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The model-independent QED radiative corrections to polarization observables in elastic scattering of unpolari-
zed and longitudinally polarized electron beams by a deuteron target are calculated in leptonic variables. The
experimental setup when the deuteron target is arbitrarily polarized is considered and the procedure for applying
the derived results to the vector or tensor polarization of the recoil deuteron is discussed. The calculation is
based on taking all essential Feynman diagrams into account, which results in the form of the Drell-Yan repre-
sentation for the cross section, and the use of the covariant parameterization of the deuteron polarization state.
Numerical estimates of the radiative corrections are given in the case where event selection allows undetected
particles (photons and electron—positron pairs) and the restriction on the lost invariant mass is used.

1. INTRODUCTION

The process of elastic electron—deuteron scattering
has long been a reaction used for investigating the elec-
tromagnetic structure of the deuteron. These investiga-
tions, both theoretical and experimental, can help cla-
rify a number of important problems: the properties of
the nucleon—nucleon interaction, non-nucleonic degrees
of freedom in nuclei (such as the meson exchange cur-
rents, the isobar configurations), and the importance of
relativistic effects (see, e.g., the recent reviews on the
deuteron [1-4]).

The electromagnetic structure of the deuteron as
a bound two-nucleon system with spin one is com-
pletely determined by three functions of one variable,
the four-momentum transfer squared Q2. These are the
so-called electromagnetic form factors of the deuteron:
G¢ (the charge monopole), G (the magnetic dipole)
and G¢ (the charge quadrupole). They are real func-
tions in the space-like region of the four-momentum
transfer squared (the scattering channel, for example,
in elastic electron—deuteron scattering) and complex
functions in the time-like region (the annihilation chan-
nel, for example, et + e~ — D + D). Hence, the main
experimental problem is to determine the electromag-
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netic deuteron form factors with a high accuracy and in
a wide range of Q2. A recent review of past and future
measurements of the elastic electromagnetic deuteron
form factors is given in Ref. [5].

We also note that the deuteron is used as an effec-
tive neutron target in studies of the neutron electro-
magnetic form factors [6] and the spin structure func-
tions of the neutron in deep-inelastic scattering [7].

When addressing the electromagnetic properties of
the deuteron more specifically, the corresponding ques-
tion concerns the ability to predict the three deuteron
form factors starting from the calculated deuteron
wave function and nucleon form factors known from
electron—nucleon scattering. At low momentum trans-
fers, predictions and data agree quite well when ac-
counting for one-body terms only, and at the higher mo-
mentum transfers, two-body contributions are known
to be important. Whether the quark degrees of freedom
need to be allowed for is still a matter of debate. We
note that each deuteron form factor may be sensitive to
some specific contribution. For example, the deuteron
charge form factor G¢ is particularly interesting for the
understanding of the role of the meson exchange cur-
rents. Therefore, it is necessary to separate the three
deuteron form factors. Measurements of the unpola-
rized cross section yield the structure functions A(Q?)
and B(Q?): they can be separately determined by vary-
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ing the scattered electron angle 6, for a given squared
momentum Q2 transfered to the deuteron. Hence, all
three form factors can be separated when either the
tensor analyzing power T or the recoil deuteron po-
larization 99 is also measured (the electron beam is
unpolarized in both cases). This has prompted the de-
velopment of both polarized deuterium targets for use
with internal or external beams and polarimeters for
measuring the polarization of recoil hadrons [8]. Both
types of experiment result in the same combinations of
form factors.

Two techniques are basically available to measure
such spin observables.

i) At storage rings, polarized internal deuteron gas
targets from an atomic beam source can be used [9-13].
The high intensity of the circulating electron beam al-
lows achieving acceptable luminosities despite the very
low thickness of the gas target.

ii) At facilities with external beams, polarimeters
can be used to measure the polarization of recoil
deuterons [14-16]. High beam intensities are a prereq-
uisite as the polarization measurement, which requires
a second reaction of the deuteron, involves a loss of a
few orders of magnitude in count rate.

Current experiments at modern accelerators rea-
ched a new level of precision, and this requires a new
approach to data analysis and inclusion of all possi-
ble systematic uncertainties. An important source of
such uncertainties is the electromagnetic radiative ef-
fects caused by physical processes that occur in higher
orders of the perturbation theory with respect to the
electromagnetic interaction.

While radiative corrections have been taken into
account for the unpolarized cross section, the radia-
tive corrections for polarization observables in the elas-
tic electron—deuteron scattering at large momentum
transfer are not known at present [17]. For exam-
ple, in the experiment on precise measurement of the
deuteron elastic structure function A(Q?) (at Q =
= 0.66-1.8 GeV), the radiative corrections (about 20 %)
due to losses in the radiative tail were calculated as
in [18]. On the other hand, the authors of recent ex-
periments [12, 13, 16] on measuring the polarization
observables did not present the evidence about taking
radiative corrections into account.

The importance of taking radiative corrections into
account can be seen in the example of the discrepancy
between the Rosenbluth [19] and the polarization trans-
fer methods [20] for determination of the ratio of the
electric to magnetic proton form factors. For a given
value of 2, it suffices to measure the unpolarized elas-
tic electron—nucleon scattering cross section for two val-

ues of e (the virtual photon polarization parameter) to
determine the Gy, and G g, form factors (the Rosen-
bluth method). But the measurement of polarization
observables in this reaction (using the longitudinally
polarized electron beam) allows determining the ra-
tio Gy, to G, [20]. Two experimental set ups were
used: measurement of the asymmetry on the polarized
target and measurement of the recoil-proton polariza-
tion (the polarization transfer method). Recent exper-
iments show that the ratios Gg,/Garp extracted using
the Rosenbluth and polarization transfer methods are
incompatible at large @ [21, 22]. This discrepancy is
a serious problem as it generates confusion and doubt
about the whole methodology of lepton scattering ex-
periments [23]. One plausible explanation of this prob-
lem is given by two-photon exchange effects [24]. The
data are consistent with simple estimates of the two-
photon contributions to explain the discrepancy (see,
e.g., [25] and the references therein).

The precise calculation of radiative corrections is
also important for the study of the two-photon ex-
change effects in elastic electron—deuteron scattering.
It was observed in [26-29] that the relative role of
the two-photon exchange can increase significantly in
the region of large Q2 due to a steep decrease of the
deuteron form factors as functions of Q2. Because
one- and two-photon amplitudes have very different
spin structures, the polarization phenomena have to
be more sensitive to the interference effects than the
differential cross section (with unpolarized particles).

An attempt to evaluate the presence of two inter-
mediate hard photons in box diagrams using the ex-
isting data on the elastic electron—deuteron scattering
was done in Ref. [30]. The authors searched for a de-
viation from the linear dependence of the cross section
on ctg?(f./2) using a Rosenbluth fit, with the cross
section parameterized in a model-independent way ac-
cording to crossing symmetry considerations.

The two-photon contribution to the structure func-
tions and polarization observables in the elastic scat-
tering of longitudinally polarized electrons on polarized
deuterons was recently calculated in Ref. [31] (the ref-
erences to earlier papers can be found there).

The radiative corrections to deep-inelastic scatter-
ing of unpolarized and longitudinally polarized elec-
tron beams on a polarized deuteron target were con-
sidered in Ref. [32] in the particular case of deuteron
polarization (which can be obtained from the gen-
eral covariant spin-density matrix [33] when spin func-
tions are eigenvectors of the spin projection opera-
tor). The leading-log model-independent radiative cor-
rections in deep-inelastic scattering of an unpolarized
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electron beam on a tensor-polarized deuteron target
have been considered in Ref. [34]. The calculation
was based on the covariant parameterization of the
deuteron quadrupole polarization tensor and the use
of the Drell-Yan like representation in electrodynam-
ics. The model-independent QED radiative corrections
to the polarization observables in the elastic scatter-
ing of unpolarized and longitudinally polarized electron
beams by a polarized deuteron target were calculated
in the hadronic variables in Ref. [35].

In this paper, we calculate the model-independent
QED radiative corrections in leptonic variables to the
polarization observables in the elastic scattering of un-
polarized and longitudinally polarized electron beams
by a deuteron target

e~(kn) + D(p1) > e~ (ko) + Dpa), (1)
where the four-momenta of the corresponding parti-
cles are indicated in the brackets. The experimental
setup with an arbitrarily polarized deuteron target is
considered and the procedure for applying the derived
results to the vector or tensor polarization of the re-
coil deuteron is discussed. The basis of the calcula-
tions consists of the account for all essential Feynman
diagrams which results in the form of the Drell-Yan
representation for the cross section and use of the co-
variant parameterization of the deuteron polarization
state. The numerical estimates of the radiative correc-
tions are given for the case when event selection allows
the undetected particles (photons and electron-positron
pairs) and the restriction on the lost invariant mass is
used.

2. THE BORN APPROXIMATION

From the theoretical standpoint, different polari-
zation observables in the process of elastic electron—
deuteron scattering have been investigated in many pa-
pers (see, e.g., Refs. [36-41]). The polarization observ-
ables were expressed in terms of the deuteron electro-
magnetic form factors. An up-to-date status of the ex-
perimental and theoretical research into the deuteron
structure can be found in reviews [2, 4]. Here, we repro-
duce most of these results using the method of covariant
parameterization of the deuteron polarization state in
terms of the particle four-momenta and demonstrate
the advantage of this approach.

We consider the process of elastic scattering of a po-
larized electron beam by a polarized deuteron target.
In the one-photon-exchange approximation, we define
the cross section of process (1) in terms of the contrac-
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tion of the leptonic L,, and hadronic H, tensors (we
neglect the electron mass wherever possible),

- a2 B d3k2 d3p2 9
VAT ey By @)
where V' = 2kip1,e2 and Es are the respective ener-
gies of the scattered electron and recoil deuteron and
q = k1 — ka = ps — py is the four-momentum of the
heavy virtual photon that probes the deuteron struc-
ture. In the case of a longitudinally polarized electron
beam, the leptonic tensor, in the Born approximation,

do S(k1+p1—ka—p2),

is given by

qu = q2guy+2(k/‘1uk/‘2]/+k2uk1]/)+2iPE(lj/qukl)7 (3)

(Nljab) = 5ul/)\pa)\bp7 €1230 = 1,
where P, is the degree of the electron beam polarization
(in what follows, we assume that the electron beam is
completely polarized and hence P, = 1).

The hadronic tensor can be expressed in terms of
the deuteron electromagnetic current .J, describing the

transition v*D — D as

Hy, = J.J,;. (4)

Using the requirements of Lorentz invariance, cur-
rent conservation, and parity and time-reversal invari-
ances of the hadron electromagnetic interaction, the
general form of the electromagnetic current for the
spin-one deuteron can be completely described by three
form factors and can be written as [20]

Ju=(p1+p2)u | —G1(Q)Uy - Us +

G3(Q° ; q* ]
+ %(Ul-qUQ 'q—EUl'UZ) +
+ G2(Q2)(U1MU2* q— U2*MU1 . Q)v (5)

where Uy, and Us, are the polarization four-vectors
for the initial and final deuteron states, and M is the
deuteron mass. The functions G;(Q?) (i = 1,2,3) are
the deuteron electromagnetic form factors depending
only on the virtual photon four-momentum squared.
Because the current is Hermitian, the form factors
Gi(Q?) are real functions in the region of space-like
momentum transfer. We here use the convention
Q* = —¢.

These form factors can be related to the standard
deuteron form factors G¢ (the charge monopole), Gy
(the magnetic dipole), and G¢ (the charge quadrupole)
as

Gwm

Ga, Gg =G1 + G +2G3,

Q* (6)
AM?2°

2 2
Go = gn(Gz—G3)+ <1+§77> G, n=
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The standard form factors have the normalizations

Ge(0) =1, Gu(0) = (M/mp)pua,

Gq(0) = M*Qu,

where m,, is the nucleon mass and (@) is deuteron
magnetic (quadrupole) moment, and their values are
pa = 0.857 [42] and Q4 = 0.2859 fm? [43].

If we write the electromagnetic current in the form

Jy = JWBUMUQ*B,
then the H,, tensor can be written as

HMV = JILQBJ:O"yp;Up£67 (7)
where p (pﬁ;ﬁ) is the spin-density matrix of the initial
(final) deuteron.

Because we consider the case of a polarized deuteron
target and an unpolarized recoil deuteron, the hadronic
tensor H,, can be expanded according to the polariza-
tion state of the initial deuteron as

H[J,l/ = HMV(O) + H;u/(v) + HMV(T)v (8)

where the spin-independent tensor H,,, (0) corresponds
to an unpolarized initial deuteron and the spin-depen-
dent tensor H,,, (V') (H,,(T)) describes the case where
the deuteron target has a vector (tensor) polarization.
We consider the general case of the initial deuteron
polarization state described by the spin-density matrix.
We use the general expression for the deuteron spin-
density matrix in the coordinate representation [44]

)

where s, is the polarization four-vector describing the
vector polarization of the deuteron target,

1

3

PraPig\ | 1
M? +2M

phs = =3 (90— (aBsp1)+Qas  (9)

2

pr-s=0, s -1,

and @, is the tensor describing the tensor
(quadrupole) polarization of the initial deuteron,

Q;w = Quuv Q,uu =0,

In the laboratory system (the initial deuteron rest
frame), all time components of @, are zero and the
tensor polarization of the deuteron target is described
by five independent spatial components,

Qij = Qji, Qu=0,

In Appendix B, we give the relation between elements
of the deuteron spin-density matrix in the helicity and

pluQ;u/ =0.

Z7.] :x7y72'
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spherical tensor representations and also in the coordi-
nate representation. We also give the relation between
the polarization parameters s; and ();; and the popu-
lation numbers n,, n_, and ngy describing the polar-
ized deuteron target, which is often used in spin exper-
iments.

We assume that the polarization of the recoil deu-
teron is not measured. Therefore, its spin-density ma-
trix can be written as

P2aP2s )
M2 )

The spin-independent tensor H,,(0) describes unpo-
larized initial and final deuterons and has the general
form

péﬁ = - (gaﬁ -

- W2(Q?) .
HMV(O) = _Wl (QZ)guu + j\;? )pluplua (10)
~ i . P1-q
Juv = Guv — q—Q, Pip = Pip — q—Qq“'

Two real structure functions Wi »(Q?) are expressed in
terms of the deuteron electromagnetic form factors as

2
Wi(Q%) = 3Q°(L+n)Gir,
9 3 (11)
Wz(Q2) = 4M2 <G(27 + gnG?M + §n2G2Q) .

In the considered case, the spin-dependent ten-
sor H,,(V), that describes the vector-polarized ini-
tial deuteron and the unpolarized final deuteron can
be written as

i i _
Hy, (V) = Msl(/ﬂ/Sq) + msz[pm(l’sq}?l) -

- 1 - -
—Drv(psap)] 4 SalPru(vsap ) +hw (psep)], - (12)
where three real structure functions S;(Q?), i = 1,2,3,
can be expressed in terms of the deuteron electromag-

netic form factors. They are
S1(Q%) = M*(1+ )Gy, S3(Q%) =0,

$5(Q?) = M2 [G% —9 (Go + gGQ) GM] .13

The third structure function S3(Q?) is zero since
deuteron form factors are real functions in elastic scat-
tering (space-like momentum transfers). In the time-li-
ke region of momentum transfers (for annihilation pro-
cesses, for example, e~ +e* — D+ D), where the form
factors are complex functions, the structure function
S3(Q?) is not zero and is determined by the imaginary
part of the form factors:

S3(Q?) = 2M> Im (Gc - gGQ) G%,
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(in this case, Q? is the square of the virtual photon
four-momentum).

In the case of a tensor-polarized deuteron tar-
get, the general structure of the spin-dependent tensor
H,,(T) can be written in terms of the five structure
functions as

H;u/(T) = ‘/1(@2)qu1/ + %(Q%%ﬁluﬁlu +
+V3(Q) (B1,Qv + 510Qu) + Va(Q*)Quu +

+ iV5(Q2)(ﬁ1uQV - ﬁluQu)a (14)
where we introduce the notation
~ q — ~
Qu = Quuqu - q_;Qv Q;AQu =0,
~ qudv 5 qvq me
Q;u/ - Q;u/ + M4 Q - 2& Quoz - u2a Quou (15)
q q q
Q;wqu =0, Q= QQBQaQB~

The structure functions V;(Q?),i = 1,...,5, which
describe the part of the hadronic tensor due to the ten-
sor polarization of the deuteron target, have the follow-
ing form in terms of the deuteron form factors:

Vi(@%) = -Gi, V5(Q%) =0,
4
V5(Q%) = G?\xﬁ'm <G0+gGQ+77GM) Gq,

V3(Q%) = —29[G7; + 2GoG ],
Vi(Q%) = 4M?n(1 + )G,

(16)

The fifth structure function Vi(Q?) is zero since the
deuteron form factors are real functions in the consid-
ered kinematical region. In the time-like region of mo-
mentum transfers, this structure function is not zero
and is given by

V5(Q?) = —4nIm GGy
(in this case, Q? is the square of the virtual photon
four-momentum).

Using the definitions of cross-section (2) and lep-
tonic (3) and hadronic (8) tensors, we can easily derive
an expression for the unpolarized differential cross sec-
tion (in the Born (one-photon-exchange) approxima-
tion) in terms of the invariant variables suitable for the

calculation of the radiative corrections:

2

do  ma Wa
TQ2_V—Q4{QPW1+T[1_p(1+T)]}7 (17)
2 2
e
1% Vv
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In the laboratory system, this expression can be writ-
ten in a more familiar form using the standard struc-
ture functions A(Q?) and B(Q?). Then the unpolarized
differential cross section for elastic electron—deuteron
scattering takes the form

) o

do®
dQ

Be

2

—ou { 4@ + B@) e

0
2EI 2 €
_O/, COS <2)

oM =
4E3 sin* (

0_8 ’
2

where o7 is the Mott cross section, E and E’ are the
incident and scattered electron energies, and 6, is the
electron scattering angle:

E' = B[1+2(E/M)sin®(9./2)] ",

Q* = 4EFE'sin*(0./2).
The scattering angle in laboratory system can be writ-

ten in terms of invariants as

1—p—2pr 2

1-p

cosf, = , sinf, =

Two structure functions A(Q?) and B(Q?) are
quadratic combinations of three electromagnetic form
factors describing the deuteron structure:

AQ%) = GH(@) + S GH(@) + 2nGh (@), (19

B(Q?) = (1 + mG(Q").

It follows from Eq. (18) that the measurement of the
unpolarized cross section at various values of the elec-
tron scattering angle and the same value of Q2 allows
determining the structure functions A(Q?) and B(Q?).
Therefore, it is possible to determine the magnetic form
factor G a7 (Q?) and the combination

GL(@) + ' GH(@)

of form factors. Hence, the separation of the charge G¢
and quadrupole Gg form factors requires polarization
measurements.

Before writing similar distributions for the scatter-
ing of polarized particles, we note that in the gen-
eral case, an azimuthal correlation between the reac-
tion (electron scattering) plane and the plane (kq,s)
can exist for such experimental conditions if the initial
deuteron is polarized. But in the Born approximation,
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with the P- and T-invariance of the hadron electromag-
netic interaction taken into account, such correlation is
absent. In what follows in this section, we consider the
situation where the polarization three-vector s belongs
to the reaction plane and the corresponding azimuthal
angle is equal to zero. Therefore, there exist only two
independent components of the polarization vector s,
which we call longitudinal and transverse ones.

To calculate radiative corrections to the polari-
zation observables, it is convenient to parameterize
the polarization state of the target (in our case, the
deuteron polarization four-vector s, describing the
deuteron vector polarization and the quadrupole pola-
rization tensor ), describing the deuteron tensor po-
larization) in terms of the four-momenta of the particles
in the reaction. This parameterization is not unique
and depends on the directions chosen to define the lon-
gitudinal and transverse components of the deuteron
polarization in its rest frame.

As mentioned above, we have to define the longi-
tudinal s(*) and transverse s(T) polarization four-vec-
tors. (The longitudinal and transverse components of
the deuteron polarization are often defined along the z
and x axes.) In our case, it is natural to choose the
longitudinal direction, in the laboratory system, along
the three-momentum transferred q (the virtual photon
momentum) and the transverse direction perpendicu-
lar to the longitudinal one in the reaction plane. The
corresponding polarization four-vectors can be written
as [34]

)

$(T) — (A1 4+ p)kiy — (1 +27)qu — (2 — p)P1s
o

Ve(d
c(dt + p) (20)
s(L):—QTq“_ppl“ c=1—p—pt.
Y M/ +)p)
These four-vectors satisfy the conditions
s p =0, s .sM =0, 72=_1.

It follows that they have the necessary properties of
polarization four-vectors.

It can be verified that the set of four-vectors SELL’T)
in the rest frame of the deuteron (the laboratory sys-

tem) has the form

s =(0,L), s =(0,T), (21)
Lok o om-m DLk
ki — ko VI-(n L) ki

This leads to simple expressions for the spin-dependent
hadronic tensors (due to the vector polarization of the

deuteron target) corresponding to the longitudinal and
transverse direction of the spin four-vector s,:

g, ) = -G JET o)
X [(47 + p) (uvaky) — (2 — p)(uvgpr)], (22)
HE,(V) = Gy (nvap)\/ p(47 + p),

47

where 5
G =2G¢e + gnGQ-

The spin-dependent parts of the cross section, due to
the vector polarization of the initial deuteron and longi-
tudinal polarization of the electron beam, can be writ-
ten as

doly, 7w 2—p )
Tm - _47'V2 P V p(4T + p)GMv (23)

% _ ra? (47 + p)CGMG, (24)

dQ? VQ? T
where we assume that P, in Eq. (3) is equal to unity
and the degree of the vector polarization (longitudinal
or transverse) of the deuteron target is 100 percent.

In the laboratory system, these expressions lead to

asymmetries (or the spin correlation coefficients) in the
elastic electron—deuteron scattering in the Born ap-
proximation. These asymmetries are due to the vec-
tor polarization of the deuteron target, corresponding
to the longitudinal and transverse direction of the spin
four-vectors S‘(LL) and s&T), and the longitudinal polar-
ization of the electron beam:

—n\/(l +n) <1 + 7 sin? <%)> X
s (%) e (B) 9

0
IOAg = —-2tg <E> n(l+n) x

% G (GC + gGQ) . (26)

I AL

where

Ip = A(Q*) + B(Q*) tg” (%) :

It is worth noting that the ratio of the longitudinal
polarization asymmetry to the transverse one is

A% _ .2 08 08 GM
@—\/n (l-l-nsm (5>)sec (5> = (27)
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This ratio is expressed in terms of the deuteron form
factors G'jr and G in the same way as the corresponding
ratio in the case of elastic electron—proton scattering
is expressed in terms of proton electromagnetic form
factors Gy, and Gp, [20, 45]. This is a direct con-
sequence of the relation between the proton HE, (V')
and deuteron H,,, (V) spin-dependent hadronic tensors,
which respectively depend on the proton polarization
and deuteron vector polarization:

4+ p

Huw(V)(Gur, G) = ——o—H], (V) (G, Gr,)- (28)
We now consider the tensor polarized deuteron tar-

get. If, for completeness, we introduce the four-vector

S“N) orthogonal to the reaction plane,

_ 25u>\pfrp1>\k1pk20-

=T Ve (29)

(1

then we can verify that the set of the four-vectors s

(120}
I =L, T,N, satisfies the conditions
SELQ)SELB) = —(Saﬁ, (a)plu — 0 0476 = L7T7 N.

In the rest frame of the deuteron (the laboratory sys-
tem), the four-vector s&N) has the form

ko
ko’

n; X ns
— L2 p,=
1-— (n1 - n2)2
with the vector N directed along the y axis. If we add
one more four-vector

Pi

(0) _
5 M

m

to the set of the four-vectors defined in Eqs. (20) and
(29), then we obtain a complete set of orthogonal
four-vectors with the properties

s&m)sf,m) = Juvs sl(im)s,(l”) = 9mn, m,n=0,LT N.
In the general case, this set of four-vectors allows ex-
pressing the deuteron quadrupole polarization tensor

as

Quv = (30)

because the time components Rog, Roa, and R, are
identically zero due to the condition Q,,p1, = 0. The
R, are in fact the tensor polarization degrees of the
deuteron target in its rest system (laboratory system).
In the Born approximation, the components Ry and
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Ry7 do not contribute to the observables and this ex-
pansion can be rewritten in the standard form

1
Qu = [ = ST

X (RTT — RNN) + ( (L) g (T) + S(T (L ) Rir, (31)

1
] Rrr + gstT)s(VT) X

where we took into account that
Rrr + Rrr + Ry =0.

The part of the cross section in the Born approxi-
mation that depends on the tensor polarization of the
deuteron target can be written as

dag _ dokl doLT dok”
402 = A0’ Rpr+ 40° (Rrr—RNN)+ 40? —5 Rrr,
where
dokl  71a?
dQ2 = @207’] X
2c+4 2
« {SGCGQ N gn% N %G%} ,
32
dof7  ma? 2 (82)
dQ2 = §2CT7GM
do kT ra? cp
=——7A4 — .
o= i =)y L6aGu

In the laboratory system, these expressions lead to
the following asymmetries (or analyzing powers) in the
elastic electron—deuteron scattering caused by tensor
polarization of the deuteron target and an unpolarized
electron beam (in the Born approximation)

IOAg = AE'Rrr + ALT(Rr7 — RyN) +
+ AgTRLT, (33)
where
LALE = L sncoco + S22
045" =3 UCQ+§77 o+
9 2
+ 7 [1+2(1+n)tg? Gy
(34)

1
LAR" = 5nGir, = —4n x

x\/n+,72 sin® <02 ) sec <9 )GQGM

Using the P-invariance of the hadron electromag-
netic interaction, we can parameterize the differential
cross section for elastic scattering of a longitudinally

IOALBT
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polarized electron beam on the polarized deuteron tar-
get (in the coordinate representation of the deuteron
and electron spin-density matrices) as

do do™™

dQ? ~ dQ?

+ A""Ryr + ATT(Rpr — RyN) +

1+ ANsy + A"YRrr +

+ P(Als. + ATs, + APNRyx + ATNRpn)], (35)

where do®™/dQ? is the differential cross section for un-
polarized particles, AN is the asymmetry (analyzing
power) due to the normal component of the deuteron
vector polarization (s,), A*", APT and ATT are the
asymmetries (analyzing powers) due to the deuteron
tensor polarization corresponding to the Rrr, Rrr,
and (Rrr — Ryn) components of the quadrupole ten-
sor, AY and AT are the correlation parameters due to
the longitudinal polarization of the electron beam, s,
and s, are the components of the deuteron vector po-
larization, ATN and ALY are the correlation parame-
ters due to the longitudinal polarization of the electron
beam, and Rpn are Rpn the quadrupole tensor com-
ponents. We note that the elastic electron—-deuteron
scattering amplitude is real in the Born (one-photon-
exchange) approximation. This leads to zero values of
the polarization observables AV, ATV and A"V in this
approximation.

The formalism of spherical tensors is also used for
parameterizing the deuteron spin-density matrix (see
Appendix B for the details). In this case, Eq. (35) can
be written as

do dotm

TQ2 = TQ2[1 +2Imt11T11 +

+ t20T20 + 2Re t21T21 + 2Re t22T22 +
+ Pe (t10010 + 2 Re t11011 + 21111 t21021 +

+2Im t22022)], (36)

where ¢, are the polarization tensor describing the po-
larization state of the deuteron target and T}, and Cj,
are the analyzing powers and correlation parameters of
the reaction.

The relations between the polarization observables
in the coordinate representation and within the ap-
proach of spherical tensors are
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Ty = _%Agp Ty = _gAzm
Ty = LA$Z7 Ty = _LAxxa
2v3 V3 (37)
Cho = \/gAz, O = —%Am,
Cor= — Ay, Cop=——A,,
237 2v/3 "

If the longitudinal direction is determined by the re-
coil deuteron three-momentum, then relations (21) are
not affected by hard photon radiation in the lepton part
of the interaction (this corresponds to the use of the so-
called hadronic variables) because q = p» — p1. But
when this direction is reconstructed from the experi-
ment using the three-momentum of the detected scat-
tered electron (lepton variables), these relations break
down because q # k; —ks in this case. This means that
in the leptonic variables, parameterization (20) is un-
stable and radiation of a hard photon by the electron
leads to a mixture of the longitudinal and transverse
polarizations.

We can eliminate such a mixture if, in the labora-
tory system of reaction (1), we choose the longitudinal
direction 1 along the electron beam momentum and the
transverse directions t, in the plane (k;,ks) and per-
pendicular to 1. Then the corresponding parameteriza-
tion of the polarization four-vectors is [34]

27k, —
N _ g — Pip n) _ (N
o = 2R =P ),

38
S(t)_k2u_(1_p_2p7.)klu_pplu ( )
uo= .

VvVep

It can be verified that the set of these polarization four-
vectors s,(f’t’n) in the rest frame of the deuteron (the

laboratory system) has the form

s =01, s =(0,¢), sV =(0n), (39)
l:nh t:ng—(nl-nQ)nl _ n; X ns

\/]. — (n1 '1’12)2.

This set of the polarization four-vectors (together with
S‘(LO)) is also a complete set of orthogonal four-vectors

with the properties

1—(1’11 '1’12)27

(m) g(m)

w Sv = Guv, ng)sgn) = Jmn, m,n =0,1,t,n.

The hadronic tensors H L,ﬁ corresponding to the longi-
tudinal and transverse directions of the new spin four-
vectors are given by
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47'+p
4T

X {G [—QT(pvqkl) +

Hl

21(2 - p)
4t +p

u+2ﬂ0wwﬁ}GM,(m)

(uvqpﬂ] +

p
G, Tt2/
+Gu 4t +p

pT

c

<o 2n |2 ) -

Ht

v X

=1

+
MpWWhﬂ—

- GM%(MVQM)} Gu. (41)

In the case of scattering on a vector-polarized
deuteron target, the tensors H;" and H};! correspond-
ing to the two choices of the spln four- vectors are con-
nected by trivial relations

+ sinf H!

L _ 1
H,, =cost H,, v

T _ t
H,, = s1n9H , TcosbH,,,
where
cosf = —(sMsD), sinh = —(sP) ).
Simple calculation leads to
cosf = M, sinf = -2 - (42)
p(41 + p) 4t 4+ p

These relations are a consequence of the fact that
two sets of spin four-vectors are connected by means of
an orthogonal matrix that describes a rotation in the
plane perpendicular to the direction n = N:

> )
where A=L,T and =1, t.

Using this rotation matrix, we can write the spin-

dependent parts (due to the vector polarization of the

target) of the Born cross section, which correspond to
parameterization (38), in the simple way

cosf sinf

st =V (0)s), VW)=<

—ginf cosf

dQ? dQ?’
where dok /dQ* and dok /dQ? are defined in Eqs. (23)

= Vza(—0) (43)

and (24). Therefore, we can write
doly 1427 2c
—— =——|—(2-p)G —G| G 44
o = | @ )G + =G| G, ()
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1
2

doly

dQ?

In the case of the tensor polarization of the deuteron
target, the relations analogous to Eq. (43) are

(2—p)Gr—(1427)G | Gpr. (45)

ma? [cp
.

VQ?

do” dod
TQB; = TBA(_Q)TQBzv (46)

where now A = LL,TT,LT and 3 = I, tt, lt. The
rotation matrix can then be written as

1 3 3.
Z(1+3 cos 26) Z(l_ cos 26) 7 sin 260
T@)=| 14_ 1 1y ,
4(1 cos 26) 4(3-|- cos 26) 2 sin 260
—sin 26 sin 26 cos 26

where the partial cross sections dol/ /dQ?, I,J =L, T,
are defined in Eq. (32) as the coefficients in front of
the respective quantities Ryr, Rrr — Ryn, and Ry,
and the partial cross sections in the left-hand side of
Eq. (46) are defined as

do¥  doll dott do'lt
—= = —=Ry R R, —R 47
dQz ~ dQ? T o2 dQ? (Ret = Ron) + gz (47)

The partial spin-dependent cross sections in this case
are

2ra?

d tt
0B e
Q4

365_
(2— p)(l—l—QT)GMGQ—i——GQG]

(1+ Tp)G?V[ +

_|_

do't 87ra

aQ* Q!

1+2
T [pr(1 4+ n)G3 + 2cGoG] +

-|-4
X
{1+n
1+ 27

+2(2
[pp+4

dog 27ra
aQ? = Q"
—3ﬁru+rﬂGM+6w@—p)

ny/en x

(c+71+71) —c] GMGQ},

1
do's

Hp@+4r—)—1—
1427 y
p+4r

x GuGo+———[27—p— 6pT(1+T)]GQG}

ﬂ+)

It now follows that the spin-dependent part of the
cross section, due to the tensor polarization of the
deuteron target, is expressed in terms of new polari-
zation parameters Ry, Ry — Rnn, and Ry, which are
defined in accordance with the new longitudinal and
transverse directions given by Eq. (38), and the coef-
ficients in front of these quantities, in the right-hand
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side of Eq. (47), define the corresponding partial cross
sections doj /dQ*. The new polarization parameters
are related to Ry, R77 — Ryn, and Ry as

1
Ry = Z(l +3cos20)Ry ., +

1
+ Z(]. — COS 29)(RTT — RNN) — sin QHRLT,

3
Ry — Rpp = Z(l —cos20)Ry, +

1
+ 1(3 + cos20)(Rrr — Ryn) +sin20R 7,

3 1
Ry = Z sin 20RLL—Z sin QQ(RTT—RNN)-F cos20RLT.

We now consider the scattering of a longitudinally
polarized electron beam by the unpolarized deuteron
target in the case where the recoil deuteron is polar-
ized. We can then calculate both vector and tensor po-
larizations of the recoil deuteron using the results given
above. For this, we note that the polarization state of
the recoil deuteron can be described by the longitudi-
nal and transverse polarization four-vectors SELL) and
SELT) that satisfy the relations

5% =

—]., S~p2:0

and are given by

27, + pp2u

My/p(dr +p)’

We note that the spin-dependent part of the
hadronic tensor describing the vector polarization of
the deuteron target, Eq. (12), can be written in the
equivalent form

(L) _

T) _
(L) = S —

"

S

ng). (49)

1G M
2M

H,, (V)= [(Gm — G)s - pa(pvapr) +

+2M?(1 +n)G(uvgs)].  (50)
The spin-dependent part of the hadronic tensor
H 5,, (V), which corresponds to the case of the vector po-
larized recoil deuteron, can be derived from this equa-
tion by the substitution
Sy = Sy, P& —pa.
In fact, this means that we have to replace the term
$ - pa in the right-hand side of Eq. (50) with the term
S - p1. The vector polarization of the recoil deuteron
(longitudinal P or transverse PT) is defined as the
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ratio of the spin-dependent part of the cross section to
the unpolarized one. Taking into account that

S p, = —s(B) .,

and
(1) . q=0,

we conclude that

Pl = AL pT = AT (51)
where A" and AT are the respective vector asymme-
tries for the scattering of the longitudinally polarized
electron beam by the vector polarized deuteron target
(we assume that the beam and the target have 100 per-
cent polarization).

Here, we emphasize that determining the ratio
Gy /G by measuring the ratio of the asymmetries
AL JAT | in the scattering of a longitudinally polarized
electron beam by a vector-polarized deuteron target,
may be more attractive than by measuring the ra-
tio of polarizations P*/PT in the process of polariza-
tion transfer (from the longitudinally polarized electron
beam to the recoil deuteron) because a second scatter-
ing is necessary in the latter case. This decreases the
corresponding event number by about two orders [46]
and essentially increases the statistical error. The prob-
lem with the depolarization effect that appears in the
scattering of high-intensity electron beams on polar-
ized solid targets can be avoided using the polarized
gas deuteron target [13].

The tensor polarization components of the recoil
deuteron are defined similarly by the ratios of the cor-
responding partial spin-dependent cross sections to the
unpolarized one,

LL LT T

éLL - dGB ~LT - dGB }}TT éNN - dUB
un ’ un ’ un

do' do do'

The spin-dependent part of the hadronic tensor
Hf‘u(T), which corresponds to the case of a tensor-po-
larized recoil deuteron, can be derived from Eq. (14)
by changing the sign of the structure function V3(Q?).
Straightforward calculations using this updated tensor
and parameterization (49) lead to the following results:
i) both diagonal partial cross sections in the right-hand
side of the last equations are the same as those defined
by the first three lines in Eqs. (32) for the scattering
on a polarized target, and ii) the partial cross section
doBT /dQ? changes sign compared with the one in the
fourth line of Egs. (32).
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3. RADIATIVE CORRECTIONS

There exist two sources of radiative corrections
when corrections of the order of a are taken into ac-
count. The first is caused by virtual and soft photon
emission that cannot affect the kinematics of process
(1). The second arises due to the radiation of a hard
photon,

e (k1) + D(p1) = e (k2) +v(k) + D(p2), (52)

because cuts on the event selection used in the current
experiments allow photons to be radiated with the en-
ergy about 100 MeV and even more [16, 46]. Such pho-
tons cannot be interpreted as “soft” ones. The form
of the radiative corrections caused by the contribution
due to the hard photon emission depends strongly on
the choice of the variables that are used to describe
process (52) [47].

We calculate the radiative corrections in the lep-
tonic variables. This corresponds to the experimental
setup where the energy and momentum of the virtual
photon are determined using the measured energy and
momentum of the scattered electron.

The hadronic variables (with the virtual photon
kinematics reconstructed using the recoil deuteron
energy and momentum) were previously used to
compute the radiative corrections in the elastic and
deep-inelastic polarized electron—proton scattering
[47, 48], and elastic polarized electron—deuteron
scattering [35].

We here calculate the model-independent radiative
corrections that include all QED corrections to the lep-
ton part of the interaction and an insertion of the va-
cuum polarization into the exchanged virtual photon
propagator.

The general analysis of the two-photon exchange
contribution (box diagrams) to the polarization obser-
vables in the elastic electron—deuteron scattering was
done in Refs. [49, 50]. The effect of a two-photon ex-
change on the deuteron electromagnetic form factors
was estimated numerically in Ref. [31, 51].

3.1. Unpolarized cross section

The model-independent radiative corrections to the
unpolarized and polarized cross sections (due to the
vector polarization of the deuteron target) of the elas-
tic electron—deuteron scattering can be obtained using
the results in [45], where the QED corrections for the
polarized elastic electron—proton scattering were calcu-
lated in the framework of electron structure functions.

The spin-independent part of the cross section for
elastic electron—deuteron scattering can be derived
from the respective part of elastic electron—proton scat-
tering by a simple rule using following relation between
spin-independent hadronic tensors describing electron—
deuteron and electron—proton scattering:

41 + xyr 2
d(un) __ un 2 2
H™ = ———H™ <GMp = 3G,
z2y?r
Gp, = Go + e G2> (53)
where
__ @ _2nkiok)
2p1 (k1 — ko)’ V ' (54)
_ —(ky — ko — k)2

We recall that k is the four-momentum of the hard
photon in reaction (52).

The radiatively corrected cross section can be writ-
ten in terms of the electron structure functions in the
form (master formula) [52]

Ymaz

do(ky, k)
dé222 / dy/d21 /d22D (z1,L
Ymin Z1im Zom
1 7. 1. 2
x —2D(z2,L)%(kljk2), L:an—z, (55)
25 dQ? dy m

where m is the electron mass, the integration limits
for y, z1, and 29 are defined below, and the quantity
D(z,L) is the electron structure function. Numerical
estimate of the radiative corrections (see below) have
been done using the exponentiated form of the electron
structure function given in Ref. [45, 53]. For the diffe-
rent, representations of the photon contribution to the
electron structure function, see, e.g., Ref. [54].

The reduced variables that define the cross section
with emission of a hard photon in the integrand are
ko

~ ~ 21 5 1—y
k2:_7 Q2:_Q27 y:]-_ .
29 Z2 2122

ky = 21k,

The hard part of the unpolarized (spin-indepen-
dent) cross section can be written as

dahard daun

- 1 5 H, Hzra
05 = dongy 1+ 550600) + Hat Har, (56)
where

5z, p) = m <Lﬂ7))> _1n2 (1-p)

e G
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[ dt
fa) = [ § o),
0
a |[1—7r » 1—ry - a?(rQ?)
H, = — P — P N _—
’ V2[1—p L I (1) ro
Ty R
21‘W (z,r)dr P dr 1-P;
v/ p? +4px7’ |r—7r1]
L+ 1- P
N —r)T -

» (1_p (e.r) 4+ (r1 —7) 1<x,r>) —
142 2(0.0)2
><( +r N(x,r)+(r2—r)T2(x,r))] M,
1—z4 r

N(r,r) = 204 A)GH Q%) +
= (1= 2= 0m) @ 00r?),
W(a,r) = 3 (14 MG Q%) = 226 (A, Q7).
Ti(a,r) = p2r [1 - #} G20\, rQ),
To(z,r) = —% [1 —r— g] G2\, rQ%), Ay = %,
G2 (e 1@) = GR(rQY) + 30, G Q%) +
+ %A,%Gg(rQZ’), i = 5(1 — ).

The integration limits for » in the expression for
H,, can be written as

1
22°7 + ( (p:l: \p —|—4x2p7')]

T o (T+24)

The integration limits in master formula (55) at
fixed values of p can be derived from the restriction
on the lost invariant mass for the hard subprocess:

M? < (ki +p1—k2)? < (M +Ay)°,  (57)
where Ajs is usually smaller than the pion mass to
exclude inelastic hadronic events. This means that

1—y 1-—
Zom = p + Zlm = 77—  Ymin = P,
21 1—p
A% +2MA Ny
Ymaz = P + Athv Ath =M Vv . (58)

The action of the projection operators P, and P is
defined as

Plf(nx) = f(rlvx)v PQf(Tvx) = f(T2,$)7 (59)
where
_r—p _ x 1
"= BT o) T T-ay

The principal value symbol P in the expression for H,,
means that the nonphysical singularity at » = 1 must
be ignored; in other words,

r

foyde [ A [ f)
P/ AT=r)lr=nl r{(l—r) =
LW ], W) 1
|1—r1|] TR e

The Born unpolarized cross section that enters hard
cross section (56) is defined by expression (17) multi-
plied by the delta function §(y — p).

To compare our calculations with others it is very
important to extract the first-order correction from the
master formula. For this, it suffices to use the well-
known iterative form of the electron structure function
entering Eq. (55) taking terms of the order of a into
account, namely,

. a(L —1)
D(ZZ,L) = AI}ILIO 6(1 - Zz) + Tpl(zl):| 5
2

The exact form of the infrared parameters A; and As
is given in Ref. [45], but it is unessential because they
cancel in the final result, which can be written as

do dop
TQ2 sz [1+ (5(1 p) + (L — 1)G0)] +
ymam
b -G+ [ (et Ha)dy, (61
Ymin
where
_ = _ A
Go=9(x) +9(2), Gi=I(z)+1(2), z=7 —
2
glx) = g —2x+ % +2Inz, Z=Ay,
1
1+Z% dO’B(Zlkth) dO’B(kl,kz)
I(z) = _
0= [ 155 | T
11—z
and I can be derived from I by substitution

dop(ki, 22_1]62) instead of dog(z1k1, k2) and z; — 2.
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3.2. Correction to the cross section part
caused by the vector polarization of the
deuteron target

The correction to the spin-dependent part of the
cross section, in the case where the deuteron target
has vector polarization, can be obtained from the cor-
responding formulas of electron—proton scattering to-
tally similarly to the unpolarized case. The only dif-
ference consists in the relation between spin-dependent
hadronic tensors, which becomes

41 + xyr y
8t
x HE(D) (GM — Gar,Gpp — 2Gc+

H’d Lt
;u(/ )
GQ) (62)

We can again start from the Drell-Yan representa-
tion, but now for the spin-dependent part of the cross
section. We recall that this representation is valid in
this case where the radiation of collinear photons by the
initial and final electrons does not change the longitudi-
nal (1) and transverse (t) polarizations. Such stabilized
polarization four-vectors of the deuteron polarization
can be written in the form

g0 _ 2k =P
g M , 63
—xyp1y, + koy — [22yT+ (1 —y (63)

)]klu.
VVay(l—y —ayr)

St =

It can be verified that the polarization four-vector S
in the laboratory system has components (0,n), where
the three-vector n has the orientation of the initial elec-

tron three-momentum k;. It can also be verified that
S®HSM =0 and

SO =@0mn.), n2=1, n-n =0
in the laboratory system, where the three-vector n
lies in the plane (ki,ks).

It is convenient to write the master formula for the
spin-dependent differential cross sections do! and do?

in the form

~ Ymaaz
dO’l’t(kl,k2,S) o / d d0l7t
Q2 - Va0 dy’
Ymin
dobt / / d
g’ ¥4
m = / le / Z—;D(p)(ZhL) X
Lt 77O
X D(Z%L)M. (64)

dQ? dj
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The function D®)(z, L) is the electron structure func-
tion for a longitudinally polarized electron. Tt dif-
fers from D(z, L) in the second order due to collinear
electron—positron pair production in the so-called non-
singlet channel (see Ref. [55] for the details).

If the longitudinal direction L is chosen along the
three-momentum k; — ks in the laboratory system,
which for nonradiative process coincides with the direc-
tion of the three-vector q, and the transverse direction
T lies in the plane (kq,k2), then we have to use

g(L) — 27(k1 — k2)y — Y P1u
. My/y(y + 4aT)
g1 _ (I+227) ko —(1—y—27) k1, —2(2— y)plu
(1) =

\/Vx 1—y—ay7)(y+4aT)

In this case, we use the relations

do™ (ki,k»,S)
dQ? -

Ymax

[ dwvaso)

Ymin

do® (ki ks, S)

dQ2dy (65)

where, totally similarly to Eq. (42),

costp = —(SHISDY, sing = —(SESH),
cosp = Y+ 2xyT
y? + 4yt

ry7(l —y — ayT)
y? + 4oyt ’

siny = —2\/

The vector asymmetries in the considered process with
the radiative corrections taken into account are defined
as the ratios

dﬂlt(khk% S)

Al7t —
¢ (klka) (66)
AL,T do 7T(k17k27s)
¢ do(ki ko)

where the unpolarized cross section is described by
Eq. (55), and the partial cross sections caused by cor-
relation between the deuteron vector polarizations and
the electron longitudinal polarization are respectively
defined by Eqs. (64) and (65) (we use P, = 1). There-
fore, calculating the asymmetry, including the radiative
corrections, requires knowing the radiative corrections
for both spin-independent and spin-dependent parts of
the cross section.
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The hard part of the polarized cross section in the
integrand in the right-hand side of Eq. (64) can be writ-
ten in a form very similar to, although slightly different
from, the unpolarized cross section:

daz’t d da%t 1.
ard __ 1 (5 H t Hlt
Lt__aU“ L—rio s
Hi = 8rV2 { 1-p PNy
_ 1- PN”} 042(7“@2)7
1—z4 r

r

Ty +
aUb? 2xWhtdr P dr

Hlt_
rr 8TV2 p2 +4x2p7' 1—r x
]-_pl ].-|"I"2 1 1
|7,_7,1| <1_pN1’t+(r1 —T‘)Tl’t —
1-DPy (140 Lt a*(r@?)
- N — )T S Ay

The rest of our short-hand notation is

vl=1, U=l
’ xp (x —p—xpr)’

0
> (14 227)W,

wh=—22w, wt=
x

W=[z(l+r)- 1G5 + [1 + 4/";6—;(1 +r)] GuG,

1—p
Nl = @27 4+r)(2-p)G% + 87 (T - ;) GuG,

Né =274+ 1)(2— pr)G3; + 87 <% -1- T)) G’Mé,

2 (1—}—277-) GMé:|7

1
N = [1—§+;—p(1+27)] X

x [~(2 = pr)G3 +2(1 +21)GuG]

2 ~
T =2 {(7’ +27)G3, + 271 <; - 1) GMG} ,

2 ~
Ti= -2 [(1 +27)G3, + 27 (E - 1) GMG} ,

Tf:?{—[r(l—p)—}—l—g—QpT]G?M+

+ [1—%—2/}7‘—!—7‘—}—47‘] GM@}7

1
T§:2[——p(1+2r)+1—£]G%\4—
r X
-1 1 ~
—2{p+2T—+—+1—£]GMG.
r r X

We note that the argument of the electromagnetic form
factors in Eq. (67) is —Q%r and
G(rQ®) =2Gc(rQ?) + - Go(rQ?).

The spin-dependent Born cross sections in the right-
hand side of Eq. (67) are defined by expressions (44)
and (45) multiplied by §(y — p).

We can now write the first order-correction to the
spin-dependent part of the cross section totally simi-
larly to the unpolarized case,

It Lt
do™' _ dog

A07 T dQ? [1"‘ ~(6(1,p) + (L - 1)00)] +
Ymax
+ %(L —- G+ / (HLY + HLYY dy,  (68)

Ymin

where G can be derived from G, (see Eq. (61)) by
the simple substitution do — do’*

3.3. Correction to the cross section part caused
by tensor polarization of the deuteron target

The radiative corrections to polarization observ-
ables in elastic electron—deuteron scattering caused by
a tensor-polarized deuteron target can be obtained us-
ing the results in [56], where model-independent ra-
diative corrections to the deep-inelastic scattering of
an unpolarized electron beam on a tensor-polarized
deuteron target have been calculated.

To obtain the required corrections, it is necessary
first to derive the contribution of the elastic radiative
tail (radiative corrections to elastic electron—deuteron
scattering). It can be obtained using the results in
Ref. [56], where radiative corrections to the deep-ine-
lastic scattering of an unpolarized electron beam on a
tensor-polarized deuteron target have been calculated.
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We can obtain these radiative corrections from formula
(46) in [56] by the substitution

1 e .
Bi(q2,x')—>—q—25(1—x')B§ Dooi=1,...,4, (69)

in the hadronic tensor, where B;(¢?,2') are the spin-
dependent structure functions caused by the tensor
polarization of the deuteron, describing the transition
v*d — X, and the functions Bgd) are their elastic limit
(when the final state X is the deuteron). Here

= (k1 — ks — k)2

Hence, the elastic structure functions can be expressed
in terms of the deuteron electromagnetic form factors
as

B = n?G},
B{") = 272G (Gar +26q),

By = —2i¢”

(70)
4G 7
2 Q n -
x {GM+ o (GC+ 3GQ+nGM)] ,
BiY = —20¢*(14+0)G3y, 7= —a*/4M.

After the substitution of the elastic functions Bgel)
in formula (46) in Ref. [56], we have to integrate over
the z variable (which shows the degree of deviation of
the deep-inelastic scattering from the elastic process)
using the d-function

(1 —2") = zyrd(2).

Hence, the value z = 0 corresponds to the elastic con-
tribution (elastic electron—deuteron scattering) to the
deep-inelastic process. We note that the z variable used
in Ref. [56] has a different meaning compared to the z
variable used here. And finally, to obtain the radiative
corrections to the process of elastic electron—deuteron
scattering, it is necessary to integrate the elastic radia-
tive tail contribution over the z variable.

As a result, we obtain the radiatively corrected
spin-dependent part of the cross section caused by the
tensor polarization of the deuteron target in elastic
electron—deuteron scattering in the form

tt

dQ2

it

do'! do
dQ@?

do®@
U :—R
dQ?

Tm (Rtt

Ron) + —Ri, (71)

where the spin-dependent parts of the cross section
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do™™, mn = [l,lt,tt, can be written in terms of the

electron structure function as

ymaz

Ymin

Q?dy / B /

Z1im Zom
dO’,%r;',d(Z?l s ]:32, g)
dQ? dy ‘

do™ (ky, ks, S)
dQ?

do™mn
dQ?dy’

dZQ

it (72)

><
X D(Z2,L)

Totally similarly to Eq. (65), we can write the ten-
sor partial cross sections defined relative to the L and
T directions as

do™ (ki ,k2,S)
dQ? -

Ymax

[ s

Ymin

doP (ky, ka, S)

dQ*dy (73)

In this paper, we define the partial tensor asym-
metries in the same way as for the vector ones (see
Eq. (66)),

do? (ky, ks, S)

dO’ (kl,kQ,S)
dd(kl,k2) ’

AL =
¢ do(ki,ks)

A = (74)

where the indices A and 8 take the values
A=LL, TT, LT, p=I, tt, It,

and the spin-dependent cross section parts due to
the deuteron tensor polarization are determined by
Eqs. (72) and (73).

The hard part of the spin-dependent cross sections

in the integrand in the right-hand side of Eq. (72) can
be written as
dopih ( « dog™
- (1+250 ) FH™ ™ (75
10>y +5-6(1,p) Q2d ar's (75)
where we introduce the notation
Hmn o i (]. — 7‘1)?1 _ (]. — ’I‘g)pz ddgn
¢ T o 1—p T dQ?’
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o _an [P Far(1 — P)G™ (r)
TR )1 —ay (1 =r)|r—r]
4 A
N P / dr(1 — Py)G™"(r) ap
1—y(l—2) (L=r)|r —mr 4Q4

r—

2

dr
\/y +4xyr/

2 2
+ sz—an( )] w

(76)

with the coefficients

1
& = y+4x7_[1—y—2x7'+r(1+a/:y—2x+2xr)],
=3¢ - — —[r(l—ay +y—-1]"
y(y + 4a7)
The functions G™"(r), G™"(r), and F/*"(r), i = 0,
1, 2, are defined as
Gmn( ZAmnH]’
4
Fm™(r) =Y CpmHj, (77)
j=1
Amn a2 (Q27‘) - mn
j=1

where the expressions for the coefficients A;’m, B,
and C77", with mn = I,1t,1t, i« = 0,1,2, and j
=1,2,3,4, are given in Appendix A. The functions H;,

j = 1,...,4, in relations (76) depend on the shifted
momentum transfer squared, i.e., H; = H;(rQ?), and
Hi(Q%) = GY, Ha(Q%) = —2(1+n)GYy
Hy(Q%) =
4 n (78)
m|G2, + —— 1
n |Gy + 1 +77GQ(GC + 3GQ +nGur) |,

H3(Q%) = 20 G (Gar + 2Gg).

From the master formula (72), we can now extract
the first-order correction to the spin-dependent parts
of the cross section, caused by the tensor polarization
of the deuteron target:

do™™ @ dog™
0T {1 +5-10(1,0) + (L - 1)Go]} a0 T
ymam
+ (L= DG + / (H + HI™) dy,  (79)
Ymin
4 ZKST®, Bom. 2 (8)
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where mn = [1,1t, tt and

G"" = 1""(2) + I"(2),

1 ~
(1+r})(1 - Py) dop™
) = - [ an SR B
1—=z
[ dry (1492)(1— Py) d
mn(z T2 -|-7"2 — 12 ng
ey =— | &2 .
2 (Z) / 7’% 1 — 7y dQ2

4. NUMERICAL ESTIMATIONS

The recent measurements in polarized electron—deu-
teron scattering are as follows:

i) measurement of the analyzing power Ty in the
region 0.126 GeV? < Q% < 0.397 GeV? [12],

ii) measurement of recoil polarizations t2q, t21, t2o
at 0.66 GeV? < Q? < 1.7 GeV? [16],

iii) measurement of analyzing powers T, T21, Too
at 0.326 GeV? < Q% < 0.838 GeV? [13].

For the deuteron form factors, we use the results
in [57], where the world data for elastic electron—deu-
teron scattering was used to parameterize the three
electromagnetic form factors of the deuteron in the
four-momentum transfer range 0-7fm~! in three dif-
ferent ways. The accuracy in the determination of these
form factors is limited by the assumption of the one-
photon exchange mechanism and the precise calcula-
tion of the radiative corrections. In the range of inter-
mediate to high @), other corrections such as the double
scattering contribution to the two-photon exchange [30]
should be considered, but they are at present by neither
accurately calculated nor experimentally determined.

For numerical calculations, we use two different pa-
rameterizations labeled as I and II. In parameteriza-
tion I, each form factor is given by a polynomial in
Q?. With 18 free parameters, a fit was obtained with
X?/Na.y. = 1.5. Parameterization I has been proposed
in Ref. [58]. Each form factor is proportional to the
square of the dipole nucleon form factor and to a linear
combination of reduced helicity transition amplitudes.
In addition, the asymptotic behavior dictated by quark
counting rules and helicity rules valid in perturbative
QCD were incorporated in the fitting procedure. With
12 free parameters, a fit to the data set was obtained
with X2/Nd.f. = 1.8, whereas the original values of the
parameters in Ref. [58] yield x*/Ny.;. = 7.5. Param-
eterization II, unlike the other two presented in this
paper, can be extrapolated well above 7fm™!, albeit
with some theoretical prejudice.
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Fig.1. The Born values of vector and tensor asymmetries calculated by means of Eqgs. (25), (26), and (34). We note that
the quantity A%” is small compared with A%. Q7 is given in GeV?

To demonstrate the effect of radiative corrections
in the considered polarized phenomena, we give the
QQ%-dependence of the quantities 6A7 and 6 AT’ defined
as

SAT = AL — AL oA = Al — AL (80)

where AL and AL/ are the values of the corresponding
asymmetries with the radiative corrections taken into
account (see Eqs. (66) and (74)) and AL and AL are
their Born values.

In the calculation, we took V = 2(kyp;) = 10 GeV?
and 0.1 GeV? < Q% < 2 GeV? and used parameteri-
zations I and II of the deuteron form factors given in
Ref. [57]. It turns out that the difference between the
asymmetries calculated with these two parameteriza-
tions are very small and we use parameterization I in
what follows.

In Fig. 1, the Born values of vector and tensor asym-
metries are shown. We can see that the absolute values
of vector asymmetries are small compared with the ten-
sor ones. Besides, the effect of the polarization direc-
tion choice is seen very clearly. The most pronounced
feature is that ALT is near zero at all values of Q* con-
sidered, whereas A% is large enough (of the order of
unity).

In Fig. 2, we demonstrate the influence of radiative
corrections on the single-spin tensor asymmetries. The
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corresponding effect depends strongly on the parame-
ter Ay, that defines the rules for event selection. If we
set Ay, = 0, the radiation of hard photons is forbid-
den, and the effect vanishes, as can be seen from master
formulas (55), (64) and (72) as well as from Eqgs. (65)
and (73).

In this case, the radiative corrections are de-
termined by the soft photon emission and virtual
loops and are factorized in both unpolarized and
polarization-dependent cross sections. If the hard pho-
ton emission is allowed but the pion production thresh-
old does not exceed Ay, < 0.0526 (see Eqgs. (57) and
(58)), the absolute value of the effect is smaller than
2.5%. As the allowed photon energy increases, correc-
tions to the tensor asymmetries can reach the values of
the order of 15-20 %.

As regards the double-spin vector asymmetries,
they are very small even at the Born level, and up to
now there have been no attempts to measure them. We
calculate them to give the complete picture of taking
model-independent radiative corrections in to account
in electron—deuteron scattering.

We emphasized in Sec. 2 that measurement of the
polarization asymmetries in process (1), in principle,
can be used to determine the deuteron magnetic form
factor Gjs. The reason is that the quantities AL (see
Eq. (26)) and ALT (see Eq. (34)) are proportional to
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Fig.2. Effect of radiative corrections for the single-spin tensor asymmetries defined with respect to the stable (a,c) and

unstable (b,d) directions in radiating the collinear photons and e*e™ pairs by the initial and final electrons. The curves in

the upper row are calculated at A;;, = 0.26 and those in the lower row, at A;;, = 0.0526. In the Born approximation, all
quantities § A% and §A'" are equal to zero. Q7 is given in GeV?

G?3, if the deuteron polarization states are determined
with respect to directions defined by Eq. (21), with
the longitudinal direction chosen along the transferred
3-momentum. If these states are defined by Eq. (39),
with the longitudinal direction chosen along the initial
electron 3-momentum, such a simple form of the rele-
vant asymmetries is violated, and the analysis of polar-
ization data becomes more complicated. This situation
is preserved if the corrections due to a soft photon emis-
sion and a virtual loop are taken into account.

But the inclusion of radiative events with hard pho-
ton emission (process (52)) inevitably changes it be-
cause even the radiation of collinear photons alters the
direction of the three-momentum transferred, and a ro-
tation of polarization states necessarily occurs. In that
case, to take the radiative corrections into account by
the electron structure function method, we need, accor-
ding to the spirit of this method, to use the set of po-

larization states that are stable under collinear photon
radiation by both initial and scattered electrons. The
corresponding spin-dependent parts of the hard cross
sections in master formulas (64) and (72) include dif-
ferent combinations of all deuteron form factors. This
means, for example, that the small partial cross sec-
tion do”T /dQ?, which is expressed through the large
ones dott/dQ?, do'/dQ*, and do't/dQ?, can change
significantly if undetected additional particles accom-
pany process (1). At least for Ay, = 0.26, the radiative
corrections almost double the tensor asymmetry ATT
compared with the Born one. With a decrease in Ay,
this effect is diminished. We note that a similar effect is
absent if hadronic variables are used to describe radia-
tive corrections (see Eqs. (64) and (69) in Ref. [35]).
The reason is that in that case, the recoil deuteron
momentum is measured independently of undetected
particles in the leptonic part of interaction.

259 4*
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Fig.3. The same as in Fig. 2 but for the double-spin vector asymmetries

We here give a consistent calculation of electromag-
netic model-independent radiative corrections for po-
larization observables in the process of elastic electron—
deuteron scattering. Our approach is based on the elec-
tron structure function method and covariant descrip-
tion of the polarization states, with the event selec-
tion done by a restriction on the lost invariant mass.
The only additional parameter that must then be de-
termined in measurements is Ayy,.

In real experiments, the rules for event selection
typically include different cuts caused by the measure-
ment method and the detector geometry. Each cut
leaves a trace on the level of radiative corrections if
undetected particles are allowed. Hence, radiative cor-
rections are different in each independent experiment
because the cut procedure distinguishes in general, and
only a Monte Carlo event generator can take all the
restrictions into account exactly. Our semi-analytic re-
sult can be incorporated in to such a generator to check
its work for the appropriate event selection.

APPENDIX A

In this Appendix, we present formulas for the coef-
ficients A", B/"", and Cj7" (mn = Il,1t,tt,i = 0,1,2,
and j = 1,2,3,4) that determine the partial cross sec-
tions in the case of a tensor-polarized target (see for-
mula (75)).

A.1. Component Il

The coefficients determining the contribution pro-
portional to the components Ry of the tensor describ-
ing the tensor polarization of the deuteron target can

be written as

27
Al = —zy(1+ 022z, Al = —1,
Tyr

1
Af = o5 (@t P22+ 8 atr—A))] -

= Ay [P (r=An)+2(b+A1 ) +r(atd) (a+r—Ap)] )
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i
Ay
il
Bl

r{(b—a)1+7r*)+ A [1+r(2a —b)]},

zyr(1+r?) [zyr(l 4+ 67) — 27(1 — 3ar)],

1
Bl = —— [zyr(1 4 67) — 27(1 — 3ar)] x
)

x [b(1+7%) — As(F — 2a)] ,

Bl = _xiy (275 [1+ (20— b)r + As] +
+ SGAQ [(b — a)'f' —-1- A2]}7
34 =7 [(a=b)(1+7r?) +Asx(a+7)],

O = 2{(F = A +alBa(1 +7) = 20+ A},

2
o ur {(7 = 3y)(xyr)® + 3a(5 —y + r)zyr +
+3a*(3 +1?) —ar[5 + 3(a + )%},
003 = —zy[r(6a — 16 4+ 9y) + 67(y — 3 —r)],
Cly=ayr[1+3(0b—a)], C¥ =12zy(r+27),

Cih = _[4(7' +71)—yr], Cly=67(2—y),
67
Cll =6 Cll — Cll — Cll — Cll —
21 ’ 22 xyr’ 14 23 24

A.2. Component [t

The coefficients determining the contribution pro-
portional to the components Ry of the tensor describ-
ing the tensor polarization of the deuteron target can
be written as

2
Al :2a(27‘+7’)(1+r2)(2b+A1)%,
A = 2021 +7)(2b + A1) Z 1‘%

v
Algt = — m{2Z1(3b—a_7’) +
+ Aq[4r(1 +b* + 3ab) —

— 2a(1+7%) + ayr(ar — 3+ 5br)]},

A _ar— {2b 1+7r )+A1[1_T(3b_a)]}

QZ

Blt —
! Md’

2ar(1 + 27)(1 4 r*)(Ay — 2br) ==

v
BY = —27(1 4 27)(A, — QbT)ZQW,
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v
B = 7 {225 [(3b—a)r — 1] +

+ As[(1 4 ar)(a — 6b) —

—(a+3b)(r* + As) +7(b> — 1) + b+ As(3r — 2b)]},

Bl = ar— [ 2b(1+7‘2)+A2(T_‘—2b)]7

Md

_4?

001 - Md

[a(1+7*)(y + 2a) — 2bF —

— Ay (zyr + 2a — 2b)],

=
2V
M dx yr

{2azxyr [yF + (3b+a)(1+r)—y—8a] —

—(wyr)? [2a-+(2—y) (y+4a)] +2a [2a(b—a-+7) +

+ (y+2a)(r —a(l+7*) +r(a+b)?)]},

2
Cl = ~3ri {47 [2bF —y* + 4(V* —a)] —
—r[3y(2 —y)+8a(l+a+20)]},
4 2
cl, = ryro— [1+4ab— (a —b)*],
2
ol = i [27(2y + 4a — 1) + r(y + 4a — 27)],
4TV
It — —b) (47— 27(1—r)+2yr (144
Ci U [(a=b)(4T—yr)+271(1—r)+2yr(1+42T)],

.
Clh = 47(2—y) (y+2a) —

Md 014 - Cég - 024 -

y+2a V.
xyr Md

V
Ol = 4(y + 2a) — =
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A.3. Component tt

The coefficients determining the contribution pro-
portional to the components Ry; of the tensor describ-
ing the tensor polarization of the deuteron target can
be written as

Al = =2 (L4 + (b+ A1),

to_ Zé[mﬂ + A1 (20+ Ay)],

= Al = —ar?A
27 bayr 4 b

A3 = % {(Ar = 20)b(1 +7%) + (1 =7+ ry)Ad] +
+ AL+ r(b—a+ A},

Bit = %(1 +r?)[20%% — 2br Ay + AJ),

T Zg
- _Ex—w[2b2r2 —2brA, + AZ],

Bit = —arAs,
Blt = % {(2br — As)Zo + bAS[r(b— a+ 1) — A]},

Coi = % [(1+7%)(y® + 4a — 2ab) + (2b+ A1)* + A]],

L X
bxyr

ot =

x {=2(zyr)’[a+ (1+a)(2 —y)] + zyr[(3 — 2y +

+a® + b*)(F — 2a) + 4(ab+ b — a®) + dr(a — b*)] —
—2a[(r—a)®+b] + (1 +2a—2b+

+a2-|-b2) [r—a(1+r2)+(a+b)2r]},

1
O}ig:—g{sb—a—(a2+b2)(2+a+b) +

+7[y* + 2y(2b — a) + 2a(3 — a)] +
+ zyrly(l + y + 3a) — 4(1 + a) — 2ab]},

Cl = zyr(y + 2a),

4
Cti = 3 [y(b—a+7r)+2a(r —a) —ayr(1 +a)],

1
bxyr

Cclh = {r[1+7a(1+a) —b(1+0b)+ (a+b) x
x (@®+ )] +4r [(a=b)(1—7r)+a®+b* —71]},

1
o B 2 _
Cis = by 2-y) [y* +2a(2-0)],

tt __ it it
C114 - C123 - 02407

1
CH = 3 [y? +2a(2 - b)],

1
to_ 2
C3y = braty? [y + 2a(2 — b)] ,
where we use the notation

Ay = (1—zy)r—a—b, Ay = (1—y+zy)r—1,

Zi=b(1 4713+ A (1 —r +yr),
Zy =b(1+72) + As(1 —y —7),
Z =xy(2r +1r)% = 27(b+ Ay),

a=xyr, b=1—y—a, FT=a—b+r.

APPENDIX B

We here give some formulas describing the polariza-
tion state of a deuteron target in different cases. For
an arbitrary polarization of the target, it is described
by the general spin-density matrix (defined by 8 pa-
rameters in the general case), which in the coordinate
representation has the form

1 PuPv i
Puv = _g ( v ],\2-2 ) +m6w/)\p5/\pp+QuV7 (B]')
Qut/ = Qt/ua Quu =0, quuV =0,

where p, is the deuteron four-momentum, and s,
and @, are the deuteron polarization four-vector and
the deuteron quadrupole polarization tensor. In the
deuteron rest frame, the above formula is written as

1 i .
Pij = g&’j - §5ijk5k +Qijy i,j=z,y,2. (B.2)
This spin-density matrix can be written in the helicity

representation using the relation

A (N *
o = piges e o = (o), (B.3)
M =+4+,-,0,
where eg’\) are the deuteron spin functions with the

deuteron spin projection A onto the quantization axis
(z axis). They are

+)

e®) = (1,4i,0), €@ =(0,0,1). (B.4)

1
:FE
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The elements of the spin-density matrix in the helicity
representation are related to those in the coordinate
representation as

1 1 1
P++ =3 + 55~ 5@227
1 1 1
p——= 3 §3z - 5@227
1
Poo0 = g + QZZv
1 ) (B.5)
P+— = _i(ch - ny) + ZQxyv
1 1

pP+0 = 2—\/5(31: - ZSy) - \/§(sz - iQyZ)v

1 1
SR V2

To obtain this relations we used that

Qmm + ny + sz =0.

(52 +1isy) — (Qaz +1Qyz)-

The polarized deuteron target, which is described
by the population numbers n,, n_, and ng, is often
used in spin experiments (see, e.g., Ref. [59]). Here,
ny, n_, and ng are the fractions of atoms with the
nuclear spin projection onto the quantization axis m =
=41, m = —1, and m = 0. If the spin-density matrix
is normalized to 1, i.e., Trp = 1, then

n++n_+n0=1.

Hence, the polarization state of the deuteron target is
defined in this case by two parameters, the so-called V/
(vector) and T (tensor) polarizations

VvZTL_F—’I’L_7 T=1—3TLO. (BG)
Using the definitions
n4 = pijegi)*eg-i), ng = pijego)*6§0), (B?)

we have the following relation between V' and T param-
eters and the parameters of the spin-density matrix in
the coordinate representation (in the case where the
quantization axis is directed along the z axis):

1 1

1
n0:§+Q227 ni:_iisz_

3 (B.8)

1
5@2’27
or

T=-3Q.., V=s.. (B.9)

We now relate the parameters of the density matrix
for a massive spin-one particle (deuteron) for two repre-
sentations: the coordinate (see Eq. (B.1)) and spherical
tensors.

According to the Madison Convention [60], the den-
sity matrix of a spin-one particle is given by

1 *
p= 3 Z thqThas (B.10)
kq

where t, are the polarization parameters of the
deuteron density matrix and 13, are the spherical ten-
sors given by

3
Too =1, Ti0= \/;5'27

3 .
Ti+1 = 4:%(595 +iSy),

3 (w0 2
_ 2 _Z B.11
T20 \/ﬁ <Sz 3) ) ( )
V3 ‘
To42 = T(Sm + ZSy)Qa
3
Tog1 = q:% [(Sy £iSy)S.+5.(Se £iSy)],
0 1 0
S, = i 1 0 1
r = 5 ’
V2 0 1 0
. 0 —i 0
0 0
1 0 0
S. = 0 0 O
0 0 -1

From Eq. (B.11) and the Hermiticity of the spin

operator, we immediately obtain
T]::I = (=1)%7%—4 (B.13)

and the Hermiticity condition for the density matrix
yields

thy = (=1)%tx 4. (B.14)
It follows from this equation that
ti,=t o= —t1_ thy =1t
10 *107 11 *1 1, lap = 20, (B.15)
tzz =ty 2, t21 = —ty-1,

i.e., the parameters t1g and tsg are real and the pa-
rameters t11, t21, and t5 are complex. Hence, in total,
there are 8 independent real parameters, as must be
the case for a spin-one massive particle.

We then have the explicit expression of the deuteron
density matrix
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3 1 3
1 —t —t —(t1— to_ 3to_
+\/;10+\/§20 \/;(114-21) V3ta_s
1 3 3
P=3 - §(t11 + ta1) 1 — /2ty 5(751—1 —ta—1) (B.16)
3 3 1
- 1— /St + —=t
V/3tas \/;(tn t21) 5110 + NG 20

The density matrix is normalized to 1, i.e., Trp = 1.
Using the expression for the density matrix in the he-
licity representation, Eq. (B.5), we obtain the following
relations between the parameters of the density matrix
in the coordinate and spherical tensor representations:

10

ho=y/2
10 — 2827

3
Ret11 = —Ret1_1 = ——\2_81-,
3
Imt11 = Imt1_1 = —%sy,
tao = _inm (B‘17)
V2

Re to; = —Re lo—1 = \/ng27
Im tgl =Im tgfl = \/ngza

3
%(wa - ny)7

Im t22 = —Imt2,2 = _\/§sz

Re t22 = Re t2_2 = —
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