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The optical conductivity of graphene, bilayer graphene, and graphite in quantizing magnetic fields is studied.
Both dynamical conductivities, longitudinal and Hall's, are evaluated analytically. The conductivity peaks are
explained in terms of electron transitions. Correspondences between the transition frequencies and the magneto-
optical features are established using the theoretical results. We show that trigonal warping can be considered
within the perturbation theory for strong magnetic fields larger than 1 T. The semiclassical approach is applied
for weak fields when the Fermi energy is much larger than the cyclotron frequency. The main optical transi-
tions obey the selection rule with An = 1 for the Landau number n, but the An = 2 transitions due to the
trigonal warping are also possible. The Faraday/Kerr rotation and light transmission/reflection in quantizing
magnetic fields are calculated. Parameters of the Slonczewski—Weiss—McClure model are used in the fit taking
the previous de Haas—van Alphen measurements into account and correcting some of them in the case of strong

magnetic fields.
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1. INTRODUCTION

Comprehensive literature on the graphene fam-
ily can be described in terms of the Dirac gapless
fermions. According to this picture, there are two
bands at the K hexagon vertexes of the Brillouin
zone without any gap between them, and the electron
dispersion can be considered linear in a wide wave-
vector region. For the dispersion linearity, this region
should be small compared with the size of the Bril-
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louin zone, i.e., less than 10® cm™', providing the
small carrier concentration n < 10'® cm~2. Pristine
graphene at zero temperature has no carriers, and the
Fermi level should separate the conduction and va-
lence bands. However, undoped graphene cannot be
really obtained, and the purest graphene so far con-
tains about n ~ 10? em~2 carriers. Then the following
problem appears: how do Coulomb electron—electron
interactions renormalize the linear dispersion and does
graphene become an insulator with a gap?
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Semiconductors with a gap are needed for electronic
applications. Investigations of the graphene bilayer and
multilayer are very popular because the gap appears
when the bias is applied. We see how physics made a
circle over half a century, returning to graphite studies.
Slonczewski, Weiss, and McClure (SWMC) should be
mentioned here because they have stated the descrip-
tion of a layered matter [1] with interactions that are
strong in the layer and weak between layers.

The most accurate investigation of the band struc-
ture of metals and semiconductors is a study of the
Landau levels through experiments such as magneto-
optics [2-10] and magneto-transport [11-15]. In mag-
netic fields, the classical and quantum Hall effects are
observed, as is the polarization rotation for transmit-
ted light (the Faraday rotation) or reflected light (the
Kerr rotation). However, the interpretation of the ex-
perimental results involves a significant degree of un-
certainty, because it is not clear how the resonances
can be identified and which electron transitions they
correspond to.

The theoretical solution of the band problem in
magnetic fields often cannot be found exactly. A typi-
cal example is presented by graphene layers. For bilayer
graphene and graphite, the effective Hamiltonian is a
4 x 4 matrix giving four energy bands. The trigonal
warping described by the effective Hamiltonian with a
relatively small parameter v3 provides an evident ef-
fect. Another important parameter is the gate-tunable
bandgap U in bilayer graphene. In this situation, the
quantization problem cannot be solved within a rigor-
ous method. To overcome this difficulty, several meth-
ods have been proposed for approximate [9, 16-19], nu-
merical [20-24], and semiclassical quantization [25, 26].

This paper is organized as follows. In Sec. 2,
we recall the electron dispersion in graphene, bilayer
graphene, and graphite. In Sec. 3, the optical conduc-
tivity and light transmission are discussed. In Secs. 4
and 5, we describe the quantization in magnetic fields
in detail. In Sec. 6, the longitudinal and Hall conduc-
tivities and the Faraday/Kerr rotation are described.

2. ELECTRON DISPERSION IN THE
GRAPHENE FAMILY

2.1. Electron dispersion in graphene

The symmetry of the K point is C, with a threefold
axis and reflection planes. This group has a twofold
representation with the basis functions transforming
one into another under reflections and acquiring the
factors exp (£2mi/3) under rotations. The linear mo-

mentum variations from the K point, p+ = Fip, — py,
transform similarly. The effective Hamiltonian is in-
variant under the group transformations, and we have
a unique possibility to construct the invariant Hamil-
tonian linear in the momentum as

H(p>=< ’ W’*), (1)

where v is a constant of the dimension of velocity. The
same Hamiltonian has been written using the tight-
binding model.

The eigenvalues of this matrix give two bands,

€12 = Fuy/P3 + Pl = Fup,

where the sign “F” corresponds to holes and electrons.
The gapless linear spectrum arises as a consequence of
the symmetry, and the chemical potential at zero tem-
peratures coincides with the band crossing due to the
carbon valence. The cyclotron mass is given by

me) = 1.dS(e) _ ¢

T2 de w2

and the carrier concentration at zero temperature
n(u) = p?/mh*v? is expressed in terms of the chem-
ical potential p.

By tuning the gate voltage, the linearity of the spec-
trum has been examined in the Shubnikov—de Haas
studies [27] with the help of the relation m(u)v =
= Fhy/mn(u) between the effective mass and the car-
rier concentration at the Fermi level. The “constant”
parameter v was found to be no longer constant; at
low carrier concentrations n ~ 10° ecm 2, it exceeds its
usual value v = (1.05 £ 0.10) - 10® c¢m/s (at concentra-
tions n > 10! em~2) by a factor of 3.

This is a result of electron—electron interactions,
which become stronger at low carrier concentrations.
The logarithmic renormalization of the velocity was
found by Abrikosov and Beneslavsky in Ref. [28] for the
three-dimensional case and in Refs. [29,30] for two-di-
mensional graphene. We note that no phase transition
was revealed even at the lowest carrier concentration.
We can conclude that the Coulomb interactions do not
create any gap in the spectrum.

2.2. Electron dispersion in bilayer graphene
and graphite

Bilayer graphene has attracted much interest partly
due to the opening of a tunable gap in its electronic
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Table. The parameters of the Hamiltonian, Eq. (2), their values in the SWMC model, and the values obtained in
experimental works, all in meV
Y0 gl V2 V3 Va 75 A EF
Eq. (2)
3050 360 —10.2 270 —150 —-1.5 16 —4.1
5 Y0 all 272 V3 —7a 275 | A+2(72—95) | 272 +€F
M® 3160 390 —20 276 44 38 8 —24
De 3120 380 —21 315 120 -3 -2 —
DFT? | 2598+15 | 364420 | —14+8 | 319+20 | 177425 | 36+13 24+10 —13+£8

*SWMC [1], *Mendez et al. [5], “Doezema et al. [4], *Charlier et al. [41].

H !
K K
H H'

Fig.1. Band structure of graphite

spectrum by an external electrostatic field. Such a phe-
nomenon was predicted in Refs. [31, 32] and was ob-
served in optical studies controlled by applying a gate
voltage [33-40].

The effective Hamiltonian of the SWMC theory can
be written [22, 23] near the K H line in graphite as

- - Favp—
Vs P+ 71
Yo
- Javp—  Y3Upy
vp— Y2 —’y —%
()

H = , (2
(p) ) Seope (2)
71 - V5 Up—

Y0
Jaupy  Y3Up— .
— vp4 2
Yo Yo

where p4+ = Fip, — py are the momentum components
and 7; are the functions of the p, momentum in the

Fig.2. Band structure of bilayer graphene

major axis direction,

Y2 = 272c08 (2p.dp), s = 275 cos (2pzdo) + A,

¥i = 27v; cos (p.do), i=1,3,4,

with the distance dy = 3.35A between layers in
graphite. The nearest-neighbor hopping integral vy ~
~ 3 eV corresponds with the velocity parameter v =
= 1.5ap7% = 10° m/s and the in-layer inter atomic
distance ap = 1.415 A. Hamiltonian (2) is represented
in a somewhat different form than in Ref. [1]. The rela-
tions between the hopping integrals in these forms are
given in the Table. The recent estimate [35, 36] of the
parameters agrees with those given in the Table.
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The electron spectrum of graphite is shown in
Fig. 1. There are four levels labeled by s = 1,2,3,4
from below at any momentum. As a consequence of
the axial symmetry, a twofold degeneration e; = &3
exists at p, = p, =0, i.e., on the K'H line.

In bilayer graphene, every layer has only one neigh-
boring layer. Therefore, we have to set v2 = v5 = 0
and to substitute 4; = v; for ¢ = 1,3,4 in Hamilto-
nian (2). The parameter U can also be included in
the bilayer Hamiltonian as a result of the gate voltage.
Then the gap appears between 2 and €3, and these

bands acquire the shape of a “mexican hat” (Fig. 2).
Importantly, two points, K and K’, are in the Bril-
louin zone and transforming one into another under
reflection. Such a reflection changes the U sign, giving
two different dispersion laws at the K and K' points.

3. OPTICAL CONDUCTIVITY

We use the general expression for the conductivity
as a function of the electric field frequency w and wave

vector k in the form [42, 43]
|

mm{fO[am(

)] = folem (P}

oij(w, k) = 2ie? Z {

p,m>n

—em(P-)][w — em(p+) + em(p-)]

2000, 0% { folem (P )] = folen(P1)]}

[En(p+) - Em(p—

valid in the collisionless limit (w, kv) > 77! -1

is the electron relaxation frequency, p+ = p+k/2, and
vt . is the matrix element of the velocity operator

_ 0H(p) (4)
op
determined by Hamiltonian (1) or (2). Hitherto, we
did not use any peculiarities of the graphene spectrum.
The expression acquired only the factor 4 due to sum-
mation over spin and over six points of the K type (two
per a Brillouin zone).

The first term in Eq. (3) corresponds to the intra-
band electron—photon scattering processes. In the limit
of the high carrier concentration (T, Er) > kv, it co-
incides with the usual Drude-Boltzmann conductivity
if the substitution w — w + 77! is made. The second
term owes its origin to the interband n — m tran-
sitions with the infinitesimal  determining a bypass
around the pole in integrating over the momentum p.
The real part of this contribution reduces to the well-
known expression for the absorbed energy due to direct
interband transitions.

, where 7

Optical conductivity of graphene

For optical frequencies w > kv, we can integrate
over the angle in Eq. (3) and write the conductivity as

_ lel df(e)
a(w)_% /dw2 de

f(e)

— 42

(5)

/d(S w+z§

0

e e @

using the variable € = vp.
The intraband term can be integrated once more,

In (2ch %)

where we write w + 77" instead of w to take the
small relaxation frequency into account. This Drude—
Boltzmann conductivity at low temperatures 7T < u
takes the form

2ie®T
mh(w +it71)

O_intra (w) —

(6)

1

ie?|u]
wh(w + it~ 1)

Uintra(

w) =
In the opposite limit of high temperatures, the intra-
band conductivity (6) becomes

mtm(w) _ 2ie?T'In2

g BETPES =0

The temperature dependence of the relaxation rate in
graphene is discussed theoretically in Ref. [44].

The interband contribution in Eq. (5) integrated at
zero temperatures gives

2

4n

(w +2p)?
(w —2u)?
where the #-function expresses the threshold behavior

of interband electron transitions at w = 2u. The tem-
perature smooths out all the singularities:

O(w —2u) — L ln

inter _
o (w) = 5

1 1 -2
0w —2u) — 2+—3L1"ctg QTM’
(w—2u)? = (w—2u)% + (27)%
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The main issue should be emphasized. In the high-
frequency region w > (T, ), the interband transitions
make the main contribution to the conductivity

which has a universal character independent of any ma-
terial parameters. This frequency region is bounded
above by the band width of around 3 eV. Using the uni-
versal conductivity, we can calculate the light transmis-
sion through graphene [45] in the approximation linear
in conductivity,

2

T=1- ir Reo(w)cosf =1 — s cosf,
c he
where 6 is the incidence angle. The intensity of re-
flected light is quadratic in the fine structure constant
a = €2/he. In excellent agreement with the theory,
for a wide optical range, several experimental groups
[46-48] observe light transmission through graphene as
well as bilayer graphene where the difference from unity
is twice as large. It is exceptionally intriguing that
light transmission involves the fine structure constant
of quantum electrodynamics, having really no relation
to the graphene physics.

For graphite, the value o4 = e?/4hdy plays the
role of a universal dynamical conductivity, where dy
is the distance between layers. As is shown experimen-
tally [49] and theoretically [50], the dynamical conduc-
tivity of graphite is close to this universal value in the
frequency range 0.1-1 €V, having the kink singularity
at the interband transition frequency w = 2v;.

4. GRAPHENE IN MAGNETIC FIELDS

In the presence of a magnetic field B, the momen-
tum projections p; and p_ become operators with the
commutation rule {p;,p_} = —2ehB/c. We use the
relations

vpy = wpa, VP_ = wgal

involving the creation (a') and annihilation (a) opera-
tors with wp = v\/2|e|iB/c. We write only one of the
two zy space coordinates including the corresponding
degeneracy proportional to the magnetic field in the
final results.

For graphene, we seek the eigenfunction of Hamil-
tonian (1) in the form [51, 52]

a () — Cslnson—l(x)
on () { 2 onlw) (7)

15 ZK3T®, Bom. 6 (12)

where ¢, (z) are orthonormal Hermite functions with
the Landau number n > 0. Eliminating the Hermite
functions from the equations, we obtain a system of
linear equations for the eigenvector Csg,,,

wB\/ﬁ —€ C.?n 7

which gives the eigenvalues

Esn = FWB \/’E (8)

with s = 1,2 and n = 0,1,2,... For n = 0, there is
only one level £19 = 0 with C§ = 0 and CZ = 1, as
follows from Eq. (7). The wave function columns are

cl, 1 1 4 !
= — an
c: V2| -1 1

fors=1lands=2andn=1,2,...

5. GRAPHENE LAYERS WITH TRIGONAL
WARPING IN MAGNETIC FIELDS

We seek eigenfunction of Hamiltonian (2) as a col-
umn

Cin®n-—1(x)
Cloon()
snSDn 1 (x)

(

sngpn 2 1‘)

(9)

We see the every row in Hamiltonian (2) becomes
proportional to a definite Hermite function if the terms
with v3 are omitted. We show that the terms propor-
tional to v3/70 can be considered within the perturba-
tion theory or the semiclassical approximation.

Eliminating the Hermite functions from the equa-
tions, we obtain a system of linear equations for the
eigenvector Cg,,,

wpvn o7 wavn — 1
o —e  wy/n 0

s — €

OJB\/E

7 wa/n A5 —e wpyvn —1
wayvn —1 0 wpvn —1 Yo — €
Cl
02
X 53" =0, (10)
Csn
04

sn
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Landau levels in graphite 5, for n from 0 to 4 in four bands s = 1,2,3, and 4 (in dotted, solid, dashed, and

dash-dotted lines, correspondingly) as functions of the wave vector k. along the K H line in the Brillouin zone (K = 0,
H = m/2dp) in the magnetic field B = 7 T with the SWMC model parameters given in the Table. The main electron
transitions shown in the right panel below 100 meV occur between the levels with the selection rule An =1

where the band number s = 1,2, 3,4 labels the solu-
tions at a given n from the bottom, wp = vy/2le|hB/c,
and wWyq = ’3/40.)3/’}/0.

The eigenvalues of the matrix in Eq. (10) are easy
to find; they are shown in Fig. 3 as functions of the
momentum p,. For each Landau number n > 2 and
momentum p,, there are four eigenvalues e4(n) and
four corresponding eigenvectors, Eq. (9), labeled by the
band subscript s. We use the notation |sn) for levels.
In addition, there are four levels. One of them is

e1(n =0) =% (11)

for n = 0 with the eigenvector Cy = (0,1,0,0), as is
evident from Eq. (9). This level intersects the Fermi
level and belongs to the electron (hole) band near the
K (H) point. The other three levels labeled by n =1

and s = 1,2,3 are determined by the first three equa-
tions of system (10) with C%, = 0.

The |21) level is close to the |10) level. In the re-
gion p., 71/ cos(2p.dy) > 72, where the electrons are
located, this level has the energy

2

ey(n=1) = 5, — 281

In the same region, the two closest bands (s = 2,3)
with n > 2 are written as

2z 2

~ wWBY4 wWh
c23(n) =% — = 2n — 1)F=+/n(n—-1 12
2,3(n) =72 7170( )71 (n—1) (12)

with the accuracy of (Y4/70)2.
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5.1. Perturbation theory for the matrix
Hamiltonian

Due to the double degeneracy existing on the K H
line, the effect of trigonal warping becomes essential.
The simplest way to evaluate the corrections resulting
from the warping vs is to consider the Green’s function
having the poles at the electron levels.

The Green’s function of the unperturbed Hamilto-
nian is given by

GY (e, x,2") Zw — ), (13)

which involves the functions in Eq. (9). The corrections
to the levels can be found by iterations,

G (2,2') = / 2" Go (2, 2"V (") G (" 2'),

where V(x) has only two matrix elements V42 =
= wp¥za® [y and V** = V42* in Hamiltonian (2).
At the second iteration, we obtain the corrections

/d2x1d2x2G8‘4(x,xl)V42(x1)G32(ac1,x2) X
x V2 (22) Gy (22,2)

and a similar term with the superscript substitution
2 <> 4. The matrix elements of the perturbation V' are
easily calculated with respect to the Hermite functions
in Egs. (13) and (9), and we obtain

LN 2
(=)
Yo

D>

s'sn

(n = 2)|C3,C% s V5 (@)¥5 (=)

5 - 5sn)(5 - Es’,n73)(6 - 5sn)

;o (14)

for the diagram shown in the upper part of Fig. 4. This
correction plays an important role near the poles of the
Green’s function. For this reason, for ¢ close to eg,,, the
¢ value in the second factor of the denominator can be
replaced by eg,. Thus, the total Green’s function (with
the correction) has the structure

1 )

(e —esn)?’

€ —Esn

which can be rewritten up to second-order terms in &
as

V42 V24

V42

Fig.4. Diagrams for the second iteration of the pertur-
bation theory; (a) corrections to the Green's function,
(b) corrections to the vertex in conductivity

Therefore, we can represent [16] the correction as a shift
dcsn of the poles (¢ — cgp — b24p,) * with

Se (TL) _ WB;}’/S ? Z (TL - 2)|C§nc.?’,n73|2
: w0 ) 2 e —eoln-3)
+1)|C2,C4 LI
(TL )| sns ,n+3| 7 (15)
es(n) —eg(n+3)

where the first term should be omitted for n — 3 < 0.
In fact, our illustration is nothing but a calculation of
the electron self-energy and the naive expansion of the
denominator can indeed be replaced by summing the
corresponding diagrams.

The corrected |10) level is given by

N wps \ [Nk
=0 =+ (T2) T

The |21) level is very close to the level with n = 0,
Eq. (16).

Comparing the corrections, Eq. (15), with the lead-
ing contribution in Eq. (12), we find, first, that the
perturbation theory is valid when the expansion pa-
rameter (7391/Ywp)? becomes small, i.e., for strong
magnetic fields B > 1 T. Second, the effect of v4 is
linear, whereas that of 3 is quadratic in these con-
stants. Therefore, the v4 constant is more essential for
the electron levels in magnetic fields.

Comparison shows that Eqs. (15) and (16) for le-
vels give the same results as the numerical method of
truncating the infinite-rank matrix in Ref. [21].
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We note that the derived expressions are also appli-
cable to bilayer graphene if we include the field U and
set 72 =95 = 0 and §; = ; for i = 1,3,4. In the sim-
plest approach, when only the main parameters v; and
U are retained, the magnetic levels ¢, are determined
by the equation

(U = g5n)? —win][(U + €5n)* —wh(n +1)] +
U7~ ) =0,

5.2. Berry phase, semiclassical quantization,
and Landau levels

Alternatively, semiclassical quantization can be
used for relatively weak magnetic fields when the cy-
clotron frequency is small compared with the Fermi en-
ergy. We can then use the Bohr-Sommerfeld condition
in the form

——=5(e) = 2r [n + % - 5(5)] .
where S(¢) is the cross-sectional area of the electron or-
bit in the p,p, space for the energy € and the constant
momentum projection p, on the magnetic field, ng. is
an integer supposed to be large. The integer 7T is the
number of smooth turning points on the electron orbit.
There are two smooth turning points for the Landau
levels and only one for skipping electrons reflected by
the hard edge.

We use the semiclassical approach for the mag-
netic field normal to the layered system when only the
in-layer momentum components p, and p, are quan-
tized and the size of the Fermi surface is small com-
pared with the Brillouin zone size. We note that the
d(¢) phase depends on the energy. If the spin is ne-
glected, 6 = 0 and 7 = 2 for the Landau levels, and
d = 1/2 and T = 2 for monolayer graphene. In these
two cases, the semiclassical result coincides with the
rigorous quantization and it is closely connected with
the topological Berry phase [53]|. This d-phase was eval-
uated for bismuth in Ref. [25], preceding Berry’s work
by almost two decades, and it was considered again for
bismuth in Ref. [54]. For graphite, semiclassical quanti-
zation was applied in Ref. [26]. However, in the general
case, the evaluation of the d-phase still attracts much
interest [55-61].

The problem under consideration is described by
the Hamiltonian in Eq. (1) or (2) rewritten in the form

(V- p+T—e)¥ =0, (18)

where p and 'V are the respective two-dimensional vec-
tor and matrix, with the in-layer components z and y.

The column ¥ is labeled by the band subscript which
we omit together with the matrix subscripts on I' and
V, summation over them is implied in Eq. (18). The
matrices I' and 'V are the first two terms (of zero and
first orders) in a series expansion of the Hamiltonian in
powers of quasi-momenta p, and p,.

In the magnetic field, the momentum operator p de-
pends on the vector potential A by means of the Peierls
substitution,

p=—ihV —eA/c,

providing the gauge invariance of the theory. The mag-
netic field can also enter explicitly, describing the mag-
netic interaction with the spin of particles. However,
for the graphene family, the magnetic interaction is
weak and omitted here.

It is convenient to choose the vector potential in
the Landau gauge A, = —By, A, = A, = 0 in such
a way that the Hamiltonian is independent of the z
coordinate. We seek the function ¥ in the form

U = dexp (is/h),

where the function s is assumed to be common for all
component of the column V.
The function ® is expanded in series in h/i:

o0 h m
=3 (5) o
m=0

Collecting the terms with the same powers of 7 in
Eq. (18), we have

(Vep+T —e)pm = —=VVpn_1. (19)

For m = 0, we obtain a homogeneous system of alge-
braic equations for the wave function column ¢y,

(V-p+T —¢)po =0, (20)
which has a solution under the condition
Det(V.-p+T —¢)=0. (21)

This equation determines the classical electron orbit,
e(pzypy) = €, at a given electron energy ¢ in presence
of the magnetic field. On the other hand, the equation
coincides with the dispersion equation since it does not
contain the magnetic field. In the three-dimensional
case, as in graphite, the dispersion also depends on the
momentum projection p, on the magnetic field. There-
fore, our scheme does not require the expansion in po-
wers of p..

Equations (19) with m = 0,1 give the wave func-
tion in the semiclassical approximation [25]. The quan-
tization condition can be written, as usual, from the
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requirement that the wave function be single valued.
Making the bypass in the complex plane around the
turning points to obtain decreasing solutions in the
classically inaccessible region, we obtain, first, 7 = 2
and, second, the J-phase as a contour integral along the
classical orbit

1 d d
5(6) = 5otm =gy, 220,
2w PiPovy dp

(22)

where v, = 0e(pg,py)/Opy. Using the Hamiltonian
hermiticity, after the simple algebra (see Ref. [25]),
Eq. (22) can be rewritten in the gauge-invariant form

1 dp d
o(e) =—1 o1V x — 23
O = gpm f i [Vi] o (9
where v = /v? + v and the integrand is called the

Berry connection (or curvature). Everywhere, the sum-
mation over the band subscript is implied.

We emphasize that Eqs. (22) and (23) yield |§(¢)| =
= 1/2 for monolayer graphene, which, together with
T = 2, gives the same Landau levels as the exact quan-
tization (8).

We now calculate the §-phase for bilayer graphene.
In the simplest case, omitting 73 and =4, the effective
Hamiltonian can be written as

U g m 0
ap=| = U 0 0
Y1 0 —U q—

0 0 g+ -U

where the parameter U describes the tunable gap due
to the gate voltage and <; is the interlayer nearest-
neighbor hopping integral energy. The constant ve-
locity parameter v is incorporated in the notation
q+ = vp+. The band structure is shown in Fig. 2. The

minimal value of the upper energy 4 is \/U? + 72, and
the £3 band takes the maximal value |U| at ¢ = 0. Here,

the orbit is the circle defined by Eq. (21), written in the
form

[(U+e)’ =" )(U=e)*~¢°] =7 (e*~U?) = 0. (25)

The eigenfunction ¢y of Hamiltonian (24) can be taken
as

(U =-9)e+U)*~¢]
¢ = (e +U)?]
N (U? = &%)
Y1¢+(U —€)

with the norm squared

—-0.1L

e e — — — — e — — — ]

_o2l! U =40 meV
’ ~v1 = 360 meV

-0.3

— — 73 =270 meV, 74 = —150 meV |

—04
v3=74=0

_0-5 1 1 1 1 1 1 1
40 60 80 100 120
€, meV

Fig.5. Semiclassical phase vs energy in the conduc-
tion band of bilayer graphene without trigonal warping
(solid line) and with the warping (dashed line)

vovo =[(e+U)? = Plle = U + ¢’ +
+91(e = UP[e+U)* +¢*. (27)

The derivatives for Eq. (22) are calculated along the
trajectory where the energy ¢ and, consequently, the
trajectory radius ¢ are constant.

If the conditions |U]| < |¢| < \/U? + ~} are fulfilled,
Eq. (25) has only one solution for the radius squared

P = U+ 4+ AU 4 (22 - U2)y2.

The matrix V,, = 0H/Jp, in Eq. (22) has four nonzero
elements, V,)> = V2 = V3 = VB = —1.
Using Eqs. (25) and (26), we find

dpo

Im gV, i =4Ue(U - 8)[(e +U)?* = ¢*].  (28)

T

This expression is constant on the trajectory, as is
©5%0, Eq. (27). Therefore, in order to find § in Eq. (22),
we have to integrate along the trajectory

% dp
vy
This integral equals —dS(g)/ds, where S(c) = m¢* is
the cross-sectional area, Eq. (17), with

dS(e) 2+ U% —¢?) +9f
— = . 2
de e 2 -U?—¢2 (29)

We now have to substitute Eqgs. (27)—(29) in
Eq. (22). Thus, we find the Berry phase

cU cU
o) = T Pg—e2-U? \VAU2e24+(e2-U2)y? (30)
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e, meV
300 ~v1 = 360 meV
U =40 meV
200 + 136) ) ]
100 137) 22 ==

—100

—200

-300
0

Fig.6. Energy levels ¢, for the K valley in magnetic
fields for bilayer graphene within the perturbation ap-
proximation (solid lines) and in the semiclassical ap-
proach (dash-dotted lines); in the notation |sn), n is
the Landau number and s = 1,2, 3,4 is the band num-
ber; only two nearest bands (s = 2,3) are shown at
given n from 0 to 7. There is only one level, |10),
with n = 0 and three levels (s = 1,2,3) with n = 1.
The levels for the K’ valley can be obtained by mirror
reflection with respect to the ¢ = 0 axis

shown in Fig. 5, where the d-phase of bilayer graphene
with trigonal warping is also shown; the detailed cal-
culations will be published elsewhere. For the ungaped
bilayer, U = 0, the Berry phase d(¢) = 0. The Berry
phase depends on the energy and § = F1/2 at ¢ = £U.
At large energies, £ > U, the Berry phase § — FU /.

Substituting Eq. (30) in the semiclassical quanti-
zation condition, Eq. (17), and solving the equation
obtained for &, we obtain the energy levels as functions
of the magnetic field. We have to note that the Lan-
dau numbers n listed in Fig. 6 do not coincide with the
numbers ng. in semiclassical condition (17). The rig-
orous quantization shows that there are only one Lan-
dau level with n = 0 and three Landau levels with
n = 1 [16]. These levels are not correctly described
within the semiclassical approach. However, for n > 2,
there are levels in all four bands s (two nearest bands
with s = 2,3 are shown in Fig. 6). They correspond to
the semiclassical number ns. = n—1, and the semiclas-
sical levels for larger n are in excellent agreement with
the levels obtained in the perturbation approximation.

6. MAGNETO-OPTICS EFFECTS IN
GRAPHENE LAYERS

An important peculiarity of conductivities in the
presence of magnetic fields is the appearance of the

Hall component o,,(w). The Hall conductivity vio-
lates the rotational symmetry of graphene around the
major axis. This implies rotation of the linearly polar-
ized electromagnetic wave, i.e., the Faraday and Kerr
effects for transmitted and reflected waves, correspond-
ingly. First of all, the electron transitions are possible
between the levels with the neighboring Landau num-
bers n and different bands s, and therefore the reso-
nance denominators Aggy, = €5y — € py1 arise in the
conductivity tensor.

Calculations [16] give the conductivities for graphite
in the collisionless limit when the electron collision fre-
quency I' is much less than the level splitting:

w/2
Opz (W 4w A
. ZZ( ) =104 ZB / dz fss,ln|dss’n|2 X
102y (W) e Ass'n

X [(w+iF+Assrn)_1 + (w+iF—Ass/n)_1] R (31)

where the integration is taken over the reduced Bril-
louin zone, 0 < z < m/2. Such an integration is absent
for graphene and a bilayer. Here, A fooy, = f(esrnt1) —
— f(esn) is the difference of the Fermi functions and

dssin = Cs2ncsl’n+1 + ancg’n-i-l +
+ (74/70)(0s1n0;1’n+1 + Cszncg’n+1)

is the dipole matrix element expressed in terms of wave
functions (9). These transitions are most intensive.
They obey the selection rule

An =1,

and are referred to as strong lines. The conductivity
units )
~ 4hdy

have the simple meaning of the graphene universal con-
ductivity e?/4h times the number 1/dg of layers within
the distance unit in the major axis direction.

Besides, we have to take the renormalization of the

0d

dipole moments due to trigonal warping into account.
This additional electron—photon vertex results in weak
lines with the selection rule

An = 2.
We obtain this contribution by substituting
dgsrn = (3’3/70)0327103’71—&-2

instead of the matrix element in Eq. (31) and replac-
ing the subscript n + 1 — n + 2. We have to note
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1-T

—=-v=0
—73:270111@\/

0.3 +

0 0.1 0.2 0.3 0.4
Frequency, eV

Fig.7. Transmission spectra of gapped bilayer
graphene without and with trigonal warping (dashed
and solid lines, correspondingly) at B = 10 T
and U = 30 meV,; the band parameters used are
v =1-10% cm/s, y1 = 360 meV, v4 = —150 meV,
er = 30 meV, and others are listed in the figure. The
relaxation frequency is assumed to be T' = 5 meV

that the 4 corrections give a linear contribution (in
the small parameter v4 /7o) to the conductivities at the
main electron transitions with An = 1. The v3 correc-
tions are quadratic, but they result in the appearance
of new resonant transitions with An = 2.

There are also small so-called vertex corrections to
the self-energy shown at the bottom of Fig. 4. They
result from the quartet of the coupled Landau levels,
which interfere while the selection rules An = 1 and
An = 2 are allowed.

6.1. Gapped bilayer graphene

Graphene and bilayer graphene affect the trans-
mission and the Faraday rotation in a linear order
in the fine structure constant, whereas the reflected
light intensity is quadratic in a. We therefore discuss
the characteristics of light transmitted through bilayer
graphene where the effects have a maximum value. In
this case, Eq. (31) is valid without the integration over
the z momentum component. The conductivity units
should be taken now as o9 = €%/4h. In the approxi-
mation linear in conductivities, the transmission coef-
ficient 7" and the Faraday angle for the free standing
bilayer are given by

2w

4
1-T = ?’T Reoss, Or = —Reoy,. (32)

Or
4°

3°L
2°L
1°F

_9°

_3°L i

740 L L L
0 0.1 0.2 0.3 0.4
Frequency, eV

Fig.8. Faraday rotation in gapped bilayer graphene;
the parameters used are the same as in Fig. 7

Results of calculations are shown in Figs. 7 and 8.
The peaks in absorption, Fig. 7, correspond to the elec-
tron transitions. There is the series of seven lines in
the 0.1-0.4 €V interval. They are doublets excited by
the electron transitions of the type [2n) — |3,n + 1)
and |3n) — |2,n + 1) for n from 2 to 8. Two weaker
lines at 350 and 380 meV respectively result from the
[10) — |31) and |21) — |42) transitions. There is the
strongest line at 24 meV excited by the [21) — |32)
transition.  All these lines obey the selection rule
An =1.

The very weak lines at 51 and 78 meV owe their
appearance to the An = 2 transitions |21) — |33) and
[10) — |22).

In general, the effect of the small constants 3 and
74 is more conspicuous on the low levels |10) and |21).

The transition frequencies in the Faraday rotation,
Fig. 7, are determined by the derivative of the maxi-
mum values.

6.2. Graphite

Using the conductivities in Eqs. (31), we find the
complex bulk dielectric function e;; = 9;; + 4mioy; /w
and the reflection coefficient and the Kerr rotation (see,
e.g., [62]),

1 1 i
R= §(|7'+|2 + |7“—|2)7 Or = iarg(r_u),

where ry = (1 — /21 )/(1 + /2% ) are the reflection
Fresnel coefficients for two circular polarizations with
€+ = Egp T Eay.
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Fig.9. (a) Real and (b) imaginary parts of the longitudinal
ties calculated for one graphite layer in units of oo = e°/4h;

-2 | 1 1 1
0 20 40 60 80 100
w, meV
R
1.0 T T T T
d

0.8 I I I I

40 60 80 100

w, meV

(zz, solid line) and Hall (zy, dashed line) dynamical conductivi-
(c) Kerr angle and (d) reflectivity. The magnetic field B =7 T,

the temperature T' = 0.1 meV is less than the level broadening I' = 3.5 meV

The parameters in Eq. (2) used in the calculations
are listed in Table (see also Ref. [63]). The hopping
integrals v to 73 are close to the values determined in
observations of the semiclassical Shubnikov—de Haas ef-
fect. The Fermi energy equal to e = —4.1 meV agrees
at the zero magnetic field with the measurements of the
extremal Fermi-surface cross sections and the masses of
holes and electrons. Connections with the notation for
similar parameters of the SWMC model are given in
the “SWMC” line. The values of the parameters -4,
~5, and A determined in various experiments are very
different; we use 75 and A obtained by Doezema et

al. [4] (given in the Table in the “SWMC” notations)
and take the close value for 4. In the quantum limit,
when electrons and holes occupy only the |10) and |21)
levels, the Fermi energy must cross these close levels at
the middle of the K'H line. This means that the Fermi
level becomes higher at such magnetic fields, taking the
value e ~ —1 meV.

The results of calculations are represented in
Figs. 9, 10. We emphasize that the imaginary part of
the dynamical conductivity is of the order of the real
part.

It follows from Fig. 9a that the averaged longitudi-
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Fig.10. Kerr angle and reflectivity at 10 (solid lines), 15 (dashed lines), and 25 T (dash-dotted lines)

nal conductivity calculated per one graphite layer tends
to the graphene universal conductance. The main con-
tribution to the sharp 16-meV line results from the
electron |21) — |32) transition (15 meV) about the K
point (see Fig. 3), where the |32) level coincides with
the Fermi level (within an accuracy of the width I' or
temperature 7). Then the transitions |22) — |21) pro-
duce a broad band. The low-frequency side of the band
(23 meV, at the intersection of the |21) level with the
Fermi level) contributes to the 16-meV line. In the same
16-méV line, the transitions |32) — |33) can contribute
as well if the band |32) contains electrons.

The next doublet at 43 meV arises from the transi-
tions |23) — |32) and |22) — |33) at the K point. The

68-meV doublet appears as the splitting of the |24) —
— 133) (65 meV) and |23) — |34) (69 meV) transitions
due to the electron—hole asymmetry at the K point of
the Brillouin zone.

The 89-meV line is more complicated. First, there
are the electron transitions [24) — |35) (89 meV) and
[25) — |34) (90 meV) near the K point. Besides, the
transitions |[11) — |10) (95 meV) near the H point
make a contribution as well. All these lines obeying
the selection rule An = 1 are strong. There are two
weak lines in the frequency range. One (|24) — |32))
is seen at 55 meV as a shoulder on the theoretical
curve. The other, at 31 meV, results from the tran-
sitions |10) — |32) near the K point.
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The positions of the lines for fields in the range 10—
30 T agree with observations in Refs. [8, 18].

The optical Hall conductivity o,,(w) in the ac
regime is shown in Figs. 9a¢ and 9b. The conductivi-
ties 04, (w) and o,y (w) allow calculating the Kerr rota-
tion and the reflectivity as functions of frequency (see
Figs. 9c and 9d). It is evident that the interpretation of
the Kerr rotation governed by the conductivity o, (w)
is much more complicated in comparison with the lon-
gitudinal conductivity. The Kerr angle and reflectiv-
ity shown in Fig. 10 for the different magnetic fields
demonstrate a strong field dependence of the magneto-
optic phenomena.

7. SUMMARY AND CONCLUSIONS

We have evaluated the perturbation theory for the
matrix Hamiltonian, which permits calculating the
corrections to eigenvalues resulting from the small ma-
trix elements, particularly from the trigonal warping.
The trigonal warping in graphite can be considered
within the perturbation theory at strong magnetic
fields larger than approximately 1 T. For weak mag-
netic fields, when the Fermi energy is much larger than
the cyclotron frequency, the semiclassical quantization
with the Berry phase included can be applied. We have
found that the principal electron transitions obey the
selection rule An = 1 for the Landau number n, but the
An = 2 transitions due to the trigonal warping with
a small probability are also essential. In graphite, the
electron transitions at the K and H points as well as at
intersections of the Landau levels with the Fermi level
make contributions to conductivity. The good agree-
ment between the calculations and the measured Kerr
rotation and reflectivity in graphite in the quantizing
magnetic fields is achieved. The SWMC parameters
are used in the fit taking their values from the previ-
ous de Haas—van Alphen measurements and increasing
the Fermi energy value in the case of strong magnetic
fields.

We acknowledge the useful discussions with A. Kuz-
menko and J. Levallois. This work was supported by
the RFBR (grant No. 10-02-00193-a) and the SCOPES
(grant 127370 _128026).
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