УПРУГИЕ ПОСТОЯННЫЕ ТВЕРДЫХ ТЕЛ ПРИ ВЫСОКИХ ДАВЛЕНИЯХ

О. М. Красильников^{*}, Ю. Х. Векилов, И. Ю. Мосягин

Национальный исследовательский технологический университет «МИСиС» 119049, Москва, Россия

Поступила в редакцию 21 октября 2011 г.

Дано определение изотермических и адиабатических упругих постоянных n-го порядка $(n \ge 2)$ нагруженного кристалла. Эти постоянные полностью характеризуют упругое поведение твердого тела при произвольной нагрузке и определяются не только межатомным взаимодействием, но и внешней нагрузкой. Для кристаллов кубической симметрии, находящихся под гидростатическим давлением, найдены соотношения, связывающие эти постоянные (второго, третьего и четвертого порядков) с упругими постоянными типа Браггера соответствующего порядка, которые определяются только межатомным взаимодействием. С использованием полученных соотношений уравнение состояния и упругие постоянные второго и третьего порядков ОЦК-тантала при T = 0 рассчитаны методом функционала электронной плотности в широком интервале давлений (0–600 ГПа). Полученные в работе результаты по уравнению состояния и упругим постоянным второго порядка согласуются с экспериментальными данными и результатами расчетов других авторов.

1. ВВЕДЕНИЕ

Для анализа структурных превращений в твердых телах под давлением необходима информация об упругих постоянных (УП) различного порядка (2, 3 и 4) [1]. Эти постоянные определяют (с учетом ангармонических поправок) скорость звука и, соответственно, частоты длинноволновых акустических колебаний, соотношение «напряжение-деформация», характер фазовых переходов, обусловленных потерей устойчивости кристаллической решетки к однородным деформациям. Экспериментальное определение УП под давлением (особенно постоянных выше второго порядка) — задача трудная, поэтому значение приобретают вычисления УП различного порядка с помощью компьютерного моделирования. В последние несколько лет опубликован целый ряд работ по расчету в рамках теории функционала плотности УП второго порядка металлов с кубической решеткой в мегабарном диапазоне давлений [2-7]. В работах [2,3] УП Та, V, Мо, Nb и W находились как вторые производные свободной энергии по компонентам тензора бесконечно малых деформаций. Упругие постоянные Pt и Cu определялись в работах [4,5] из соотношений «напряжение-деформация» (закон Гука), деформированное состояние задавалось с помощью тензора бесконечно малых деформаций. В работах [6,7] для нахождения УП второго порядка алюминия и ванадия использовалось разложение свободной энергии по компонентам тензора конечных деформаций.

Результаты расчета УП третьего и четвертого порядков ряда веществ с кубической решеткой (Cu, Al, Au и Ag) при атмосферном давлении приведены в работе [8]. УП находились из разложения свободной энергии по компонентам тензора конечных деформаций Лагранжа. Свободная энергия вычислялась методом функционала плотности. Аналогичный расчет УП третьего порядка ванадия в интервале 0-800 ГПа проведен в работе [7].

Разнообразие в способах вычисления упругих постоянных связано с различными определениями этих величин (см., например, [9–11]). В ненагруженном состоянии все эти определения дают для УП второго порядка одни и те же значения. Однако в случае нагруженного кристалла вычисления приводят к различным величинам этих постоянных.

В настоящей работе дано определение упругих постоянных n-го порядка ($n \ge 2$), пригодное для описания упругих свойств как нагруженного кри-

^{*}E-mail: omkras@mail.ru

2. УПРУГИЕ ПОСТОЯННЫЕ НАГРУЖЕННОГО КРИСТАЛЛА

Стандартное определение упругих постоянных *n*-го порядка дано в работе [11]

$$C_{ijkl\dots}^{T} = \frac{1}{V_0} \left(\frac{\partial^n F}{\partial \eta_{ij} \partial \eta_{kl} \dots} \right)_T,$$

$$C_{ijkl\dots}^{S} = \frac{1}{V_0} \left(\frac{\partial^n U}{\partial \eta_{ij} \partial \eta_{kl} \dots} \right)_S.$$
(1)

Здесь $C_{ijkl...}^{T}$ и $C_{ijkl...}^{S}$ — соответственно изотермические и адиабатические УП *n*-го порядка $(n \ge 2)$, *F* и U — соответственно свободная и внутренняя энергии кристалла, V_0 — объем в недеформированном состоянии; η_{ij} — компоненты тензора конечных деформаций Лагранжа [12]. Производные в (1) вычисляются при постоянной температуре *T* и энтропии *S*. Если $\alpha_{ki} = \partial r_k / \partial R_i$, где r_k и R_i — декартовы координаты точки тела, соответственно, в деформированном и недеформированном состояниях, то

$$\eta_{ij} = \frac{1}{2} (\alpha_{ki} \alpha_{kj} - \delta_{ij}), \qquad (2)$$

где δ_{ij} — символ Кронекера (по повторяющимся индексам здесь и в дальнейшем идет суммирование от 1 до 3). Компоненты тензора η_{ij} можно выразить через градиенты смещений $u_{ij} = \partial u_i / \partial R_j$ ($u_i =$ $= r_i - R_i$), в результате $\eta_{ij} = u_{ij} + u_{ki}u_{kj}/2$ (вращение кристалла отсутствует). Если квадратичным слагаемым можно пренебречь, получаем тензор бесконечно малых деформаций u_{ij} .

Упругие постоянные (1) полностью определяют упругое поведение ненагруженного кристалла. В нагруженном состоянии эти постоянные не учитывают работу, которая должна быть совершена против внешней нагрузки силами, вызванными дополнительной малой деформацией η_{ij} . В работах [13, 14] рассмотрены так называемые эффективные УП для случая гидростатического давления. Эти постоянные учитывают как изменение свободной или внутренней энергии кристалла при деформации вблизи исходного состояния при заданном давлении P, так и работу против гидростатического давления силами, обусловленными этой деформацией. Обобщая результаты этих работ, изотермические и адиабатические упругие постоянные различного порядка можно определить как соответствующие производные потенциала Гиббса *G* или энтальпии *H* по компонентам тензора конечных деформаций η_{ij} при заданной нагрузке:

$$\tilde{C}_{ijkl\dots}^{T} = \frac{1}{V_0} \left(\frac{\partial^n G}{\partial \eta_{ij} \partial \eta_{kl\dots}} \right)_T, \qquad (3)$$

$$\tilde{C}_{ijkl\dots}^{S} = \left(\frac{1}{V_0} \frac{\partial^n H}{\partial \eta_{ij} \partial \eta_{kl\dots}} \right)_S,$$

где $n \geq 2$. $\tilde{C}^T_{ijkl...}$ и $\tilde{C}^S_{ijkl...}$ полностью описывают упругое поведение кристалла при произвольном нагружении. В случае гидростатического давления G = F + PV, H = U + PV. В отсутствие нагрузки определения (3) совпадают с (1). Аналогичное соотношение для изотермических УП второго порядка приведено в [15, 16].

Величины $\tilde{C}_{ijkl...}$ определяются не только межатомным взаимодействием, но и непосредственно приложенной нагрузкой и, в отличие от постоянных (1), обладают полной фойгтовской симметрией к перестановке индексов только при гидростатическом давлении (при других видах нагрузки такой симметрии нет) [12]. Кроме того, для них соотношения Коши выполняться не могут, поскольку эти постоянные включают в себя внешнюю нагрузку. Как следует из работы [12], при использовании УП второго порядка C_{ijkl} уравнение Кристоффеля, определяющее скорость звуковых волн в кристалле, имеет одинаковый вид как для ненагруженного, так и нагруженного кристаллов. То же относится и к условиям устойчивости кристалла [7], а также к соотношению «напряжение-деформация» [12, 17]: в обоих случаях они имеют одинаковый вид.

Пользуясь соотношением (3), найдем выражение для изотермических УП второго-четвертого порядков при гидростатическом давлении. Изменение потенциала Гиббса при деформации η_{ij} при давлении P и температуре T на единицу объема в недеформированном состоянии равно

$$\frac{\Delta G}{V_0} = \frac{\Delta F}{V_0} + P \frac{\Delta V}{V_0}.$$
(4)

Здесь $\Delta G = G(P, T, \eta) - G(P, T, 0), \Delta F = F(P, T, \eta) - F(P, T, 0), \Delta V = V - V_0$ — изменение объема в результате деформации, заданной компонентами тензора конечных деформаций Лагранжа η_{ij} . Разложим ΔG и ΔF в ряд по η_{ij} до четвертого порядка включительно:

$$\frac{\Delta G}{V_0} = \frac{1}{2} \tilde{C}_{ijkl} \eta_{ij} \eta_{kl} + \frac{1}{6} \tilde{C}_{ijklmn} \eta_{ij} \eta_{kl} \eta_{mn} + \frac{1}{24} \tilde{C}_{ijklmnpq} \eta_{ij} \eta_{kl} \eta_{mn} \eta_{pq}.$$
 (5)

$ ilde{C}_{lphaeta}$	$ ilde{C}_{lphaeta\gamma}$	$ ilde{C}_{lphaeta\gamma\delta}$			
$\tilde{C}_{11} = C_{11} - P$	$\tilde{C}_{111} = C_{111} + 3P$	$\tilde{C}_{1111} = C_{1111} - 15P$	$\tilde{C}_{1255} = C_{1255} + P$		
	$\tilde{C}_{112} = C_{112} - P$	$\tilde{C}_{1112} = C_{1112} + 3P$	$\tilde{C}_{1266} = C_{1266} - P$		
$\tilde{C}_{12} = C_{12} + P$	$\tilde{C}_{123} = C_{123} + P$	$\tilde{C}_{1122} = C_{1122} + P$	$\tilde{C}_{1456} = C_{1456} - P$		
	$\tilde{C}_{144} = C_{144} - P$	$\tilde{C}_{1123} = C_{1123} - P$	$\tilde{C}_{4444} = C_{4444} - 3P$		
$\tilde{C}_{44} = C_{44} - P$	$\tilde{C}_{155} = C_{155} + P$	$\tilde{C}_{1144} = C_{1144} + P$	$\tilde{C} - C - P$		
	$\tilde{C}_{456} = C_{456} + P$	$\tilde{C}_{1155} = C_{1155} - 3P$	$\cup_{4455} - \cup_{4455} - \Gamma$		

Таблица 1. Соотношения между $\tilde{C}_{\alpha\beta\dots}$ и $C_{\alpha\beta\dots}$

Таблица 2.	Уравнение состояния	і и упругие пос	стоянные тантала
------------	---------------------	-----------------	------------------

$V_0, Å^3$	P,	$\tilde{C}_{11},$	$\tilde{C}_{12},$	\tilde{C}_{44} ,	$-\tilde{C}_{111},$	$-\tilde{C}_{112},$	$-\tilde{C}_{123},$	$-\tilde{C}_{144},$	$-\tilde{C}_{155},$	$-\tilde{C}_{456},$
	ГПа	ГПа	ГПа	ГПа	ГПа	ГПа	ГПа	ГПа	ГПа	ГПа
18.80	-4.82	238.5	144.5	63.48	2258	664.9	32.9	407.8	308.9	152.1
17.97	3.87	285.4	172.0	72.58	2632	741.0	27.6	467.9	332.2	206.1
16.38	26.82	393.5	239.4	91.44	3374	938.8	47.9	618.7	395.6	362.6
14.90	59.43	530.6	330.8	111.4	3904	1307	_	838.7	588.5	601.3
13.50	105.3	699.1	458.57	127.4	_	2043	_	1274	1110	962.6
12.19	169.6	900.5	648.3	160.7	6491	2571	_	1780	1759	1437
10.98	262.1	1333	909.7	272.0	12774	2977	601.2	2362	2259	2130
9.84	398.3	1885	1256	422.5	16981	3424	1839	3049	3163	3034
8.79	597.1	2606	1803	620.3	21365	5125	2512	4244	4346	4192

В (5) линейный член разложения отсутствует, поскольку система находится в равновесии:

$$\begin{aligned} \frac{\Delta F}{V_0} &= -P\eta_{ii} + \frac{1}{2} \, C_{ijkl} \eta_{ij} \eta_{kl} + \frac{1}{6} \, C_{ijklmn} \eta_{ij} \eta_{kl} \eta_{mn} + \\ &+ \frac{1}{24} \, C_{ijklmnpq} \eta_{ij} \eta_{kl} \eta_{mn} \eta_{pq}. \end{aligned} \tag{6}$$

Так как $\Delta V/V_0 = J - 1$, где $J = \det |\alpha_{ij}|$ [12], выразим α_{ij} через η_{ij} , используя соотношение (2). В результате, удерживая слагаемые до четвертого порядка по η_{ij} , получим

$$\alpha_{ij} = \delta_{ij} + \eta_{ij} - \frac{1}{2} \eta_{ki} \eta_{kj} + \frac{1}{2} \eta_{rk} \eta_{ri} \eta_{kj} - \frac{5}{8} \eta_{kj} \eta_{mk} \eta_{mn} \eta_{ni}.$$
 (7)

Подстановка выражений для $\Delta G/V_0$ и $\Delta F/V_0$ в (4) позволяет выразить УП $\tilde{C}_{ijkl...}$ через постоянные

Браггера $C_{ijkl...}$ и давление P. Кристаллы кубической симметрии (группы $\bar{4}3m$, 432, $\frac{4}{m}\bar{3}\frac{2}{m}$) имеют [12] три независимые УП второго порядка $C_{\alpha\beta\gamma}$ и одиннадцать — четвертого порядка $C_{\alpha\beta\gamma\delta}$. Упругие постоянные даны в обозначениях Фойгта: α, β, \ldots принимают значения от 1 до 6 в соответствии с правилом: $11 \rightarrow 1$, $22 \rightarrow 2$, $33 \rightarrow 3$, $23 \rightarrow 4$, $13 \rightarrow 5$ и $12 \rightarrow 6$. Соотношения между $\tilde{C}_{\alpha\beta...}$ и постоянными Браггера $C_{\alpha\beta...}$ приведены в табл. 1.

В работах [10, 12] показано, что УП второго порядка $\tilde{C}_{\alpha\beta}$ можно также получить как вторые производные свободной (или внутренней) энергии при заданном давлении *P* по компонентам тензора бесконечно малых деформаций u_{ij} . Но ситуация с УП второго порядка — исключение, связанное с тем, что в выражении для η_{ij} помимо линейного по u_{ij} слагаемого имеется и квадратичное. Для УП $\tilde{C}_{\alpha\beta...}$ при

Зависимости от давления P объемного модуля $\tilde{B} = \left(\tilde{C}_{11} + 2\tilde{C}_{12}\right)/3 - a$ и сдвиговых упругих постоянных $\tilde{C}' = \left(\tilde{C}_{11} - \tilde{C}_{12}\right)/2$ и $\tilde{C}_{44} - b$; $\tilde{C}' - \kappa$ вадрат, $\tilde{C}_{44} -$ треугольник

 $n \geq 3$ подобная ситуация не имеет места. Поэтому целесообразно для расчета $\tilde{C}_{\alpha\beta...}$ любого порядка $(n \geq 2)$ использовать разложение свободной энергии по компонентам тензора конечных деформаций (6). Линейный член разложения определяет величину давления, члены более высокого порядка — соответствующие упругие постоянные $C_{\alpha\beta...}$ (УП Браггера), которые определяются только межатомным взаимодействием. Затем с помощью соотношений, приведенных в табл. 1, находятся $\tilde{C}_{\alpha\beta...}$ нужного порядка.

3. РЕЗУЛЬТАТЫ РАСЧЕТА И ИХ ОБСУЖДЕНИЕ

В качестве примера использования полученных соотношений мы рассчитали упругие постоянные тантала в интервале давлений 0–600 ГПа при T = 0(отсутствует различие между изотермическими и адиабатическими УП). Исходное напряженное состояние кристалла задавалось величиной атомного объема V_0 . Для каждого такого состояния рассматривались различные варианты деформирования элементарной ячейки, взятые из работы [8]. Векторы решетки в деформированном состоянии определяются соотношением $r_i = \alpha_{ij}R_j$, где градиент деформации α_{ij} выражается через компоненты тензора конечных деформаций Лагранжа с помощью (7). Полная энергия ОЦК-тантала при различных значениях V_0 и деформации η_{ij} вычислялась методом функционала электронной плотности (реализация с помощью пакета VASP) [18]. Вычисления проводились с использованием РАW-потенциалов [19], обменно-корреляционные эффекты учитывались в приближении GGA–PBE [20]. Давление и УП $C_{\alpha\beta\ldots}$ находились по методу наименьших квадратов (21 точка с шагом ±0.005) из уравнения регрессии в соответствии с (6).

Результаты расчета уравнения состояния и УП второго и третьего порядков тантала приведены в табл. 2 и на рисунке. Значения всех УП второго порядка, соответствующие P = 0, и начальный наклон зависимостей $\tilde{C}_{\alpha\beta...}$ от P хорошо согласуются с экспериментальными данными, полученными из измерений скорости звука при комнатной температуре и небольших давлениях (см. [2]). Кроме того, в рассмотренном диапазоне давлений (0-600 ГПа) наши результаты по УП второго порядка практически совпадают с соответствующими величинами, найденными в работе [2] как вторые производные от энергии по компонентам тензора бесконечно малых деформаций u_{ij} . Небольшое смягчение сдвиговых УП $\tilde{C}' = \left(\tilde{C}_{11} - \tilde{C}_{12}\right)/2$ и \tilde{C}_{44} в интервале давлений 100–200 ГПа (см. рисунок) также отмечено в работе [2].

Уравнение состояния (см. столбцы 1 и 2) согласуется с соответствующими экспериментальными и теоретическими данными, приведенными в работе [2]. Данные по УП третьего порядка тантала в литературе отсутствуют. Следует еще отметить, что соотношения Коши для браггеровских упругих постоянных (1) ($C_{12} = C_{44}, C_{112} = C_{155}, C_{123} = C_{144} = C_{456}$) при P = 0в случае тантала не выполняются: $C_{12}/C_{44} = 2.4$, $C_{112}/C_{155} = 2.2, C_{144}/C_{456} = 2.8$. Но с увеличением давления ситуация меняется. При $P \approx 600$ ГПа эти отношения равны соответственно 0.98, 0.92 и 0.76.

4. ЗАКЛЮЧЕНИЕ

Дано определение изотермических и адиабатических УП *n*-го порядка ($n \ge 2$), которые полностью определяют упругое поведение кристалла при произвольной нагрузке. Для кристаллов кубической симметрии в случае гидростатического давления найдены выражения, связывающие эти величины с браггеровскими УП соответствующего порядка. Полученные соотношения использованы для расчета в рамках теории функционала плотности уравнения состояния и УП второго и третьего порядков ОЦК-тантала в интервале давлений 0–600 ГПа. Результаты расчета согласуются с имеющимися экспериментальными данными и результатами расчетов других авторов с помощью уравнения состояния и УП второго порядка.

Работа выполнена при финансовой поддержке РФФИ (гранты №№ 10-02-00156, 10-02-00194).

ЛИТЕРАТУРА

- Ю. Х. Векилов, О. М. Красильников, УФН 176, 883 (2006).
- M. Foata-Prestavoine, G. Robert, M.-H. Nadal et al., Phys. Rev. B 76, 104104 (2007).
- L. Koci, Y. Ma, A. R. Oganov et al., Phys. Rev. B 77, 214101 (2008).

- E. Menendez-Proupin and Anil K. Singh, Phys. Rev. B 76, 054117 (2007).
- B. Li-Gang and L. Jing, Chinese Phys. Lett. 27, 036403 (2010).
- G. V. Sin'ko and N. A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002).
- О. М. Красильников, Ю. Х. Векилов, Э. И. Исаев и др., ЖЭТФ 139, 281 (2011).
- 8. H. Wang and M. Li, Phys. Rev. B 79, 224102 (2009).
- 9. Л. Д. Ландау, И. М. Лифшиц, *Теория упругости*, Наука, Москва (1965).
- 10. Г. Лейбфрид, В. Людвиг, Теория ангармонических эффектов в кристаллах, Изд-во иностр. лит., Москва (1963) [G. Leibfried and W. Ludwig, Sol. St. Phys. 12, 275 (1961)].
- 11. K. Brugger, Phys. Rev. 133, A1611 (1964).
- 12. D. C. Wallace, Sol. St. Phys. 25, 301 (1970).
- R. Ramji Rao and A. Padmaja, J. Appl. Phys. 64, 3320 (1988).
- 14. D. J. Dunstan, S. H. B. Bosher, and J. R. Downes, Appl. Phys. Lett. 80(15), 2672 (2002).
- 15. P. M. Marcus, H. Ma, and S. L. Qiu, J. Phys.: Condens Matter 14, L525 (2002).
- P. M. Marcus and S. L. Qiu, J. Phys.: Condens. Matter 21, 115401 (2009).
- 17. G. V. Sin'ko, Phys. Rev. B 77, 104118 (2008).
- 18. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
- 19. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996); 78, 1396 (1997).