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NOISE RECTIFIER BASEDON THE TWO-DIMENSIONAL ELECTRON GASM. V. Cheremisin *Io�e Physi
al-Te
hni
al Institute194021, St. Petersburg, RussiaRe
eived February 3, 2012The d
 voltage observed at low temperatures in a 2D ele
tron sample in the absen
e of noti
eable externalex
itations [1℄ is a

ounted by the S
hottky 
onta
t re
ti�
ation of the noise generated in the measuring 
ir
uit.The re
ti�ed voltage is shown to depend on the asymmetry of the 
onta
t pair. The dependen
e of the re
ti�edvoltage on the noise amplitude �rst follows the trivial quadrati
 law, then exhibits a nearly linear behavior, and�nally, levels o�.We examine the experimental setup well knownfor routine low-T transport measurements. Let atwo-dimensional ele
tron gas (2DEG) sample be pla
ed(Fig. 1) in a sample 
hamber kept at liquid helium tem-perature. The 
oaxial 
urrent leads are atta
hed to thesample and then 
onne
ted to an external measuringterminal kept at room temperature. The d
 voltmeter
oaxial input leads 
an be 
onne
ted to arbitrary 2DEGsample 
onta
ts. Unexpe
tedly, the voltmeter demon-strates [1�5℄ a puzzling nonzero voltage (NV) of theorder of about �V . The value and the sign of the d
potential depend on the a
tual 
onta
t pair.In the presen
e of a magneti
 �eld, the measuredd
 potential demonstrates strong (�mV) os
illationsnamed �zero� os
illations (ZO), whi
h exhibit a 1=B-pe-riodi
ity similar to the well-known Shubnikov�de Haas(SdH) os
illations. The ZO period allows extra
tingthe two-dimensional 
arrier density. The temperaturedependen
e of the ZO amplitude is similar to that forSdH os
illations and gives the 
orre
t value of the 
ar-rier e�e
tive mass. In 
ontrast to SdH os
illations, ZOare skew symmetri
. The amplitude and the phase shiftof the ZO depend on a 
hosen 
onta
t pair. Moreover,for a 
ertain 
onta
t pair, the ZO shape is stronglya�e
ted if other sample leads are 
onne
ted to (dis
on-ne
ted from) the measuring 
ir
uit [6℄. We emphasizethat NV and ZO e�e
ts are in general universal andobserved in various 2DEG systems and for arbitrarysample 
on�guration.*E-mail: t
her�max�yahoo.
om
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T = 4:2 K 2DEG
U = U0 
os(!t)Fig. 1. Setup 
on�guration. The noise is simulated bythe a
 generatorThe basi
 idea put forward in Refs. [3, 5℄ in order toexplain these e�e
ts 
on
erns the possible re
ti�
ationof the input noise by 2D�3D S
hottky diodes formedat the sample 
onta
ts. An extra s
reening of the 
ir-
uit is shown to diminish the amplitude of the re
ti�edvoltage [3; 5℄. Then, shunting of the sample 
onta
tsby a 
apa
itan
e also suppresses the d
 potential [5℄.To quantitatively examine the in�uen
e of the noise,both the voltmeter and the a
 generator playing therole of a noise sour
e were atta
hed to same sample
onta
ts [3; 5℄ (see Fig. 1). However, the amplitude ofthe re
ti�ed voltage is reported to be proportional tothe a
 input voltage. Until now, this �nding remainedunresolved within the re
ti�
ation 
on
ept [3, 5℄. Inthis paper, we propose a phenomenologi
al analysis andexplain the important features of the e�e
t.556



ÆÝÒÔ, òîì 142, âûï. 3 (9), 2012 Noise re
ti�er based on the two-dimensional ele
tron gasWe use the simplest model of a 
urrent�voltage
hara
teristi
 of the 3D�2D S
hottky 
onta
t [7, 8℄. Inthe thermioni
 diode approximation at �nite tempera-tures, the 
urrent is given byI = I0 �exp�eVkT �� 1� ; (1)where I0 = 5:36A(kT )2w exp��F � eV0kT �is the ba
kward saturation 
urrent, V0 is the equilib-rium 
onta
t potential, and V is the voltage drop a
rossthe 
onta
t. Then A = em�2�2~3is the Ri
hardson 
onstant for the thermioni
 emissionand w is the quantum well width.We emphasize that the S
hottky diodes at the left(Fig. 1, index 1) and right (index 2) 
onta
ts have theopposite polarity and are di�erent from ea
h other ingeneral. Therefore, the relation between the total volt-age drop U a
ross the sample and the 
urrent I is givenby u = ir + ln� 1 + i1� ia� ; (2)where u = eU=kT is the dimensionless voltage,i = I=I01 is the 
urrent s
aled with respe
t to the re-verse saturation 
urrent (I01) of the left-
onta
t diode,and a = I01=I02 is the asymmetry parameter of the
onta
ts. Then r = I01Re=kT is the dimensionless re-sistan
e of the 2DEG and R is the 2DEG resistan
e.We are primarily interested in the low-
urrent 
asei � 1, and we therefore linearize Eq. (2) with respe
tto the 
urrent asu = (1 + a+ r)i� 1� a22 i2 + 1 + a33 i3 + : : : (3)As expe
ted, the 
urrent�voltage 
hara
teristi
 exhibitsthe Ohmi
 behavior u = (1+a+r)i or U = IRtot, whereRtot = R1 +R2 +R is the zero-�eld total resistan
e ofthe sample and R1;2 = kT=eI01;2 are the S
hottky re-sistan
es of 
onta
ts 1 and 2. In the opposite 
ase ofa high applied voltage, the 
urrent�voltage 
hara
ter-isti
 is strongly nonlinear. Indeed, in that 
ase, theforward and reverse 
urrents are limited (see Fig. 2a)by the respe
tive S
hottky diode saturation 
urrentsI02 and I01.We �rst seek the response of the 3D/2DEG/3D sys-tem to the applied a
 voltage u = u0 
os(!t). The a
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Fig. 2. Panel a: Current�voltage 
hara
teristi
s of the
ir
uit (Fig. 1) spe
i�ed by Eq. (2) for the 
onta
tasymmetry parameter a = 1:05 and the 2DEG resis-tan
e r = 10. The dashed line represents the low-�eld Ohmi
 dependen
e. The low-voltage (bold line)and high-voltage (thin line) a
 input signals are repre-sented in panel b. The respe
tive responses are shownin panel 
voltage is provided by the generator shown in Fig. 1.At low voltages u � 1, Eq. (3) allows extra
ting the
urrent asi = u1 + a+ r + 1� a22(1 + a+ r)3 u2 + �u3 + : : : ; (4)where � = (1� a2)22(1 + a+ r)5 � 1 + a33(1 + a+ r)4 :It's worth noting that the in-phase response to the ap-plied a
 voltage, i = (u0=(1+ a+ r) + 3=4�u30) 
os(!t),
onsists of the Ohmi
 
ontribution and an additionalpart asso
iated with the 
ubi
 term in Eq. (4). Wetherefore 
on
lude that the widely used lo
k-in a
 mea-surement method 
ould give a systemati
 error in thesample resistan
e [3℄ 
ompared to d
 measurements.We now intend to resolve the primary problem for-mulated in this paper. We investigate the d
 responseof the 
ir
uit (see Fig. 1) to an applied a
 voltage. Weemphasize that term in Eq. (4) of the se
ond orderin voltage des
ribes the re
ti�
ation properties of the2DEG sample at a 6= 1. Equation (4) yields the time-averaged 
urrent557



M. V. Cheremisin ÆÝÒÔ, òîì 142, âûï. 3 (9), 2012i = !2� 2�!Z0 i dt� 1and then the voltage drop measured by d
 voltmeter isgiven by u = 1� a24(1 + a+ r)2 u20; (5)The polarity of the measured d
 voltage is determinedby the 
onta
t asymmetry. As expe
ted, the transmis-sion 
hara
teristi
 u(u0) is a quadrati
 law at u0 � 1.In the opposite 
ase of a strong a
 ex
itation u0 � 1,the d
 response 
an be found qualitatively with the helpof Fig. 2
. Indeed, the re
ti�ed 
urrent 
an be regardedas a re
tangular meander sequen
e with linear fronts.The higher the applied a
 voltage is, the sharper thefront of the 
urrent pulse. After simple averaging, weobtain the d
 
urrent and, �nally, the re
ti�ed voltageasu = (1� a)(1 + a+ r)2a �1� (1 + a+ r)(1 + a)�u0a � : (6)For a high input a
 signal u0 � 1, the measuredvoltage saturates, usat = (1=a � 1)(1 + a + r)=2.We 
ould expe
t that, at a moderate a
 signal levelu0 = i(1 + a + r); i � 1, the low and high a
 input
ases merge, and, 
onsequently, there 
ould exist a 
er-tain part of the transmission 
hara
teristi
 that 
ouldbe asso
iated with a linear dependen
e [3, 5℄.To 
on�rm our qualitative predi
tions, we presentthe result of our numeri
al 
al
ulations in Fig. 3. Weuse 
urrent�voltage 
hara
teristi
 spe
i�ed by Eq. (2).Solving this equation for the 
urrent, we �nd the depen-den
e i(u) numeri
ally. The su

essive averaging of the
urrent 
aused by the input a
 signal gives the relatedd
 voltage drop a
ross the sample and, hen
e, the trans-mission 
hara
teristi
. At low ex
itations, as expe
ted,the transmission 
hara
teristi
 follows the asymptotegiven by Eq. (5). At a high-level a
 input u0 � 1, thedependen
e u(u0) 
an be approximated by Eq. (6), andthen levels o�. For intermediate voltages u0 � r = 10,the transmission 
hara
teristi
 exhibits a nearly linearbehavior u = �A+Bu0 in a

ordan
e with the exper-imental �ndings [5℄.We estimate the a
tual parameters of the3D/2DEG/3D system [5℄. For an n-AlGaAs/GaAssample (the 2DEG density n = 3:46 � 1011 
m�1, thediele
tri
 
onstant � = 12:7, and the e�e
tive massm = 0:068me), we �nd the Fermi energy �F = 80 meV,whereas the Bohr energy is �B = me4=2�2~2 == 6:7 meV. As was demonstrated in Ref. [9℄, the
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u0Fig. 3. Transmission 
hara
teristi
 for the 
onta
tasymmetry a = 1:05 and the 2DEG resistan
e r = 10(upper 
urve). Dotted lines a and b represent the low-and high-voltage approximations respe
tively spe
i�edby Eq. (5) and Eq. (6). The dashed line demonstratesa nearly linear dependen
e reported in [5℄. The lower
urve 
orresponds to the 
ase of a voltmeter 
onne
tedto 1-3 
onta
ts (see Fig. 1) with r = 10 and r0 = 5.Inset: The observed [5℄ transmission 
hara
teristi
sthermioni
 diode approximation is justi�ed well whenT > T0, where T0 = �Fk r �Be(V0 � V ) :At T < T0, the tunneling 
urrent a
ross the S
hottkydiode be
omes higher than the thermioni
 
urrent. Forthe typi
al equilibrium 
onta
t potential V0 = 1 eV andS
hottky diode bias V = 0, we obtain T0 = 73 K, and,hen
e, the observed low-T (about 4 K) data [5℄ 
annotbe analyzed dire
tly in terms of the thermioni
 me
h-anism [7℄. Nevertheless, even at low temperatures, the
urrent�voltage 
hara
teristi
 of the 2D�3D 
onta
t be-haves similarly to that des
ribed by Eq. (1). Therefore,the main assumption of NV originated from re
ti�
a-tion of a
 noise remains justi�ed.We now estimate the resistan
e of the S
hottkydiode. This be
omes possible due to the improved ar-rangement suggested in Ref. [5℄. For the same a
 in-put (1-2 
onta
ts in Fig. 1), the d
 voltmeter leadsare 
onne
ted to 1-3 
onta
ts. Conta
t 3 was pla
edin the middle of a 2DEG sample. In this 
ase, thetransmission 
hara
teristi
 is given by Eq. (5) multi-plied by the geometry fa
tor (1 + a0 + r0)=(1 + a + r),where a0 = I01=I03 is the asymmetry of the interme-diate 
onta
t with respe
t to the �rst 
onta
t, and558



ÆÝÒÔ, òîì 142, âûï. 3 (9), 2012 Noise re
ti�er based on the two-dimensional ele
tron gasr0 = r=2. In the inset in Fig. 3, we reprodu
e the trans-mission 
hara
teristi
 data [5℄ for the d
 output mea-sured a
ross 1-2 (upper 
urve) and 1-3 (lower 
urve)
onta
ts. Both 
urves demonstrate a threshold be-havior, whi
h 
an be attributed to the possible volt-meter zero-point shift. The low-voltage part of these
urves 
an be approximated by the respe
tive equationsU12[V ℄ = �0:0002+12U20 [V ℄ and U13 = �0:0002+7U20 .Negle
ting a spurious zero-point shift, these 
urves dif-fer by the ratio 7=12whi
h is equal to the geometry fa
-tor (R1+R3+R=2)=(R1+R2+R). The estimate of the2DEG sample resistan
e in [5℄ yields Rtot = 13k
. Fi-nally, under the reasonable assumption of small 
onta
tasymmetry, i. e., R1 � R2 � R3, we �nd the S
hottky
onta
t resistan
e R1 = 1:05k
.Finally, we argue that the zero os
illations observedin a 2DEG in strong magneti
 �elds also originate fromnoise re
ti�
ation. Indeed, at a �xed magneti
 �eld, thetransmission 
hara
teristi
 observed for the ZO ampli-tude in [5℄ is analogous to that reported for B = 0. Were
all that the sign of the re
ti�ed voltage depends onthe asymmetry of the S
hottky diode 
onta
t pair. Ifthe reverse 
urrent I0 of the S
hottky 
onta
t os
illatesin the magneti
 �eld, then the re
ti�ed d
 voltage (ZO)os
illates as well.To 
on
lude, we have demonstrated that the d
voltage observed at low temperatures in a 2D ele
tronsample without noti
eable external ex
itation is 
ausedby the noise re
ti�
ation by S
hottky diodes formed atthe sample 
onta
ts. At a low noise level, the re
ti�edvoltage as a fun
tion of the noise amplitude follows theusual quadrati
 law. At higher noise magnitudes, there
ti�ed voltage exhibits a nearly linear behavior and

�nally saturates. The re
ti�ed voltage is shown to de-pend on the 
onta
t pair asymmetry. We suggest thatthe shunting of the sample 
onta
ts by a 
apa
itan
eis a powerful tool for suppressing the re
ti�ed voltage.The author thanks Prof. M. Dyakonov for the help-ful 
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