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CHARGED FERMIONS TUNNELINGFROM REGULAR BLACK HOLESM. Sharif *, W. Javed **Department of Mathematis, University of the Punjab54590, Lahore, PakistanReeived February 15, 2012We study Hawking radiation of harged fermions as a tunneling proess from harged regular blak holes, i. e.,the Bardeen and ABGB blak holes. For this purpose, we apply the semilassial WKB approximation to thegeneral ovariant Dira equation for harged partiles and evaluate the tunneling probabilities. We reover theHawking temperature orresponding to these harged regular blak holes. Further, we onsider the bak-reatione�ets of the emitted spin partiles from blak holes and alulate their orresponding quantum orretions tothe radiation spetrum. We �nd that this radiation spetrum is not purely thermal due to the energy and hargeonservation but has some orretions. In the absene of harge, e = 0, our results are onsistent with thosealready present in the literature.1. INTRODUCTIONClassially, a blak hole (BH) is onsidered to ab-sorb all matter and energy in the surrounding regioninto it due a strong gravitational �eld. Bekenstein [1℄was the �rst to disuss the BH thermodynamis. Later,Hawking [2℄ investigated BH thermodynamial proper-ties and proposed [3℄ that a BH ould emit blak-bodyradiation. Aording to this, a partile�antipartilepair appears near the event horizon of a BH due to va-uum �utuations. In order to preserve the total energy,one member of the pair with negative energy must fallinto the BH while the other esapes with positive en-ergy. In this proess, the BH loses mass and it appearsto an outside observer that the BH has just emitted apartile. This semilassial proess is alled quantumtunneling [4, 5℄. In this approah, partiles follow las-sially forbidden trajetories from inside the horizon toin�nity, for whih the ation beomes omplex. Thismeans that the tunneling probability for the outgoingpartile is governed by the imaginary part of this a-tion. Beause a partile an lassially only fall insidethe horizon, the ation for the ingoing partile must bereal.There are two di�erent methods to evaluate theimaginary part of the ation. One is the semilassi-*E-mail: msharif.math�pu.edu.pk**E-mail: wajihajaved84�yahoo.om

al Wentzel�Kramers�Brillouin (WKB) approximationmethod, �rst used in [6, 7℄, and the other is the radialnull-geodesi method [5℄. These methods have beenused to evaluate the tunneling probabilities of quan-tum �elds passing through an event horizon. Di�erentsemilassial approahes have been adopted to evaluatetunneling of salar and Dira partiles (harged and un-harged). In Refs. [8, 9℄, the tunneling of spin-1=2 par-tiles through event horizons of the Rindler spaetimewas investigated and Unruh temperature was obtained.In these papers fermion tunneling from the general non-rotating BH as well as the Kerr�Newman BH was alsodisussed and their orresponding Hawking tempera-tures was reovered.Fermions tunneling from the Kerr BH were inves-tigated in [10℄ by applying the WKB approximationto the general ovariant Dira equation, whih allowed�nding the Hawking temperature for the Kerr BH.Charged fermion tunneling from dilatoni BHs, therotating Einstein�Maxwell dilaton�Axion BH, and arotating Kaluza�Klein BH were studied in [11℄ andtheir orresponding Hawking temperatures were reov-ered. Hawking radiation of spin-1=2 partiles from theReissner�Nordström BH was investigated in [12℄ usingthe Dira equation for harged partiles. The tunnelingof salar and Dira partiles from the Kerr�NewmanBH was explored in [13℄ and its Hawking tempera-ture was obtained. The semilassial fermion tunnel-ing from the Kerr�Newman�Kasuya BH was studied889



M. Sharif, W. Javed ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012in [14℄ and the Hawking temperature was obtained.Some work has also been done for three-dimensionalspaetimes [15℄.Tunneling of harged fermions from aelera-ting and rotating BHs with eletri and magnetiharges have been studied in [16�18℄ using the WKBapproximation. Tunneling probabilities of hargedfermions and the orresponding Hawking temperaturewere found. In reent papers [19℄, the tunnelingprobabilities of inoming and outgoing salar andharged/unharged fermion partiles from aeleratingand rotating BHs have been investigated. Reently,we have examined the radiation spetrum of anRN-like nonommutative BH [20℄ by quantum tun-neling proess (radial null geodesi method). Also,we have investigated quantum orretions of regularBHs [21, 22℄.In this paper, we use the proedure in [8℄ to inves-tigate the tunneling probabilities of harged fermionsfor harged regular BHs, i. e., the regular Bardeen andregular Ayón-Beato�Garía�Bronnikov (ABGB) BHs.We reover the orresponding Hawking temperaturesfor harged massive as well as massless fermions. Also,we explore the radiation spetrum by using the radialnull-geodesi method [12℄. This paper is organized asfollows. In Se. 2, we review the basi formalism forthe pure thermal spetrum of harged fermions usingthe Dira equation for harged partiles. Setion 3 isdevoted to the study of fermion tunneling from the reg-ular Bardeen and ABGB BHs. In Se. 4, we disuss theorretion spetrum of harged fermions due to bak-reation e�ets. Finally, Se. 5 summarizes the results.2. REVIEW: TUNNELING OF CHARGEDFERMIONSIn this setion, we brie�y review some basi ma-terial used to evaluate the tunneling probabilities ofharged fermions. For this purpose, we apply the WKBapproximation to the general ovariant Dira equationfor harged partiles. The line element of a spheriallysymmetri BH an be written asds2 = �Fdt2 + F�1dr2 + r2d�2 + r2 sin2 � d�2; (2.1)where F = 1� 2M(r)r :This metri an be redued to well-known BHs for spe-ial hoies of M(r). The Dira equation with eletri

harge q is given by [9℄i��D� � iq~ A��	+ m~ 	 = 0;�; � = 0; 1; 2; 3; (2.2)wherem is the mass of fermion partiles, A� is the 4-po-tential, 	 is the wave funtion, and � are the Diramatries [14℄. The antisymmetri property of the Diramatries, i. e.,[�; � ℄ = ( 0; � = �;�[�; �℄; � 6= �;redues Dira equation (2.2) to the formi���� � iq~ A��	+ m~ 	 = 0: (2.3)The spinor wave funtion 	 has two spin states:spin-up (radially outward, i. e., in positive r-diretion)and spin-down (radially inward, i. e., in negative r-di-re	tion). The solutions for spin-up and spin-down par-tiles are respetively given by [8℄	"(t; r; �; �) = 266664 A(t; r; �; �)0B(t; r; �; �)0 377775�� exp� i~I"(t; r; �; �)� ; (2.4)
	#(t; r; �; �) = 266664 0C(t; r; �; �)0D(t; r; �; �) 377775�� exp� i~I#(t; r; �; �)� ; (2.5)where I"=# is the ation of the emitted spin-up/spin-down partiles. In what follows, we disuss the spin-upase in detail; the spin-down ase follows in a similarfashion. Using Eq. (2.4) in Dira equation (2.3), weobtain the set of equations� " iApF (r)�tI" +BpF (r)�rI" � iApF (r)qA0#++mA = 0; (2.6)�B �1r ��I" + ir sin ���I"� = 0; (2.7)890



ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012 Charged fermions tunneling from regular blak holes" iBpF (r)�tI" �ApF (r)�rI" � iBpF (r) qA0#++mB = 0; (2.8)�A �1r ��I" + ir sin � ��I"� = 0: (2.9)To �nd the ation from the above equations, we useseparation of variables in aordane withI" = �Et+W (r) + J(�; �); (2.10)where E and J denote the energy and angular mo-mentum of the emitted partile, and W is an arbi-trary funtion of r. Inserting this value of the ation inEqs. (2.6)�(2.9), we also use Taylor's expansion to ex-pand F (r) near the outer horizon r+, negleting squaresand higher powers. Substituting the values of A0(r+)and setting iA = B and iB = A in the above set ofequations, we obtain�B " �E � qA0p(r � r+)F 0(r+) +p(r � r+)F 0(r+)W 0#++mA = 0; (2.11)�B �1r ��J + ir sin ���J� = 0; (2.12)A" �E � qA0p(r � r+)F 0(r+) �p(r � r+)F 0(r+)W 0#++mB = 0; (2.13)�A �1r ��J + ir sin � ��J� = 0; (2.14)where the prime denotes the derivative with respet tor. Equations (2.12) and (2.14) yield1r ��J + ir sin ���J = 0 (2.15)

whih impliesJ = exp[ik�℄ �1 Z s � d� + 2� ; (2.16)where k, 1, and 2 are arbitrary funtions of � and �.This quantity must be same for both outgoing and in-oming ases. As a result, it anels from the formulafor the tunneling probability from inside to outside thehorizon (whih is the ratio of outgoing and inomingmodes [8℄).In the massless ase (m = 0), Eqs. (2.11) and (2.13)yield the respetive solutionsW 0(r) = W 0+(r) = E + qA0(r � r+)F 0(r+) ; (2.17)W 0(r) =W 0�(r) = � E + qA0(r � r+)F 0(r+) ; (2.18)where W+=� orrespond to the outgoing/inoming so-lutions. The tunneling probability of a partile goingfrom outside to inside the horizon is equal to unity [9℄.Also, Eqs. (2.17) and (2.18) lead toImW+ = � ImW�:Hene, the overall tunneling probability of the outgoingpartile turns out to be� = Prob[out℄Prob[in℄ = exp[�2(ImW+)℄exp[�2(ImW�)℄ == exp[�4 ImW+℄: (2.19)We an reover the Hawking temperature TH from therelation as � = exp[��E℄; � = 1TH :In the massive ase (m 6= 0), Eqs. (2.11) and (2.13)no longer deouple. We eliminate the funtion W 0from these two equations by respetively multiplyingEqs. (2.11) and (2.13) with A and B. After some ma-nipulations, it follows thatAB = �(E + qA0)�p(E + qA0)2 +m2(r � r+)F 0(r+)mp(r � r+)F 0(r+) : (2.20)The limit r ! r+ yields either A=B ! 0 orA=B ! �1, i. e., either A! 0 or B ! 0. For A! 0,we an evaluate the value of m from Eq. (2.13) as m = �AB "�p(r � r+)F 0(r+)W 0(r) ++ �(E + qA0)p(r � r+)F 0(r+)# : (2.21)891



M. Sharif, W. Javed ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012Inserting this value in Eq. (2.11) and simplifying, weobtain the same value of W 0+(r) as in Eq. (2.17). Sim-ilarly, for B ! 0, the same expression for W 0�(r) isfound as in (2.18). Consequently, the Hawking temper-ature turns out to be the same as in the massless ase.In the spin-down ase, for both massive and masslessfermions, the Hawking temperature remains the sameas for the spin-up ase. Thus, both spin-up and spin-down partiles are emitted at the same rate, i. e., asmany spin-up fermions are emitted as spin-down. Wenote that for the tunneling of harged massive fermions,the tunneling probability is independent of the massbut depends only on the harge. This is beause themassive ase redues to the massless ase as r ! r+,and hene the tunneling probability is the same as inthe massless ase.3. REGULAR BLACK HOLESSingularities exist in all known physial exat solu-tions of BHs. In order to remove these singularities,some regular BH models have been proposed. Thesemodels represent singularity-free solutions of the �eldequations oupled to a suitable nonlinear eletrody-namis satisfying the weak energy ondition. Here, weonsider the Bardeen and ABGB regular BH solutionsto disuss tunneling proess.3.1. Bardeen regular blak holeAyón-Beato and Garía [23℄ gave a physial inter-pretation of the Bardeen regular BH [24℄ by showingthat the harge assoiated with it ats as a magnetimonopole harge. This is desribed by metri (2.1)with M(r) = Mr3(r2 + e2)3=2 : (3.1)Here,M and e stand for the mass and monopole hargeof a self-gravitating magneti �eld of a nonlinear ele-trodynami soure. This solution exhibits a BH be-havior for e2 � (16=27)m2 and has a spherial eventhorizon at r+ = 2M(r+). For e = 0, it redues to theShwarzshild solution.We ompute the tunneling probability of a hargedpartile for this solution by using the fermion tunnel-ing approah developed in the previous setion. Thederivative of F (r+) takes the formF 0(r+) = 2Mr+(r2+ � 2e2)(r2+ + e2)5=2 : (3.2)

In the massless ase, using Eq. (3.2) in Eq. (2.17) leadsto W 0+(r) = [E + qA0℄(r2+ + e2)5=2(r � r+)2Mr+(r2+ � 2e2) ; (3.3)where A0 = � 3e2r2+ (r2+ + e2)1=2(see [21℄). Similarly, the solution for inoming partilesan be obtained by setting the values in Eq. (2.18),W 0�(r) = � [E + qA0℄(r2+ + e2)5=2(r � r+)2Mr+(r2+ � 2e2) : (3.4)The imaginary part of W+ isImW+ = �(E + qA0)(r2+ + e2)5=22Mr+(r2+ � 2e2) : (3.5)Similarly, the imaginary part of W� beomesImW� = ��(E + qA0)(r2+ + e2)5=22Mr+(r2+ � 2e2) : (3.6)Equations (3.5) and (3.6) imply thatImW+ = � ImW�:Consequently, tunneling probability (2.19) beomes� = exp"�2�(E + qA0)(r2+ + e2)5=2Mr+(r2+ � 2e2) # : (3.7)Comparing this with� = exp[��E℄; � = 1TH ;we reover the Hawking temperature of the regularBardeen BH [25℄ asTH = Mr+(r2+ � 2e2)2�(r2+ + e2)5=2 : (3.8)In the massive ase, Eqs. (2.11) and (2.13) pro-vide the outgoing and inoming partile solutions or-responding to A ! 0 and B ! 0. These solutionsturn out to be the same as in the massless ase foroutgoing and inoming partiles given in Eqs. (3.5)and (3.6). Consequently, the Hawking temperature ofmassive fermion tunneling takes the same form as forthe massless fermion tunneling.892



ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012 Charged fermions tunneling from regular blak holes3.2. The ABGB regular blak holeA solution of the oupled system of equations ofnonlinear eletrodynamis and gravity representing alass of BHs was formulated in [26; 27℄. It is given bymetri (2.1) withM(r) = M �1� th� e22Mr�� ; (3.9)where M is the mass and e is either the eletri or themagneti harge. The ABGB regular BH solution has aspherial event horizon at F (r+) = 0 or r+ = 2M(r+).This solution desribes a regular stati spherially sym-metri on�guration that redues to the Shwarzshildsolution for e = 0.For this BH, we �ndF 0(r+) = 2�Mr2+ � e2r3+ + e66M2r5+� : (3.10)In the massless ase, Eqs. (2.11) and (2.13) yieldW 0+(r) == [E + qA0℄2(r � r+) �M=r2+ � e2=r3+ + e6=6M2r5+� ; (3.11)W 0�(r) == � [E + qA0℄2(r � r+) �M=r2+ � e2=r3+ + e6=6M2r5+� ; (3.12)where A0 = � ��4:8 e5r5+ + 2:8 e3r3+ + 1:8 er+�(see [22℄). The imaginary parts ofW+ andW� beomeImW+ = � ImW� == �(E + qA0)2 �M=r2+ � e2=r3+ + e6=6M2r5+� : (3.13)The tunneling probability turns out to be� = exp�� 2�(E + qA0)M=r2+ � e2=r3+ + e6=6M2r5+ � : (3.14)The orresponding Hawking temperature an be reov-ered byTH = M=r2+ � e2=r3+ + e6=6M2r5+2� : (3.15)In the massive ase, Eqs. (2.11) and (2.13) lead to thesame results as in the massless ase.

4. TUNNELING CORRECTIONSIn this setion, we examine the tunneling proess ofharged massive fermions through the quantum hori-zon of regular BHs by using the radial null-geodesimethod [12℄. Due to vauum �utuations, the massand harge of the BH �utuate as the BH aretes asmall negative energy, whih dereases its mass. If apartile with energy E and harge q tunnels throughthe horizon, the total mass and harge of the BH be-ome M � E and e � q, and the radius of the horizonshrinks. Consequently, the imaginary part of the ationbeomesImW+ == �14 (E;q)Z(0;0) 2� hd ~E � ~A0(M � ~E; e� ~q) d~qi�(M � ~E; e� ~q) : (4.1)Using the �rst law of BH thermodynamis,dM = T dS �A0 de;we write this equation asImW+ = �14 Sf (M�E;e�q)ZSi(M;e) dS = ��S4 ; (4.2)where �S = S(~r+)� S(r+)is the hange of the Bekenstein�Hawking entropy, withS(~r+) and S(r+) being the BH entropies after and be-fore the radiation. Then the total tunneling probabilityof the emitted spin partile is� / exp[�S℄ = exp[S(M�E; e�q)�S(M; e)℄; (4.3)implying that the tunneling rate is related to the hangein the Bekenstein�Hawking entropyS = A4 = �r2+:It follows that the emission spetrum annot be pre-isely thermal. The entropy di�erene of the BH anbe expanded using Taylor's expansion as�S = dSdr+�r+ + 12! d2Sdr2+ (�r+)2 ++ 13! d3Sdr3+ (�r+)3 + : : : ; (4.4)893



M. Sharif, W. Javed ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012wheredSdr+ = 2�r+; �r+ = r+(M �E; e� q)� r+(M; e):Using this value of �S in Eq. (4.3) and onsidering thehanges of the BH mass and harge,�M = �E; �e = �q;we obtain� / exp(�S) = exp���(E + qA0) �� �1� 12!�(E + qA0) d2Sdr2+ (�r+)2�� : (4.5)When higher-order terms in (E + qA0) is ignored, thepurely thermal spetrum of the regular BH an be ob-tained.We next evaluate the orretion spetrum offermions for the Bardeen and ABGB regular BHs. Forthe Bardeen regular BH, the surfae gravity is� = Mr+(r2+ � 2e2)(r2+ + e2)5=2 : (4.6)Inserting this value in Eq. (4.1), we obtainImW+ = �14 (E;q)Z(0;0) 2� hd ~E � ~A0(M � ~E; e� ~q) d~qi�� " (M � ~E)~r+(~r2+ � 2(e� ~q)2)(~r2+ + (e� ~q)2)5=2 #�1 ; (4.7)where ~A0 = �3(e� q)2~r2+ (~r2+ + (e� q)2)1=2;~r+ = r+(M �E; e� q): (4.8)The equation for the spherial event horizon leads to�r+ = 3Mer2+�e� r2+(r2+ + e2)�MMr+(2e2 � r2+) : (4.9)Using Eqs. (4.4) and (4.9) in (4.3) and ignoring higher-order terms in (E + qA0), we �nd the emission rate� / exp [��(E + qA0)℄ �� exp h�� r2M (E + qA0)i ; (4.10)where � = 2�(r2+ + e2)5=2Mr+(r2+ � 2e2) :

For the ABGB regular BH, the surfae gravity is� = Mr2+ � e2r3+ + e66M2r5+ : (4.11)Substituting this value in Eq. (4.1) givesImW+ = �14 (E;q)Z(0;0) 2� hd ~E� ~A0(M� ~E; e�~q) d~qi�� "M � ~E~r2+ � (e� ~q)2~r3+ + (e� ~q)66(M � ~E)2~r5+#�1 ; (4.12)where~A0 = � ��4:8(e� q)5~r5+ ++ 2:8(e� q)3~r3+ + 1:8(e� q)~r+ � ; (4.13)~r+ = r+(M �E; e� q): (4.14)The spherial event horizon equation yields�r+ = ��r+��2 + e66M3r3+��M �� �2e� e52M2r2+��e��� �2M � 2e2r+ + e63M2r3+ ��1 : (4.15)Inserting Eqs. (4.4) and (4.15) in (4.3) and ignoringhigher-order terms in (E + qA0), we obtain� / exp [��(E + qA0)℄ �� exp ����E �1� e612m3r3+� ++ q�A01:8 + 2:8e31:8r3+��� ; (4.16)where � = 2� �Mr2+ � e2r3+ + e66M2r5+ ��1 :894



ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012 Charged fermions tunneling from regular blak holes5. OUTLOOKThe �rst regular BH solution was proposed in [24℄.In this paper, the idea of the entral matter ore as asingular region, was introdued, by deriving a solutionof the Einstein equations with horizons and withoutsingularities [28℄. The Bardeen model is a regular BHmodel obeying the weak energy ondition. All the sub-sequent regular BH solutions are based on Bardeen'ssenario, whih is an inredible development in the im-plementation and analysis of the properties of regularBH solutions. Nonlinear �elds and soures generatinga four-parameter solution [29℄ were found in [23℄. Forthe extremal limit of the regular BH solutions, a regularABGB BH solution was onstruted in [30℄.There exists a diret orrespondene between thelaws of BH physis and the laws of thermodynamis.The temperature, energy, and entropy of the thermo-dynamial system respetively orrespond to the sur-fae gravity at the horizon, the BH mass, and the areaof the BH horizon. For a distant observer who staysat a �xed distane from the BH event horizon, the BHseems to radiate partiles with the thermal spetrum atthe Hawking temperature [31℄. In the semilassial tun-neling piture (Hamilton�Jaobi equations), the Hawk-ing temperature apparently depends on the oordinatesystem. The Hawking temperature obtained from theKerner and Mann tehnique is oordinate independent,whih provides the expeted Hawking temperature.Bekenstein [1℄ suggested that BHs must have a �-nite temperature. Hawking found that partiles ouldesape from BHs as they esape from the enter ofan atom. This leads to a quantum mehanial phe-nomenon in whih partiles tunnel through the eventhorizon. The rate at whih partiles esape is relatedto the measure of the BH temperature. Massive BHshave an extremely low surfae temperature while low-mass BHs (Hawking miniature BHs) are superhot. TheHawking temperature provides information about theBH mass and allows understanding behavior of the uni-verse ontaining elestial objets from its birth to itsend [32℄.In quantum tunneling, virtual partiles (hargedfermions) fae a barrier regardless of whether they movefrom the inside to the outside or from the outside to theinside aross the barrier. Classially, a partile an eas-ily ross the horizon, i. e., partiles have 100% haneswhen going inward. Hene, their probabilities are equalto 1. Semilassially, a partile faes the barrier whenrossing the horizon in the outward diretion. However,in the tunneling proess (in the semilassial approah),a pair of negative�positive-energy partiles is reated

due to vauum �utuations near the horizon. For a pairof partiles inside the horizon, the positive-energy par-tile must tunnel out of the horizon while the negative-energy omponent goes inward. For a pair outside thehorizon, the negative-energy omponent must tunnelinto the horizon, with the positive-energy omponentgoing outward. In this approah, the horizon repre-sents a two-way barrier for the pairs of virtual partilesand ontradits the lassial approah. We have on-sidered both the inoming and outgoing partiles andthe horizon as the tunneling barrier.Hawking radiation an be de�ned as a semilassi-al quantum tunneling phenomenon of BHs. We haveused the formulation in [8℄ to study quantum tunnel-ing of harged fermions from harged regular BHs. Toapply the WKB approximation, we used the assump-tion of spin-up partiles in the general ovariant Diraequation for harged partiles. We have omputed thetunneling probabilities for the outgoing and inomingharged fermion partiles aross the horizon. Also, wehave obtained Hawking temperature orresponding tothese BHs. Interestingly, the tunneling probabilities ofharged fermions are independent of the mass of thefermions but depend only on its harge. The Hawkingtemperature depends on the mass and eletri harge ofthe BH. The equations for the spin-down ase are of thesame form as for the spin-up ase exept for a negativesign. In both massive and massless ases, the Hawkingtemperature implies that both spin-up and spin-downpartiles are emitted at the same rate. The temper-atures of these BHs oinide with the orrespondingtemperatures given in [21, 22, 25℄. In the absene ofharge, the temperature of the Bardeen and ABGBBHs redues to the Shwarzshild temperature [33℄.Finally, we have used the radial null-geodesimethod to explore tunneling probabilities. For this,we took gravitational self-interation and bak-reatione�ets of the emitted spin harged fermions into a-ount. We note here that when the bak reation e�etsare taken into aount, the tunneling probability forharged massive fermions is related to the Bekenstein�Hawking entropy. This radiation spetrum is not pre-isely thermal. When higher-order terms in E + qA0are ignored, we an obtain the pure thermal spetrumsimilar to that for the Bardeen and ABGB regular BHs.This tunneling approah provides new physial in-sight into the emission of spin-1/2 fermions as the BHradiation. Also, this o�ers an e�etive way to om-pute the surfae gravity for a wide range of BH solu-tions. The sattering of spin-1/2 partiles ould leadto a violation of the weak osmi ensorship onje-ture [34℄. For example, the results in [35℄ show the re-895



M. Sharif, W. Javed ÆÝÒÔ, òîì 142, âûï. 5 (11), 2012ation of a naked singularity by the quantum tunnelingof spin-1/2 harged fermions. Within the semilassialWKB approah, the tunneling probability refers to lo-al aspets and is also more general than the standardone [36℄. In this paper, the tunneling probability ofharged fermions and the Hawking temperature at thehorizon are orrelated with the energy of post-radiatingregular BHs.There are subtle tehnial issues involved in hoos-ing an appropriate ansatz for the Dira �eld onsistentwith the hoie of gamma matries, and the failure tomake suh a hoie makes the method break down.Some di�ulties must also be overome in alulat-ing the real radiation spetrum. The �rst is how tounderstand an eletromagneti �eld with a soure ofeletri and magneti harges. The seond is related tothe formation of the Dira equation aording to thetunneling nature of the harged partiles. In order totake the e�ets of an eletromagneti �eld into aount,we an onsider the BH and the eletromagneti �eldoutside it as a system [14℄.We thank the Higher Eduation Commission, Is-lamabad, Pakistan, for its �nanial support throughthe Indigenous Ph.D. 5000 Fellowship ProgramBath-IV. REFERENCES1. J. D. Bekenstein, Nuovo Cimento Lett. 4, 737 (1972).2. S. W. Hawking, Nature 248, 30 (1974).3. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).4. P. Kraus and F. Wilzek, Nul. Phys. B 433, 403(1995).5. M. K. Parikh and F. Wilzek, Phys. Rev. Lett. 85,5042 (2000).6. K. Srinivasan and T. Padmanabhan, Phys. Rev. D 60,024007 (1999).7. S. Shankaranarayanan, K. Srinivasan, and T. Padman-abhan, Mod. Phys. Lett. A 16, 571 (2001); ibid. Class.Quantum Grav. 19, 2671 (2002).8. R. Kerner and R. B. Mann, Class. Quantum Grav. 25,095014 (2008).9. R. Kerner and R. B. Mann, Phys. Lett. B 665, 277(2008).10. R. Li, J. R. Ren, and S. W. Wei, Class. QuantumGrav.25, 125016 (2008).11. D. Y. Chen, Q. Q. Jiang, and X. T. Zu, Class. Quan-tum Grav. 25, 205022 (2008).12. X. X. Zeng and S. Z. Yang, Gen. Relativ. Gravit. 40,2107 (2008).

13. C. Ding and J. Jing, Class. Quantum Grav. 27, 035004(2010).14. J. Yang and S. Z. Yang, J. Geom. Phys. 60, 986 (2010).15. R. Li and J. R. Ren, Phys. Lett. B 661, 370 (2008);R. Li, S. Li, and J. R. Ren, Class. Quantum Grav. 27,155011 (2010).16. O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D 67,064001 (2003).17. O. J. C. Dias and J. P. S. Lemos, Phys. Rev. D 67,084018 (2003).18. M. Bilal and K. Saifullah, arXiv:1010.5575.19. U. A. Gillani and K. Saifullah, Phys. Lett. B 699, 15(2011); M. Rehman and K. Saifullah, JCAP 03, 001(2011); U. A. Gillani, M. Rehman, and K. Saifullah,JCAP 06, 016 (2011).20. M. Sharif and W. Javed, JETP 141, 1071 (2012);arXiv:1201.3171.21. M. Sharif and W. Javed, J. Korean Phys. So. 57, 217(2010).22. M. Sharif and W. Javed, Astrophys. Spae Si. 337,335 (2012).23. E. Ayón-Beato and A. Garía, Phys. Lett. B 493, 149(2000).24. J. Bardeen, in Pro. Conf. GR5, Ti�is (1968).25. M. Sharif and W. Javed, Can. J. Phys. 89, 1027 (2011).26. E. Ayón-Beato and A. Garía, A.: Phys. Lett. B 464,25 (1999).27. K. A. Bronnikov, Phys. Rev. Lett. 85, 4641 (2000).28. J. P. S. Lemos and V. T. Zanhin, Phys. Rev. D 83,124005 (2011).29. E. Ayón-Beato and A. Garía, Gen. Relativ. Gravit.37, 635 (2005).30. J. Matyjasek, Phys. Rev. D 70, 047504 (2004).31. P. Mitra, Phys. Lett. B 648, 240 (2007).32. H. Gilbert and D. G. Smith, Gravity, the Glue of theUniverse: History and Ativities, Libraries Unlimited,Th edition (1997).33. R. Banerjee and B. R. Majhi, JHEP 06, 095 (2008).34. R. Penrose, Riv. Nuovo Cim. 1, 252 (1969).35. M. Rihartz and A. Saa, Phys. Rev. D 84, 104021(2011).36. V. Moretti and N. Pinamonti, arXiv:1011.2994v2.896


