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The formalism for analyzing the magnetic field distribution in the vortex lattice of Pauli-limit heavy-electron
superconductors is applied to the evaluation of the vortex lattice static linewidth relevant to the Muon Spin
Rotation (uSR) experiment. Based on the Ginzburg—Landau expansion for the superconductor free energy, we
study the evolution with respect to the external field of the static linewidth both in the limit of independent
vortices (low magnetic field) with a variational expression for the order parameter and in the near HS(T)
regime with an extension of the Abrikosov analysis to Pauli-limit superconductors. We conclude that in the
Ginzburg—Landau regime in the Pauli-limit, anomalous variations of the static linewidth with the applied field
are predicted as a result of the superconductor spin response around a vortex core that dominates the usual
charge-response screening supercurrents. We propose the effect as a benchmark for studying new puzzling

vortex lattice properties recently observed in CeColns.

1. INTRODUCTION

As an example of a superconductor in the Pauli
limit, the heavy-electron system CeColns has special
properties regarding its response to the external mag-
netic field. Notably, the Muon Spin Rotation (uSR)
experiment [1] has revealed anomalous variations of
the vortex lattice static linewidth oY% with respect to
the magnetic field oriented along the tetragonal crys-
tal c-axis. In Ref. [1], the static linewidth measured
at temperature 7' = 20 mK showed an increase with
the applied field from zero field to about 95% of the
upper critical field and eventually decreased just be-
fore the first-order superconductor-to-metal transition.
The decrease in ¢ F with respect to the external field
usually observed and analyzed [2] is the hallmark of a
diminution in the vortex lattice local field contrast due
to the decrease in the intervortex spacing with increas-
ing field.

Here, we show that in the Ginzburg-Landau regime,
an increasing behavior of the static linewidth is pre-
dicted. This results from the Zeeman interaction of
the electron spin with the superconductor internal field,
which dominates the usual charge-response supercur-
rents. As a result, the field distribution is modified on
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a distance of the order of £ (£ is the coherence length ob-
tained in the Ginzburg-Landau formulation) from the
center of each vortex [3]. The existence of the effect
was pointed out in Ref. [4] in the context of magnetism
of the FFLO (Fulde-Ferrel-Larkin-Ovchinnikov) state.
Parallel to this, a numerical approach to Eilenberger
equations was undertaken in Ref. [5] and effects of
strong Pauli paramagnetism were highlighted in the
vortex lattice state of Pauli-limit superconductors.

We first discuss the properties of Pauli-limit hea-
vy-electron superconductors qualitatively [3,4]. This
class is characterized by a larger-than-one Maki param-
eter defined as

P
Qo = H.gg/Hcm >1

(an alternative definition includes the factor v/2, which
is not assumed here for clarity). We set

Horb_@ HP _E
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the zero-temperature scales for orbital and Pauli-limit
fields respectively (we use units where i = ¢ = 1
throughout). Here, ¢g = 7/e ~ 2.07-107 G - cm? is the
vortex fluxoid quantum, e is the absolute value of the
electron charge, { = vp/T. is the T' = 0 Cooper pair
radius or coherence length, vy = kp/m* is the Fermi
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velocity, kr is the Fermi momentum, m™* is the renor-
malized electron mass, T, is the superconductor critical
temperature, u = gup/2 is the electron magnetic mo-
ment absolute value, g is the Landé factor, up = e¢/2m
is the Bohr magneton, and m is the electron bare mass.

There are three characteristic lengths in the prob-
lem: the zero-temperature coherence length & defined
above, the intervortex distance L(HL5) = \/u¢o/T. in
a square vortex lattice in the Pauli limit at temper-
ature T = 0 and the field HL, (more generally, we
let L(B) = \/¢o/B denote the intervortex spacing of
a square vortex lattice with the internal field B), and
the London penetration depth Az, = \/m*/4wne? with
the electron density n in the superconductor (at 7' =0
and for a cylindrical Fermi surface, this is the electron
density n = k% /27l. in the 2D metal with the spacing
I between the planes of the tetragonal crystal). Hence,

— M¢0Tc -
v

L(H;E;o)r
o

and we define the Ginzburg—Landau ratio

m*T,

(D)

apo = { mEp

)\L m* TC
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where r, = e?/m is the classical radius of the electron
and rokp ~ 1075,

The orders of magnitudes are as follows. In a clas-
sical, nonheavy electron superconductor, m* ~ m and
Er ~ 10°T, give & ~ 1 and a ~ 1073, In CeColns,
however, T, ~ 2.3 K, & ~ 50 A, and Az, ~ 5000 A yield
m* ~ 100m, Er ~ 50T., k& ~ 100, and aprg ~ 1-5,
which, as we see in what follows, is the origin of special
magnetic properties of the vortex lattice. The large
Ginzburg-Landau parameter implies [6] that at T = 0,
the ratio between the field at which the first vortex nu-
cleates in the bulk of the sample and the orbital upper
critical field He1o/ HAE ~ k~2Ink < 1, whence B ~ H
for a broad magnetic field range. In a Pauli-limit su-
perconductor,

Heio
P
Hc20

E
" nk ~ 1073,

~rekp
(&
and the same property applies.

We now study the electrodynamics of the vortex lat-
tice that results from the large values for parameters
in (1) and (2). The vortex lattice static linewidth is
defined as

Vi _ du
V2
where 7, = 27-135.5342 MHz/T is the muon gyromag-
netic ratio, h(r) is the component of the internal local

o Sh(r)?,

(3)
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field parallel to the applied field H, dh(r) = h(r) — B,
the macroscopic internal field (or induction) is B =
h(r), and the overline means averaging over the
vortex-lattice unit cell. Equation (3) can be expressed
as a sum involving all-order Fourier components Fjy,,
of the field distribution in the vortex lattice,

>

m,n)#(0,0)

VL _

_ e
s \/ﬁ (

o (Ern)?. (4)

The components F,, are called vortex-lattice form fac-
tors [3, 7] in the context of the Small Angle Neutron
Scattering (SANS) experiment, [7]V).

2. MUON STATIC LINEWIDTH IN THE
LOW-FIELD HIGH-TEMPERATURE
REGIME

Here, we use results of the Ginzburg-Landau formu-
lation [3,4] to evaluate the static linewidth in Eq. (4).
The near-T,. Ginzburg-Landau regime in the Pauli limit
is accessible since the crossover temperature 7* from
orbitally limited to the Pauli-limit superconductivity
is in the range (T. — T*)/T. ~ 1/a3;, (we see below
that this follows from the relation H%*(T)/HE(T) ~
~ apyoy/1 —T/T.). In the independent-vortex approx-
imation (low magnetic field) and high-x limit, the form
factors can be decomposed as a sum of two distinct
contributions [3]:

Fon = FO° + FZ .

(5)

The first term is the usual charge response, which gives
rise to orbital supercurrents. It is given by [3]

B¢y

b _ -
»,%7;1 - an)\Q IXI(an&v)a (6)
where &, = /2 is a variational parameter that

minimizes the superconductor free energy, ¢mn
= [2r/L(B)](m? + n*)'/? for a square vortex lattice,
and K, (z) is the nth-order modified Bessel function of
the second kind (or the MacDonald function) [8]. The
near-7, coherence length and the penetration depth de-
pend on the symmetry of the superconducting gap [3].
The expressions for d-wave pairing are
) 2

1) The measurement of the first-order form factor Fig at T =
= 50 mK [7] has revealed a similar behavior to the one obtained
in uSR experiment [1]: Fjg increases with field up to 4.7 T and
eventually decreases while approaching the (first-order) super-
conductor to metal transition.
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o
where Ny is the density of states with dimension :g 0
[energy] ! x [length] = and ((z) is the Riemann zeta QA
function, ((3) ~ 1.2021. The field at which these two < 4
lengths diverge is defined as the near-T, Pauli-limit up- §bu, 5
per critical field
2
p T. |T.—T . . : :
Ao =20 M\ 2o ) Yo 01 02 03 04 05
B/H
The near-T,. Zeeman spin contribution in Eq. (5) for
the superconducting gap with a d-wave symmetry is Fig.1. Variations of the dimensionless ;SR static

given by [3]

pz _ 230N, (B
e 3¢0 Tc

We scale the internal field, the form factors, and the co-
herence length such that Eq. (5) in dimensionless units
becomes

) Ko(gmn&y)- (10)

fn = #Wl(l (q) + 47Tb21(0(q)7 (11)

where b = B/HJ and

\/W Z—C(B)i(m2+n2> (12)
M

q= anfv =
v

with

apr = Apro ].—Tlc, (13)

o is given in Eq. (1), and frn = Fun(27A)?/00.
Near T.., dimensionless form factors (11) take a sim-
ple, universal form where only the parameter ajs re-
mains that controls the relative contributions of the
spin response with respect to the charge response. The
static linewidth variations in the independent vortex
limit with a dimensionless internal field b and different
values of aps are shown in Fig. 1. We note the low-field
regime where all curves meet, which follows from the

limit
Z (fmn)z as b—0 %
(m,n)#(0,0)
1
X Y 5y A 2455, (14)
(maz0 ™)

linewidth o) “v/2 (2700)? /4,0 with field where o) © is

taken from Eq. (4) and the form factors from Eq. (11).

Different values for the temperature Maki parame-
ter (13) were used as indicated near the curves

V2(21A(0))* /o

L
o

Fig.2. Variations of the static linewidth o) %v/2 x
% [27A(0)]? /4. b0 with field at different temperatures.
We considered the parameter ano = 3

We now turn to the effect of temperature on the
form factors in Eq. (5). We fix the value apo = 3
and plot oY Fv/2[27r\(0)]?/yu¢o for different T/T.,,
where A(0) is the Ginzburg-Landau penetration depth,
Eq. (8), taken at T' = 0. The results are shown in
Fig. 2. We note that we have extended the tempera-
ture domain to very low T'/T.., which is not as justified
as it is in the near-T, region, but is expected to give
qualitatively meaningful variations.

The MacDonald functions have the limits Ko(q) —
— —1In(q/2) — C and Ky(q) — 1/q as ¢ — 0, where
C' =~ 0.5772 is the Euler constant. Having SANS ex-
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periment in mind in the large-aj; limit, it is useful to
consider Eq. (11) with (m,n) = (1,0):

fio=1-=27b"In <%C(3)b620> . (15)

23,75

3. MUON STATIC LINEWIDTH CLOSE TO
THE SECOND-ORDER TRANSITION
CRITICAL FIELD

The form factors in Eqs. (6) and (10) are found in
the independent vortex approximation. The derivation
does not work at high field near the transition to the
nonsuperconducting metal. In the high-field limit close
to the transition line, the main source of magnetic field
inhomogeneity in the vortex lattice comes from the Zee-
man spin response [3, 4]

oh(x) = —dme (|A(,y) P ~TAG9P),  (16)
where
_ Nop gy (L. nB
€= 5T Im ¥ 5 i ) (17)

the overline again denotes averaging over a vortex lat-
tice unit cell, and ¥(")(z) is the polygamma function [8]
of order n. In a square vortex lattice, the Fourier de-
composition of the square of the gap magnitude is given

by [3]

Az, y))” =A@,y Y (=)™ x
X ex —E(m2+n2)] ex mimaz X
P73 P\ (B

2mwiny
L(B)

X exp ( ) . (18)

Therefore, the form factors corresponding to Bragg
peaks with indices (m,n) # (0,0) take the form

Fn = —4me|A(z,y) (1) M x

X exp —g(m2+n2) . (19)

and the vortex lattice static linewidth is simply given
by

vy A4ms

s = —

3 (20)

o YuelAz, y)I?,

where

oo

2
exp (—7m2)> —1=04247. (21)
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Equation (20) shows explicitly that the vortex-
lattice contribution to the static linewidth vanishes
when the transition is of the second order but shows
a discontinuity where the transition is of the first or-
der. In the former case, the gap average is [3,4]

v ]
Az,y)]2 = , 22
AP = 555 (22
where
T 1 . uB
_ (1)} (23)
and
__3No poge (1 HB
b= i RV 3 i (24)

are the respective quadratic and quartic coefficients of
the Ginzburg-Landau free energy [3,4], ¥(z) is the
digamma function [8],

_ Gl
(RexnR

Ba

is the Abrikosov parameter equal to ﬂE = 1.18 for a
square-vortex lattice and ﬂﬁ = 1.16 for a triangular
lattice. It then follows that

VL _ 278V %
s

V284 B

which is shown in Fig. 3.

(25)

4. CONCLUSION

Based on the Ginzburg-Landau expansion for the
superconductor free energy in the Pauli limit, we have
studied the evolution with respect to the external field
of the muon spin rotation vortex lattice static linewidth
both in the limit of independent vortices (low magnetic
field) near T, and in the near-HL(T) regime. In the
first case, we have found a simple form of the total
form factor, which is a function of the internal field
scaled with the temperature-dependent upper critical
field in the Pauli limit and includes a single parame-
ter an = amoy/1 —T/T, with ano = pdoTe/vE. In
the regime near H5(T), we have used an extension of
the Abrikosov analysis to Pauli-limit superconductivity
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Fig.3. The uSR static linewidth close to the second-or-
der transition line HZ,(T') as obtained from Abrikosov’s
analysis in the Pauli limit, Eq. (20), for a temperature
range as indicated near the curves. We have scaled
the internal field with respect to H,(T') defined here
as the curve solution of a(T, B) = 0 [3,4]. We note
the rapid increase in the absolute value of the slope of
oY T (B) while approaching the first-order transition at
T/T. = 0.5615 and pHL /T, ~ 1.0728

and observed a transformation from the second-order
to the first-order transition to the metal (this occurs
at T/T, ~ 0.5615 and pHE /T, ~ 1.0728) with a sharp
increase in the absolute value of the slope of ¢¥'(B) in
approaching HE(T). Such an analysis allows a simple
modeling of the effect of heavy electron superconductor
strong paramagnetism on the vortex lattice electrody-
namics. It is proposed as a benchmark for studying
new puzzling vortex lattice properties in CeColny [9].
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