices (), r;/N) is conserved in time. For
N > 3, the weight-center position depends on time. Its
time dependence is investigated below.

2. SPLITTING OF N VORTICES

We seek an N-vortex solution of Eq. (1) in the form

Y =yneN0+ Y Z Ay gy %
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where A{N’k) are any complex constants, ¢y exp(iN¢)
is a static solution of Eq. (1), f = f,z, /\i = /\i(N), and
(p, @) are polar coordinates.

In the linear approximation, system of equations (5)
for the functions {f, fan—k }k=0,...,n—1 decouples into
a system of equations for the pair {f, fan_r} only.
Inserting expression (5) in Eq. (1), we obtain

i 10 Ofr k?
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= fi(1 = 2N [*) + ¥R fon—r,

= [L2 (2

p dp Ip
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(6)

The “last” eigenvalue Ay _1 is equal to zero (Ay_1 =
= 0). It corresponds to the shift mode. In expres-
sion (5), the coefficient Ay nx_1) should be set equal
to zero. This means that the “initial” state was created
from the state at (+¢t — —o0) with all zeros placed at
p=0.

Below, we take the function ¥y to be real. It is a
solution of the equation

1o <p8‘I’_N> N
pdp \" OJp p?
For p < 1, ¥y has the Taylor expansion:
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For p > 1, we obtain from Eq. (7) that
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The values of the coefficients By and Cx can be
found numerically, starting from expression (8) for the
function ¥y in the range p < 1 and matching the solu-
tion thus found with expression (9) in the range p > N.
As a result, we obtain the value of the coefficient By
with high accuracy. To obtain an accurate value of
C'n, we solve Eq. (7), starting from expression (9) for
p > N and matching this solution with the previously
found solution at p ~ 1. As a result, for N = 2,3,4,
we obtain

{By = 0.15289, C5 = —16.69},
{Bs = 0.03093519, (5 = —520}, (10)
{B4 = 0.004864699, () = —1290}.

We now consider the behavior of the functions
{fk, fan—r} in the range of small (p < 1) and large

— p° { 1 _B%on 2]+ o } (8)  (p>1) distances. From system of equations (6), we
12(N +3) [32(N+1)(N+2) ’ obtain the Taylor expansion (p < 1)
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At large distances p > 1, we have the solution of
Eq. (6) in the form of a sum of terms

( T ) _ exp(=5k) (ak> 7 (12)
fZka \/ﬁ Bk

where the quantities {ay, Bk, Sk} are functions of p.

Inserting expression (12) in Eq. (6), we obtain
a ask>2 au 28, | op
A =—|5 +2—— +
<—5k> ( dp Bre dp | 9Bk

4p> = 0p* 0p*) \B) P* \(2N—k)*Bs

+au+ﬂw<D—wl—wm<;Zj§Q. (13)

At the infinity, the solutions of Eq. (6) should de-
crease exponentially or should have the form of an out-
going wave. For each set {N > 2,0 <k < N —1,j},
there are two linearly independent solutions of such a
type. From Eq. (8), we obtain the following expansion
for the function ¥%; (p > 0):

Inserting this in Eq. (13), we find

fe \ _  exp(=Sk) (o
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where {Dy, D;} are any constants. The values of the
functions {Sk, ax, B} and {Sk, ax, Bx} are found in the
Appendix. For the first term in (15), we have
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For the second term in (15), we obtain
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The eigenvalues /\i (IV) of the operator given by sys-  For p > 1, it follows from Eq. (18) that
tem of equations (6) are close to the eigenvalues A} (N)
of the much simpler operator L given by

- G = 1
. 1 8) N k2 fi=—expg — 1-NMp+ ——— X
L=—=(pZ)—a—2pup)+ 2, V K =
p <p80 (=217 I (18) VP p\/ 1= N
Lfr = N(N) fr-
s I 1
In the range p < 1, the function fj is given by the X | N°4+=—— R +... 0, (20)
expansion 8 2 2¢/1=Xp
Fo=pid1— L+ AL, (14 M)? 4 -
E=p 4(k+1)ﬂ 32(k—|—1)(k+2)p where G is a constant.
Matching the numerical solution of Eq. (18) star-
20 (14+30)3 ting from the value given by Eq. (19) for p < 1, with
- k —2BX N2 | + } (19)  the values given by Eq. (20) for p > 1, we obtain the
12(k+3) | 32(k+1)(k+2) following values for the quantities Xi(N):

N=2: X\ =—0.399689 (the index j has only one value),

N =3: ) =—0.65496595, X\ = —0.225866
(the index j for both values of k = {0, 1} has only one value),
N=4: M\ =-0777134, 2 = —0.0888206 (21)

(for k = 0, the index j has two values {1,2}),

N=4: X\ =-047814, X, = —0.1367221
(for k = {1,2}, the index j has only one value).

The values of 5\ng thus found are used as the ini-  from the values given by Eq. (11) for p <« 1 with the
tial data for numerical calculations of the eigenvalues  values given by Eqgs. (15), (16), and (17) for p > 1,
Ay (N). we obtain the coefficients \; and C%. As a result of

Matching the numerical solution of Eq. (6) starting ~ numerical calculations, we obtain
\

N =2: X\ =—0.443673 +i0.004937, Co = —0.00734 +i0.0001494 [1, 2] ,
N =3: X\ = —0.4452+i0.0787, Cp = 0.000472 — i0.000095,
A = —0.18 +i0.0672, C; = 0.002711 + i0
(the index j has only one value for k£ = {0,1}),
N =4: X\ =-0.63494 +i0.07203, C5=3-10"°%—i57-107, (22)
Ay = —0.0458 +i0.01, CJ =1.1-10"5—41.4-1075,
A\ = —0.4563 +i0.0154, C; = —i0.00216,
Ao = —0.08735 4 i0.0225, Cy = 0.00289 + i0.00058

(the index j takes two values for £ = 0 and one value for k = {1,2}).

3. TIME EVOLUTION OF THE POSITION OF ¥ =0. (23)
VORTICES IN AN N-VORTEX STATE

Using Eqs. (5), (9), (11), (13), and (15), we reduce
The equation for the position of vortices is Eq. (23) to the form
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where z = = + iy and p = /22 + 2.

We note that nonlinear corrections to the solution
of Eq. (1), in the first approximation given by expan-
sion (5), leads only to a renormalization of the coeffi-
cients in Eq. (24). This statement implies an important
conclusion: for N = 2 (double vortex), the position of
the weight center of two vortices is independent of time:
%(21 +29) = 0, where z1 » are positions of the vortices.
But for N > 3, the position of the weight center of N
vortices is time independent only in the leading appro-
ximation. For N > 3, we seek the zeros of Eq. (24) in
the form

_|_

(1)

=242, (25)

where {z{} are N solutions of the equation

N—2
2N+ Z Z A{N,k) {zke_i)‘{e(N)t} =0.
i k=0

From Eq. (26

(26)
), we find

N

Z 20 =0.
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In the next approximation, we obtain

}:a E:gn

for a point of general position, where
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We thus obtain that the time evolution of the
two-vortex state is determined only by the position of
zeros at the initial instant. For N > 3, the unique
prediction of the N-vortex state evolution in the time
requires the knowledge of exact positions of all the vor-
tices at the initial instant and the knowledge of two
parameters: shift center of the N-vortex state at ¢t —
— —00 relatlve to the weight center at the current in-
stant and 2 E P >( J(Ny — 1) additional parameters en-
tering Eq. (5).

4. CONCLUSION

The trajectories of IV interacting vortices are found
in a wide time interval under the assumption that at
some initial instant, the distances between all vortices
are small. In addition to the positions of the vortices
at the initial instant, two additional small parame-
ters should be given to fix unique dynamics of such
a vortex state. The full number of unstable modes is
Zk o ](’”N“i As a result, the coefficients at the “ex-
tra” unstable modes are additional free parameters in
the problem. The full number of these “extra” modes

max

1sequalt022k (Nk) 1).

In the considered approximation, the positions of
vortices are given as roots of an algebraic equation. The
time dependence of the coefﬁments in this equation is
determined by (N —1) + Z ( J(N ~ 1) frequencies.
All these frequencies can be found as a solution of an
eigenvalue problem. They are found numerically in the
particular cases N = {3,4}. The emission of sound-
like excitations can lead to some self-organization of
the position of vortices.

We thank I. M. Sigal for the numerous stimu-
lating discussions. This paper is supported by the
EOARD grant Ne097006 and the program SIMTECH
grant Ne246937.

APPENDIX

System of equations (13) has two linearly indepen-
dent solutions, which satisfy boundary conditions on
infinity. In the leading approximation, we obtain

(697 2 Qe 1
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from Eq. (13). Multiplying both sides of Eq. (29) by
(=B, ax), we obtain

Oéi - 613 + 2ap. 6, = 0. (30)

From Eqs. (29) and (30), we obtain both solutions
in the leading approximation: the first solution

Qe B 1

) e+ /T2
1/2

%=<1+\/1+>\§>

dp
and the second solution
<dk> <— (Ak + T+ A2 ))
Br 1 7
We now seek the first solution in the form
vy
<5k
dl
; 1/2 s
Sk:<1+\/1+/\k) p-l-;( )

From the first two equations in (32), we obtain the use-
ful relations

— B =2 (Ak+1/1+/\i> X
2
x(Ak+%(1+ﬂ)>,
P P
apf, = (Ak+\/1+)\%> X (33
(-2 (43)
P P
ai+,@,§=2\/1+A§ <\/1+A§+Ak>.

Multiplying both sides of Eq. (13) by (—f,ar) and
using Eq. (33), we immediately obtain
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(31D)
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Multiplying both sides of Eq. (13) by (a, Bx), we ob-
tain

2
Mool — 52) = — (%) (a2 + 5 +
928
+ (—4—;2 + W;) (af + B3) +
+ %(k%of + B3) —ANEBR) + (o + B)* —

R

g (35)

(ai — Bp + arBr)-

Inserting the value of Sy in (32) into Eq. (35) and using
Eq. (33), we obtain the coefficients

{

1

(1+m

1+

N2\ - 1/2)

VI+A
V1+X2 }
1

o1+ yTER)

In similar way, we seek the second solution of
Eq. (13) in the form
1

()= (0ye)
) (o2 yrem)

ék:i{<M—1>l/2 Ts )}

4
p

As before, we obtain useful relations from the first two

equations in (37):

di—,é,%:Q(Akh/HAz) X
x(Ak—ﬂ—; (1+ﬂ)>,
p p
d‘kﬁk:_()\k‘F\/l-l‘/\i) X
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Y4 =
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P
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Multiplying both sides of Eq. (13) by (—Bk,dk), we
obtain the coefficients

N AN

71=—W {(N—k)‘FT},

2i \/7 1/2
Ny = —or— 1+/\2—1> .
2 m( k

Multiplying both sides of Eq. (13) by (G, fx) gives

(39)

~ 2
- = oS 5 ~
Me(a — ) = ~ (8—p> (a% +57) +
1 02S,\ ., = 1 Yy = .
+ <—4—p2+w2k> (ai+6i)+;[kQ(aiwi)—‘lNkﬁiH
2N2

+ (a3 + B +2a11) — 7(542 — Bp + Gxfi).  (40)

Inserting the value of S given by Eq. (37) in this equa-
tion and using Eq. (38), we obtain
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5 1 1 n k2

3 = —_ = _—
(viT-1)" 1 & 2
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