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We demonstrate that the tunneling current flowing through a system with Coulomb correlations leads to a
charge redistribution between the different localized states. A simple model consisting of two electron levels
is analyzed by means of the Heisenberg equations of motion taking correlations of electron filling numbers in
localized states into account exactly in all orders. We consider various relations between the Coulomb interac-
tion and localized electron energies. Sudden jumps of the electron density at each level in a certain range of
the applied bias are found. We find that for some parameter range, inverse occupation in the two-level system
appears due to Coulomb correlations. It is also shown that Coulomb correlations lead to the appearance of
negative tunneling conductivity at a certain relation between the values of tunneling rates from the two electron

levels.
1. INTRODUCTION

Nonequilibrium Coulomb correlations can drasti-
cally affect the local charge distribution in the vici-
nity of impurity complexes in nanometer tunneling
junctions. Coulomb interaction results in significant
changes of electron filling numbers in each localized
state and of current—voltage (I-V') characteristics of
impurity complexes. Adjusting the parameters of a
tunneling contact allows obtaining negative tunneling
conductivity caused by Coulomb correlations in a cer-
tain range of the applied bias. There are several experi-
mental situations in which Coulomb interaction values
are of the order of the electron level spacing or even
greatly exceed it. This usually occurs if the distance
between several impurity atoms or surface defects is
comparable to the lattice scale, and hence the coupling
between their electron states can greatly exceed the in-
teraction of these localized states with the continuous
spectrum.

Another possible realization is a quantum dot or
two small interacting quantum dots on a sample sur-
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face weakly connected with bulk states. Such systems
can be described by a model including several electron
levels with Coulomb interaction between localized elec-
trons. The electronic structure of such complexes can
be tuned both by an external electric field that changes
the values of single-particle levels and by electron cor-
relations of localized electron states. In a nonequilib-
rium situation, Coulomb correlations can be expected
to result in a spatial redistribution of localized charges
and the possibility of local charge density manipula-
tion governed by Coulomb correlations. In some sense,
these effects are similar to the “co-tunneling” observed
in [1,2]. Moreover, Coulomb interaction of localized
electrons can be responsible for the inverse occupation
of localized electron states and negative local tunneling
conductivity in a certain range of applied bias. These
effects can be clearly seen if single-electron levels have
different spatial symmetries.

The nonmonotonic filling of individual quantum
dots as a function of gate voltage due to the compe-
tition between tunneling and Coulomb interaction in a
system of coupled single-level quantum dots with spin-
less electrons was analyzed in [3]. But the authors stud-
ied only first-order correlations in the limit of a large
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value of Coulomb interaction (higher than a level spac-
ing and level broadening) and paid attention mostly to
the dependence of individual quantum dots filling num-
bers on temperature. A nonmonotonic charge occupa-
tion was already investigated when reservoirs coupled
to quantum dots were replaced by single levels [4, 5].

Much attention has been paid to electron transport
through a single impurity or a dot in the Coulomb
blockade and the Kondo [6] regimes. These effects
have been studied experimentally and are currently un-
der theoretical investigation [7-13]. But if the tunne-
ling coupling is not negligible, the impurity charge is
not a discrete value and one has to deal with impu-
rity electron filling numbers (which become continuous
variables) determined from kinetic equations.

Nonequilibrium effects and tunneling current spect-
ra in the system of two weakly coupled impurities
(when the coupling between impurities is smaller than
the tunneling rates between energy levels and tun-
neling contact leads) in the presence of Coulomb in-
teraction were described by a self-consistent approach
based on the Keldysh diagram technique in [14,15]. In
this paper, we consider the opposite case where the
Coulomb coupling between localized electron states is
much greater than the tunneling transfer rates.

We propose a theoretical approach based on the
Heisenberg equations for localized state electron filling
numbers taking local electron density correlations into
account in all orders [16]. The tunneling current in a
two-level system of spinless fermions with an infinite
value of Coulomb interaction has been investigated in
[17]. But the obtained results do not take any non-
trivial pair correlations for finite Coulomb correlations
into account. If we are interested in kinetic properties
with the applied bias range larger than the character-
istic energy of correlations between localized and band
electrons in the leads, then the Kondo effect is unim-
portant. In this case, for a finite number of localized
electron levels, a closed system of equations for elec-
tron filling numbers and all their correlators can be
obtained. It allows analyzing the role of Coulomb cor-
relations in charge redistribution and in the formation
of main features of -V characteristics.

2. THE PROPOSED MODEL

We analyze tunneling through the two-level sys-
tem with Coulomb interaction of localized electrons
sketched in Fig. 1. The model system can be described
by the Hamiltonian
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Fig.1. Energy diagram of a two-level system (a) and

schematic spatial diagram of experimental realization

(b). Coulomb energy U;; corresponds to the interac-
tion between electrons on different energy levels
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where the indices & and p respectively label conti-
nuous spectrum states in the left (sample) and right
(tip) leads of tunneling contact and tj, are the tun-
neling transfer amplitudes between continuous spec-
trum states and localized states with energies ¢;.
The operators c;(p) /¢k(p) correspond to electron crea-
tion/annihilation in the continuous spectrum states
k(p) and n;, = c?;cw are the two-level system elect-
ron filling numbers, where the operator ¢;, destroys an
electron with spin ¢ on the energy level ¢;.

The tunneling current through the two-level system
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is written in terms of the electron creation/annihilation
operators as

I=Te =) Itic =) tue =
i ko
=> tiil{cf,cin) = (chera)). (2)

kio

We set i = 1, and therefore equations of motion for the
product, cggci,, of electron operators can be written as

Oct cio N N
t ot = (‘Si - Ek)c]m-cia + Uiinifo'cko.cia +
+ Uij(njo +nj_s)cp Cio — thi(Nie — fr) +

+ Z tkric,jackrg + Ztkjcjf,cw =0, (3)
k'#k i#£]

where
fk = C:U Cho - (4)

To obtain an equation for the tunneling current, we
multiply Eq. (3) by combinations of the electron filling
number operators 1;(j)+q:

(1 —=n1-5)(1 —no_y)(1 — 77,2(,)02:701Cr =

— T + +
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The relation n?, = n;, was used in these equations.

Neglecting changes in the electron spectrum and
local density of states in the tunneling contact leads
caused by the tunneling current, we uncouple the con-
duction and localized electron filling numbers. This
also means that we neglect any correlation effects bet-
ween localized and band electrons, similarly & the case
of the Kondo effect.

It is easy to check verify that

(1=n1-5)(1 =n2—5)(1 —nas) +
+ Tbl_g(l — 77,2_(,)(1 — ’ngo-) +

+ ZHQ(,r(l — nl_g)(l — 77,2_,7') +

+no_onog(l —ni—y) + Ni—gno—gna, = 1. (11)

Adding the right- and left-hand sides of Eqs. (5)—(10),
we then obtain an equation for (¢} c;,), which after
a summation over k yields an equation for the tunne-
ling current through the two-level system. The total
current is the sum of two contributions,

I = Ijio + Ik:20'7 (12)
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where the expression for the tunneling current s, can
be obtained by changing indexes 1 <+ 2 in the equation
for the tunneling current I, , which is given by

Tkio = D {(nio) = ((1=n1-¢)(1 —n2— ) (1 =n24)) x
X fr(e1) = (ni—o(1 = na—o)(1 = n20)) fi (€1 + Un1) —
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— (n1—on2—oNao) fr(er + Ut + 2U12) } +

+ +
+ tr1tk2VorConClo + E (tritr1ChyChio) X

k' 2k
" {< (1- nl_g)(;_—nzk_g)(l - nzg)> N

+ <n1—a(1 - n2—o’)(1 - n20’)> +
e1+ Ui — ek
ny a)(]-

Zn2o"(]- - — - n27o")
+({ = +
< g1+ Uia — e >

- n270’)

anfo'nmﬂ(]-
+({Z +
< e1+ Ui +Ujs — g >

No_gNog(l —Ni_g
n 2 20 ( 1-5) n
1+ 2U12 — ey,
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* <61 + Ui +2U 2 — ¢, >} - (13
In what follows, we neglect the terms
triteo I/Okc2+0.010- and terms proportional to
tkltkrlcgackra/(sl — ¢p) in expression (13) because
they correspond to the next-order perturbation theory
in the parameter I'; /¢;. The relaxation rates

Fk(p)i = ﬂ'ti(p)il/o

are determined by electron tunneling transitions from
the two-level system to the leads k (sample) and p
(tip) continuum states; voy(p) is the continuous spect-
rum density of states. The main equation for the cur-
rent (13) includes mean electron filling numbers n;,
and pair and triple correlators for the localized states,
which have to be determined. Equations for the total
electron filling numbers n;, and ny, on levels 1 and 2
can be found from the conditions

oni,
g; = Ijis + Iplo’ = 07
(14)
Mo g Ly =0
ot k20 p20 )

where the tunneling current I,, can be easily obtained
from I, by changing indexes k < p. Pair filling num-
ber correlators can be found as

nw> . (15)

6nwnj0-r o 6nw . + 6nj0-r
ot N\ ot 7 ot

The full expressions that determine the system of
equations for pair filling number correlators in terms of
higher-order correlators in the stationary case are

ania”'o”
<TJ> = (Cri +Tpi + Ty +Tpj) %

X (NigNjor) — (Crifu(es + Uij) + Tpifp(ei + Usj)) X
X (njor (L =nj—e)(1 = ni—g)) —
— (Pkj fr(ej + Usj) + Tpj fole; + Uij)) %
X (Nig(1 =ni—g)(1 = nj—g)) —
— (Prife(es + Ui + Uij) + Tpifp(es + Ui + Uyj)) ¥
X (Nj—oNjor (1 = nj—gr)) —
— (Crifr(es +2Us5) + Tpifp(ei + 2Us5)) %
_ nifa» _
— (Crifr(ei + Uii + 2Us5) + Tpifp(ei + Ui + 2Us5)) %
X Ni—oNjorNj—or) —
— (Tuj fe(ej + Ujj + Usj) + Ty fp(ej + Ujj + Usj)) x
X (Nj—gMiec(l —ni—g)) —
— (Ckj fr(ej + 2Us5) + Tpj fp(ej + 2Us5)) x
X (nj—onjor (1 —1nj—or)) —
— (Trjfu(ej + Ujj +2Us5) + Tpj fp(ej + Ujj +2U45)) ¥
X (Nj_g'NigNi—e)} = 0. (16)

X (nj—gmjer (1

Higher-order correlators can be found similarly:

8nj(,nj_gni_gr _ 8”]’0'”]’—0 )
o R
8ni—o”
+<Tnjo'nj—0'>' (17)

Hence, the higher-order correlators are given by

(njonj—oni—o) = {Tw; fu(e; + Uj; + 2Ui5) x
X ((Ni—gNjo) + (Ni—oMj—o)) +
+ T fr(ei + 2Us5) (njonj—e) +
+Tpjfple; + Ujj +2U35) x
X ((i-gnje) + (Ni—onj—g)) +
+ Dpifplei + 2Uij) (njonj—s) } X
X{Tri{3+fr(ei+2U;j)— fr(ei+Usi+2U;5) }+
+Ti{3+fp(ei+2Usj) — fo(ei+Usi+2Ui) L. (18)
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We consider the paramagnetic situation a1 = —n2T(62 + 2U45) P,
azz = 2n] (€3 + Us2) — 3 (g2 + Usz + Utz) —
Nig = Ni—gy  (NicNjo) = NicNj—c), T, (21)
_2F ni (e1 + Utt + Ura)®s,
2
<ni0'ni—anjo'> = <ni0'ni—o'nj—0'>~ a3 = 1

(We note that system of equations (14)—(19) also al-

lows analyzing the magnetic regime with n;, # n;_,.) T,

After the substitution of Eq. (18) in (16), the system 431 = 5 (n3 (g2 + Ur2) —

1 2

of equations for the pair correlators
— ng(52 + 2U12)(]. + 2A2)),

K11 = (nioni—g), Ko = (nagna_g), -1 Iy T _

azs = 1+ F T F2 (n1 (61 + Ulz)
K1y = (n1on20) —ni (g1 + Unt + Ura)(1 + 44,)) + (22)
r
becomes +1" +2F (ngT(Sz + Us) —
1 2
a;1 a  ars Ky —nd(ea + Uy + Upa)(1 + 44y)),
1 Q22 (23 X | Kiz =F (19) as3 = I (nf(gl + Upa) —
- 'y +Ts
asy asy ass Ko

—nT(e) +2U1)(1 + 244)),

ith th flicient
W ¢ coetherents where I'; = I'; + I'y; and we introduced tunneling fill-

ay =1, ing numbers n! (¢;) and n! (¢; + U;;) in the absence of
lomb int tion:
ars = 207 (1 + Ups) — 0T (1 + Uy + Ua) — Coulomb interaction
Ty . (20) 7y _ Lkifr(e) + Tpifp(e) 5
— 2r—1n2 (62 + U22 + Ulg)q)l, n; (5) szi + Fpi . ( 3)
T
a3 = —ny (€1 + 2U12) @1, The coefficients ®; and A; can then be found as
|
» nt(e; + Uy) — nl (52+U27,+Uz]) n} (g; + Uy + 2U;5)
t 3-|-n» (2i +2Us5) = nf (i + Ui +2U35) 3 +n] (i +2Uy) — nf (si + Usi + 2Uy5)’ (24)
A = /2 (e + Uiy) — (/20 (i + Usi + Uyj)  (1/2)nf (€i + 2Uiy) + (1/2)n] (i + Uis + 2Us;5)
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TLT(61 + U11)’I’Lla—
nL (g5 4+ U)oy
e 5 (2 22)N2 ‘ (25)

T

n; (e1 + Ura)nas + na (es + Ui2)nig

1 F
[+ T, +D, F2

Pair correlators K;; can be expressed through n;;) using Egs. (19)—(25). Substituting the solution for hig-
her-order correlators obtained from Eqs. (16) and (18) in Eq. (14), we can find (n;,) and finally the tunneling
current.

For large U;;, we retain only states with at most two electrons in the quantum dot (neglecting triple correlators).

Then the expressions for the tunneling current and the pair correlators K;; become

Itio = Th{(nio) — (1 = (n1o) — 2(n2s) + Koz + 2K12) fr(e1) — ((n1o) — 2K12) fr(e1 + Urr) —
—2((n2g) — K12 — Ka2) fr(e1 + Ur2), (26)

K, o (1/2)7’LT(51 + U12)(]. — TLT(52 + U22))n20 + (1/2)RT(52 + U12)(]. — TLT(El + Ull))nh,
T L+aT (e + V) ((1/2) = nT(e2 + Us2)) + 0" (e2 + Ui2)((1/2) =0T (e + Unn))

(27)
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(1+ (1/2)nT(e1 + Ura) — (1/2)nT (2 + Ura) — nT (g1 + Ur2)nT (g2 + Uza))nT (21 + Ur1) 0o

= 1+ 07 (e1 + Ur2)((1/2) = n7 (g2 + Uz2)) + nT (2 + Up2)((1/2) — nT (1 + Uny)) N
B nT(ey + U )nT(e1 + Up2) (1 — nT (g2 4 Usz))nogy (28)
L+nT(e1 +Ui2)((1/2) = nT(e2 + Un)) + nT(e2 + U12)((1/2) —nT(e1 + U11))’
o, = L+ (1/2)n7 (22 + Ui2) = (1/2)n" (e1 + Uiz) = n" (g2 + Urz)n" (e1 + Uni))n" (2 + Usa)nas
- 1+ 07 (e1 + Ur2)((1/2) = n7 (g2 + Uz2)) + nT (22 + Up2)((1/2) — nT (1 + Uny))
nT(eo + Usa)nT (2o + Up2)(1 — nT (g1 4+ Up1))n14 (20)

C 1+ nT(er + Ur2)((1/2) = nT(e2 + Uz2)) + n7 (g2 + U12)((1/2) = nT(e1 + Un1))’

When all Coulomb interaction energies are extremely large, U;; — oo or eV < ¢; + Ujj, expressions for the
electron filling numbers n; and the tunneling current for low temperatures have a very simple form:

ni (e1)(1 = n3 (e2))

T AT E)) 1+ ] () — anT End ()’ 30)
e — ng (e2)(1 = nf (1))
T (0T (@) + 0T () — 4T (e1)nT (e2)
The tunneling current is obtained from (26) by omitting all correlators K and terms with fi(¢; + U;;):
[ ATy (fp(e1) = fu(e1)) (= ni(e2)) + (fy(e2) — fil(e2))(1 = n{ (1))
k . (31)

_Fk+1“p

The determinant of system (19) can vanish or even
become negative for some choice of the parameters,
and therefore the electron filling numbers of the two-le-
vel system can take negative values at some ranges of
the applied bias voltage. Such invalid system beha-
vior is the result of our approximation because we ne-
glected the interaction between the two localized elect-
ron states due to the electron transitions to the con-
tinuous spectrum states in the leads and back. To im-
prove the results, it is necessary to include the correc-
tions that can be found using the next-order perturba-
tion theory in the parameter I'; /;, retaining the terms
te1tkaVorcy, 1o in Eq. (3). In this case the final equa-
tions for n;, have additional nonlinear terms and can
be schematically written as

N1g(Ar+n3, ) +nos (Ao +uani,) = n' (e1),
(32)
(

TLQO—(AQQ"‘VQTL%O.)+n10—(1421+l/1n§0.) =N 62).

The coefficients A;;, p;, and v; have a rather simple
but cumbersome form and depend only on the tun-
neling filling numbers and parameters of the tunneling
contact. We do not consider this case here.

3. MAIN RESULTS AND DISCUSSION

The behavior of n;, and I-V characteristics

11 ZK3T®, Bem. 1(7)

(1 +nf (1)1 + 03 (e2) — 4n (e1)n] (e2)

strongly depends on the parameters of the tunne-
ling system: energy level positions, the difference of
Coulomb interaction between various localized states,
and the relation between tunneling rates. The general
features of all dependences are a multiple charge redis-
tribution in the system with changing the applied bias
and step-like -V characteristics with nonequidistant
steps related to the energies of various multielectron
states in the quantum dots. Besides, inverse occupa-
tion of quantum dots levels and negative tunneling con-
ductivity appear for a particular range of the system
parameters and bias voltage.

We first analyze the situation where tunneling rates
from both localized states to the leads are approxi-
mately equal, tj(p)1 = ty(p)2. Figures 2-7 demonstrate
the behavior of filling numbers and tunneling current
obtained from kinetic equations for different values of
the Coulomb energies U;; and various electron level lo-
cations relative to the sample Fermi level in symmetric,
Ty ~ F:Di? and asymmetric, I'y; < F:m' (F}m > Fpi),
tunneling contacts taking all-order correlators into ac-
count. The bias voltage in our calculations is applied
to the sample. Therefore, if both levels are above (be-
low) the Fermi level, all the specific features of charge
distribution and tunneling current characteristics can
be observed at negative (positive) values of eV.
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In the case of both energy levels situated above
(Fig. 2, Fig. 5) or below (Fig. 3, Fig. 6) the sample
Fermi level, we observe the charge redistribution be-
tween electron levels of a reentrant character. When
the applied bias increases, two possibilities for charge
accumulation for large Coulomb energies U;; are reali-
zed in turn. Charge can be localized on both electron
levels equally, n; = nso, or mostly accumulated on the
lower energy level (ny < ns). Figure 3 shows two ranges
of applied bias where the upper level becomes empty,
ny =0 (62 < eV <e; and ey + Ujs <6V<61+U12),
for large values of the Coulomb energies. Decrea-
sing the Coulomb energies leads to the situation where
charge is mostly accumulated on the lower energy level
(Fig. 6¢), but ny # 0. In the particular range of ap-
plied bias g5 < eV < &1 4+ Uj2, the charge is completely
localized on the lower energy level: n; = 0.

Taking all-order correlators into account allows in-
vestigating tunneling through the two-level system in
the case of small Coulomb energies U;; ~ ¢;). Figu-
re 5 demonstrates how filling numbers and tunneling
current dependences change due to a decrease in the
Coulomb energies for a symmetric tunneling contact,
I'vi = T'p; (asymmetric contacts show the same tenden-
cies). We demonstrate the case of both electron levels
localized above the sample Fermi level.

If the Coulomb interaction is of the order of
single-electron energies, three ranges of the applied
bias appear where inverse occupation occurs: n; >
> no (Fig. 5b) (62 4+ 2Up < eV < g1 + Uy, 61 +
+ 2U;, < eV < g1 + Uy + Upe, and e + Uy +
+ 2U12 < €V < g2 4 Uy + 2Uj2). Such a situation
exists due to the condition that the system configu-
ration with two electrons on the upper level and one
electron on the lower level has a lower energy than
the configuration with one electron on the upper level
and two electrons on the lower level for the parameters
shown in Fig. 5b. Further decreasing the Coulomb ener-
gies (Fig. 5¢) reduces the inverse occupation effect and
finally local charge mostly accumulates on the lower
energy level, as it should.

We obtain that the effects of reentrant charge redis-
tribution is more pronounced for an asymmetric con-
tact if tunneling rates to the sample are larger than
tunneling rates to the tip.

It is necessary to mention that without Coulomb
interaction, filling numbers for both electron levels are
simple step functions, which correspond to the tunne-
ling filling numbers n7 (g;) shifted from each other by
the value g1 — e5.

The effect of inverse occupation due to Coulomb
correlations is more pronounced in a system with elect-
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ron levels positioned on the opposite sides of the sample
Fermi level (Figs. 4 and 7). Without the Coulomb in-
teraction, when ['y,); = T'y(p)2, the difference of the
two level occupation numbers,
ny —n2 ~ Lplpe — TpiTia,

vanishes. Taking Coulomb correlations of localized
electrons into account in the two-level system results
in the inverse occupation of the two levels in a wide
range of applied bias voltage (Figs. 4 and 7).

In Fig. 4a,b, we show three applied bias ranges
where the inverse occupation occurs (g1 + Uyy < eV <
< e +2U1 0,614+ 2U 12 < €V < a4+ Uz +Ujs, and 1 +
+ U1 + Upa < eV). Tt is evident (Fig. 3a,b) that when
the applied bias does not exceed the value 1 + Uy,
the entire charge is localized on the lower energy level
(ny = 0). As the applied bias increases, the inverse oc-
cupation occurs and the localized charge redistributes.
The inverse occupation effect strongly depends on the
relation between tunneling rates. It is most pronounced
in an asymmetric contact with a stronger tunneling
coupling to the lead k (sample). But we have not
found the inverse occupation if the two-level system is
strongly coupled to the tunneling contact lead p (tip)
(Fig. 4¢). In this case, as the applied bias increases, the
upper electron level charge increases but local charge
is still mostly accumulated on the lower electron level.

Decreasing the Coulomb energies results in the dis-
appearance of the inverse occupation (Fig. 7b,c) and
local charge mostly accumulates on the lower energy
level. This clearly demonstrates the role of Coulomb
interaction in the charge distribution effects described
here.

The tunneling current is depicted in (Figs. 2-7d-f)
as a function of the applied bias voltage for different
level positions (tunneling current amplitudes are nor-
malized to 2I';). For all values of the system pa-
rameters, the tunneling current dependence on applied
bias has a step-like structure. The height and length
of the steps depend on the parameters of the tunne-
ling contact (tunneling transfer rates and the values of
Coulomb energies). If both levels are located below
the Fermi level (Figs. 3 and 6d—f), the upper electron
level does not appear as a step in the -V characteris-
tics but charge redistribution occurs due to Coulomb
correlations.

For approximately equal tunneling rates for both lo-
calized levels, the -V characteristics are mostly mono-
tonic functions. But some new peculiarities appear if
the tunneling rates are essentially different. In Fig. 8
and 9, we show some results for t;(,)1 7# tg(p)2. In this
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case, an interplay between “single electron” nonequilib-
rium occupation effects and Coulomb correlation effects
exists and at a certain bias charge, the redistribution
is accompanied by negative differential conductivity.

The case of both energy levels located above the
sample Fermi level is shown in Fig. 8. If the tunneling
transfer rate from the sample to the lower energy level
is the largest in the system and the tunneling trans-
fer amplitude from the lower energy level to the tip is
the lowest (Fig. 8a,c), we see that the local charge in
the system is mostly accumulated on the lower energy
level. Vice versa, if the tunneling transfer rate from
the sample to the upper energy level is the largest and
the one from the upper energy level to the tip is the
lowest in the system (Fig. 8b,d), then the local charge
is mainly accumulated on the upper energy level and
consequently inverse occupation occurs. But due to the
Coulomb interaction, three ranges of the applied bias
exist where local charge is mostly localized on the lower
energy level 5 < eV < ey, 65 +Upns < eV < ey + Uyo,
and es + Uss + Ups < eV < g1 + Uqy + Uys.

Inverse occupation also occurs when energy levels
are located on the opposite sides of the sample Fermi

level (Fig. 9a) or when both energy levels are below
the Fermi level (Fig. 9b). In any case, Coulomb inter-
action modifies the single-electron occupation behavior,
changing with the applied bias from normal occupation
to the inverse one or vice versa.

In Fig. 9a, we see several ranges of the applied bias
where the charge is distributed differently. These inter-
vals depend on Coulomb interaction values: the entire
charge is accumulated on the lower energy level (n; =
= 0) for eV < &1 + Uya; inverse occupation exists (local
charge is mostly localized on the upper energy level) for
e1+Uie < eV < ey+Uss+Us and 614+ U + U < eV
charge is equally accumulated on both electron levels,
ny = No, if e + Uss + Uyp < eV < ey + Uy + Uys.

If both energy levels are located below the Fermi
level (Fig. 9b), there are similar applied bias ranges
in which charge is distributed differently (equally for
g1 < eV < g9 + Uja, inversely if 1 + Uyp < eV <
< ey + Uz +Ujp and &1 + Uy + Uys < €V, and so
on).

The appearance of negative conductivity regions is
the most essential feature of the tunneling characteris-
tics, depicted in Figs. 8c¢,d and 9¢,d. We stress once
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more that the formation of negative conductivity is
an interplay between nonequilibrium effects connected
with the tunneling current and Coulomb correlations.
Recently, the perturbative approach was used to
investigate a similar system coupled to magnetic
leads [18]. The authors obtained staircase tunneling
characteristics connected with many-particle states in
the first nonvanishing order o I'yI',. The developed
perturbation theory over the equilibrium of the quan-
tum dot does not take nonequilibrium effects connected
with the tunneling current into account. Nonequilib-
rium filling numbers like nr(g;) do not therefore appear
and consequently effects such as the inverse occupation
of states in the quantum dots and negative tunneling
conductivity are absent in the theory suggested in [18].

4. CONCLUSION

We investigated tunneling through the two-level
system with strong Coulomb interaction between locali-
zed electrons taking all-order correlators of local elect-
ron density into account. It was shown that charge

redistribution between electron states is strongly go-
verned by the Coulomb correlations and is of reentrant
type. The dependence of electron filling numbers on ap-
plied bias is quite different from that for noninteracting
electrons. The existence of charge redistribution effects
means that adjusting the applied bias allows contro-
ling spatial redistribution of localized charges. Diverse
possibilities for local charge accumulation and charge
switching therefore exist for such systems.

In addition, at certain values of the Coulomb inter-
action of localized electrons, we can obtain a correla-
tion-induced inverse occupation of the two-level system
in different ranges of the applied bias. Inverse occupa-
tion is mostly pronounced in asymmetric contacts with
different tunneling rates to the sample and to the lead,
and when one energy level lies below and another above
the Fermi level.

By changing the tunneling contact parameters (tun-
neling rates of each level to the leads), we can observe
an interplay between two mechanisms responsible for
non-equilibrium occupation of each level: inverse occu-
pation induced by the tunneling current of a two-level
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system at a particular ratio between tunneling rates
(which exists in the absence of Coulomb interaction)
and inverse occupation connected only with Coulomb
interaction of localized electrons.

We revealed that for some parameter range, the
system demonstrates negative tunneling conductivity
in certain ranges of the applied bias voltage. A
negative tunneling conductivity is revealed in the
asymmetric case I'y; # I'p; (Figs. 8 and 9) and is more
pronounced if both energy levels are located above the
Fermi level. When energy levels are located on the
opposite sites of the Fermi level, the negative tunneling
conductivity is much weaker and when both of them
are positioned below the Fermi level, it is negligible.

The financial support by the RFBR, grant
Ne11-02-00317_a, Leading Scientific School grant
Ned375.2012.2, and rasprogram ofn I1.3.
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