РОЛЬ МНОГОЧАСТИЧНЫХ КОРРЕЛЯЦИЙ И КУПЕРОВСКОГО СПАРИВАНИЯ В ПРОЦЕССЕ ОБРАЗОВАНИЯ МОЛЕКУЛ В УЛЬТРАХОЛОДНОМ ГАЗЕ ФЕРМИ АТОМОВ С ОТРИЦАТЕЛЬНОЙ ДЛИНОЙ РАССЕЯНИЯ

В. С. Бабиченко^{*}, Ю. М. Каган

Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

Поступила в редакцию 5 марта 2012 г.

Исследуется влияние многочастичных корреляционных эффектов и куперовского спаривания в ультрахолодном ферми-газе с отрицательной длиной рассеяния на скорость процесса образования молекул. Показано, что куперовское спаривание ведет к росту скорости образования молекул, в отличие от влияния на эту скорость конденсации Бозе – Эйнштейна в бозе-газе. Эта тенденция сохраняется во всем интервале температур, меньших критической.

1. ВВЕДЕНИЕ

Исследование ультрахолодных атомарных газов привело к уникальной возможности изучения многочастичных квантовых корреляций и их роли в динамических и кинетических свойствах макроскопических систем. Уже на ранней стадии исследования было предсказано явление резкого уменьшения скорости неупругих процессов при бозе-конденсации за счет принципиальной перестройки квантовых корреляций [1]. Так, локальный трехчастичный коррелятор К₃, ответственный за рекомбинацию в разреженном газе, с понижением температуры $T < T_c$ уменьшается и отношение $K_{3}(T)/K_{3}(T_{c})$ достигает значения приблизительно 1/6 при $T \to 0$. С ростом газового параметра na^3 (*a* — длина рассеяния) эффект уменьшается и реально исчезает при плотностях, отвечающих бозе-жидкости.

Экспериментально явление наблюдалось в работе [2], в которой изучалась кинетика распада ультрахолодного газа Rb в ловушке при реализации бозе-конденсации. Результаты оказались в качественном и количественном соответствии с теоретическими предсказаниями. Фактически, результаты этой работы представляли собой наблюдение формирования квантовых корреляций в процессе кинетики бозе-конденсации системы при ограниченном времени жизни системы.

Интересно, что аналогичные явления в полной мере проявляются и в двумерном случае при конечной температуре $T < T_c$, хотя конденсат отсутствует при $T \neq 0$ [3]. Результат отражает определяющую роль локальных корреляционных свойств, которые и при $T \neq 0$ остаются близкими к свойствам в случае истинного конденсата.

В ультрахолодном двухкомпонентном газе Ферми атомов с притяжением при достаточно низких температурах образуется конденсат куперовских пар. Естественно возникает вопрос, как куперовское спаривание и конденсат пар влияют на трехчастичную рекомбинацию. Анализируя эту проблему, будем предполагать, что притяжение, т. е. отрицательная длина рассеяния a < 0, возникает в рамках (является результатом) резонанса Фешбаха при s-характере межатомного рассеяния. При этом, как обычно, можно считать, что взаимодействие имеет место только между атомами разных компонент. Полученные в настоящей работе результаты привели к неочевидному на первый взгляд заключению: куперовское спаривание ведет к росту вероятности трехчастичной рекомбинации и скорости распада системы.

Чтобы сделать рассмотрение прозрачным, ограничимся случаем сильно разреженного газа, предпо-

^{*}E-mail: vsbabichenko@hotmail.com

лагая выполненными условия

$$|a|k_F \ll 1, \quad r_0 k_F \ll 1, \tag{1}$$

где *а* — отрицательная длина рассеяния, *r*₀ — характерный размер области межатомного взаимодействия ($\hbar = 1$). При a < 0 слабо связанные димеры, наличие которых характерно для случая a > 0, не возникают (см., например, [4, 5]). При рекомбинации молекула оказывается на глубоком уровне. Большая выделяющаяся энергия обращается в кинетическую энергию молекулы как целого и третьей частицы, вовлеченной в процесс рекомбинации. Здесь картина аналогична для частиц Бозе и Ферми. Вероятность перехода в ферми-случае, так же как и в бозе-случае, пропорциональна трехчастичному коррелятору. Однако в ферми-случае коэффициент, определяющий вероятность помимо трехчастичного коррелятора, антисимметричен относительно перестановки частиц, принадлежащих к одной и той же компоненте. Этот коэффициент не зависит от состояния системы, и именно поведение трехчастичного коррелятора определяет зависимость вероятности образования молекул от состояния системы и при появлении конденсата куперовских пар ведет к обращению знака эффекта по сравнению со случаем конденсации бозе-частиц.

2. ТРЕХЧАСТИЧНАЯ РЕКОМБИНАЦИЯ В ГАЗЕ ФЕРМИ АТОМОВ

Рассматривая трехчастичную рекомбинацию в ферми-газе низкой плотности с образованием молекулы в сильно связанном состоянии, будем предполагать, что парному взаимодействию отвечает *s*-рассеяние с отрицательной длиной рассеяния. Гамильтониан системы запишется в форме

$$\widehat{H} = \widehat{H}_0 + \widehat{H}',\tag{2}$$

где \hat{H}_0 — гамильтониан, соответствующий чисто упругим процессам, \hat{H}' — гамильтониан, описывающий неупругий рекомбинационный процесс,

$$\widehat{H}' = \frac{1}{2} \sum_{\sigma \neq \sigma'} \int d^3 r_1 d^3 r_2 d^3 r_3 \times \\
\times \left\{ \begin{array}{l} \widehat{\psi}_m^{\dagger} \left(\mathbf{r}_1, \mathbf{r}_2 \right) \widehat{\psi}_{\sigma}^{\dagger} \left(\mathbf{r}_3 \right) \widehat{V} \left(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3 \right) \times \\
\times \widehat{\psi}_{\sigma} \left(\mathbf{r}_1 \right) \widehat{\psi}_{\sigma'} \left(\mathbf{r}_2 \right) \widehat{\psi}_{\sigma} \left(\mathbf{r}_3 \right) + \text{H.c.} \end{array} \right\}. \quad (3)$$

Здесь $\widehat{\psi}_{m}^{\dagger}(\mathbf{r}_{1},\mathbf{r}_{2})$ — оператор рождения молекулы,

$$\hat{\psi}_{m}^{\dagger}(\mathbf{r}_{1},\mathbf{r}_{2}) = \\ = \sum_{\mathbf{q}} \exp\left(-i\frac{1}{2}\mathbf{q}\cdot(\mathbf{r}_{1}+\mathbf{r}_{2})\right)\varphi_{m}(\mathbf{r}_{1}-\mathbf{r}_{2})\,\hat{b}_{\mathbf{q}},\quad(4)$$

 $\varphi_m (\mathbf{r}_1 - \mathbf{r}_2)$ — волновая функция молекулы в системе ее центра инерции. Операторы фермионного поля имеют стандартный вид

$$\widehat{\psi}_{\sigma}\left(\mathbf{r}\right) = \sum_{\mathbf{k}} \widehat{c}_{\mathbf{k}\sigma} \exp\left(i\mathbf{k}\cdot\mathbf{r}\right),\tag{5}$$

где σ — индекс компоненты ферми-частицы, принимающий два значения: $\sigma = \uparrow, \downarrow$. Ограничиваясь парной структурой взаимодействия, вершину $\hat{V}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3)$ можно записать в виде

$$\widehat{V}\left(\mathbf{r}_{1},\mathbf{r}_{2},\mathbf{r}_{3}\right)=U\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)+U\left(\mathbf{r}_{3}-\mathbf{r}_{2}\right),$$

где $U(\mathbf{r})$ — потенциал взаимодействия частиц, имеющих разные индексы компонент.

После перехода к фурье-компонентам гамильтониан неупругого процесса рождения молекулы \widehat{H}' приобретает вид

$$\widehat{H}' = \sum_{\sigma \neq \sigma'} \sum_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3, \mathbf{q}} \left(\Gamma_{\mathbf{q}, \mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3} \widehat{c}_{\mathbf{k}_1, \sigma} \widehat{c}_{\mathbf{k}_2, \sigma'} \times \widehat{c}_{\mathbf{k}_3, \sigma} \widehat{b}_{\mathbf{q}}^{\dagger} \widehat{c}_{-\mathbf{q}+\mathbf{K}, \sigma}^{\dagger} + \text{H.c.} \right). \quad (6)$$

Здесь $\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3$ — малые импульсы трех частиц, две из которых имеют одинаковые индексы компонент σ (с импульсами $\mathbf{k}_1, \mathbf{k}_3$), а третья — индекс σ' , не совпадающий с σ . В процессе релаксации две частицы, взаимодействуя друг с другом, образуют молекулу, а третья частица, забирая энергию, выделяющуюся при образовании молекулы, приобретает большой импульс $\mathbf{q} = \mathbf{q}_*$, величина которого определяется из закона сохранения энергии и имеет вид

$$q_* = \sqrt{\frac{4}{3}m|E_b|},$$

где $E_b \gg \mathbf{k}_i^2/2m$ — энергия связи молекулы (i = 1, 2, 3) — индекс частицы, участвующей в процессе), которая предполагается существенно большей энергий сталкивающихся частиц, \mathbf{K} — суммарный импульс сталкивающихся частиц $\mathbf{K} = \sum_{i=1,2,3} \mathbf{k}_i$. Поскольку волновая функция трех ферми-атомов симметрична, вершина $\Gamma_{\mathbf{q},\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3}$ в (6) с учетом антисимметризации при перестановке частиц с одинаковыми индексами может быть представлена в виде

$$\Gamma_{\mathbf{q},\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}} = \frac{1}{2} \int d^{3}r_{1}d^{3}r_{2}d^{3}r_{3} \times \left\{ \begin{array}{c} \varphi_{m}^{*}\left(\mathbf{r}_{12}\right)U\left(\mathbf{r}_{32}\right)\times \\ \times \exp\left[i\sum_{i}\left(\mathbf{k}_{i}\cdot\mathbf{r}_{i}\right)-i\mathbf{q}\cdot\mathbf{R}_{12}-\right. \\ \left.-i\left(-\mathbf{q}+\mathbf{K}\right)\cdot\mathbf{r}_{3}\right]-\left(1\rightleftharpoons3\right) \end{array} \right\}, \quad (7)$$

где

$$\mathbf{r}_{12} = \mathbf{r}_1 - \mathbf{r}_2, \quad \mathbf{r}_{32} = \mathbf{r}_3 - \mathbf{r}_2, \quad \mathbf{R}_{12} = \frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2).$$

Расстояние $|\mathbf{r}_1 - \mathbf{r}_2|$ имеет масштаб размера молекулы r_* . Близкий масштаб будет характерен и для расстояния $|\mathbf{r}_3 - \mathbf{r}_2|$, поскольку только в этом случае третья частица может получить большой импульс, сравнимый по значению и противоположный по направлению импульсу образующейся молекулы. Переходя в интеграле (7) к фурье-компонентам для потенциала $U(\mathbf{r})$ и волновой функции $\varphi_m(\mathbf{r})$ —

$$U(\mathbf{r}) = \int d^3 q U(\mathbf{q}) \exp(i\mathbf{q} \cdot \mathbf{r}),$$
$$\varphi_m(\mathbf{r}) = \int d^3 q \varphi_m(\mathbf{q}) \exp(i\mathbf{q} \cdot \mathbf{r})$$

— и интегрируя по координатам r_1, r_2, r_3 , получим выражение для вершины $\Gamma_{\mathbf{q},\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3}$ в виде

$$\Gamma_{\mathbf{q},\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}} = \frac{1}{2} \times \\ \times \left[\varphi_{m}^{*} \left(-\frac{1}{2} \mathbf{q} + \mathbf{k}_{1} \right) U \left(\mathbf{q} - \mathbf{k}_{1} - \mathbf{k}_{2} \right) - (1 \rightleftharpoons 3) \right]. \quad (8)$$

Рассматривая ферми-газ с большой отрицательной длиной рассеяния $|a| \gg r_0, r_*$ при выполнении неравенств (1), в условиях резонанса Фешбаха мы сталкиваемся с резким увеличением вершины Г. Действительно, в этом случае для синглетных пар в непрерывном спектре при энергии $\varepsilon \to 0$ реализуется квазирезонансное состояние при отсутствии реального слабо связанного димерного состояния. Решение уравнения Шредингера для пары частиц в этих условиях демонстрирует, что при $|
ho| < r_0$ волновая функция $\psi(\rho)$ приобретает большой дополнительный множитель $|a|/r_0$. Амплитуда вероятности одновременного нахождения трех фермионов в объеме с радиусом порядка r_{*} оказывается увеличенной в $(|a|/r_0)^2$ раз по сравнению со случаем, когда рассеянием медленных частиц пренебрегается (ср. [5–7]). Заметим, что $r_* \lesssim r_0$. Соответственно, вершина (8) эффективно приобретает дополнительный множитель порядка $(|a|/r_0)^2$.

Принимая во внимание, что

$$|\mathbf{q}| \sim q_* = \sqrt{\frac{4}{3}m|E_b|},$$

и используя малость импульсов, $|\mathbf{k}_i| \ll q_* \sim r_0^{-1}$, можно разложить функции $\varphi_m(\mathbf{q})$ и $U(\mathbf{q})$ в (8) по параметру $|\mathbf{k}_i|/q_* \ll 1$. В результате получим следующее выражение для амплитуды образования молекулы:

$$\Gamma_{\mathbf{q},\mathbf{k}_{1},\mathbf{k}_{2},\mathbf{k}_{3}} = \widetilde{\Gamma}\left(q\right) \frac{\left(\mathbf{k}_{13} \cdot \mathbf{q}\right)}{\mathbf{q}^{2}},\tag{9}$$

где

$$\mathbf{k}_{13} = \mathbf{k}_1 - \mathbf{k}_3,$$

$$\widetilde{\Gamma}(q) = \left(\frac{|a|}{r_0}\right)^2 \times \left[\frac{d\varphi_m^*\left(-q/2\right)}{dq}U(q) + \varphi_m^*\left(-\frac{q}{2}\right)\frac{dU(q)}{dq}\right].$$

Во всех случаях мы предполагаем сферическую симметрию функций $U(\mathbf{r}), \varphi_m(\mathbf{r})$. Поэтому фактически функция $\widetilde{\Gamma}(q)$ зависит только от модуля вектора $q = |\mathbf{q}|$.

В предположении малости вероятности рекомбинационных переходов имеем для числа переходов в единицу времени:

$$W = 2\pi \sum_{i,f} \widehat{\rho}_i |\widehat{H}'_{fi}|^2 \delta \left(E_f - E_i \right) =$$

= $\int dt \langle \widehat{H}'(0) \,\widehat{H}'(t) \rangle$, (10)
 $\widehat{H}'(t) = \exp\left(i\widehat{H}_0 t\right) \widehat{H}' \exp\left(-i\widehat{H}_0 t\right)$.

Здесь $\hat{\rho}_i$ — равновесная матрица, определяемая гамильтонианом \hat{H}_0 . При суммировании по конечным состояниям в (10) можно воспользоваться тем, что $\varepsilon_F \ll E_b$. Подставляя гамильтониан \hat{H}' (6) в (10), получим

$$W = \int dt \times \\ \times \sum_{\sigma \neq \sigma'} \sum_{\substack{\mathbf{k}_{i}, \mathbf{q} \\ \mathbf{k}'_{i}, \mathbf{q}'}} \left\{ \widetilde{\Gamma}(q) \widetilde{\Gamma}^{*}(q') \frac{(\mathbf{q} \cdot \mathbf{k}_{13}) (\mathbf{q}' \cdot \mathbf{k}'_{13})}{q^{2} q'^{2}} \times \right. \\ \times \left\{ \langle \widehat{c}^{\dagger}_{\mathbf{k}'_{1}, \sigma}(0) \, \widehat{c}^{\dagger}_{\mathbf{k}'_{2}, \sigma'}(0) \, \widehat{c}^{\dagger}_{\mathbf{k}'_{3}, \sigma}(0) \, \widehat{b}_{\mathbf{q}'}(0) \, \widehat{c}_{-\mathbf{q}' + \mathbf{K}, \sigma}(0) \times \right. \\ \left. \times \left. \widehat{c}_{\mathbf{k}_{1}, \sigma}(t) \, \widehat{c}_{\mathbf{k}_{2}, \sigma'}(t) \, \widehat{c}_{\mathbf{k}_{3}, \sigma}(t) \, \widehat{b}^{\dagger}_{\mathbf{q}}(t) \, \widehat{c}^{\dagger}_{-\mathbf{q} + \mathbf{K}, \sigma}(t) \right\} + \\ \left. + \mathrm{H.c.} \right\}. \quad (11)$$

Расцепляя среднее на произведение средних от медленных и быстрых операторов полей, получаем

$$W = \int dt \times \\ \times \sum_{\sigma \neq \sigma'} \sum_{\mathbf{k}_i, \mathbf{q}; \mathbf{k}'_i, \mathbf{q}'} \left\{ \widetilde{\Gamma} \left(q \right) \widetilde{\Gamma}^* \left(q' \right) \frac{\left(\mathbf{q} \cdot \mathbf{k}_{13} \right) \left(\mathbf{q}' \cdot \mathbf{k}'_{13} \right)}{q^2 q'^2} \times \\ \times K^{(3)} \left(\mathbf{k}_i, \mathbf{k}'_i; \sigma, \sigma'; t \right) K^{(2)}_{B-F} \left(\mathbf{q}, \mathbf{q}'; t \right) + \text{H.c.} \right\}, \quad (12)$$

где $K^{(3)}$ ($\mathbf{k}_i, \mathbf{k}'_i; \sigma, \sigma'; t$) — трехчастичный коррелятор, зависящий от операторов, медленно изменяющихся в пространстве и во времени:

$$K^{(3)}\left(\mathbf{k}_{i},\mathbf{k}_{i}';\sigma,\sigma';t\right) = \langle \widehat{c}_{\mathbf{k}_{1}',\sigma}^{\dagger}\left(0\right) \widehat{c}_{\mathbf{k}_{2}',\sigma'}^{\dagger}\left(0\right) \widehat{c}_{\mathbf{k}_{3}',\sigma}^{\dagger}\left(0\right) \times \\ \times \widehat{c}_{\mathbf{k}_{3},\sigma}\left(t\right) \widehat{c}_{\mathbf{k}_{2},\sigma'}\left(t\right) \widehat{c}_{\mathbf{k}_{1},\sigma}\left(t\right) \rangle.$$
(13)

Характерные времена изменения операторов $\widehat{c}_{\mathbf{k},\sigma}(t)$ в этом корреляторе $t_s \sim 1/\varepsilon_F$. Коррелятор $K_{B-F}^{(2)}(\mathbf{q},\mathbf{q}';t)$ есть среднее от операторов $\widehat{b}_{\mathbf{q}}(t)$ и $\widehat{c}_{\mathbf{q},\sigma}(t)$, быстро меняющихся в пространстве и времени, характерное время изменения для которых $t_r \sim 1/E_b \ll t_s$:

$$\begin{split} K^{(2)}_{B-F} \left(\mathbf{q}, \mathbf{q}'; t \right) &= \\ &= \langle \hat{b}_{\mathbf{q}} \left(0 \right) \hat{b}^{\dagger}_{\mathbf{q}'} \left(t \right) \hat{c}_{-\mathbf{q}+\mathbf{K},\sigma} \left(0 \right) \hat{c}^{\dagger}_{-\mathbf{q}'+\mathbf{K},\sigma} \left(t \right) \rangle \\ &= \\ &= \langle \hat{b}_{\mathbf{q}} \left(0 \right) \hat{b}^{\dagger}_{\mathbf{q}} \left(t \right) \rangle \langle \hat{c}_{-\mathbf{q}+\mathbf{K},\sigma} \left(0 \right) \hat{c}^{\dagger}_{-\mathbf{q}+\mathbf{K},\sigma} \left(t \right) \rangle \delta_{\mathbf{q};\mathbf{q}'}. \end{split}$$
(14)

Коррелятор $K_{B-F}^{(2)}$ может быть представлен в виде произведения двух парных корреляторов для операторов $\hat{b}_{\mathbf{q}}$ и $\hat{c}_{-\mathbf{q}+\mathbf{K},\sigma}$, которые легко вычисляются, как парные корреляторы для одночастичных систем. При этом возникает δ -символ $\delta_{\mathbf{q};\mathbf{q}'}$, так что коррелятор $K_{B-F}^{(2)}$ можно записать в виде

$$K_{B-F}^{(2)}\left(\mathbf{q},\mathbf{q}';t\right) = K_{B-F}^{(2)}\left(\mathbf{q};t\right)\delta_{\mathbf{q};\mathbf{q}'}.$$

Характерные времена изменения коррелятора $K^{(3)}$ значительно больше характерных времен изменения коррелятора $K_{B-F}^{(2)}$, а именно $t_r \sim 1/E_b \ll t_s$, и при интегрировании по времени в (12) пределы интегрирования ограничиваются малым временем t_r . В связи с этим зависимостью от времени t трехчастичного коррелятора $K^{(3)}$ в (12) можно пренебречь, и все операторы в $K^{(3)}$ (12) могут быть взяты в один и тот же момент времени. По этой причине коррелятор $K^{(3)}$ может быть записан в виде

$$K^{(3)} (\mathbf{k}_{i}, \mathbf{k}_{i}'; \sigma, \sigma') =$$

$$= \langle \hat{c}^{\dagger}_{\mathbf{k}_{1}', \sigma} (0) \hat{c}^{\dagger}_{\mathbf{k}_{2}', \sigma'} (0) \hat{c}^{\dagger}_{\mathbf{k}_{3}', \sigma} (0) \times$$

$$\times \hat{c}_{\mathbf{k}_{3}, \sigma} (0) \hat{c}_{\mathbf{k}_{2}, \sigma'} (0) \hat{c}_{\mathbf{k}_{1}, \sigma} (0) \rangle. \quad (15)$$

Таким образом (12) принимает вид

$$W = \sum_{\sigma \neq \sigma'} \sum_{\mathbf{k}_i, \mathbf{k}'_i, \mathbf{q}} \left\{ |\widetilde{\Gamma}(q)|^2 \frac{(\mathbf{q} \cdot \mathbf{k}_{13}) (\mathbf{q} \cdot \mathbf{k}'_{13})}{q^4} \times K^{(3)}(\mathbf{k}_i, \mathbf{k}'_i; \sigma, \sigma') \int dt \, K^{(2)}_{B-F}(\mathbf{q}; t) + \text{H.c.} \right\}.$$
(16)

Коррелятор $K_{B-F}^{(2)}(\mathbf{q};t)$ легко вычисляется и принимает простой вид:

$$K_{B-F}^{(2)}\left(\mathbf{q};t\right) = \exp\left(-i\left(E_b - \frac{3}{4}\frac{q^2}{m}\right)t\right)$$

Вычисляя интеграл по времени и по импульсу **q**, в (16) можно выделить блок

$$\sum_{\mathbf{q}} |\widetilde{\Gamma}(q)|^2 \frac{(\mathbf{q} \cdot \mathbf{k}_{13})(\mathbf{q} \cdot \mathbf{k}'_{13})}{q^4} \times \\ \times \int_{-\infty}^{\infty} dt \exp\left(-i\left(E_b - \frac{3}{4}\frac{q^2}{m}\right)t\right).$$

Здесь $3q^2/4m$ — суммарная кинетическая энергия молекулы и быстрого атома, вылетающих с практически равными по величине, но противоположными по направлению импульсами. Простое вычисление последнего выражения дает

$$\frac{2}{9\pi}q_*|\widetilde{\Gamma}(q_*)|^2\frac{\mathbf{k}_{13}\cdot\mathbf{k}_{13}'}{q_*^2},$$

где $q_* = \sqrt{4mE_b/3}$. В результате для вероятности (16) находим

$$W = B \sum_{\sigma \neq \sigma'} \sum_{\substack{\mathbf{k}_{i}, \mathbf{k}'_{i} \\ i=1,2,3}} \frac{\mathbf{k}_{13} \cdot \mathbf{k}'_{13}}{q_{*}^{2}} K^{(3)} \left(\mathbf{k}_{i}, \mathbf{k}'_{i}; \sigma, \sigma'\right) \quad (17)$$

и значение константы B определяется выражением

$$B = \frac{2}{9\pi} m q_* |\widetilde{\Gamma}(q_*)|^2.$$
(18)

Коэффициент $\mathbf{k}_{13} \cdot \mathbf{k}'_{13}/q_*^2$ в (17) является прямым следствием пространственной антисимметрии при перестановке тождественных ферми-частиц. Его структура оказывается существенной при вычислении вероятности W с учетом коррелятора $K^{(3)}$. Степень уменьшения W при учете этого коэффициента, пропорционального \mathbf{k}^2/q_*^2 , был впервые отмечен Д. Петровым [6].

3. ВЫЧИСЛЕНИЕ ТРЕХЧАСТИЧНОГО КОРРЕЛЯТОРА. ВЕРОЯТНОСТЬ ОБРАЗОВАНИЯ МОЛЕКУЛ

Начнем с вычисления вероятности перехода W в сильно связанное состояние (17). В нулевом по межчастичному взаимодействию приближении коррелятор $K^{(3)}$ принимает вид

$$K_{0}^{(3)} \left(\mathbf{k}_{i}, \mathbf{k}_{i}^{\prime}; \sigma, \sigma^{\prime}\right) = n_{\mathbf{k}_{1},\sigma} n_{\mathbf{k}_{2},\sigma^{\prime}} n_{\mathbf{k}_{3},\sigma} \times \\ \times \left(\delta_{\mathbf{k}_{1};\mathbf{k}_{1}^{\prime}} \delta_{\mathbf{k}_{3};\mathbf{k}_{3}^{\prime}} - \delta_{\mathbf{k}_{1};\mathbf{k}_{3}^{\prime}} \delta_{\mathbf{k}_{3};\mathbf{k}_{1}^{\prime}}\right) \delta_{\mathbf{k}_{2};\mathbf{k}_{2}^{\prime}} \left(1 - \delta_{\sigma,\sigma^{\prime}}\right), \quad (19)$$

где $n_{\mathbf{k},\sigma}$ — функция распределения идеального двухкомпонентного газа фермионов. Подставляя это выражение в (17), при T = 0 находим

$$W_0 = B \frac{24}{5} \frac{k_F^2}{q_*^2} n^3, \tag{20}$$

где *n* — плотность частиц одной компоненты.

При конечной температуре $T \ll \varepsilon_F$ температурная поправка к вероятности перехода W может быть легко вычислена при подстановке $K_0^{(3)}$ (19) в (17) с учетом температурной зависимости $n_{\mathbf{k},\sigma}$. В результате находим

$$W_0(T) = W_0 \left[1 + \frac{\pi^2}{3} \left(\frac{T}{\varepsilon_F} \right)^2 \right].$$
 (21)

Учет межчастичного взаимодействия меняет состояние, по которому происходит усреднение в (13). Рассмотрим сначала изменения коррелятора $K_0^{(3)}$ в отсутствие куперовского спаривания в первом порядке по параметру $|a|k_F \ll 1$. Гамильтониан взаимодействия частиц с малой энергией $\varepsilon \lesssim \varepsilon_F$ может быть записан в виде

$$\widehat{H}_{int} = \sum_{\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_1' \mathbf{k}_2'} V(\mathbf{k}) \, \widehat{c}^{\dagger}_{\mathbf{k}_1' \uparrow} \widehat{c}^{\dagger}_{\mathbf{k}_2' \downarrow} \widehat{c}_{\mathbf{k}_2 \downarrow} \widehat{c}_{\mathbf{k}_1 \uparrow}, \qquad (22)$$

где $\mathbf{k} = \mathbf{k}_1' - \mathbf{k}_1$; сумма в этом выражении берется с учетом условия $\mathbf{k}_1 + \mathbf{k}_2 = \mathbf{k}_1' + \mathbf{k}_2'$.

В дальнейшем мы воспользуемся обычным методом замены в гамильтониане взаимодействия \hat{H}_{int} истинного потенциала взаимодействия $U(\mathbf{r})$ на эффективный потенциал $V(\mathbf{r})$ с тем же значением длины рассеяния |a| при малых энергиях $\varepsilon \to 0$. Такой метод сохраняет возможность использовать теорию возмущений. Выберем $V(\mathbf{r})$ в простой форме сферической прямоугольной ямы глубиной $V_0 \gg \varepsilon_F$ и радиусом R_0 . Применимость теории возмущений предполагает выполнение неравенства $\varkappa R_0 \ll 1$, где $\varkappa = \sqrt{mV_0}$, при этом отсутствует и связанное состояние в яме. Легко проследить, что в случае близости к резонансу $|a| \gg R_0$. В предположении малой плотности частиц выполняется неравенство

 $k_F |a| \ll 1$ и, следовательно, в условиях резонанса $k_F R_0 \ll k_F |a| \ll 1$. Вследствие того, что $V(\mathbf{r})$ резко убывает при $|\mathbf{r}| > R_0$, фурье-компонента $V(\mathbf{k})$ быстро уменьшается при $kR_0 \gtrsim 1$ ($k \gg k_F$), при этом

$$V\left(\mathbf{k}\to0\right)=\frac{4\pi}{m}a=g.$$

Трехчастичный коррелятор $K^{(3)}(\mathbf{k}_i,\mathbf{k}'_i)$ в представлении взаимодействия по \widehat{H}_{int} может быть записан в виде

$$K^{(3)}(\mathbf{k}_{i},\mathbf{k}_{i}') = \operatorname{Sp}\left\{\widehat{\rho}_{i}^{(0)}\widehat{c}_{\mathbf{k}_{1}\uparrow}^{\dagger}(0)\,\widehat{c}_{\mathbf{k}_{2}\downarrow}^{\dagger}(0)\,\widehat{c}_{\mathbf{k}_{3}\uparrow}^{\dagger}(0) \times \widehat{c}_{\mathbf{k}_{3}\uparrow}(0)\,\widehat{c}_{\mathbf{k}_{3}\uparrow}(0)\,\widehat{c}_{\mathbf{k}_{2}\downarrow}(0)\,\widehat{c}_{\mathbf{k}_{1}\uparrow}(0)\,\widehat{S}\right\},\quad(23)$$

где $\hat{\rho}_i^{(0)}$ — матрица плотности идеального газа, оператор \hat{S} — *S*-матрица, имеющая вид [8]

$$\widehat{S} = T \exp\left(-i \int_{-\infty}^{\infty} dt \,\widehat{H}_{int}\right).$$
(24)

Учет поправки первого порядка по \widehat{H}_{int} к коррелятору $K^{(3)}$ приводит к выражению

$$K_{1}^{(3)}(\mathbf{k}_{i},\mathbf{k}_{i}') =$$

$$= 2V(\mathbf{k}) \left[\frac{n_{\mathbf{k}_{1}\uparrow}n_{\mathbf{k}_{2}\downarrow}\left(1-n_{\mathbf{k}_{1}\uparrow\uparrow}\right)\left(1-n_{\mathbf{k}_{2}\downarrow\downarrow}\right)}{\varepsilon_{\mathbf{k}_{1}'}+\varepsilon_{\mathbf{k}_{2}'}-\varepsilon_{\mathbf{k}_{1}}-\varepsilon_{\mathbf{k}_{2}}} \times n_{\mathbf{k}_{3}\uparrow}\delta_{\mathbf{k}_{3};\mathbf{k}_{3}'}-(1\rightleftharpoons3) \right], \quad (25)$$

где $\mathbf{k} = \mathbf{k}'_2 - \mathbf{k}_2$. Фурье-компонента $V(\mathbf{k})$ резко уменьшается при $kR_0 \gtrsim 1$ ($k \gg k_F$). Это существенно, поскольку при подстановке (25) в (17) расходимость интеграла при больших импульсах k'_2 от члена в квадратных скобках, пропорционального

$$\frac{n_{\mathbf{k}_1\uparrow}n_{\mathbf{k}_2\downarrow}n_{\mathbf{k}_3\uparrow}}{\varepsilon_{\mathbf{k}_1'}+\varepsilon_{\mathbf{k}_2'}-\varepsilon_{\mathbf{k}_1}-\varepsilon_{\mathbf{k}_2}},$$

при интегрировании по k'_2 обрезается только при учете зависимости $V(\mathbf{k})$ от импульса. При этом значение интеграла оказывается пропорциональным $1/R_0$ и перестает зависеть от длины рассеяния. Фактически вклад от рассматриваемого члена в $K^{(3)}$ определяет некоторую перенормировку W_0 (20). В связи с этим нас будет интересовать вклад от остальных членов в квадратных скобках в выражении (25). Для этих членов в (25) выполняются соотношения $k_i, k'_i \leq k_F, \quad V(\mathbf{k}) = g.$ Подставляя $K_1^{(3)}$ (25) в (17) и вычисляя соответствующие интегралы, находим вероятность перехода W_1 , а также общее выражение для W_n в линейном по взаимодействию приближении в отсутствие куперовского спаривания:

$$W_n = W_0 + W_1 =$$

= $W_0 (T) \left(1 - \frac{6}{35\pi} (11 - 2\ln 2) k_F |a| \right).$ (26)

4. ВЛИЯНИЕ КУПЕРОВСКОГО СПАРИВАНИЯ

Рассмотрим теперь вклад куперовского спаривания в формирование трехчастичного коррелятора (15). При усреднении по основному состоянию в (15) кроме нормальных средних необходимо учитывать аномальные средние. Вклад от аномальных средних без учета дополнительных перенормировок за счет разложения *S*-матрицы (24) может быть представлен в виде

$$K_{S}^{(3)} = -\left(\langle \hat{c}_{\mathbf{k}_{1}\uparrow}^{\dagger}(0) \, \hat{c}_{-\mathbf{k}_{1}\downarrow}^{\dagger}(0) \rangle \langle \hat{c}_{\mathbf{k}_{1}\uparrow}(0) \, \hat{c}_{-\mathbf{k}_{1}\downarrow}(0) \rangle \times n_{\mathbf{k}_{3}} \delta_{\mathbf{k}_{3};\mathbf{k}_{3}'} \delta_{\mathbf{k}_{2};-\mathbf{k}_{1}'} \delta_{\mathbf{k}_{2};-\mathbf{k}_{1}} - (\mathbf{k}_{1} \rightleftharpoons \mathbf{k}_{3}) \right), \quad (27)$$

где $\langle \hat{c}_{\mathbf{k}_1\uparrow}(0) \hat{c}_{-\mathbf{k}_1\downarrow}(0) \rangle$ и $\langle \hat{c}^{\dagger}_{\mathbf{k}'_1\uparrow}(0) \hat{c}^{\dagger}_{-\mathbf{k}'_1\downarrow}(0) \rangle$ — аномальные средние (см., например, [8,9]). Если помимо аномальных средних учесть перенормировки *S*-матрицы (24) до первого и более высокого порядка по \hat{H}_{int} (22), то это приведет к возникновению дополнительного к (27) вклада, пропорционального $k_F|a|$, которым в случае газа малой плотности, т.е. малости параметра $k_F|a| \ll 1$, можно пренебречь. Вычисляя аномальное среднее по перестроенному в соответствии с теорией БКШ состоянию и используя стандартный метод u-v-преобразования, имеем при температуре T = 0

где

$$E_{\mathbf{k}_1} = \sqrt{|\Delta|^2 + \left(\frac{\mathbf{k}_1^2}{2m} - \mu\right)^2},$$

 $\langle \hat{c}_{\mathbf{k}_{1}\uparrow}(0) \, \hat{c}_{-\mathbf{k}_{1}\downarrow}(0) \rangle = \frac{\Delta}{F_{\mathbf{k}_{1}}},$

 Δ — куперовская щель в спектре одночастичных возбуждений. В рамках рассматриваемого метода интеграл по импульсам от полученного выражения легко вычисляется, что дает

$$\int \frac{d^3k_1}{(2\pi)^3} \frac{\Delta}{E_{\mathbf{k}_1}} = \frac{2\Delta}{g}.$$

Легко проследить, что при $T \neq 0$ этот результат сохраняется, если под Δ понимать зависящую от температуры T ширину щели $\Delta(T)$. В результате после подстановки части трехчастичного коррелятора $K_S^{(3)}$ (27), обусловленной куперовским спариванием, в выражение для полной вероятности процесса образования молекулы (17), находим часть W_S вероятности образования молекул, обусловленную куперовским спариванием:

$$W_{S} = W_{0}(T) \frac{9\pi^{2}}{4} \frac{1}{(k_{F}a)^{2}} \left(\frac{\Delta(T)}{\varepsilon_{F}}\right)^{2}, \qquad (28)$$

где $W_0(T)$ определяется выражением (21). Полная вероятность процесса образования молекул W является суммой нормальной части W_n (26) и части W_S (28), обусловленной куперовским спариванием, $W = W_n + W_S$. Из формулы (28) следует основной качественный результат: куперовское спаривание, иными словами, конденсат куперовских пар, усиливает трехчастичную рекомбинацию за счет образования молекул в газе ферми-атомов с отрицательной длиной рассеяния. В этом аспекте результат принципиально отличается от случая бозе-конденсации разреженного газа бозе-атомов, которая ведет к уменьшению трехчастичной рекомбинации.

Сравнивая температурную поправку к $W_0(T)$ с W_S (28), мы видим, что поскольку $T_c \approx \Delta (T=0)$, в интервале $T < T_c$ температурный ход W полностью определяется величиной вероятности W_S (28) с учетом зависимости $\Delta (T)$.

Итак, сравнивая результаты данной работы с результатами работы [5], в которой, в отличие от настоящей работы, рассматривался случай положительной амплитуды рассеяния ферми-атомов a > 0, следует отметить качественное различие в поведении вероятности образования молекул как функции амплитуды рассеяния. В случае большой положительной амплитуды рассеяния a > 0 в системе существуют реальные слабо связанные состояния пары ферми-атомов — димеры, в отличие от случая отрицательной амплитуды a < 0, когда образуются куперовские пары. В работе [5] при a > 0 вычислялась вероятность образования молекул за счет рассеяния димера на димере и за счет рассеяния атома на димере. Если положительная амплитуда рассеяния а растет, увеличивается и радиус димера, а его энергия связи уменьшается. В этом случае, чем больше размер димера, тем больше этот димер похож на два практически свободных фермиона, которые могут уходить друг от друга на достаточно большие расстояния. В связи с этим вероятность процесса

образования молекулы при рассеянии атома на димере, во время которого должны встретиться три ферми-атома в малой области пространства, уменьшается с ростом размера димера, а значит, с ростом амплитуды рассеяния *a*.

В отличие от случая a > 0 в случае отрицательной амплитуды рассеяния a < 0, который рассматривается в нашей работе, с ростом модуля величины амплитуды рассеяния радиус куперовской пары уменьшается, что ведет к росту вероятности встречи трех частиц в малой области пространства и, соответственно, к росту вероятности образования молекулы.

5. ЗАКЛЮЧЕНИЕ

В данной работе рассматривается роль многочастичных корреляций в процессе рекомбинации атомного ферми-газа, вызванного рождением молекул в случае отрицательной длины рассеяния a < 0. В частности, исследуется влияние куперовского спаривания на скорость процесса рекомбинации. Показано, что куперовское спаривание ведет к росту трехчастичного коррелятора и, в связи с этим, к росту скорости рекомбинации. Роль куперовского спаривания анализируется в предположении малой плотности системы и возможности разложения по параметру $k_F|a| \ll 1$. Это предположение позволяет провести как качественный, так и количественный анализ вклада куперовского спаривания в процесс рождения молекул. Экстраполяция полученных результатов в область $k_F|a| \lesssim 1$ дает значение вероятности W_S порядка значения W_0 . Эти оценки демонстрируют возможность экспериментального наблюдения эффекта.

ЛИТЕРАТУРА

- Ю. Каган, Б. В. Свистунов, Г. В. Шляпников, Письма в ЖЭТФ 42, 169 (1985).
- E. A. Burt, R. W. Ghrist, C. J. Myatt, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 79, 337 (1997).
- Ю. Каган, Б. В. Свистунов, Г. В. Шляпников, ЖЭТФ 93, 552 (1987).
- X. Du, Y. Zhang, and J. E. Thomas, Phys. Rev. Lett. 102, 250402 (2009).
- D. S. Petrov, C. Salomon, and G. V. Shlyapnikov, Phys. Rev. Lett. 93, 090404 (2009).
- 6. D. S. Petrov, Phys. Rev. A 67, 010703 (2003).
- K. Helfrich, H.-W. Hammer, and D. S. Petrov, Phys. Rev. A 81, 042715 (2010).
- А. А. Абрикосов, Л. П. Горьков, И. Е. Дзялошинский, Методы квантовой теории поля в статистической физике, Добросвет, Москва (1998), с. 81, 446.
- **9**. Л. Д. Ландау, Е. М. Лифшиц, *Статистическая физика*, ч. 2, Наука, Москва (1978), с. 188.