МАГНИТНАЯ СТРУКТУРА НИЗКОРАЗМЕРНОГО МУЛЬТИФЕРРОИКА LiCu₂O₂: ИССЛЕДОВАНИЕ МЕТОДАМИ ЯМР ^{63,65}Cu, ⁷Li

А. Ф. Садыков^{а*}, А. П. Геращенко^а, Ю. В. Пискунов^а, В. В. Оглобличев^а,

А. Г. Смольников^а, С. В. Верховский^а, А. Ю. Якубовский^b, Э. А. Тищенко^c, А. А. Буш^d

^а Институт физики металлов Уральского отделения Российской академии наук 620990, Екатеринбург, Россия

> ^bРоссийский научный центр «Курчатовский институт» 123182, Москва, Россия

^с Институт физических проблем им. П. Л. Капицы Российской академии наук 119334, Москва, Россия

^d Московский государственный институт радиотехники, электроники и автоматики (технический университет) 119454, Москва, Россия

Поступила в редакцию 11 марта 2012 г.

Выполнено комплексное ЯМР-исследование магнитной структуры мультиферроика $LiCu_2O_2$. Выяснено, что спиновые спирали в $LiCu_2O_2$ не лежат ни в одной из кристаллографических плоскостей ab, bcили ac. Внешнее магнитное поле, направленное вдоль оси c кристалла, не изменяет пространственной ориентации геликсов в цепочках Cu^{2+} . Магнитное поле $H_0 = 94$ кЭ, направленное вдоль осей a и b, подворачивает плоскости спиновых спиралей в цепочках, стремясь сориентировать нормаль n геликсов вдоль внешнего магнитного поля. Наибольший поворот плоскостей поляризации магнитных моментов имеет место при $H_0 \parallel b$.

1. ВВЕДЕНИЕ

Мультиферроик LiCu₂O₂ относится к классу фрустрированных квазиодномерных магнетиков, в которых имеет место конкуренция ферро- и антиферромагнитных обменных взаимодействий между ближайшими и следующими за ближайшими спинами в цепочке CuO₂. Помимо чисто физического интереса подобные системы рассматриваются как объекты возможных практических приложений в современной микроэлектронике. Ниже критической температуры $T_N = 23$ К в соединении LiCu₂O₂ наблюдается переход в упорядоченное состояние с несоизмеримой геликоидальной магнитной структурой [1, 2], сопровождаемый возникновением спонтанной макроскопической электрической поляризации Р [3], при этом величина и направление вектора Р зависят от внешнего магнитного поля. На сегодняшний день имеется несколько различных теорий, объясняющих возникновение сегнетомагнетизма в соединениях с геликоидальной магнитной структурой [4–6]. Они дают различные предсказания относительно взаимосвязи пространственной ориентации спинового геликса и направления электрической поляризации. Поэтому для экспериментальной проверки имеющихся теоретических моделей сегнетомагнетизма крайне важно знать реальную пространственную ориентацию плоскостей спиновых спиралей в кристалле и ее эволюцию в зависимости от величины и направления внешнего магнитного поля.

Несмотря на большое количество экспериментальных работ, посвященных исследованию магнитных и электрических свойств $LiCu_2O_2$ [1–3, 7–13], детальная картина магнитной структуры в основном состоянии этого оксида все еще остается не выясненной. Так, в работе по нейтронной дифракции [1] была предложена *ab*-плоскостная спиральная модель,

^{*}E-mail: sadykov@imp.uran.ru

⁹ ЖЭТФ, вып. 4 (10)

которая, однако, столкнулась с трудностями в объяснении направления макроскопической электрической поляризации **P**, индуцируемой в LiCu₂O₂ ниже $T_N = 23$ К. Позже, в 2007 г., Парк с соавт. [3] предложили другую, bc-плоскостную, геликоидальную магнитную структуру, которая была отчасти подтверждена в экспериментах по рассеянию поляризованных нейтронов [7]. В работах [8,9] на основе данных по нейтронной дифракции и ⁷Li-ЯМР была предложена модель планарной геликоидальной структуры, в которой ось геликса (нормаль п к плоскости спиновой спирали) лежит в плоскости ab и составляет с осями *a* и *b* угол примерно 45°. К такому же выводу о пространственной ориентации спинового геликса в LiCu₂O₂ пришли авторы работы [10], в которой исследовалась диэлектрическая проницаемость ε_c вдоль оси *с* кристалла в зависимости от величины и направления внешнего магнитного поля. Кроме того, в данной работе было показано, что магнитная структура в LiCu₂O₂ вполне устойчива к воздействию сильных внешних магнитных полей (вплоть до $H = 94 \text{ к} \Theta$), и магнитных переориентационных переходов типа «спин-флоп» в этой системе не наблюдается.

Стоит обратить внимание на то, что представленные выше исследовательские работы проводились (за исключением работы [10]) на двойниковых кристаллах LiCu₂O₂, что могло вызывать дополнительные трудности при интерпретации результатов. В 2009 г. были исследованы магнитные свойства монодоменных образцов LiCu₂O₂ методами электронного спинового и ядерного магнитного резонансов [11]. Авторам работы [11] удалось описать полученные результаты в рамках моделей планарного геликса при ориентациях Н || b, Н || с и коллинеарной спин-модулированной структуры при ориентации внешнего магнитного поля Н || а. В частности, они показали, что в нулевом магнитном поле и в поле Н || с геликс магнитных моментов лежит в плоскости ab, а при **H** || **b** $(H > 30 \text{ к} \Theta)$ — в плоскости ac.

В наших предыдущих ^{63,65} Сu-ЯМР-исследованиях магнитной структуры двойникового монокристалла LiCu₂O₂ [12,13] было установлено, что спектры ЯМР немагнитных ионов меди Cu⁺ при температурах ниже T_N удовлетворительно описываются в модели планарной спиральной магнитной структуры. При этом выяснено, что в оксиде LiCu₂O₂ нормаль к плоскости спиновой спирали составляет с осью *с* кристалла угол, близкий к 40°. В настоящей работе представлены результаты комплексного ЯМР-исследования на ядрах немагнитных ионов Cu⁺ и Li⁺ особенностей магнитной структуры мультиферроика LiCu₂O₂. Измерения выполнены на образце без двойников выше и ниже температуры магнитного фазового перехода при различных ориентациях монокристалла во внешнем магнитном поле.

2. ОБРАЗЦЫ И МЕТОДИКА ЭКСПЕРИМЕНТА

Образец LiCu₂O₂, исследованный в данной работе, был выращен методом зонной плавки и представлял собой кристалл без двойников с размерами $3 \times 4 \times 2$ мм³, позволяющими использовать его для ЯМР-исследований. Отсутствие двойникования в образце было проверено методами рентгеноструктурного анализа и оптической поляризационной микроскопии. Объемная магнитная монодоменность кристалла была установлена в результате исследования формы спектров ЯМР ⁷Li в зависимости от ориентации образца во внешнем магнитном поле при температуре $T < T_N = 23$ К.

ЯМР-измерения 63,65 Cu (I = 3/2) и 7 Li (I = 3/2) были проведены при температурах T = 290, 10,4.2 К в нулевом $H_0 = 0$ и во внешнем магнитном поле $H_0 = 94$ кЭ при ориентациях кристалла $\mathbf{H}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c}$. Сигнал спинового эха E(2t) формировался последовательностью двух когерентных радиочастотных импульсов $(\tau_p)_x - t_{del} - (\tau_p)_y -$ - t_{del} - echo, создающих в резонансной катушке с образцом переменное магнитное поле с амплитудой *H*₁ ∼ 50-200 Э. Для измерения спектров, ширина которых превышала полосу частот, возбуждаемую РЧ-импульсом, применялась методика суммирования массива фурье-спектров, полученных при изменении частоты спектрометра с шагом $\Delta \nu = 100$ кГц. Компоненты тензоров градиента электрического поля (ГЭП) и магнитного сдвига резонансных линий определялись с помощью специальной компьютерной программы моделирования спектров ЯМР, записанных при различных ориентациях монокристалла во внешнем магнитном поле.

3. ОСОБЕННОСТИ КРИСТАЛЛИЧЕСКОЙ И МАГНИТНОЙ СТРУКТУР LiCu₂O₂

Кристаллическую структуру орторомбического ${\rm LiCu_2O_2}$ можно представить как последовательное чередование вдоль оси *с* слоев: $-{\rm Cu}^+$ -, $-{\rm O}-{\rm Cu}^{2+}-{\rm O}-{\rm Li}-$ и $-{\rm Li}-{\rm O}-{\rm Cu}^{2+}-{\rm O}-$ [14], как показано на рис. 1. Таким образом, в оксиде имеются две кристаллографически неэквивалентные позиции меди: ионы в магнитном состоянии (${\rm Cu}^{2+}$) и в немагнитном (${\rm Cu}^+$). Нейтронные исследования показали,

Рис. 1. Ионы Li⁺, Cu⁺ и Cu²⁺ в кристаллической решетке LiCu₂O₂. Показаны внутри- и межцепочечные гейзенберговские обменные взаимодействия J_1 , J_2 , J_a , J', J'' между магнитными моментами меди и предполагаемая пространственная ориентация плоскостей спиновых спиралей в Cu²⁺-O-цепочках слоев m = 1, II, III, IV

что волновой вектор несоизмеримой магнитной структуры $q_y = 0.174 \cdot 2\pi/b$ [1] направлен вдоль цепочек ионов Cu²⁺, соседние магнитные моменты ионов Cu^{2+} вдоль оси *а* антипараллельны, а спины, связанные трансляцией на постоянную решетки с, сонаправлены. Возникновение геликоидального магнитного порядка в LiCu₂O₂ обусловлено сильной внутрицепочечной фрустрацией, вызванной соизмеримыми по величине гейзенберговскими обменными взаимодействиями в Cu²⁺-O-цепочках: ферромагнитным $J_1 < 0$ между ближайшими и антиферромагнитным $(A\Phi) J_2 > 0$ между следующими за ближайшими ионами Cu²⁺. Кроме того, цепочки, отстоящие друг от друга на величину а, связаны друг с другом гейзенберговским А Φ -взаимодействием J_a , а слои II, III (I, IV) и I, II (III, IV) (см. рис. 1) — гейзенберговскими взаимодействиями соответственно J' и J''. Величины обменных магнитных взаимодействий были определены в экспериментах по неупругому рассеянию нейтронов $(J_1, J_2, J_a, J') = (-7.0, 3.75, 3.40, 0.0)$ мэВ [15], а также при расчетах интегралов обменного взаимодействия, проведенных *ab initio* в приближении локальной плотности (LDA) $(J_1, J_2, J_a, J') = (-8.1, 14.4, 5.7, 0.4)$ мэВ [2]. Что касается взаимодействия J'', оно близко к нулю [16].

Элементарная ячейка LiCu₂O₂ содержит четыре кристаллографически эквивалентных позиции ионов Cu²⁺, расположенных в плоскостях (I, II, III, IV), как это показано на рис. 1. Ионы Cu⁺ находятся между двумя соседними I, II (III, IV) плоскостями и имеют 4 ближайших иона Cu²⁺. Каждый из ионов Li⁺ расположен между двумя Cu²⁺–О-цепочками в *ab*-плоскости и окружен несколькими ионами Cu²⁺, лежащими как в этой *ab*-плоскости, так и в двух соседних, верхней и нижней, *ab*-плоскостях (см. рис. 1).

4. СПЕКТРЫ ЯМР ^{63,65}Си И ⁷Li

Спектры ЯМР 63,65 Си в парамагнитной фазе монокристалла LiCu₂O₂ при $\mathbf{H}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c}$ и T = 290 K представляют собой два набора линий (рис. 2), соответствующих изотопам ⁶³Cu и ⁶⁵Cu (природное содержание данных изотопов составляет соответственно 69% и 31%). Каждый набор состоит из трех узких линий ($\Delta f_{1/2}$ < 100 кГц), одна из которых соответствует центральному переходу ($m_{\rm I}$ = $= -1/2 \leftrightarrow +1/2$), а две другие — переходам ($m_{\rm I} =$ $= -3/2 \leftrightarrow -1/2)$ и $(m_{\rm I} = +1/2 \leftrightarrow +3/2)$. Такая структура спектров обусловлена взаимодействием квадрупольного момента ядер $^{63}{\rm Cu}$
и $^{65}{\rm Cu}$ $(e^{63}Q$ = $= 0.220 \cdot 10^{-24} \text{ cm}^2, e^{65}Q = 0.204 \cdot 10^{-24} \text{ cm}^2) \text{ c}$ градиентом электрического поля (ГЭП), V_{ii}, создаваемым в месте расположения ядер их зарядовым окружением. Анализ ориентационной зависимости спектров ЯМР ^{63,65}Си позволил определить симметрию, направление главных осей и значение компонент тензора ГЭП в кристалле. Тензор обладает аксиальной симметрией с параметром асимметрии $\eta = (V_{XX} - V_{YY})/V_{ZZ} \approx 0$ и значениями квадрупольных частот ${}^{63}\nu_Q = V_{zz}e^{63}Q/2h = 27.16(1)$ МГц, $^{65}\nu_Q = V_{zz} e^{65} Q/2h = 25.13(1)$ МГц. Главная ось тензора ГЭП V_{zz} направлена вдоль оси с. Спектры ЯМР ^{63,65}Си в нулевом магнитном поле, измеренные при T = 290 K, представлены на рис. 3. Узкие резонансные пики на частотах 27.17(1) МГц и 25.14(1) МГц относятся соответственно к изотопам

Рис.2. ЯМР-спектры ^{63,65}Си в магнитоупорядоченной фазе монокристалла LiCu₂O₂ при температуре *T* = 10 К и ориентации внешнего магнитного поля **H**₀ || **a**, **b**, **c** (●). Узкие спектральные пики на рисунке соответствуют ЯМР-спектрам ^{63,65}Си при комнатной температуре. Сплошные линии представляют собой результат компьютерного моделирования спектров в модели планарной спиновой спирали в Cu²⁺-O-цепочках

⁶³Си и ⁶⁵Си. Отношения резонансных частот и интенсивностей наблюдаемых линий соответствуют отношениям квадрупольных моментов и природных содержаний этих изотопов.

Как упоминалось выше, в LiCu₂O₂ содержится одинаковое количество ионов Cu²⁺ и Cu⁺, которые находятся в кристаллически-неэквивалентных позициях, и вследствие различного ближнего окружения должны резонировать на разных частотах ЯМР. В наших измерениях резонансный сигнал наблюдался только от одной позиции меди. Мы полагаем, что спектры, представленные на рис. 2 и 3, представляют собой резонансный отклик от немагнитных ионов Cu⁺. Отсутствие резонансного сигнала от Cu²⁺ часто имеет место в содержащих медь оксидах, испытывающих фазовый магнитный переход [17,18]. Основная причина невозможности детектирования сигнала ЯМР — крайне высокая скорость спин-спиновой релаксации ядерного спина $T_2^{-1}>10^6~{\rm c}^{-1},$ обусловленная высокой спектральной плотностью на частотах ЯМР-флуктуаций магнитного момента электронов частично заполненной d-оболочки и
она ${\rm Cu}^{2+}.$

При охлаждении образца ниже температуры $T_N = 23$ К спектры ^{63,65}Си значительно уширяются и становятся более сложными (рис. 2, 3). Подобная модификация спектра, отражающего распределение локальных магнитных полей внутри образца, характерна для случая магнитного фазового перехода с формированием в веществе сложной геликоидальной структуры магнитных спиновых моментов.

На рис. 4 приведены спектры ЯМР ⁷Li для трех ориентаций магнитного поля $\mathbf{H}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c}$ в парамагнитной и магнитоупорядоченной фазах в поле $H_0 = 94$ кЭ. При $T > T_N$ спектры ⁷Li для всех ориентаций кристалла во внешнем магнитном поле состоят из трех квадрупольно расщеплен-

Рис. 3. Спектр ЯМР 63,65 Си в локальном магнитном поле в магнитоупорядоченной фазе монокристалла ${\rm LiCu_2O_2}$ при температуре T=4.2 К (•). Также показаны спектры 63,65 Си в нулевом магнитном поле при комнатной температуре. Сплошная линия представляет собой результат компьютерного моделирования спектра

Рис. 4. Спектры ЯМР ⁷Li в магнитоупорядоченной фазе монокристалла ${\rm LiCu_2O_2}$ при температуре T = 10 К и ориентации внешнего магнитного поля ${\rm H_0} \parallel {\rm a,b,c}$ (сплошные линии). Узкие спектральные пики на рисунке соответствуют ЯМР-спектрам ⁷Li при комнатной температуре. Штриховые линии представляют собой результат компьютерного моделирования спектров в модели планарной спиновой спирали

ных линий, как и ожидается для ядер со спином I = 3/2 и ненулевым значением квадрупольной частоты ${}^7\nu_Q = 47(1)$ кГц. Ниже температуры Нееля спектры ${}^7\text{Li}$, как и спектры меди, приобретают вид, характерный для несоизмеримых с решеткой спиральных магнитных структур. Когда магнитное поле приложено вдоль кристаллографических осей b и c, спектры ЯМР ${}^7\text{Li}$ представляют собой четырехгорбые уширенные линии, а когда вдоль оси a — резонансная линия лития имеет только два максимума.

5. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ЯМР-ИССЛЕДОВАНИЙ

В случае планарного геликса пространственная ориентация магнитного момента иона меди Cu²⁺, $\boldsymbol{\mu} = \boldsymbol{\mu} \mathbf{e}_{m,i,j,k}$, расположенного на позиции с радиус-вектором $\mathbf{r}_{m,i,j,k}$, определяется единичным вектором $\mathbf{e}_{m,i,j,k} = (e_{m,i,j,k}^x, e_{m,i,j,k}^y, e_{m,i,j,k}^z)$, компоненты которого выражаются следующим образом:

$$e_{m,i,j,k}^{x} = \cos \psi_{m} \cos \theta_{m} \sin \varphi_{m,i,j,k} - \\ -\sin \psi_{m} \cos \varphi_{m,i,j,k}, \quad (1)$$

$$e_{m,i,j,k}^{y} = \sin \psi_{m} \cos \theta_{m} \sin \varphi_{m,i,j,k} + + \cos \psi_{m} \cos \varphi_{m,i,j,k}, \quad (2)$$

$$e_{m,i,j,k}^{z} = -\sin\theta_{m}\sin\varphi_{m,i,j,k}.$$
(3)

Здесь θ_m (m = I, II, III, IV) — угол между осью кристалла c и нормалью **n** к плоскости геликса; ψ_m — угол между проекцией **n** на плоскость ab и осью a, $\varphi_{m,i,j,k}$ — угол вращения, задающий изменение фазы магнитных моментов при трансляции в направлениях a, b и c. Углы $\varphi_{m,i,j,k}$ для четырех плоскостей I–IV могут быть выражены через волновой вектор магнитной структуры $\mathbf{Q} = (\pi/a, 0.174 \cdot 2\pi/b, 0)$ [1] и начальные фазы ϕ_m следующим образом:

$$\varphi_{m,i,j,k} = \mathbf{Q}(ia, jb, kc) + \phi_m. \tag{4}$$

Для уменьшения независимых варьируемых параметров магнитной структуры LiCu₂O₂ мы, учитывая симметрийные свойства пространственной группы P_{nma} , полагали, что $\theta_{IV} = -\theta_{II} = \theta_1$, $\theta_{III} =$ $= -\theta_I = \theta_2$, $\psi_{IV} = \psi_{II} = \psi_1$ и $\psi_{III} = \psi_I = \psi_2$ [16].

Значение локального магнитного поля $\mathbf{h}_{loc}(\mathbf{R})$, создаваемого в точке \mathbf{R} (\mathbf{R} — позиция меди Cu^+ или лития Li^+) магнитными моментами ионов Cu^{2+} с координатами \mathbf{r}_i , определяется дальнодействующим дипольным полем H_{dip} и наведенным «контактным» сверхтонким полем H_{hf} :

$$h_{loc}(R) = H_{dip}(R) + H_{hf}(R) =$$

$$= \sum_{i} \left[3 \frac{(r_i - R) (\mu_i(r_i - R))}{|r_i - R|^5} - \frac{\mu_i}{|r_i - R|^3} \right] +$$

$$+ \sum_{i} A_{hf} \mu_i. \quad (5)$$

Здесь μ_i — магнитный момент на *i*-й позиции иона Cu^{2+} , а A_{hf} — константа сверхтонкого взаимодействия. Расчет дипольных магнитных полей на позициях Cu⁺ показал, что $H_{dip} \approx 2$ кЭ много меньше экспериментально определенного локального поля $\mathbf{h}_{loc}(\mathbf{R}_{\mathrm{Cu}}) \sim 10\text{--}15$ кЭ. Поэтому при дальнейшем анализе спектров меди мы пренебрегали вкладом $H_{dip}(\mathbf{R}_{Cu})$ и считали, что $\mathbf{h}_{loc}(\mathbf{R}_{Cu})$ определяется главным образом изотропным наведенным полем H_{hf} [19]. Что касается спектров ЯМР ⁷Li, то для описания их расщепления ниже $T = T_N$ достаточно учесть только вклад H_{dip} в локальное поле $\mathbf{h}_{loc}(\mathbf{R}_{\mathrm{Li}})$ при значении магнитного момента иона Cu^{2+} $\mu_i \approx 0.8$ –1.0 μ_B . Отметим, что сверхтонкое поле *H*_{hf} в выражении (5) рассчитывалось суммированием по четырем, ближайшим к Сu⁺, магнитным ионам Cu^{2+} . При расчете дипольного поля H_{dip} на ядрах лития учитывался вклад от соседних ионов Cu^{2+} , расположенных внутри сферы радиусом 40 Å.

Спектры ЯМР ^{63,65}Си и ⁷Li при определенном направлении внешнего магнитного поля \mathbf{H}_0 характеризуют распределение по кристаллу проекции локального магнитного поля $\mathbf{h}_{loc}(\mathbf{R})$ в месте расположения ядра-зонда на направление **H**₀. При несоизмеримой магнитной структуре фазы $\varphi_{m,i,j,k}$ магнитных моментов ионов Cu²⁺ принимают все значения от 0 до 2π при перемещении вдоль цепочки Cu²⁺-О. В этом случае форма линии ЯМР определяется распределением плотности локального поля $f(\omega) \propto |\gamma_n dh_{loc}(R)/d\varphi|^{-1}$ (0 $\leq \varphi \leq 2\pi$), где γ_n — гиромагнитное отношение. В данной работе для расчета формы линий ЯМР использовалась разработанная авторами специальная программа моделирования, численно рассчитывающая энергетические уровни и вероятности переходов на основе диагонализации матричных элементов полного гамильтониана (квадрупольного H_Q и зеемановского H_M) ядерной системы с учетом пространственной ориентации магнитных моментов меди, описанной выше. Программа позволяет из анализа резонансных спектров извлекать такие параметры, как компоненты тензоров градиента электрического поля и магнитного сдвига, а также получать информацию о распределении локальных магнитных полей на ядрах ЯМР-зондов. Сплошные линии на рис. 2, 3 и штриховые на рис. 4 демонстрируют результат моделирования спектров меди и лития с помощью данной программы. При анализе спектров ^{63,65}Cu в качестве варьируемых параметров использовались амплитуда локального сверхтонкого поля $|h_{loc.1}|$, наводимого на позициях Cu⁺ одним соседним магнитным моментом иона Cu^{2+} , углы θ_1 , θ_2 , ψ_1 , ψ_2 , задающие пространственную ориентацию спиновых спиралей в цепочках Cu²⁺ и разности начальных фаз магнитных моментов в плоскостях I, II, III, IV $\Delta \phi_{21} = \phi_{II} - \phi_{I}$, $\Delta \phi_{32} = \phi_{III} - \phi_{II}$ и $\Delta \phi_{43} = \phi_{IV} - \phi_{III}$. При моделировании литиевых спектров варьировалась величина эффективного магнитного момента μ на ионе Cu^{2+} в магнитоупорядоченной фазе. Значения варьируемых параметров, соответствующих наилучшему согласию между расчетными и экспериментальными спектрами, записанными в нулевом внешнем магнитном поле и в поле $H_0 = 94$ кЭ при ориентациях **H**₀ || **a**, **b**, **c**, представлены в таблице. Обращает на себя внимание, что все спектры, как меди, так и лития при $H_0 = 0$ и $H_0 = 94$ кЭ для направлений поля $\mathbf{H}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c}$ моделируются при соотношении $\theta_1 = \theta_2$ и, за исключением случая $\mathbf{H}_0 \parallel \mathbf{b}$, $\psi_2 = \psi_1 - 180^\circ$ (см. таблицу). Кроме того, величины $|h_{loc,1}|$ и μ не зависят ни от величины, ни от направления поля H₀. Мы отмечаем, что при моделировании спектров имело место несоответствие интенсивностей экспериментальных и теоретических линий ЯМР на отдельных участках полного спектра. Дело в том, что некоторые ЯМР-параметры, влияющие на интенсивность спектров, такие, например, как времена спин-решеточной T₁ и спин-спиновой T₂ релаксации, коэффициент усиления сигнала ЯМР в магнитоупорядоченном состоянии вещества η , являются, вообще говоря, зависимыми от резонансной частоты. Вследствие этого при измерениях спектров в широком диапазоне частот не всегда удается записать все участки этих спектров в оптимальных для данного частотного диапазона условиях. Это и приводит к достаточно значительным расхождениям в интенсивностях экспериментальных и теоретических линий ЯМР. Однако выводы, сделанные в данной работе, основываются на данных о положении пиков в спектрах ЯМР, а не на их интенсивностях. Отметим также, что полученное нами при моделировании спектров ЯМР ⁷Li значение магнитного момента иона Cu^{2+} $\mu = 1.10(2)\mu_B$ немного превышает значение $\mu = 0.85 \pm 0.15 \mu_B$, определенное в экспериментах по рассеянию нейтронов [8]. Возможно, данное расхождение связано с тем, что в ло-

	$ h_{loc,1} ,$	μ, μ_B	$\theta_1,$	$\theta_2,$	$\psi_1,$	$\psi_2,$	$\Delta \phi_{21},$	$\Delta \phi_{32},$	$\Delta \phi_{43},$
	кЭ		град.	град.	град.	град.	град.	град.	град.
$H_0 = 0$	5.4(1)	1.10(2)	29(1)	29(1)	135(1)	-45(1)	90	_	90
$\mathbf{H}_0 \parallel \mathbf{c}$	5.4(1)	1.10(2)	29(1)	29(1)	135(1)	-45(1)	90	153(2)	90
$\mathbf{H}_{0}\parallel\mathbf{a}$	5.4(1)	1.10(2)	42(1)	42(1)	135(1)	-45(1)	90	115(2)	90
$\mathbf{H}_0 \parallel \mathbf{b}$	5.4(1)	1.10(2)	57(1)	57(1)	80(1)	-81(1)	90	-45(2)	90

Таблица. Значені	я параметров	магнитной	структуры	$LiCu_2O_2$ (см.	текст)
-------------------------	--------------	-----------	-----------	---------------	-----	--------

кальное магнитное поле на ядрах лития небольшой вклад кроме дипольного вносит еще и контактное сверхтонкое поле, которое не учитывалось при анализе литиевых спектров.

В соответствии с данными, представленными в таблице, картина магнитной структуры в мультиферроике LiCu₂O₂ и ее эволюция во внешнем магнитном поле представляется следующей. В нулевом внешнем магнитном поле пространственные ориентации планарных геликсов в спиновых цепочках плоскостей m = I, II, III, IV представлены на рис. 1. В слоях I и IV плоскости спиновых спиралей параллельны, нормаль **n** к этим плоскостям отклонена от оси c на угол 29°, а ее проекция на плоскость ab составляет с осью а угол 135°. Геликсы в плоскостях II и III также параллельны друг другу, их нормаль тоже повернута на 29° относительно направления c, но проекция **n** на плоскость *ab* составляет с осью *a* угол -45°. Кроме того, магнитные моменты в цепочках Cu²⁺, составляющих бислои (II–III) и (I–IV), имеют противоположные направления закручивания спиралей, внутри же каждого бислоя эти направления совпадают (см. рис. 1). Отметим, что такая же последовательность направлений закручивания спиновых спиралей в слоях m = I, II, III, IV была предложена для объяснения результатов недавних исследований методом нейтронной дифракции магнитной структуры NaCu₂O₂ [20].

При замораживании образца в магнитном поле $H_0 = 94$ кЭ, направленном вдоль оси кристалла c, магнитная структура LiCu₂O₂ не изменяется. Моделирование спектров ЯМР ⁷Li позволяет определить величину $\Delta \phi_{32}$ в исследуемом соединении. Ее значение $\Delta \phi_{32} = 153^{\circ}$ очень близко к величине $\Delta \phi_{32} = 148.7^{\circ}$, определенной в нейтронных исследованиях [1].

Магнитное поле, направленное вдоль оси a, приводит к увеличению углов θ_1 , θ_2 на 13° и уменьшению $\Delta \phi_{32} = 115^\circ$, оставляя неизменными значения ψ_1 и ψ_2 , т.е. поле H_0 немного подворачивает плоскости спиновых спиралей в цепочках, стремясь положить нормаль **n** геликсов в плоскость ab. Наиболее существенное изменение магнитной структуры мультиферроика LiCu₂O₂ имеет место при замораживании кристалла ниже $T_N = 23$ К в поле $H_0 = 94$ кЭ при $\mathbf{H}_0 \parallel \mathbf{b}$. В этом случае проекции нормали \mathbf{n} на плоскость ab и ось b в каждом из слоев I, II, III, IV почти коллинеарны. Однако в отличие от магнитных структур, рассмотренных выше, параллельность плоскостей геликсов в слоях I, IV и II, III при **H**₀ || **b** нарушается. Пространственная ориентация геликса в цепочках Cu²⁺ во внешнем магнитном поле определяется конкуренцией между кристаллической анизотропией, определяющей плоскость легкого намагничивания, и анизотропией магнитной восприимчивости ($\chi_{\parallel \mathbf{n}} \neq \chi_{\perp \mathbf{n}}$). На изменение ориентации плоскости поляризации магнитных моментов в поле $\mathbf{H}_0 \parallel \mathbf{b}$ (при $H_0 \geq 30$ кЭ) указывалось в работах [11,21]. По мнению авторов этих работ, в магнитном поле, направленном вдоль оси в кристалла, имеет место переориентационный переход типа спин-флоп, при котором геликс, расположенный в плоскости *ab*, переворачивается в плоскость ас. Мы, в свою очередь, вместо резкого спин-флоп-перехода наблюдаем скорее постепенный поворот плоскостей геликса в цепочках Cu²⁺ в направлении к ас-плоскости, индуцированный внешним полем вдоль оси b. Отсутствие резких переориентационных переходов при $\mathbf{H}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c}$, возможно, обусловлено достаточно низкой симметрией планарных геликсов в мультиферроике LiCu₂O₂.

Итак, наши результаты указывают на то, что спиновые спирали в $LiCu_2O_2$ не лежат ни в одной из кристаллографических плоскостей *ab*, *bc* или *ac*. Мы также не нашли подтверждения выводам работ [8–10] о том, что нормаль геликса **n** лежит в плоскости *ab* и направлена вдоль диагонали квадратного кластера CuO_4 (вдоль связи $O-Cu^{2+}-O$).

Вследствие симметричности такой пространственной ориентации спиновой спирали относительно направлений a и b спектры ЯМР 63,65 Си в ориентациях $\mathbf{H}_0 \parallel \mathbf{a}$ и $\mathbf{H}_0 \parallel \mathbf{b}$ должны быть идентичны, чего, однако, не наблюдается в эксперименте. Как уже упоминалось выше, наши результаты свидетельствуют о чередовании направлений закручивания спиновых спиралей в слоях I, II, III, IV. Согласно теории КНБ (Катсуры – Нагаоши – Балатского), каждая цепочка Cu²⁺-О генерирует ненулевую электрическую поляризацию $\mathbf{P} \propto \mathbf{e}_{ii} \times \mathbf{n}$ [4] (здесь \mathbf{e}_{ij} — вектор, связывающий магнитные моменты в позициях *i* и *j* вдоль цепочки). Применение теории КНБ для расчета макроскопической поляризации вдоль оси с, в рамках предлагаемой нами магнитной структуры, показало, что $\mathbf{P}_{c} = \mathbf{P}_{c,\mathrm{I}} + \mathbf{P}_{c,\mathrm{II}} + \mathbf{P}_{c,\mathrm{III}} + \mathbf{P}_{c,\mathrm{IV}} = 0$, поскольку $\mathbf{P}_{c,\mathrm{I}} = \mathbf{P}_{c,\mathrm{IV}} = -\mathbf{P}_{c,\mathrm{II}} = -\mathbf{P}_{c,\mathrm{III}}$. Это, однако, противоречит результатам экспериментов [3], которые показали, что $\mathbf{P}_{c} \neq 0$. Таким образом, вопрос о применимости модели КНБ для объяснения природы сегнетомагнетизма в оксиде LiCu₂O₂ остается открытым.

6. ЗАКЛЮЧЕНИЕ

В работе выполнено комплексное ЯМР-исследование магнитной структуры мультиферроика LiCu₂O₂. Проведены измерения спектров ЯМР-изотопов меди ^{63,65}Cu и лития ⁷Li в магнитоупорядоченной фазе кристалла LiCu₂O₂, в котором отсутствуют двойники, в нулевом и во внешнем магнитном поле $H_0 = 94$ кЭ при ориентациях кристалла $\mathbf{H}_0 \parallel \mathbf{a}, \mathbf{b}, \mathbf{c}$. Все полученные спектры ЯМР удовлетворительно описываются в модели планарной спиральной магнитной структуры. При этом выяснено, что спиновые спирали в LiCu₂O₂ не лежат ни в одной из кристаллографических плоскостей ab, bc или ac. Внешнее магнитное поле, направленное вдоль оси с кристалла, не изменяет пространственной ориентации геликсов в цепочках Cu^{2+} . Магнитное поле $H_0 = 94$ кЭ, направленное вдоль осей а и b, подворачивает плоскости спиновых спиралей в цепочках, стремясь сориентировать нормаль **n** геликсов вдоль внешнего магнитного поля. Наибольший поворот плоскостей поляризации магнитных моментов имеет место при $\mathbf{H}_0 \parallel \mathbf{b}$.

Работа выполнена при финансовой поддержке РФФИ (грант № 11-02-00354), гранта Президента РФ (МК-1232.2011.2) и УрО РАН (гранты №№ 12-У-2-1025, 11-2-НП-477).

ЛИТЕРАТУРА

- T. Masuda, A. Zheludev, A. Bush et al., Phys. Rev. Lett. 92, 177201 (2004).
- A. A. Gippius, E. N. Morozova, A. S. Moskvin et al., Phys. Rev. B 70, 020406 (2004).
- S. Park, Y. J. Choi, C. L. Zhang et al., Phys. Rev. Lett. 98, 057601 (2007).
- H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
- I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
- A. S. Moskvin and S.-L. Drechsler, Phys. Rev. B 78, 024102 (2008); A. S. Moskvin, Y. D. Panov, and S.-L. Drechsler, Phys. Rev. B 79, 104112 (2009).
- S. Seki, Y. Yamasaki, M. Soda et al., Phys. Rev. Lett. 100, 127201 (2008).
- Y. Yasui, K. Sato, Y. Kobayashi et al., J. Phys. Soc. Jpn. 78, 084720 (2009).
- Y. Kobayashi, K. Sato, Y. Yasui et al., J. Phys. Soc. Jpn. 78, 084721 (2009).
- 10. L. Zhao, K.-W. Yeh, T.-W. Huang et al., arXiv: 1104.2155v1.
- Л. Е. Свистов, Л. А. Прозорова, А. М. Фарутин и др., ЖЭТФ 135, 1151 (2009).
- Ю. В. Пискунов, В. В. Оглобличев, С. В. Верховский и др., Материалы XI Международного междисциплинарного симпозиума (ОДРО-11), т. П. 51 (2008).
- **13**. А. Ф. Садыков, А. П. Геращенко, Ю. В. Пискунов и др., Письма в ЖЭТФ **92**, 580 (2010).
- 14. R. Berger, P. Önnerud, and R. Tellgren, J. Alloys Comp. 184, 315 (1992).
- T. Masuda, A. Zheludev, B. Roessli et al., Phys. Rev. B 72, 014405 (2005).
- S. Furukawa, M. Sato, and S. Onoda, Phys. Rev. Lett. 105, 257205 (2010).
- 17. A. Rigamonti, F. Borsa, and P. Carretta, Rep. Progr. Phys. 61, 1367 (1998).
- R. E. Walstedt, Springer Tracts in Modern Physics 228 (2008).
- **19**. Сверхтонкие взаимодействия в твердых телах: избранные лекции и обзоры, Мир, Москва (1970).
- 20. L. Capogna, M. Reehuis, A. Maljuk et al., Phys. Rev. B 82, 014407 (2010).
- 21. A. A. Bush, V. N. Glazkov, M. Hagiwara et al., arXiv:1112.4971v1.