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QUANTUM MAGNETO-OPTICS OF THE GRAPHITE FAMILYL. A. Falkovsky *Landau Institute for Theoreti
al Physi
s119334, Mos
ow, RussiaVeresh
hagin Institute of High Pressure Physi
s142190, Troitsk, Mos
ow Region, RussiaRe
eived May 29, 2012The opti
al 
ondu
tivity of graphene, bilayer graphene, and graphite in quantizing magneti
 �elds is studied.Both dynami
al 
ondu
tivities, longitudinal and Hall's, are evaluated analyti
ally. The 
ondu
tivity peaks areexplained in terms of ele
tron transitions. Corresponden
es between the transition frequen
ies and the magneto-opti
al features are established using the theoreti
al results. We show that trigonal warping 
an be 
onsideredwithin the perturbation theory for strong magneti
 �elds larger than 1 T. The semi
lassi
al approa
h is appliedfor weak �elds when the Fermi energy is mu
h larger than the 
y
lotron frequen
y. The main opti
al transi-tions obey the sele
tion rule with �n = 1 for the Landau number n, but the �n = 2 transitions due to thetrigonal warping are also possible. The Faraday/Kerr rotation and light transmission/re�e
tion in quantizingmagneti
 �elds are 
al
ulated. Parameters of the Slon
zewski�Weiss�M
Clure model are used in the �t takingthe previous de Haas�van Alphen measurements into a

ount and 
orre
ting some of them in the 
ase of strongmagneti
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es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13221. INTRODUCTIONComprehensive literature on the graphene fam-ily 
an be des
ribed in terms of the Dira
 gaplessfermions. A

ording to this pi
ture, there are twobands at the K hexagon vertexes of the Brillouinzone without any gap between them, and the ele
trondispersion 
an be 
onsidered linear in a wide wave-ve
tor region. For the dispersion linearity, this regionshould be small 
ompared with the size of the Bril-
louin zone, i. e., less than 108 
m�1, providing thesmall 
arrier 
on
entration n � 1016 
m�2. Pristinegraphene at zero temperature has no 
arriers, and theFermi level should separate the 
ondu
tion and va-len
e bands. However, undoped graphene 
annot bereally obtained, and the purest graphene so far 
on-tains about n � 109 
m�2 
arriers. Then the followingproblem appears: how do Coulomb ele
tron�ele
tronintera
tions renormalize the linear dispersion and doesgraphene be
ome an insulator with a gap?*E-mail: falk�itp.a
.ru 1309



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012Semi
ondu
tors with a gap are needed for ele
troni
appli
ations. Investigations of the graphene bilayer andmultilayer are very popular be
ause the gap appearswhen the bias is applied. We see how physi
s made a
ir
le over half a 
entury, returning to graphite studies.Slon
zewski, Weiss, and M
Clure (SWMC) should bementioned here be
ause they have stated the des
rip-tion of a layered matter [1℄ with intera
tions that arestrong in the layer and weak between layers.The most a

urate investigation of the band stru
-ture of metals and semi
ondu
tors is a study of theLandau levels through experiments su
h as magneto-opti
s [2�10℄ and magneto-transport [11�15℄. In mag-neti
 �elds, the 
lassi
al and quantum Hall e�e
ts areobserved, as is the polarization rotation for transmit-ted light (the Faraday rotation) or re�e
ted light (theKerr rotation). However, the interpretation of the ex-perimental results involves a signi�
ant degree of un-
ertainty, be
ause it is not 
lear how the resonan
es
an be identi�ed and whi
h ele
tron transitions they
orrespond to.The theoreti
al solution of the band problem inmagneti
 �elds often 
annot be found exa
tly. A typi-
al example is presented by graphene layers. For bilayergraphene and graphite, the e�e
tive Hamiltonian is a4 � 4 matrix giving four energy bands. The trigonalwarping des
ribed by the e�e
tive Hamiltonian with arelatively small parameter 
3 provides an evident ef-fe
t. Another important parameter is the gate-tunablebandgap U in bilayer graphene. In this situation, thequantization problem 
annot be solved within a rigor-ous method. To over
ome this di�
ulty, several meth-ods have been proposed for approximate [9; 16�19℄, nu-meri
al [20�24℄, and semi
lassi
al quantization [25, 26℄.This paper is organized as follows. In Se
. 2,we re
all the ele
tron dispersion in graphene, bilayergraphene, and graphite. In Se
. 3, the opti
al 
ondu
-tivity and light transmission are dis
ussed. In Se
s. 4and 5, we des
ribe the quantization in magneti
 �eldsin detail. In Se
. 6, the longitudinal and Hall 
ondu
-tivities and the Faraday/Kerr rotation are des
ribed.2. ELECTRON DISPERSION IN THEGRAPHENE FAMILY2.1. Ele
tron dispersion in grapheneThe symmetry of theK point is C3v with a threefoldaxis and re�e
tion planes. This group has a twofoldrepresentation with the basis fun
tions transformingone into another under re�e
tions and a
quiring thefa
tors exp (�2�i=3) under rotations. The linear mo-

mentum variations from the K point, p� = �ipx � py,transform similarly. The e�e
tive Hamiltonian is in-variant under the group transformations, and we havea unique possibility to 
onstru
t the invariant Hamil-tonian linear in the momentum asH(p) =  0 vp+vp� 0 ! ; (1)where v is a 
onstant of the dimension of velo
ity. Thesame Hamiltonian has been written using the tight-binding model.The eigenvalues of this matrix give two bands,"1;2 = �vqp2x + p2y = �vp;where the sign ��� 
orresponds to holes and ele
trons.The gapless linear spe
trum arises as a 
onsequen
e ofthe symmetry, and the 
hemi
al potential at zero tem-peratures 
oin
ides with the band 
rossing due to the
arbon valen
e. The 
y
lotron mass is given bym(") = 12� dS(")d" = "v2 ;and the 
arrier 
on
entration at zero temperaturen(�) = �2=�~2v2 is expressed in terms of the 
hem-i
al potential �.By tuning the gate voltage, the linearity of the spe
-trum has been examined in the Shubnikov�de Haasstudies [27℄ with the help of the relation m(�)v == �~p�n(�) between the e�e
tive mass and the 
ar-rier 
on
entration at the Fermi level. The �
onstant�parameter v was found to be no longer 
onstant; atlow 
arrier 
on
entrations n � 109 
m�2, it ex
eeds itsusual value v = (1:05� 0:10) � 108 
m/s (at 
on
entra-tions n > 1011 
m�2) by a fa
tor of 3.This is a result of ele
tron�ele
tron intera
tions,whi
h be
ome stronger at low 
arrier 
on
entrations.The logarithmi
 renormalization of the velo
ity wasfound by Abrikosov and Beneslavsky in Ref. [28℄ for thethree-dimensional 
ase and in Refs. [29; 30℄ for two-di-mensional graphene. We note that no phase transitionwas revealed even at the lowest 
arrier 
on
entration.We 
an 
on
lude that the Coulomb intera
tions do not
reate any gap in the spe
trum.2.2. Ele
tron dispersion in bilayer grapheneand graphiteBilayer graphene has attra
ted mu
h interest partlydue to the opening of a tunable gap in its ele
troni
1310



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Quantum magneto-opti
s of the graphite familyTable. The parameters of the Hamiltonian, Eq. (2), their values in the SWMC model, and the values obtained inexperimental works, all in meVEq. (2) 
0 
1 
2 
3 
4 
5 � "F3050 360 �10:2 270 �150 �1:5 16 �4:1Sa 
0 
1 2
2 
3 �
4 2
5 �+ 2(
2 � 
5) 2
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Doezema et al. [4℄, dCharlier et al. [41℄."s2
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Fig. 1. Band stru
ture of graphitespe
trum by an external ele
trostati
 �eld. Su
h a phe-nomenon was predi
ted in Refs. [31, 32℄ and was ob-served in opti
al studies 
ontrolled by applying a gatevoltage [33�40℄.The e�e
tive Hamiltonian of the SWMC theory 
anbe written [22, 23℄ near the KH line in graphite as
H(p) = 0BBBBBBBBBBBB�

~
5 vp+ ~
1 ~
4vp�
0vp� ~
2 ~
4vp�
0 ~
3vp+
0~
1 ~
4vp+
0 ~
5 vp�~
4vp+
0 ~
3vp�
0 vp+ ~
2
1CCCCCCCCCCCCA ; (2)

where p� = �ipx� py are the momentum 
omponentsand ~
j are the fun
tions of the pz momentum in the

"
p

1
2
3
4

U (U2 + 
21)1=2

Fig. 2. Band stru
ture of bilayer graphenemajor axis dire
tion,~
2 = 2
2 
os (2pzd0); ~
5 = 2
5 
os (2pzd0) + �;~
i = 2
i 
os (pzd0); i = 1; 3; 4;with the distan
e d0 = 3:35Å between layers ingraphite. The nearest-neighbor hopping integral 
0 �� 3 eV 
orresponds with the velo
ity parameter v == 1:5a0
0 = 106 m/s and the in-layer inter atomi
distan
e a0 = 1:415Å. Hamiltonian (2) is representedin a somewhat di�erent form than in Ref. [1℄. The rela-tions between the hopping integrals in these forms aregiven in the Table. The re
ent estimate [35, 36℄ of theparameters agrees with those given in the Table.1311



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012The ele
tron spe
trum of graphite is shown inFig. 1. There are four levels labeled by s = 1; 2; 3; 4from below at any momentum. As a 
onsequen
e ofthe axial symmetry, a twofold degeneration "2 = "3exists at px = py = 0, i. e., on the KH line.In bilayer graphene, every layer has only one neigh-boring layer. Therefore, we have to set 
2 = 
5 = 0and to substitute ~
i = 
i for i = 1; 3; 4 in Hamilto-nian (2). The parameter U 
an also be in
luded inthe bilayer Hamiltonian as a result of the gate voltage.Then the gap appears between "2 and "3, and these
bands a
quire the shape of a �mexi
an hat� (Fig. 2).Importantly, two points, K and K 0, are in the Bril-louin zone and transforming one into another underre�e
tion. Su
h a re�e
tion 
hanges the U sign, givingtwo di�erent dispersion laws at the K and K 0 points.3. OPTICAL CONDUCTIVITYWe use the general expression for the 
ondu
tivityas a fun
tion of the ele
tri
 �eld frequen
y ! and waveve
tor k in the form [42, 43℄�ij(!; k) = 2ie2 Xp;m>n� vimmvjmmff0["m(p�)℄� f0["m(p+)℄g["m(p+)� "m(p�)℄[! � "m(p+) + "m(p�)℄ ++ 2!vimnvjnmff0["m(p�)℄� f0["n(p+)℄g["n(p+)� "m(p�)℄f(!+iÆ)2 � ["n(p+)� "m(p�)℄2g� ; (3)valid in the 
ollisionless limit (!; kv)� ��1, where ��1is the ele
tron relaxation frequen
y, p� = p�k=2, andvimn is the matrix element of the velo
ity operatorv = �H(p)�p (4)determined by Hamiltonian (1) or (2). Hitherto, wedid not use any pe
uliarities of the graphene spe
trum.The expression a
quired only the fa
tor 4 due to sum-mation over spin and over six points of the K type (twoper a Brillouin zone).The �rst term in Eq. (3) 
orresponds to the intra-band ele
tron�photon s
attering pro
esses. In the limitof the high 
arrier 
on
entration (T;EF ) � kv, it 
o-in
ides with the usual Drude�Boltzmann 
ondu
tivityif the substitution ! ! ! + i��1 is made. The se
ondterm owes its origin to the interband n ! m tran-sitions with the in�nitesimal Æ determining a bypassaround the pole in integrating over the momentum p.The real part of this 
ontribution redu
es to the well-known expression for the absorbed energy due to dire
tinterband transitions.Opti
al 
ondu
tivity of grapheneFor opti
al frequen
ies ! � kv, we 
an integrateover the angle in Eq. (3) and write the 
ondu
tivity as�(!) = e2!i�~ 24 1Z�1 d" j"j!2 df(")d" �� 1Z0 d" f(�")� f(")(! + iÆ)2 � 4"235 (5)

using the variable " = vp.The intraband term 
an be integrated on
e more,�intra(!) = 2ie2T�~(! + i��1) ln�2 
h �2T � ; (6)where we write ! + i��1 instead of ! to take thesmall relaxation frequen
y into a

ount. This Drude�Boltzmann 
ondu
tivity at low temperatures T � �takes the form�intra(!) = ie2j�j�~(! + i��1)In the opposite limit of high temperatures, the intra-band 
ondu
tivity (6) be
omes�intra(!) = 2ie2T ln 2�~(! + i��1) :The temperature dependen
e of the relaxation rate ingraphene is dis
ussed theoreti
ally in Ref. [44℄.The interband 
ontribution in Eq. (5) integrated atzero temperatures gives�inter(!) = e24~ ��(! � 2�)� i2� ln (! + 2�)2(! � 2�)2 � ;where the �-fun
tion expresses the threshold behaviorof interband ele
tron transitions at ! = 2�. The tem-perature smooths out all the singularities:�(! � 2�)! 12 + 1� ar
tg ! � 2�2T ;(! � 2�)2 ! (! � 2�)2 + (2T )2:1312



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Quantum magneto-opti
s of the graphite familyThe main issue should be emphasized. In the high-frequen
y region ! � (T; �), the interband transitionsmake the main 
ontribution to the 
ondu
tivity�(!) = e24~ ;whi
h has a universal 
hara
ter independent of any ma-terial parameters. This frequen
y region is boundedabove by the band width of around 3 eV. Using the uni-versal 
ondu
tivity, we 
an 
al
ulate the light transmis-sion through graphene [45℄ in the approximation linearin 
ondu
tivity,T = 1� 4�
 Re�(!) 
os � = 1� � e2~
 
os �;where � is the in
iden
e angle. The intensity of re-�e
ted light is quadrati
 in the �ne stru
ture 
onstant� = e2=~
. In ex
ellent agreement with the theory,for a wide opti
al range, several experimental groups[46�48℄ observe light transmission through graphene aswell as bilayer graphene where the di�eren
e from unityis twi
e as large. It is ex
eptionally intriguing thatlight transmission involves the �ne stru
ture 
onstantof quantum ele
trodynami
s, having really no relationto the graphene physi
s.For graphite, the value �d = e2=4~d0 plays therole of a universal dynami
al 
ondu
tivity, where d0is the distan
e between layers. As is shown experimen-tally [49℄ and theoreti
ally [50℄, the dynami
al 
ondu
-tivity of graphite is 
lose to this universal value in thefrequen
y range 0.1�1 eV, having the kink singularityat the interband transition frequen
y ! = 2
1.4. GRAPHENE IN MAGNETIC FIELDSIn the presen
e of a magneti
 �eld B, the momen-tum proje
tions p+ and p� be
ome operators with the
ommutation rule fp̂+; p̂�g = �2e~B=
. We use therelations vp̂+ = !Ba; vp̂� = !Bayinvolving the 
reation (ay) and annihilation (a) opera-tors with !B = vp2jej~B=
. We write only one of thetwo xy spa
e 
oordinates in
luding the 
orrespondingdegenera
y proportional to the magneti
 �eld in the�nal results.For graphene, we seek the eigenfun
tion of Hamil-tonian (1) in the form [51, 52℄ �sn(x) = ( C1sn'n�1(x)C2sn'n(x) ; (7)

where 'n(x) are orthonormal Hermite fun
tions withthe Landau number n � 0. Eliminating the Hermitefun
tions from the equations, we obtain a system oflinear equations for the eigenve
tor Csn, �" !Bpn!Bpn �" !�( C1snC2sn = 0;whi
h gives the eigenvalues"sn = �!Bpn (8)with s = 1; 2 and n = 0; 1; 2; : : : For n = 0, there isonly one level "10 = 0 with C10 = 0 and C20 = 1, asfollows from Eq. (7). The wave fun
tion 
olumns areC1snC2sn = 1p2 ( 1�1 and 11for s = 1 and s = 2 and n = 1; 2; : : :5. GRAPHENE LAYERS WITH TRIGONALWARPING IN MAGNETIC FIELDSWe seek eigenfun
tion of Hamiltonian (2) as a 
ol-umn  �sn(x) =8>>>><>>>>: C1sn'n�1(x)C2sn'n(x)C3sn'n�1(x)C4sn'n�2(x) : (9)We see the every row in Hamiltonian (2) be
omesproportional to a de�nite Hermite fun
tion if the termswith 
3 are omitted. We show that the terms propor-tional to 
3=
0 
an be 
onsidered within the perturba-tion theory or the semi
lassi
al approximation.Eliminating the Hermite fun
tions from the equa-tions, we obtain a system of linear equations for theeigenve
tor Csn,0BBBB� ~
5 � " !Bpn ~
1 !4pn� 1!Bpn ~
2 � " !4pn 0~
1 !4pn ~
5 � " !Bpn� 1!4pn� 1 0 !Bpn� 1 ~
2 � " 1CCCCA��8>>>><>>>>: C1snC2snC3snC4sn = 0 ; (10)15 ÆÝÒÔ, âûï. 6 (12) 1313
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n = 4 n = 3 n = 2 n = 1

K Hkz K Hkz�0:2
�0:1

0
0:1
0:2

�0:10�0:08�0:06�0:04�0:020
0:020:04"; eV
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Fig. 3. Landau levels in graphite "sn for n from 0 to 4 in four bands s = 1; 2; 3, and 4 (in dotted, solid, dashed, anddash-dotted lines, 
orrespondingly) as fun
tions of the wave ve
tor kz along the KH line in the Brillouin zone (K = 0,H = �=2d0) in the magneti
 �eld B = 7 T with the SWMC model parameters given in the Table. The main ele
trontransitions shown in the right panel below 100 meV o

ur between the levels with the sele
tion rule �n = 1where the band number s = 1; 2; 3; 4 labels the solu-tions at a given n from the bottom, !B = vp2jej~B=
,and !4 = ~
4!B=
0.The eigenvalues of the matrix in Eq. (10) are easyto �nd; they are shown in Fig. 3 as fun
tions of themomentum pz. For ea
h Landau number n � 2 andmomentum pz, there are four eigenvalues "s(n) andfour 
orresponding eigenve
tors, Eq. (9), labeled by theband subs
ript s. We use the notation jsni for levels.In addition, there are four levels. One of them is"1(n = 0) = ~
2 (11)for n = 0 with the eigenve
tor C0 = (0; 1; 0; 0), as isevident from Eq. (9). This level interse
ts the Fermilevel and belongs to the ele
tron (hole) band near theK (H) point. The other three levels labeled by n = 1

and s = 1; 2; 3 are determined by the �rst three equa-tions of system (10) with C4s1 = 0.The j21i level is 
lose to the j10i level. In the re-gion pz, 
1= 
os(2pzd0) � 
2, where the ele
trons arelo
ated, this level has the energy"2(n = 1) = ~
2 � 2!2B~
4~
1
0 :In the same region, the two 
losest bands (s = 2; 3)with n � 2 are written as"2;3(n) = ~
2 � !2B~
4~
1
0 (2n� 1)�!2B~
1 pn(n� 1) (12)with the a

ura
y of (~
4=
0)2.1314



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Quantum magneto-opti
s of the graphite family5.1. Perturbation theory for the matrixHamiltonianDue to the double degenera
y existing on the KHline, the e�e
t of trigonal warping be
omes essential.The simplest way to evaluate the 
orre
tions resultingfrom the warping 
3 is to 
onsider the Green's fun
tionhaving the poles at the ele
tron levels.The Green's fun
tion of the unperturbed Hamilto-nian is given byG��0 ("; x; x0) =Xsn  �sn(x) ��sn (x0)"� "sn ; (13)whi
h involves the fun
tions in Eq. (9). The 
orre
tionsto the levels 
an be found by iterations,Gm+1(x; x0) = Z d2x00G0(x; x00)V(x00)Gm(x00; x0);where V(x) has only two matrix elements V 42 == !B ~
3a+=
0 and V 24 = V 42� in Hamiltonian (2).At the se
ond iteration, we obtain the 
orre
tionsZ d2x1d2x2G�40 (x; x1)V 42(x1)G220 (x1; x2)�� V 24(x2)G4�0 (x2; x0)and a similar term with the supers
ript substitution2$ 4. The matrix elements of the perturbation V areeasily 
al
ulated with respe
t to the Hermite fun
tionsin Eqs. (13) and (9), and we obtain�!B~
3
0 �2 ��Xs0sn (n� 2)jC4snC2s0;n�3j2 �sn(x) ��sn (x0)("� "sn)("� "s0;n�3)("� "sn) ; (14)for the diagram shown in the upper part of Fig. 4. This
orre
tion plays an important role near the poles of theGreen's fun
tion. For this reason, for " 
lose to "sn, the" value in the se
ond fa
tor of the denominator 
an berepla
ed by "sn. Thus, the total Green's fun
tion (withthe 
orre
tion) has the stru
ture1"� "sn + Æ("� "sn)2 ;whi
h 
an be rewritten up to se
ond-order terms in Æas 1"� "sn � Æ :

V 42 V 24

V 42

V 42

а

bFig. 4. Diagrams for the se
ond iteration of the pertur-bation theory; (a) 
orre
tions to the Green's fun
tion,(b) 
orre
tions to the vertex in 
ondu
tivityTherefore, we 
an represent [16℄ the 
orre
tion as a shiftÆ"sn of the poles ("� "sn � Æ"sn)�1 withÆ"s(n) = �!B~
3
0 �2Xs0 ((n� 2)jC4snC2s0;n�3j2"s(n)� "s0(n� 3) ++ (n+ 1)jC2snC4s0;n+3j2"s(n)� "s0(n+ 3) ) ; (15)where the �rst term should be omitted for n � 3 < 0.In fa
t, our illustration is nothing but a 
al
ulation ofthe ele
tron self-energy and the naive expansion of thedenominator 
an indeed be repla
ed by summing the
orresponding diagrams.The 
orre
ted j10i level is given by"1(n = 0) = ~
2 +�!B~
3
0 �2Xs0 jC4s03j2~
2 � "s0(3) : (16)The j21i level is very 
lose to the level with n = 0,Eq. (16).Comparing the 
orre
tions, Eq. (15), with the lead-ing 
ontribution in Eq. (12), we �nd, �rst, that theperturbation theory is valid when the expansion pa-rameter (~
3~
1=
0!B)2 be
omes small, i. e., for strongmagneti
 �elds B > 1 T. Se
ond, the e�e
t of 
4 islinear, whereas that of 
3 is quadrati
 in these 
on-stants. Therefore, the 
4 
onstant is more essential forthe ele
tron levels in magneti
 �elds.Comparison shows that Eqs. (15) and (16) for le-vels give the same results as the numeri
al method oftrun
ating the in�nite-rank matrix in Ref. [21℄.1315 15*



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012We note that the derived expressions are also appli-
able to bilayer graphene if we in
lude the �eld U andset 
2 = 
5 = 0 and ~
i = 
i for i = 1; 3; 4. In the sim-plest approa
h, when only the main parameters 
1 andU are retained, the magneti
 levels "sn are determinedby the equation[(U � "sn)2 � !2Bn℄[(U + "sn)2 � !2B(n+ 1)℄ ++ 
21(U2 � "2sn) = 0:5.2. Berry phase, semi
lassi
al quantization,and Landau levelsAlternatively, semi
lassi
al quantization 
an beused for relatively weak magneti
 �elds when the 
y-
lotron frequen
y is small 
ompared with the Fermi en-ergy. We 
an then use the Bohr�Sommerfeld 
onditionin the form 
e~BS(") = 2� �ns
 + T4 + Æ(")� ; (17)where S(") is the 
ross-se
tional area of the ele
tron or-bit in the pxpy spa
e for the energy " and the 
onstantmomentum proje
tion pz on the magneti
 �eld, ns
 isan integer supposed to be large. The integer T is thenumber of smooth turning points on the ele
tron orbit.There are two smooth turning points for the Landaulevels and only one for skipping ele
trons re�e
ted bythe hard edge.We use the semi
lassi
al approa
h for the mag-neti
 �eld normal to the layered system when only thein-layer momentum 
omponents px and py are quan-tized and the size of the Fermi surfa
e is small 
om-pared with the Brillouin zone size. We note that theÆ(") phase depends on the energy. If the spin is ne-gle
ted, Æ = 0 and T = 2 for the Landau levels, andÆ = 1=2 and T = 2 for monolayer graphene. In thesetwo 
ases, the semi
lassi
al result 
oin
ides with therigorous quantization and it is 
losely 
onne
ted withthe topologi
al Berry phase [53℄. This Æ-phase was eval-uated for bismuth in Ref. [25℄, pre
eding Berry's workby almost two de
ades, and it was 
onsidered again forbismuth in Ref. [54℄. For graphite, semi
lassi
al quanti-zation was applied in Ref. [26℄. However, in the general
ase, the evaluation of the Æ-phase still attra
ts mu
hinterest [55�61℄.The problem under 
onsideration is des
ribed bythe Hamiltonian in Eq. (1) or (2) rewritten in the form(V � ~p+ �� ")	 = 0; (18)where ~p and V are the respe
tive two-dimensional ve
-tor and matrix, with the in-layer 
omponents x and y.

The 
olumn 	 is labeled by the band subs
ript whi
hwe omit together with the matrix subs
ripts on � andV, summation over them is implied in Eq. (18). Thematri
es � and V are the �rst two terms (of zero and�rst orders) in a series expansion of the Hamiltonian inpowers of quasi-momenta px and py.In the magneti
 �eld, the momentum operator ~p de-pends on the ve
tor potentialA by means of the Peierlssubstitution, ~p = �i~r� eA=
;providing the gauge invarian
e of the theory. The mag-neti
 �eld 
an also enter expli
itly, des
ribing the mag-neti
 intera
tion with the spin of parti
les. However,for the graphene family, the magneti
 intera
tion isweak and omitted here.It is 
onvenient to 
hoose the ve
tor potential inthe Landau gauge Ax = �By, Ay = Az = 0 in su
ha way that the Hamiltonian is independent of the x
oordinate. We seek the fun
tion 	 in the form	 = �exp (is=~);where the fun
tion s is assumed to be 
ommon for all
omponent of the 
olumn 	.The fun
tion � is expanded in series in ~=i:� = 1Xm=0�~i�m 'm:Colle
ting the terms with the same powers of ~ inEq. (18), we have(V � p+ �� ")'m = �Vr'm�1: (19)For m = 0, we obtain a homogeneous system of alge-brai
 equations for the wave fun
tion 
olumn '0,(V � p+ �� ")'0 = 0; (20)whi
h has a solution under the 
onditionDet(V � p+ �� ") = 0: (21)This equation determines the 
lassi
al ele
tron orbit,"(px; py) = ", at a given ele
tron energy " in presen
eof the magneti
 �eld. On the other hand, the equation
oin
ides with the dispersion equation sin
e it does not
ontain the magneti
 �eld. In the three-dimensional
ase, as in graphite, the dispersion also depends on themomentum proje
tion pz on the magneti
 �eld. There-fore, our s
heme does not require the expansion in po-wers of pz.Equations (19) with m = 0; 1 give the wave fun
-tion in the semi
lassi
al approximation [25℄. The quan-tization 
ondition 
an be written, as usual, from the1316



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Quantum magneto-opti
s of the graphite familyrequirement that the wave fun
tion be single valued.Making the bypass in the 
omplex plane around theturning points to obtain de
reasing solutions in the
lassi
ally ina

essible region, we obtain, �rst, T = 2and, se
ond, the Æ-phase as a 
ontour integral along the
lassi
al orbitÆ(") = 12� Im I dpx'�0'0vy'�0Vy d'0dpx ; (22)where vy = �"(px; py)=�py. Using the Hamiltonianhermiti
ity, after the simple algebra (see Ref. [25℄),Eq. (22) 
an be rewritten in the gauge-invariant formÆ(") = 14� Im I dp'�0'0v'�0 �V � ddp�z '0; (23)where v = qv2x + v2y and the integrand is 
alled theBerry 
onne
tion (or 
urvature). Everywhere, the sum-mation over the band subs
ript is implied.We emphasize that Eqs. (22) and (23) yield jÆ(")j == 1=2 for monolayer graphene, whi
h, together withT = 2, gives the same Landau levels as the exa
t quan-tization (8).We now 
al
ulate the Æ-phase for bilayer graphene.In the simplest 
ase, omitting 
3 and 
4, the e�e
tiveHamiltonian 
an be written asH(p) = 0BBBB� U q+ 
1 0q� U 0 0
1 0 �U q�0 0 q+ �U 1CCCCA ; (24)where the parameter U des
ribes the tunable gap dueto the gate voltage and 
1 is the interlayer nearest-neighbor hopping integral energy. The 
onstant ve-lo
ity parameter v is in
orporated in the notationq� = vp�. The band stru
ture is shown in Fig. 2. Theminimal value of the upper energy "4 ispU2 + 
21 , andthe "3 band takes the maximal value jU j at q = 0. Here,the orbit is the 
ir
le de�ned by Eq. (21), written in theform[(U+")2�q2℄[(U�")2�q2℄�
21("2�U2) = 0: (25)The eigenfun
tion '0 of Hamiltonian (24) 
an be takenas '0 = 0BBBB� (U � ")[("+ U)2 � q2℄q�[q2 � ("+ U)2℄
1(U2 � "2)
1q+(U � ") 1CCCCA ; (26)with the norm squared


3 = 
4 = 0
3 = 270 meV, 
4 = �150 meVU = 40 meV
1 = 360 meV
40 60 80 100 120"; meV�0:5�0:4�0:3�0:2�0:1Æ

Fig. 5. Semi
lassi
al phase vs energy in the 
ondu
-tion band of bilayer graphene without trigonal warping(solid line) and with the warping (dashed line)'�0'0 = [("+ U)2 � q2℄2[("� U)2 + q2℄ ++ 
21("� U)2[("+ U)2 + q2℄: (27)The derivatives for Eq. (22) are 
al
ulated along thetraje
tory where the energy " and, 
onsequently, thetraje
tory radius q are 
onstant.If the 
onditions jU j < j"j <pU2 + 
21 are ful�lled,Eq. (25) has only one solution for the radius squaredq2 = U2 + "2 +q4U2"2 + ("2 � U2)
21 :The matrix Vy = �H=�py in Eq. (22) has four nonzeroelements, V 12y = V 21y = V 34y = V 43y = �1.Using Eqs. (25) and (26), we �ndIm'�0Vy d'0dpx = 4U"(U � ")[("+ U)2 � q2℄: (28)This expression is 
onstant on the traje
tory, as is'�0'0, Eq. (27). Therefore, in order to �nd Æ in Eq. (22),we have to integrate along the traje
toryI dpxvy :This integral equals �dS(")=d", where S(") = �q2 isthe 
ross-se
tional area, Eq. (17), withdS(")d" = �"2(q2 + U2 � "2) + 
21q2 � U2 � "2 : (29)We now have to substitute Eqs. (27)�(29) inEq. (22). Thus, we �nd the Berry phaseÆ(") = � "Uq2�"2�U2 = � "Up4U2"2+("2�U2)
21 (30)1317



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012j34ij33ij32ij21ij10ij22ij23ij24ij25ij27i0 10 20 30 40 50B; T�300�200�1000100200300"; meV j35iU = 40 meV
1 = 360 meVj37i j36i
j26iFig. 6. Energy levels "sn for the K valley in magneti
�elds for bilayer graphene within the perturbation ap-proximation (solid lines) and in the semi
lassi
al ap-proa
h (dash-dotted lines); in the notation jsni, n isthe Landau number and s = 1; 2; 3; 4 is the band num-ber; only two nearest bands (s = 2; 3) are shown atgiven n from 0 to 7. There is only one level, j10i,with n = 0 and three levels (s = 1; 2; 3) with n = 1.The levels for the K0 valley 
an be obtained by mirrorre�e
tion with respe
t to the " = 0 axisshown in Fig. 5, where the Æ-phase of bilayer graphenewith trigonal warping is also shown; the detailed 
al-
ulations will be published elsewhere. For the ungapedbilayer, U = 0, the Berry phase Æ(") = 0. The Berryphase depends on the energy and Æ = �1=2 at " = �U .At large energies, "� U , the Berry phase Æ ! �U=
1.Substituting Eq. (30) in the semi
lassi
al quanti-zation 
ondition, Eq. (17), and solving the equationobtained for ", we obtain the energy levels as fun
tionsof the magneti
 �eld. We have to note that the Lan-dau numbers n listed in Fig. 6 do not 
oin
ide with thenumbers ns
 in semi
lassi
al 
ondition (17). The rig-orous quantization shows that there are only one Lan-dau level with n = 0 and three Landau levels withn = 1 [16℄. These levels are not 
orre
tly des
ribedwithin the semi
lassi
al approa
h. However, for n � 2,there are levels in all four bands s (two nearest bandswith s = 2; 3 are shown in Fig. 6). They 
orrespond tothe semi
lassi
al number ns
 = n�1, and the semi
las-si
al levels for larger n are in ex
ellent agreement withthe levels obtained in the perturbation approximation.6. MAGNETO-OPTICS EFFECTS INGRAPHENE LAYERSAn important pe
uliarity of 
ondu
tivities in thepresen
e of magneti
 �elds is the appearan
e of the

Hall 
omponent �xy(!). The Hall 
ondu
tivity vio-lates the rotational symmetry of graphene around themajor axis. This implies rotation of the linearly polar-ized ele
tromagneti
 wave, i. e., the Faraday and Kerre�e
ts for transmitted and re�e
ted waves, 
orrespond-ingly. First of all, the ele
tron transitions are possiblebetween the levels with the neighboring Landau num-bers n and di�erent bands s, and therefore the reso-nan
e denominators �ss0n = "sn � "s0;n+1 arise in the
ondu
tivity tensor.Cal
ulations [16℄ give the 
ondu
tivities for graphitein the 
ollisionless limit when the ele
tron 
ollision fre-quen
y � is mu
h less than the level splitting:�xx(!)i�xy(!) ) = i�d 4!2B�2 Xn;s;s0 �=2Z0 dz�fss0n�ss0n jdss0nj2 �� �(! + i� +�ss0n)�1 � (! + i���ss0n)�1� ; (31)where the integration is taken over the redu
ed Bril-louin zone, 0 < z < �=2. Su
h an integration is absentfor graphene and a bilayer. Here, �fss0n = f("s0n+1)�� f("sn) is the di�eren
e of the Fermi fun
tions anddss0n = C2snC1s0n+1 + C3snC4s0n+1 ++ (~
4=
0)(C1snC4s0n+1 + C2snC3s0n+1)is the dipole matrix element expressed in terms of wavefun
tions (9). These transitions are most intensive.They obey the sele
tion rule�n = 1;and are referred to as strong lines. The 
ondu
tivityunits �d = e24~d0have the simple meaning of the graphene universal 
on-du
tivity e2=4~ times the number 1=d0 of layers withinthe distan
e unit in the major axis dire
tion.Besides, we have to take the renormalization of thedipole moments due to trigonal warping into a

ount.This additional ele
tron�photon vertex results in weaklines with the sele
tion rule�n = 2:We obtain this 
ontribution by substitutingdss0n = (~
3=
0)C2snC4s0n+2instead of the matrix element in Eq. (31) and repla
-ing the subs
ript n + 1 ! n + 2. We have to note1318
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γ3 = 270 meV

γ3 = 0

0.1 0.2 0.3 0.4
Frequency, eV

0

0.1

0.2

0.3

1− T

Fig. 7. Transmission spe
tra of gapped bilayergraphene without and with trigonal warping (dashedand solid lines, 
orrespondingly) at B = 10 Tand U = 30 meV; the band parameters used arev = 1 � 108 
m/s, 
1 = 360 meV, 
4 = �150 meV,"F = 30 meV, and others are listed in the �gure. Therelaxation frequen
y is assumed to be � = 5 meVthat the 
4 
orre
tions give a linear 
ontribution (inthe small parameter 
4=
0) to the 
ondu
tivities at themain ele
tron transitions with �n = 1. The 
3 
orre
-tions are quadrati
, but they result in the appearan
eof new resonant transitions with �n = 2.There are also small so-
alled vertex 
orre
tions tothe self-energy shown at the bottom of Fig. 4. Theyresult from the quartet of the 
oupled Landau levels,whi
h interfere while the sele
tion rules �n = 1 and�n = 2 are allowed.6.1. Gapped bilayer grapheneGraphene and bilayer graphene a�e
t the trans-mission and the Faraday rotation in a linear orderin the �ne stru
ture 
onstant, whereas the re�e
tedlight intensity is quadrati
 in �. We therefore dis
ussthe 
hara
teristi
s of light transmitted through bilayergraphene where the e�e
ts have a maximum value. Inthis 
ase, Eq. (31) is valid without the integration overthe z momentum 
omponent. The 
ondu
tivity unitsshould be taken now as �0 = e2=4~. In the approxi-mation linear in 
ondu
tivities, the transmission 
oef-�
ient T and the Faraday angle for the free standingbilayer are given by1� T = 4�
 Re�xx; �F = 2�
 Re�xy: (32)
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Fig. 8. Faraday rotation in gapped bilayer graphene;the parameters used are the same as in Fig. 7Results of 
al
ulations are shown in Figs. 7 and 8.The peaks in absorption, Fig. 7, 
orrespond to the ele
-tron transitions. There is the series of seven lines inthe 0.1�0.4 eV interval. They are doublets ex
ited bythe ele
tron transitions of the type j2ni ! j3; n + 1iand j3ni ! j2; n + 1i for n from 2 to 8. Two weakerlines at 350 and 380 meV respe
tively result from thej10i ! j31i and j21i ! j42i transitions. There is thestrongest line at 24 meV ex
ited by the j21i ! j32itransition. All these lines obey the sele
tion rule�n = 1.The very weak lines at 51 and 78 meV owe theirappearan
e to the �n = 2 transitions j21i ! j33i andj10i ! j22i.In general, the e�e
t of the small 
onstants 
3 and
4 is more 
onspi
uous on the low levels j10i and j21i.The transition frequen
ies in the Faraday rotation,Fig. 7, are determined by the derivative of the maxi-mum values. 6.2. GraphiteUsing the 
ondu
tivities in Eqs. (31), we �nd the
omplex bulk diele
tri
 fun
tion "ij = Æij + 4�i�ij=!and the re�e
tion 
oe�
ient and the Kerr rotation (see,e.g., [62℄),R = 12(jr+j2 + jr�j2); �K = 12 arg(r�r�+);where r� = (1 � p"� )=(1 + p"� ) are the re�e
tionFresnel 
oe�
ients for two 
ir
ular polarizations with"� = "xx � "xy.1319
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Fig. 9. (a) Real and (b) imaginary parts of the longitudinal (xx, solid line) and Hall (xy, dashed line) dynami
al 
ondu
tivi-ties 
al
ulated for one graphite layer in units of �0 = ee=4~; (
) Kerr angle and (d) re�e
tivity. The magneti
 �eld B = 7 T,the temperature T = 0:1 meV is less than the level broadening � = 3:5 meVThe parameters in Eq. (2) used in the 
al
ulationsare listed in Table (see also Ref. [63℄). The hoppingintegrals 
0 to 
3 are 
lose to the values determined inobservations of the semi
lassi
al Shubnikov�de Haas ef-fe
t. The Fermi energy equal to "F = �4:1 meV agreesat the zero magneti
 �eld with the measurements of theextremal Fermi-surfa
e 
ross se
tions and the masses ofholes and ele
trons. Conne
tions with the notation forsimilar parameters of the SWMC model are given inthe �SWMC� line. The values of the parameters 
4,
5, and � determined in various experiments are verydi�erent; we use 
5 and � obtained by Doezema et
al. [4℄ (given in the Table in the �SWMC� notations)and take the 
lose value for 
4. In the quantum limit,when ele
trons and holes o

upy only the j10i and j21ilevels, the Fermi energy must 
ross these 
lose levels atthe middle of the KH line. This means that the Fermilevel be
omes higher at su
h magneti
 �elds, taking thevalue "F � �1 meV.The results of 
al
ulations are represented inFigs. 9, 10. We emphasize that the imaginary part ofthe dynami
al 
ondu
tivity is of the order of the realpart.It follows from Fig. 9a that the averaged longitudi-1320
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0:6Fig. 10. Kerr angle and re�e
tivity at 10 (solid lines), 15 (dashed lines), and 25 T (dash-dotted lines)nal 
ondu
tivity 
al
ulated per one graphite layer tendsto the graphene universal 
ondu
tan
e. The main 
on-tribution to the sharp 16-meV line results from theele
tron j21i ! j32i transition (15 meV) about the Kpoint (see Fig. 3), where the j32i level 
oin
ides withthe Fermi level (within an a

ura
y of the width � ortemperature T ). Then the transitions j22i ! j21i pro-du
e a broad band. The low-frequen
y side of the band(23 meV, at the interse
tion of the j21i level with theFermi level) 
ontributes to the 16-meV line. In the same16-meV line, the transitions j32i ! j33i 
an 
ontributeas well if the band j32i 
ontains ele
trons.The next doublet at 43 meV arises from the transi-tions j23i ! j32i and j22i ! j33i at the K point. The

68-meV doublet appears as the splitting of the j24i !! j33i (65 meV) and j23i ! j34i (69 meV) transitionsdue to the ele
tron�hole asymmetry at the K point ofthe Brillouin zone.The 89-meV line is more 
ompli
ated. First, thereare the ele
tron transitions j24i ! j35i (89 meV) andj25i ! j34i (90 meV) near the K point. Besides, thetransitions j11i ! j10i (95 meV) near the H pointmake a 
ontribution as well. All these lines obeyingthe sele
tion rule �n = 1 are strong. There are twoweak lines in the frequen
y range. One (j24i ! j32i)is seen at 55 meV as a shoulder on the theoreti
al
urve. The other, at 31 meV, results from the tran-sitions j10i ! j32i near the K point.1321



L. A. Falkovsky ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012The positions of the lines for �elds in the range 10�30 T agree with observations in Refs. [8, 18℄.The opti
al Hall 
ondu
tivity �xy(!) in the a
regime is shown in Figs. 9a and 9b. The 
ondu
tivi-ties �xx(!) and �xy(!) allow 
al
ulating the Kerr rota-tion and the re�e
tivity as fun
tions of frequen
y (seeFigs. 9
 and 9d). It is evident that the interpretation ofthe Kerr rotation governed by the 
ondu
tivity �xy(!)is mu
h more 
ompli
ated in 
omparison with the lon-gitudinal 
ondu
tivity. The Kerr angle and re�e
tiv-ity shown in Fig. 10 for the di�erent magneti
 �eldsdemonstrate a strong �eld dependen
e of the magneto-opti
 phenomena.7. SUMMARY AND CONCLUSIONSWe have evaluated the perturbation theory for thematrix Hamiltonian, whi
h permits 
al
ulating the
orre
tions to eigenvalues resulting from the small ma-trix elements, parti
ularly from the trigonal warping.The trigonal warping in graphite 
an be 
onsideredwithin the perturbation theory at strong magneti
�elds larger than approximately 1 T. For weak mag-neti
 �elds, when the Fermi energy is mu
h larger thanthe 
y
lotron frequen
y, the semi
lassi
al quantizationwith the Berry phase in
luded 
an be applied. We havefound that the prin
ipal ele
tron transitions obey thesele
tion rule�n = 1 for the Landau number n, but the�n = 2 transitions due to the trigonal warping witha small probability are also essential. In graphite, theele
tron transitions at the K and H points as well as atinterse
tions of the Landau levels with the Fermi levelmake 
ontributions to 
ondu
tivity. The good agree-ment between the 
al
ulations and the measured Kerrrotation and re�e
tivity in graphite in the quantizingmagneti
 �elds is a
hieved. The SWMC parametersare used in the �t taking their values from the previ-ous de Haas�van Alphen measurements and in
reasingthe Fermi energy value in the 
ase of strong magneti
�elds.We a
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