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THE EFFECT OF COULOMB CORRELATIONS ON THENONEQUILIBRIUM CHARGE REDISTRIBUTION TUNEDBY THE TUNNELING CURRENTP. I. Arseev b, N. S. Maslova a, V. N. Mantsevi
h a*aLomonosov Mos
ow State University119991, Mos
ow, RussiabLebedev Physi
al Institute119991, Mos
ow, RussiaRe
eived O
tober 7, 2011We demonstrate that the tunneling 
urrent �owing through a system with Coulomb 
orrelations leads to a
harge redistribution between the di�erent lo
alized states. A simple model 
onsisting of two ele
tron levelsis analyzed by means of the Heisenberg equations of motion taking 
orrelations of ele
tron �lling numbers inlo
alized states into a

ount exa
tly in all orders. We 
onsider various relations between the Coulomb intera
-tion and lo
alized ele
tron energies. Sudden jumps of the ele
tron density at ea
h level in a 
ertain range ofthe applied bias are found. We �nd that for some parameter range, inverse o

upation in the two-level systemappears due to Coulomb 
orrelations. It is also shown that Coulomb 
orrelations lead to the appearan
e ofnegative tunneling 
ondu
tivity at a 
ertain relation between the values of tunneling rates from the two ele
tronlevels. 1. INTRODUCTIONNonequilibrium Coulomb 
orrelations 
an drasti-
ally a�e
t the lo
al 
harge distribution in the vi
i-nity of impurity 
omplexes in nanometer tunnelingjun
tions. Coulomb intera
tion results in signi�
ant
hanges of ele
tron �lling numbers in ea
h lo
alizedstate and of 
urrent�voltage (I�V ) 
hara
teristi
s ofimpurity 
omplexes. Adjusting the parameters of atunneling 
onta
t allows obtaining negative tunneling
ondu
tivity 
aused by Coulomb 
orrelations in a 
er-tain range of the applied bias. There are several experi-mental situations in whi
h Coulomb intera
tion valuesare of the order of the ele
tron level spa
ing or evengreatly ex
eed it. This usually o

urs if the distan
ebetween several impurity atoms or surfa
e defe
ts is
omparable to the latti
e s
ale, and hen
e the 
ouplingbetween their ele
tron states 
an greatly ex
eed the in-tera
tion of these lo
alized states with the 
ontinuousspe
trum.Another possible realization is a quantum dot ortwo small intera
ting quantum dots on a sample sur-*E-mail: vmantsev�smplab.phys.msu.ru

fa
e weakly 
onne
ted with bulk states. Su
h systems
an be des
ribed by a model in
luding several ele
tronlevels with Coulomb intera
tion between lo
alized ele
-trons. The ele
troni
 stru
ture of su
h 
omplexes 
anbe tuned both by an external ele
tri
 �eld that 
hangesthe values of single-parti
le levels and by ele
tron 
or-relations of lo
alized ele
tron states. In a nonequilib-rium situation, Coulomb 
orrelations 
an be expe
tedto result in a spatial redistribution of lo
alized 
hargesand the possibility of lo
al 
harge density manipula-tion governed by Coulomb 
orrelations. In some sense,these e�e
ts are similar to the �
o-tunneling� observedin [1; 2℄. Moreover, Coulomb intera
tion of lo
alizedele
trons 
an be responsible for the inverse o

upationof lo
alized ele
tron states and negative lo
al tunneling
ondu
tivity in a 
ertain range of applied bias. Thesee�e
ts 
an be 
learly seen if single-ele
tron levels havedi�erent spatial symmetries.The nonmonotoni
 �lling of individual quantumdots as a fun
tion of gate voltage due to the 
ompe-tition between tunneling and Coulomb intera
tion in asystem of 
oupled single-level quantum dots with spin-less ele
trons was analyzed in [3℄. But the authors stud-ied only �rst-order 
orrelations in the limit of a large156
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t of Coulomb 
orrelations : : :value of Coulomb intera
tion (higher than a level spa
-ing and level broadening) and paid attention mostly tothe dependen
e of individual quantum dots �lling num-bers on temperature. A nonmonotoni
 
harge o

upa-tion was already investigated when reservoirs 
oupledto quantum dots were repla
ed by single levels [4; 5℄.Mu
h attention has been paid to ele
tron transportthrough a single impurity or a dot in the Coulombblo
kade and the Kondo [6℄ regimes. These e�e
tshave been studied experimentally and are 
urrently un-der theoreti
al investigation [7�13℄. But if the tunne-ling 
oupling is not negligible, the impurity 
harge isnot a dis
rete value and one has to deal with impu-rity ele
tron �lling numbers (whi
h be
ome 
ontinuousvariables) determined from kineti
 equations.Nonequilibrium e�e
ts and tunneling 
urrent spe
t-ra in the system of two weakly 
oupled impurities(when the 
oupling between impurities is smaller thanthe tunneling rates between energy levels and tun-neling 
onta
t leads) in the presen
e of Coulomb in-tera
tion were des
ribed by a self-
onsistent approa
hbased on the Keldysh diagram te
hnique in [14; 15℄. Inthis paper, we 
onsider the opposite 
ase where theCoulomb 
oupling between lo
alized ele
tron states ismu
h greater than the tunneling transfer rates.We propose a theoreti
al approa
h based on theHeisenberg equations for lo
alized state ele
tron �llingnumbers taking lo
al ele
tron density 
orrelations intoa

ount in all orders [16℄. The tunneling 
urrent in atwo-level system of spinless fermions with an in�nitevalue of Coulomb intera
tion has been investigated in[17℄. But the obtained results do not take any non-trivial pair 
orrelations for �nite Coulomb 
orrelationsinto a

ount. If we are interested in kineti
 propertieswith the applied bias range larger than the 
hara
ter-isti
 energy of 
orrelations between lo
alized and bandele
trons in the leads, then the Kondo e�e
t is unim-portant. In this 
ase, for a �nite number of lo
alizedele
tron levels, a 
losed system of equations for ele
-tron �lling numbers and all their 
orrelators 
an beobtained. It allows analyzing the role of Coulomb 
or-relations in 
harge redistribution and in the formationof main features of I�V 
hara
teristi
s.2. THE PROPOSED MODELWe analyze tunneling through the two-level sys-tem with Coulomb intera
tion of lo
alized ele
tronssket
hed in Fig. 1. The model system 
an be des
ribedby the Hamiltonian

àEF + eV tk1tk2 tp1tp2Sample Tip
EFU11U11U11U22 "1

Vj 1j2 j 2j2
"2U12

b

Fig. 1. Energy diagram of a two-level system (a) ands
hemati
 spatial diagram of experimental realization(b). Coulomb energy Uij 
orresponds to the intera
-tion between ele
trons on di�erent energy levelsĤ =Xi� "ini� +Xk� "k
+k�
k� ++Xp� "p
+p�
p� + Xij��0 U��0ij ni�nj�0 ++Xki� tki(
+k�
i� + h.
.) +Xpi� tpi(
+p�
i� + h.
.); (1)where the indi
es k and p respe
tively label 
onti-nuous spe
trum states in the left (sample) and right(tip) leads of tunneling 
onta
t and tk(p) are the tun-neling transfer amplitudes between 
ontinuous spe
-trum states and lo
alized states with energies "i.The operators 
+k(p)=
k(p) 
orrespond to ele
tron 
rea-tion/annihilation in the 
ontinuous spe
trum statesk(p) and ni� = 
+i�
i� are the two-level system ele
t-ron �lling numbers, where the operator 
i� destroys anele
tron with spin � on the energy level "i.The tunneling 
urrent through the two-level system157
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h ÆÝÒÔ, òîì 142, âûï. 1 (7), 2012is written in terms of the ele
tron 
reation/annihilationoperators asI = Ik� =Xi� Iki� =Xk� _nk� ==Xki� tki(h
+k�
i�i � h
+i�
k�i): (2)We set ~ = 1, and therefore equations of motion for theprodu
t 
+k�
i� of ele
tron operators 
an be written asi�
+k�
i��t = ("i � "k)
+k�
i� + Uiini��
+k�
i� ++ Uij(nj� + nj��)
+k�
i� � tki(ni� � bfk) ++ Xk0 6=k tk0i
+k�
k0� +Xi 6=j tkj
+j�
i� = 0; (3)where bfk = 
+k�
k� : (4)To obtain an equation for the tunneling 
urrent, wemultiply Eq. (3) by 
ombinations of the ele
tron �llingnumber operators ni(j)�� :(1� n1��)(1� n2��)(1� n2�)
+k�
1� == 8<:0�tk1(n1�� bfk)+Xk0 6=k tk01
+k�
k0�+tk2
+2�
1�1A �� (1� n1��)(1� n2��)(1� n2�)9=; f"1 � "kg�1; (5)n1��(1� n2��)(1� n2�)
+k�
1� == 8<:0�tk1(n1�� bfk)+Xk0 6=k tk01
+k�
k0�+tk2
+2�
1�1A �� n1��(1� n2��)(1� n2�)9=; f"1 � "k +U11g�1; (6)X�0 n2�0(1� n1��)(1� n2��0)
+k�
1� ==X�0 8<:0�tk1(n1�� bfk)+Xk0 6=k tk01
+k�
k0�+tk2
+2�
1�1A �� n2�0(1�n1��)(1�n2��0)9=; f"1�"k+U12g�1; (7)

X�0 n1��n2�0(1� n2��0)
+k�
1� ==X�0 8<:0�tk1(n1�� bfk)+Xk0 6=k tk01
+k�
k0�+tk2
+2�
1�1A �� n1��n2�0(1�n2��0)9=; f"1�"k+U11+U12g�1; (8)n2��n2�(1� n1��)
+k�
1� == 8<:0�tk1(n1�� bfk)+Xk0 6=k tk01
+k�
k0�+tk2
+2�
1�1A �� n2��n2�(1�n1��)9=; f"1�"k+2U12g�1; (9)n1��n2��n2�
+k�
1� == 8<:0�tk1(n1�� bfk)+Xk0 6=k tk01
+k�
k0�+tk2
+2�
1�1A �� n1��n2��n2�9=; f"1�"k+U11+2U12g�1: (10)The relation n2i� = ni� was used in these equations.Negle
ting 
hanges in the ele
tron spe
trum andlo
al density of states in the tunneling 
onta
t leads
aused by the tunneling 
urrent, we un
ouple the 
on-du
tion and lo
alized ele
tron �lling numbers. Thisalso means that we negle
t any 
orrelation e�e
ts bet-ween lo
alized and band ele
trons, similarly ~ the 
aseof the Kondo e�e
t.It is easy to 
he
k verify that(1� n1��)(1� n2��)(1� n2�) ++ n1��(1� n2��)(1� n2�) ++X�0 n2�0(1� n1��)(1� n2��0) ++X�0 n1��n2�0(1� n2��0) ++ n2��n2�(1� n1��) + n1��n2��n2� = 1: (11)Adding the right- and left-hand sides of Eqs. (5)�(10),we then obtain an equation for h
+k�
i�i, whi
h aftera summation over k yields an equation for the tunne-ling 
urrent through the two-level system. The total
urrent is the sum of two 
ontributions,Ik� = Ik1� + Ik2� ; (12)158



ÆÝÒÔ, òîì 142, âûï. 1 (7), 2012 The e�e
t of Coulomb 
orrelations : : :where the expression for the tunneling 
urrent Ik2� 
anbe obtained by 
hanging indexes 1$ 2 in the equationfor the tunneling 
urrent Ik1� , whi
h is given byIk1� = �k1fhn1�i�h(1�n1��)(1�n2��)(1�n2�)i�� fk("1)� hn1��(1� n2��)(1� n2�)ifk("1 + U11)�� hn2�(1� n2��)(1� n1��)ifk("1 + U12)�� hn2��(1� n2�)(1� n1��)ifk("1 + U12)�� hn1��n2�(1� n2��)ifk("1 + U11 + U12)�� hn1��n2��(1� n2�)ifk("1 + U11 + U12)�� hn2�n2��(1� n1��)ifk("1 + 2U12)�� hn1��n2��n2�ifk("1 + U11 + 2U12)g++ tk1tk2�0k
+2�
1� + Xk0 6=khtk1tk01
+k�
k0�i ���� (1� n1��)(1� n2��)(1� n2�)"1 � "k � ++�n1��(1� n2��)(1� n2�)"1 + U11 � "k �++*X�0 n2�0(1� n1��)(1� n2��0)"1 + U12 � "k +++*X�0 n1��n2�0(1� n2��0)"1 + U11 + U12 � "k +++ �n2��n2�(1� n1��)"1 + 2U12 � "k � ++ � n1��n2��n2�"1 + U11 + 2U12 � "k�� : (13)In what follows, we negle
t the termstk1tk2�0k
+2�
1� and terms proportional totk1tk01
+k�
k0�=("1 � "k) in expression (13) be
ausethey 
orrespond to the next-order perturbation theoryin the parameter �i="i. The relaxation rates�k(p)i = �t2k(p)i�0are determined by ele
tron tunneling transitions fromthe two-level system to the leads k (sample) and p(tip) 
ontinuum states; �0k(p) is the 
ontinuous spe
t-rum density of states. The main equation for the 
ur-rent (13) in
ludes mean ele
tron �lling numbers ni�and pair and triple 
orrelators for the lo
alized states,whi
h have to be determined. Equations for the totalele
tron �lling numbers n1� and n2� on levels 1 and 2
an be found from the 
onditions�n1��t = Ik1� + Ip1� = 0;�n2��t = Ik2� + Ip2� = 0; (14)

where the tunneling 
urrent Ip� 
an be easily obtainedfrom Ik� by 
hanging indexes k $ p. Pair �lling num-ber 
orrelators 
an be found as��ni�nj�0�t � = ��ni��t nj�0�+��nj�0�t ni�� : (15)The full expressions that determine the system ofequations for pair �lling number 
orrelators in terms ofhigher-order 
orrelators in the stationary 
ase are��ni�nj�0�t � = (�ki + �pi + �kj + �pj)�� hni�nj�0 i � (�kifk("i + Uij) + �pifp("i + Uij))�� hnj�0 (1� nj��0 )(1� ni��)i �� (�kjfk("j + Uij) + �pjfp("j + Uij))�� hni�(1� ni��)(1� nj��0 )i �� (�kifk("i + Uii + Uij) + �pifp("i + Uii + Uij))�� hni��nj�0 (1� nj��0 )i �� (�kifk("i + 2Uij) + �pifp("i + 2Uij))�� hnj��0nj�0 (1� ni��)i �� (�kifk("i + Uii + 2Uij) + �pifp("i + Uii + 2Uij))�� hni��nj�0nj��0i �� (�kjfk("j + Ujj + Uij) + �pjfp("j + Ujj + Uij))�� hnj��0ni�(1� ni��)i �� (�kjfk("j + 2Uij) + �pjfp("j + 2Uij))�� hni��nj�0 (1� nj��0 )i �� (�kjfk("j +Ujj +2Uij) +�pjfp("j +Ujj +2Uij))�� hnj��0ni�ni��ig = 0: (16)Higher-order 
orrelators 
an be found similarly:��nj�nj��ni��0�t � = ��nj�nj���t ni��0�++��ni��0�t nj�nj��� : (17)Hen
e, the higher-order 
orrelators are given byhnj�nj��ni��0i = f�kjfk("j + Ujj + 2Uij)�� (hni��nj�i+ hni��nj��i) ++ �kifk("i + 2Uij)hnj�nj��i++ �pjfp("j + Ujj + 2Uij)�� (hni��nj�i+ hni��nj��i) ++ �pifp("i + 2Uij)hnj�nj��ig ��f�kif3+fk("i+2Uij)�fk("i+Uii+2Uij)g++�pif3+fp("i+2Uij)�fp("i+Uii+2Uij)gg�1: (18)159
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h ÆÝÒÔ, òîì 142, âûï. 1 (7), 2012We 
onsider the paramagneti
 situationni� = ni��; hni�nj�i = hni�nj��i;hni�ni��nj�i = hni�ni��nj��i:(We note that system of equations (14)�(19) also al-lows analyzing the magneti
 regime with ni� 6= ni�� .)After the substitution of Eq. (18) in (16), the systemof equations for the pair 
orrelatorsK11 � hn1�n1��i; K22 � hn2�n2��i;K12 � hn1�n2�ibe
omes0B� a11 a12 a13a21 a22 a23a31 a32 a33 1CA�0B� K11K12K22 1CA = F (19)with the 
oe�
ients a11 = 1;a12 = 2nT1 ("1 + U11)� nT1 ("1 + U11 + U12)�� 2�2�1nT2 ("2 + U22 + U12)�1;a13 = �nT1 ("1 + 2U12)�1; (20)

a21 = �nT2 ("2 + 2U12)�2;a22 = 2nT2 ("2 + U22)� nT2 ("2 + U22 + U12)��2�1�2nT1 ("1 + U11 + U12)�2;a23 = 1; (21)
a31 = �2�1 + �2 (nT2 ("2 + U12)��nT2 ("2 + 2U12)(1 + 2A2));a32 = 1 + �1�1 + �2 (nT1 ("1 + U12)��nT1 ("1 + U11 + U12)(1 + 4A2)) ++ �2�1 + �2 (nT2 ("2 + U12)��nT2 ("2 + U2 + U12)(1 + 4A1));a33 = �1�1 + �2 (nT1 ("1 + U12)��nT1 ("1 + 2U12)(1 + 2A1));

(22)
where �i = �ki + �pi and we introdu
ed tunneling �ll-ing numbers nTi ("i) and nTi ("i +Uij) in the absen
e ofCoulomb intera
tion:nTi (") = �kifk(") + �pifp(")�ki + �pi : (23)The 
oe�
ients �i and Ai 
an then be found as�i = nTi ("i + Uii)� nTi ("i + Uii + Uij)3 + nTi ("i + 2Uij)� nTi ("i + Uii + 2Uij) + nTi ("i + Uii + 2Uij)3 + nTi ("i + 2Uij)� nTi ("i + Uii + 2Uij) ;Ai = (1=2)nTi ("i + Uij)� (1=2)nTi ("i + Uii + Uij)3 + nTi ("i + 2Uij)� nTi ("i + Uii + 2Uij) � (1=2)nTi ("i + 2Uij) + (1=2)nTi ("i + Uii + 2Uij)3 + nTi ("i + 2Uij)� nTi ("i + Uii + 2Uij) ; (24)

F = 0BBBB� nT1 ("1 + U11)n1�nT2 ("2 + U22)n2��1�1 + �2nT1 ("1 + U12)n2� + �2�1 + �2nT2 ("2 + U12)n1� 1CCCCA : (25)Pair 
orrelators Kij 
an be expressed through ni(j) using Eqs. (19)�(25). Substituting the solution for hig-her-order 
orrelators obtained from Eqs. (16) and (18) in Eq. (14), we 
an �nd hni�i and �nally the tunneling
urrent.For large Uij , we retain only states with at most two ele
trons in the quantum dot (negle
ting triple 
orrelators).Then the expressions for the tunneling 
urrent and the pair 
orrelators Kij be
omeIk1� = �kfhn1�i � (1� hn1�i � 2hn2�i+K22 + 2K12)fk("1)� (hn1�i � 2K12)fk("1 + U11)�� 2(hn2�i �K12 �K22)fk("1 + U12); (26)K12 = (1=2)nT ("1 + U12)(1� nT ("2 + U22))n2� + (1=2)nT ("2 + U12)(1� nT ("1 + U11))n1�1 + nT ("1 + U12)((1=2)� nT ("2 + U22)) + nT ("2 + U12)((1=2)� nT ("1 + U11)) ; (27)160
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t of Coulomb 
orrelations : : :K11 = (1 + (1=2)nT ("1 + U12)� (1=2)nT ("2 + U12)� nT ("1 + U12)nT ("2 + U22))nT ("1 + U11)n1�1 + nT ("1 + U12)((1=2)� nT ("2 + U22)) + nT ("2 + U12)((1=2)� nT ("1 + U11)) �� nT ("1 + U11)nT ("1 + U12)(1� nT ("2 + U22))n2�1 + nT ("1 + U12)((1=2)� nT ("2 + U22)) + nT ("2 + U12)((1=2)� nT ("1 + U11)) ; (28)K22 = (1 + (1=2)nT ("2 + U12)� (1=2)nT ("1 + U12)� nT ("2 + U12)nT ("1 + U11))nT ("2 + U22)n2�1 + nT ("1 + U12)((1=2)� nT ("2 + U22)) + nT ("2 + U12)((1=2)� nT ("1 + U11)) �� nT ("2 + U22)nT ("2 + U12)(1� nT ("1 + U11))n1�1 + nT ("1 + U12)((1=2)� nT ("2 + U22)) + nT ("2 + U12)((1=2)� nT ("1 + U11)) : (29)When all Coulomb intera
tion energies are extremely large, Uij ! 1 or eV � "i + Uij , expressions for theele
tron �lling numbers nj and the tunneling 
urrent for low temperatures have a very simple form:n1� = nT1 ("1)(1� nT2 ("2))(1 + nT1 ("1))(1 + nT2 ("2))� 4nT1 ("1)nT2 ("2) ;n2� = nT2 ("2)(1� nT1 ("1))(1 + nT1 ("1))(1 + nT2 ("2)) � 4nT1 ("1)nT2 ("2) : (30)The tunneling 
urrent is obtained from (26) by omitting all 
orrelators K and terms with fk("i + Uij):Ik = 4�k�p�k + �p (fp("1)� fk("1))(1� nT2 ("2)) + (fp("2)� fk("2))(1� nT1 ("1))(1 + nT1 ("1))(1 + nT2 ("2))� 4nT1 ("1)nT2 ("2) : (31)The determinant of system (19) 
an vanish or evenbe
ome negative for some 
hoi
e of the parameters,and therefore the ele
tron �lling numbers of the two-le-vel system 
an take negative values at some ranges ofthe applied bias voltage. Su
h invalid system beha-vior is the result of our approximation be
ause we ne-gle
ted the intera
tion between the two lo
alized ele
t-ron states due to the ele
tron transitions to the 
on-tinuous spe
trum states in the leads and ba
k. To im-prove the results, it is ne
essary to in
lude the 
orre
-tions that 
an be found using the next-order perturba-tion theory in the parameter �i="i, retaining the termstk1tk2�0k
+2�
1� in Eq. (3). In this 
ase the �nal equa-tions for ni� have additional nonlinear terms and 
anbe s
hemati
ally written asn1�(A11+�1n22�)+n2�(A12+�2n21�) = nT ("1);n2�(A22+�2n21�)+n1�(A21+�1n22�) = nT ("2): (32)The 
oe�
ients Aij , �i, and �i have a rather simplebut 
umbersome form and depend only on the tun-neling �lling numbers and parameters of the tunneling
onta
t. We do not 
onsider this 
ase here.3. MAIN RESULTS AND DISCUSSIONThe behavior of ni� and I�V 
hara
teristi
s

strongly depends on the parameters of the tunne-ling system: energy level positions, the di�eren
e ofCoulomb intera
tion between various lo
alized states,and the relation between tunneling rates. The generalfeatures of all dependen
es are a multiple 
harge redis-tribution in the system with 
hanging the applied biasand step-like I�V 
hara
teristi
s with nonequidistantsteps related to the energies of various multiele
tronstates in the quantum dots. Besides, inverse o

upa-tion of quantum dots levels and negative tunneling 
on-du
tivity appear for a parti
ular range of the systemparameters and bias voltage.We �rst analyze the situation where tunneling ratesfrom both lo
alized states to the leads are approxi-mately equal, tk(p)1 = tk(p)2. Figures 2�7 demonstratethe behavior of �lling numbers and tunneling 
urrentobtained from kineti
 equations for di�erent values ofthe Coulomb energies Uij and various ele
tron level lo-
ations relative to the sample Fermi level in symmetri
,�ki � �pi, and asymmetri
, �ki � �pi (�ki � �pi),tunneling 
onta
ts taking all-order 
orrelators into a
-
ount. The bias voltage in our 
al
ulations is appliedto the sample. Therefore, if both levels are above (be-low) the Fermi level, all the spe
i�
 features of 
hargedistribution and tunneling 
urrent 
hara
teristi
s 
anbe observed at negative (positive) values of eV .11 ÆÝÒÔ, âûï. 1 (7) 161
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h ÆÝÒÔ, òîì 142, âûï. 1 (7), 2012In the 
ase of both energy levels situated above(Fig. 2, Fig. 5) or below (Fig. 3, Fig. 6) the sampleFermi level, we observe the 
harge redistribution be-tween ele
tron levels of a reentrant 
hara
ter. Whenthe applied bias in
reases, two possibilities for 
hargea

umulation for large Coulomb energies Uij are reali-zed in turn. Charge 
an be lo
alized on both ele
tronlevels equally, n1 = n2, or mostly a

umulated on thelower energy level (n1 < n2). Figure 3 shows two rangesof applied bias where the upper level be
omes empty,n1 = 0 ("2 < eV < "1 and "2 + U12 < eV < "1 + U12),for large values of the Coulomb energies. De
rea-sing the Coulomb energies leads to the situation where
harge is mostly a

umulated on the lower energy level(Fig. 6
), but n1 6= 0. In the parti
ular range of ap-plied bias "2 < eV < "1+U12, the 
harge is 
ompletelylo
alized on the lower energy level: n1 = 0.Taking all-order 
orrelators into a

ount allows in-vestigating tunneling through the two-level system inthe 
ase of small Coulomb energies Uij � "i(j). Figu-re 5 demonstrates how �lling numbers and tunneling
urrent dependen
es 
hange due to a de
rease in theCoulomb energies for a symmetri
 tunneling 
onta
t,�ki = �pi (asymmetri
 
onta
ts show the same tenden-
ies). We demonstrate the 
ase of both ele
tron levelslo
alized above the sample Fermi level.If the Coulomb intera
tion is of the order ofsingle-ele
tron energies, three ranges of the appliedbias appear where inverse o

upation o

urs: n1 >> n2 (Fig. 5b) ("2 + 2U12 < eV < "1 + U11, "1 ++ 2U12 < eV < "1 + U11 + U12, and "1 + U11 ++ 2U12 < eV < "2 + U22 + 2U12). Su
h a situationexists due to the 
ondition that the system 
on�gu-ration with two ele
trons on the upper level and oneele
tron on the lower level has a lower energy thanthe 
on�guration with one ele
tron on the upper leveland two ele
trons on the lower level for the parametersshown in Fig. 5b. Further de
reasing the Coulomb ener-gies (Fig. 5
) redu
es the inverse o

upation e�e
t and�nally lo
al 
harge mostly a

umulates on the lowerenergy level, as it should.We obtain that the e�e
ts of reentrant 
harge redis-tribution is more pronoun
ed for an asymmetri
 
on-ta
t if tunneling rates to the sample are larger thantunneling rates to the tip.It is ne
essary to mention that without Coulombintera
tion, �lling numbers for both ele
tron levels aresimple step fun
tions, whi
h 
orrespond to the tunne-ling �lling numbers nT ("i) shifted from ea
h other bythe value "1 � "2.The e�e
t of inverse o

upation due to Coulomb
orrelations is more pronoun
ed in a system with ele
t-

ron levels positioned on the opposite sides of the sampleFermi level (Figs. 4 and 7). Without the Coulomb in-tera
tion, when �k(p)1 = �k(p)2, the di�eren
e of thetwo level o

upation numbers,n1 � n2 � �k1�p2 � �p1�k2;vanishes. Taking Coulomb 
orrelations of lo
alizedele
trons into a

ount in the two-level system resultsin the inverse o

upation of the two levels in a widerange of applied bias voltage (Figs. 4 and 7).In Fig. 4a,b, we show three applied bias rangeswhere the inverse o

upation o

urs ("1 + U11 < eV << "2+2U12, "1+2U12 < eV < "2+U22+U12, and "1++U11 +U12 < eV ). It is evident (Fig. 3a,b) that whenthe applied bias does not ex
eed the value "1 + U12,the entire 
harge is lo
alized on the lower energy level(n1 = 0). As the applied bias in
reases, the inverse o
-
upation o

urs and the lo
alized 
harge redistributes.The inverse o

upation e�e
t strongly depends on therelation between tunneling rates. It is most pronoun
edin an asymmetri
 
onta
t with a stronger tunneling
oupling to the lead k (sample). But we have notfound the inverse o

upation if the two-level system isstrongly 
oupled to the tunneling 
onta
t lead p (tip)(Fig. 4
). In this 
ase, as the applied bias in
reases, theupper ele
tron level 
harge in
reases but lo
al 
hargeis still mostly a

umulated on the lower ele
tron level.De
reasing the Coulomb energies results in the dis-appearan
e of the inverse o

upation (Fig. 7b,
) andlo
al 
harge mostly a

umulates on the lower energylevel. This 
learly demonstrates the role of Coulombintera
tion in the 
harge distribution e�e
ts des
ribedhere.The tunneling 
urrent is depi
ted in (Figs. 2�7d�f)as a fun
tion of the applied bias voltage for differentlevel positions (tunneling 
urrent amplitudes are nor-malized to 2�k). For all values of the system pa-rameters, the tunneling 
urrent dependen
e on appliedbias has a step-like stru
ture. The height and lengthof the steps depend on the parameters of the tunne-ling 
onta
t (tunneling transfer rates and the values ofCoulomb energies). If both levels are lo
ated belowthe Fermi level (Figs. 3 and 6d�f), the upper ele
tronlevel does not appear as a step in the I�V 
hara
teris-ti
s but 
harge redistribution o

urs due to Coulomb
orrelations.For approximately equal tunneling rates for both lo-
alized levels, the I�V 
hara
teristi
s are mostly mono-toni
 fun
tions. But some new pe
uliarities appear ifthe tunneling rates are essentially di�erent. In Fig. 8and 9, we show some results for tk(p)1 6= tk(p)2. In this162
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ase, an interplay between �single ele
tron� nonequilib-rium o

upation e�e
ts and Coulomb 
orrelation e�e
tsexists and at a 
ertain bias 
harge, the redistributionis a

ompanied by negative di�erential 
ondu
tivity.The 
ase of both energy levels lo
ated above thesample Fermi level is shown in Fig. 8. If the tunnelingtransfer rate from the sample to the lower energy levelis the largest in the system and the tunneling trans-fer amplitude from the lower energy level to the tip isthe lowest (Fig. 8a,
), we see that the lo
al 
harge inthe system is mostly a

umulated on the lower energylevel. Vi
e versa, if the tunneling transfer rate fromthe sample to the upper energy level is the largest andthe one from the upper energy level to the tip is thelowest in the system (Fig. 8b,d), then the lo
al 
hargeis mainly a

umulated on the upper energy level and
onsequently inverse o

upation o

urs. But due to theCoulomb intera
tion, three ranges of the applied biasexist where lo
al 
harge is mostly lo
alized on the lowerenergy level "2 < eV < "1, "2 + U12 < eV < "1 + U12,and "2 + U22 + U12 < eV < "1 + U11 + U12.Inverse o

upation also o

urs when energy levelsare lo
ated on the opposite sides of the sample Fermi

level (Fig. 9a) or when both energy levels are belowthe Fermi level (Fig. 9b). In any 
ase, Coulomb inter-a
tion modi�es the single-ele
tron o

upation behavior,
hanging with the applied bias from normal o

upationto the inverse one or vi
e versa.In Fig. 9a, we see several ranges of the applied biaswhere the 
harge is distributed di�erently. These inter-vals depend on Coulomb intera
tion values: the entire
harge is a

umulated on the lower energy level (n1 == 0) for eV < "1+U12; inverse o

upation exists (lo
al
harge is mostly lo
alized on the upper energy level) for"1+U12 < eV < "2+U22+U12 and "1+U11+U12 < eV ;
harge is equally a

umulated on both ele
tron levels,n1 = n2, if "2 + U22 + U12 < eV < "1 + U11 + U12.If both energy levels are lo
ated below the Fermilevel (Fig. 9b), there are similar applied bias rangesin whi
h 
harge is distributed di�erently (equally for"1 < eV < "2 + U12, inversely if "1 + U12 < eV << "2 + U22 + U12 and "1 + U11 + U12 < eV , and soon).The appearan
e of negative 
ondu
tivity regions isthe most essential feature of the tunneling 
hara
teris-ti
s, depi
ted in Figs. 8
,d and 9
,d. We stress on
e166
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aseswhere one energy level is lo
ated above and the other � below (a,
) and both energy levels are lo
ated below (b,d) thesample Fermi level for di�erent values of tunneling rates. The parameters �k1 = 0:15, �p1 = 0:005, �k2 = 0:06, �p2 = 0:05are the same for all the �gures; �1 = 0:2, �2 = �0:3, U12 = 1:0, U11 = 1:4, U22 = 1:7 (a,
); �1 = �0:1, �2 = �0:3,U12 = 1:0, U11 = 1:5, U22 = 1:6 (b,d)more that the formation of negative 
ondu
tivity isan interplay between nonequilibrium e�e
ts 
onne
tedwith the tunneling 
urrent and Coulomb 
orrelations.Re
ently, the perturbative approa
h was used toinvestigate a similar system 
oupled to magneti
leads [18℄. The authors obtained stair
ase tunneling
hara
teristi
s 
onne
ted with many-parti
le states inthe �rst nonvanishing order / �k�p. The developedperturbation theory over the equilibrium of the quan-tum dot does not take nonequilibrium e�e
ts 
onne
tedwith the tunneling 
urrent into a

ount. Nonequilib-rium �lling numbers like nT ("i) do not therefore appearand 
onsequently e�e
ts su
h as the inverse o

upationof states in the quantum dots and negative tunneling
ondu
tivity are absent in the theory suggested in [18℄.4. CONCLUSIONWe investigated tunneling through the two-levelsystem with strong Coulomb intera
tion between lo
ali-zed ele
trons taking all-order 
orrelators of lo
al ele
t-ron density into a

ount. It was shown that 
harge

redistribution between ele
tron states is strongly go-verned by the Coulomb 
orrelations and is of reentranttype. The dependen
e of ele
tron �lling numbers on ap-plied bias is quite di�erent from that for nonintera
tingele
trons. The existen
e of 
harge redistribution e�e
tsmeans that adjusting the applied bias allows 
ontro-ling spatial redistribution of lo
alized 
harges. Diversepossibilities for lo
al 
harge a

umulation and 
hargeswit
hing therefore exist for su
h systems.In addition, at 
ertain values of the Coulomb inter-a
tion of lo
alized ele
trons, we 
an obtain a 
orrela-tion-indu
ed inverse o

upation of the two-level systemin di�erent ranges of the applied bias. Inverse o

upa-tion is mostly pronoun
ed in asymmetri
 
onta
ts withdi�erent tunneling rates to the sample and to the lead,and when one energy level lies below and another abovethe Fermi level.By 
hanging the tunneling 
onta
t parameters (tun-neling rates of ea
h level to the leads), we 
an observean interplay between two me
hanisms responsible fornon-equilibrium o

upation of ea
h level: inverse o

u-pation indu
ed by the tunneling 
urrent of a two-level167
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h ÆÝÒÔ, òîì 142, âûï. 1 (7), 2012system at a parti
ular ratio between tunneling rates(whi
h exists in the absen
e of Coulomb intera
tion)and inverse o

upation 
onne
ted only with Coulombintera
tion of lo
alized ele
trons.We revealed that for some parameter range, thesystem demonstrates negative tunneling 
ondu
tivityin 
ertain ranges of the applied bias voltage. Anegative tunneling 
ondu
tivity is revealed in theasymmetri
 
ase �ki 6= �pi (Figs. 8 and 9) and is morepronoun
ed if both energy levels are lo
ated above theFermi level. When energy levels are lo
ated on theopposite sites of the Fermi level, the negative tunneling
ondu
tivity is mu
h weaker and when both of themare positioned below the Fermi level, it is negligible.The �nan
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