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A linear combination of a pair of dual anisotropic decaying Beltrami flows with spatially constant amplitudes
(the Trkal solutions) with the same eigenvalue of the curl operator and of a constant velocity orthogonal vector
to the Beltrami pair yields a triplet solution of the force-free Navier-Stokes equation. The amplitudes slightly
variable in space (large scale perturbations) yield the emergence of a time-dependent phase between the dual
Beltrami flows and of the upward velocity, which are unstable at large values of the Reynolds number. They
also lead to the formation of large-scale curved prisms of streamlines with edges being the strings of singular

vorticity.

1. INTRODUCTION

The importance of coherent structures in a turbu-
lent flow is undoubted. Nevertheless, the process of
their appearance remains unclear. In fact, the theory
of turbulence evolved in the opposite direction dur-
ing many years. Due to the seminal 1941 paper by
Kolmogorov, the emphasis was on statistical concepts
of “chaotization” of turbulent flows, while the initial
3D Navier—Stokes equations remained in the shadows.
The concept that Beltrami-type flows are predominant
in a developed turbulent flow was initially proposed
by Levich and coauthors [1-4] and by Moffatt [5-7].
Although Beltrami flows (anisotropic vector eigenfunc-
tions of the curl operator) are stationary solutions of
the Euler equations containing no viscosity terms, the
modified Beltrami flows with their decay in a viscous
fluid, in the absence of external forces (solutions of the
“force-free Navier—Stokes equations”), were found in [8]
as early as 1918.

The emergence of domains of helical Beltrami-type
flows characterized by the collinearity of the velocity
and vorticity vectors is currently firmly established in
geophysical observations and numerical simulations of
the Navier—Stokes equations [9-19]. The fact of for-
mation of large-scale Beltrami-like helical structures
in tornadoes, tropical storms, cloud streets, etc., is
firmly established by climate observations [20]. There-
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fore, we here assume the existence of Beltrami-type
fluctuations. To build a mathematical model of the
emergence of the coherent structures, we use the idea
and technique proposed by Sivashinsky [21], who re-
garded a large-scale structures as a manifestation of a
long-wavelength instability of spatially periodic solu-
tions of the Navier—Stokes equations. This approach
was used in [22-25] to study mostly the instability of
the linearized 2D Navier—Stokes equations, sometimes
using Galerkin approximations, which could possibly
decrease the validity of the obtained analytic result.
The 2D nonlinear equations have been investigated for
finite values of the Reynolds numbers R, when the ma-
jor phenomena are related to the trespassing of the so-
called critical value Ry of the Reynolds number [21],
whereas coherent structures appear only at large val-
ues of R. In Ref. [26], the linear stability of the nonsta-
tionary Trkal solution [8] for the force-free 2D Navier—
Stokes equations and the stationary Beltrami solution
for the forced equations for large values of the Reynolds
number R was studied. Although the linearized forced
2D Navier—Stokes equations with the Beltrami external
force are unstable under perturbations with the wave-
length L proportional to R, it was established that non-
stationary solutions of the linearized force-free Navier—
Stokes equations can be unstable under perturbations
with an intermediate large wavelength L that is less
than R; in this case, the order of the quantity L re-
mains unexplained.
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In Ref. [27], a nonlinear asymptotic analysis of long-
wavelength perturbations of the Trkal solution for the
force-free 3D Navier—Stokes equation at large Reynolds
numbers R was performed and an asymptotic solution
consisting of Beltrami-type flows and terms associated
with them was effectively constructed. It turned out
that the asymptotic procedure can be implemented in
that case only for a single value of the scaling parame-
ter equal to R'/2, just as the reduction of the coupling
constant in the nonlinear term in renormalized pertur-
bation expansions by R'/2, as done by Levich. This re-
duction stems from the assumption that Beltrami fluc-
tuations dominate in a developed turbulent flow [3].
This allows writing equations for plane streamlines that
in the quasistationary case turn out to be gradient lines
of a function of two variables determined by the initial
conditions (actually, the energy density); due to the
emerging upward flow, the resulting 3D streamlines, as
well as the vorticity lines, form 3D tubes invariant un-
der flow that can be regarded as large-scale structures.
Moffatt envisaged such pictures for the solutions of the
Euler equations [28].

As is explicitly demonstrated here, the crucial point
of the whole analysis is the coupling of two large-
scale amplitude-modulated anisotropic Beltrami flows
with the same eigenvalue of the curl operator (“dual
anisotropic Beltrami flows”). Together with a con-
stant vector orthogonal to the pair of dual Beltrami
flows, linear combinations of the three vectors form so-
lutions of the force-free Navier—Stokes equation, which
we call triplets. No other finite linear combination of
linearly independent anisotropic Beltrami flows yields
a solution of the Euler equations. The same is true
for the corresponding Trkal solutions of the force-free
Navier—Stokes equations. The coupling of two dual
“plane” anisotropic Beltrami flows with constant ampli-
tudes yields stationary geometry of streamlines. Spa-
tially variable amplitudes yield the emergence of a time
depending phase between them, which is unstable at
times of the order of R'/2. This time-dependent phase
yields an upward velocity and brings the formation
of triplets transformed at large Reynolds numbers un-
der long-wavelength amplitude perturbation into large-
scale streamline tubes. At the initial stage at least, the
vorticity and the velocity fields are collinear inside these
tubes. These streamline tubes are vortex tubes as well.
As aresult, large-scale streamline—vortex tubes are sta-
ble at times of the order of R'/? and vanish at times
t o< R?, and might therefore be regarded as metastable
coherent structures.

The punch of the present endeavor lies in the con-
viction that the fundamental phenomena of flows of the

incompressible liquid in 3D space are tied to the inter-
play between the explicit time dependence and the in-
ner stream geometry. This is exemplified by building a
large-scale flow model that stems exclusively from the
3D Navier—Stokes equations and relates to the accu-
mulated observation data as well as to the results of
computer simulations. Many of them demonstrate the
emergence in a flow, right from the onset, of regular
helical structures characterized by an almost complete
alignment of the velocity and vorticity vectors as well as
a built-in singularity of the vorticity inside streamline-
vortex tubes. The proposed model demonstrates that
although the flow velocity along the tubes is unstable
at times of the order of RY/?2, the streamline 3D ge-
ometry remains stable almost permanently. For this
purpose, we apply Sivashinsky’s method of multiscal-
ing analysis [21] to the long wavelength perturbations
of the so-called Trkal flows at large Reynolds numbers.

2. EXPLICIT ANISOTROPIC SOLUTIONS OF
THE FORCE-FREE NAVIER-STOKES
EQUATIONS

The Navier—Stokes equations for homogeneous in-
compressible viscid fluids are
Ou 1
— 4+ (u-V)ju=—-—-Vp+vAu+f
5 T (V) VP ;
where u is the flow velocity, p is the pressure, p is the
density, assumed to be constant, v is the kinematic vis-
cosity, and f is a body force.
The Euler equations for the ideal liquid (v = 0) are

Ou 1
— . = —— f. 2.1
5 + (u-V)u pr+ (2.1)
The so-called Beltrami flow
sin i
d
eo(2) = ug Z
cos pi
0

is a solution of Euler equation (2.1), while

vt vt >
Uy = exp _ﬁ €9 = Ug eXp —ﬁ COSE

is a solution of the force-free (f = 0) Navier-Stokes
equation, where 27d is the characteristic spatial period
of the flow and wg is the typical velocity [8].
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Navier—Stokes equation (2.1) is usually considered
in the regularized dimensionless form
ou 1 1
— . = —=A —f
6t+(u V)u Vp+R u+R ,

divu =0,

(2.2)

where R = wugd/v is the so-called Reynolds number.
For our purposes, we prefer to apply the curl operator
to both sides of the last equation. Due to the well-
known formula

1
(u-V)u=[rot u x u] + Egrad lul®,

we obtain the so-called vorticity equation

d(rot u)
ot

1 1
+ rot[rotu x u] = EA(rot u) + I rot f.

Because we intend to investigate the solutions of the
force-free Navier—Stokes equation, the last equation is
reduced to

t 1
8(1‘; u) + rot[rotu x u] = EA(rot u), 23)
diva = 0.
In the dimensionless form, the Beltrami flow
sin z
e (z) =] cosz
0
is a solution for the Euler equation
t
3(1‘; w _ rotfu x rotu] =0, (2.4)

divu=0
because, obviously,
rot e1(z) = eq(2),

i.e., e;(z) is the eigenvector of the curl operator with
the eigenvalue 1. It is also obvious that

gi(z,t) = Ae e (z)

is a solution of force-free Navier—Stokes equation (2.3)
(the so-called Trkal solution).

In fact,
sinmz
en(z)=1] cosmz |, m=0,£1,£2...,
0

is an eigenvector of the curl operator with the eigen-
value m, and

m2t

gm(2,t) = Aexp (—?> em (2)

is a solution of force-free Navier—Stokes equation (2.3).
On the other hand, it can be easily seen that the same
holds for the vectors h,, defined as

cosmz
h,(z)=| —-sinmz |, m=0+1,£2...,
0
i.e.,
rot h,,(2) = mh,,(2),
and v,, = Aexp(—m?t/R)h,(z) is a solution of

Eq. (2.3). Obviously,

0
[em(2) X en(2)] = 0 )
sin(m —n)z
0
[hy,(2) x hy,(2)] = 0 , (2.5)
sin(m —n)z
0
[hin(2) X en(2)] = 0
cos(m —n)z
Clearly, e, (z) and h,,(z) are orthogonal. Follo-

wing Ref. [29], we call them the dual Beltrami flows.
There are no other linearly independent eigenvectors
of the curl operator with the eigenvalue m, which are
anisotropic in z.

We consider 27-periodic three-dimensional vector
fields with zero divergence, which are anisotropic in z
(i.e., depend only on z). Then the vectors

1

(2)},and N

1 1
\/—2—7r{em(2)}7 \/—2_7r{hm 0

form an orthogonal basis in the space of square-
integrable vector functions of z on [0, 27]. If we seek an
anisotropic solution of (2.3) as a finite linear combina-
tion of {e,,(2)} and {h,,(2)}, then, due to Eq. (2.2),
the only possible finite linear combinations are

0
u=10emn(z) +nhn(z)+ | 0 |,
)

(2.6)
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where 79, 71, and § are some functions of time ¢. This

follows from the fact that for a given m, the vectors
0

en(2), hy,(z), and | 0 | form a closed set with re-
1

spect to the cross-product operation:

[em xhy]=1] 0 |, en(z) x| 0 =h,,,
0
h,, x 0 = —em
1

Indeed, if u = ae,, + fe,, then because

1
(g-V)f = E{rot[g x f] + grad(g,f) — fdivg +
+gdivf — [f x rot g] — [g x rotf]},

where (g,f) is the scalar product, it follows from
Eqgs. (2.5) that

(u-Vu=(n—m)aflen, X e, =
0
— (n—m)ap 0

sin(n —m)z

Hence, new terms with new space frequencies appear in
Eq. (2.2) and u cannot be a solution of (2.2) if n # m.
We call (2.6) the Beltrami triplet. Because the discus-
sion in what follows is entirely valid for any integer m,
we set m = 1 from now on. Substitution of (2.6) into
(2.3) yields

0 0
Srhi+ Sei(s) + 090k (2) - dvren(2) =

R R
Hence,
9 _ Sy — L0
m _ 5 1
ot TR
It then follows that
19 5, o WA
50 T1) = i

or

o+t = Coe 2R, CF = 13(0) +47(0),

and therefore

Yo = C’ge_t/R cos ¢(t),

2.8
v = Coe /R sin ¢(t). 28

Substitution of (2.8) into (2.7) yields

.00 1
—smq&a =dsin¢ Rcos¢,
99 _ L.
cosgz&g = —dcos¢ Rsmgz&.

Multiplying the first equation by sin ¢ and the second
by — cos ¢ and adding them, we obtain

do
—5—5.

Hence, the Beltrami triplet can be presented as

sin z
up = Coe eosep(t) | cosz | +
0
coS 2 0
+ Coe B gin o(t) | sinz | + 0 =
0 —0¢ /0t
Coe~t/Bsin(z + ¢(t))
= | Coe ¥ Fcos(z+o(t) |. (2.9)
—0¢/0t

The streamline equations are

i = Coe " Bsin(z + ¢(t)),

= Coe_t/R cos(z + o(t)), (2.10)
dz+¢) _
a7

Thus, if the interaction of two dual plane Beltrami
flows yields the time-dependent phase ¢(t), it also
yields the upward flow, depending only on ¢(t). In
other words, the flow becomes three-dimensional only
if the coefficients in (2.6) are not constant. The vec-
tors ug and rot ug are not collinear and the angle be-
tween them is not small. However, ¢(t) is an arbitrary
function of time because of the axial symmetry. To
eliminate this indefinite state, we have to break the
symmetry.

3. THE SCALING PROCEDURE

We deviate slightly from the strict anisotropy. We
suppose that Cp, ¢, and ¢ (and hence u) in (2.9)
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“slowly” depend on z and y, and we extend this scaling
to time:

o(t) = olex, ey, et), % <e<1,

where ¢ is a small parameter; we “quench”

eft/R — e*T/ER =by~ 1

for times under consideration (t ~ 1/¢). Similarly, we
regard o and 7; as functions of ez, ey, and ¢t. Hence,

C5 =7%(0) +17(0) = 75 (ez,y,0) + 71 (e, €y, 0) =
= C2(ex,cy).

We assume that all the functions of the new “slow” vari-
ables

E=e¢x (i —>sﬁ) )
ox o0&

—y (252

T=c¢t 2—)52
N ot or)’

are periodic in space. We are therefore dealing with
“long-wave perturbations” of a finite-amplitude Trkal
fluctuation

gi(z,t) = Ae7t/Rey(2),

which is a solution for the force-free Navier—Stokes
equations.

We seek the perturbed solutions in form (2.9). We
supplement o and v, as

70(75) — A + ’70(656753/7515) =A + 70(577777-)7

71 (t) — 71(61‘,5y,5t) =M (faan)a

C3(0) = C3(&,m) = (0(&,1m,0) + A)? +77(&,1,0).

The coefficients vo(¢) and 1 (¢) in (2.6) then become
long-wavelength amplitude modulation factors (in x
and in y) for e;(z) and hy(z):

ug — ug + 01 = (A +7(&,n,7))ei(z) +
0

0
+7(&n,Thi(2) +¢

9(&,m,7)

or

In fact, we have already obtained another form of (2.9)
for the scaled Beltrami triplet:

CO (ga 77) Sin(z + ¢(£7 n, T))

up +¢edr = | Co(&,n)cos(z+ @(E,m, 7)) | +
0
0
0
+e , (3.2)
99
or

where C3(&,1) = (A+70(£,1,0))* +77(£,71,0) is deter-
mined by the initial conditions for 79 and 71, i.e., by
the initial small long-wavelength (“noise”) modulations
of e1(z) and h;(z) amplitudes. Because the angle be-
tween ug and rot up is small and almost proportional
to ¢, these vectors are nearly collinear. The rescaled
equation (2.3)

5% rot u(¢,n, 7) + rotfrotu x u] = %A(rot u),

where

rotu(§,n,z,7) = rot, u+ erote, u,
9’u ’u  0%u
Au=— +&° =5 + =
022 <8§2 on? )’
i.e., the equation

rot.[rot, u X u] +

d(rot, u)
+e {T

1 0(rotey u) d(rotgpu) 1
7&7} +&? {Tf_"—}—zAgn(rotz u)} —

g3 1 0?(rotey )
- ﬁAén(YOtﬁn u) = I T;’

was investigated in Ref. [27] via an asymptotic expan-
sion of the solution in powers of ¢,

+10tep[rot, u X ul+rot,[rote, u x u] —

R 022

(3.3)

u(fﬂ%zﬂ') = uO(fanazaT) + 6111(57777277.) +
+ 62“2(57777277-) +...

Since the term (1/R)d?(rot, u)/02% in Eq. (3.3)
should be of some order in powers of &, we have

1
ek = = for some integer k.

Hence, we consider the asymptotic behavior of u with
R as a large parameter. In these terms, the incom-
pressibility condition divu = 0 becomes

div, u + edive, u =0,
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i.e., 4. SCALE-INVARIANT STREAMLINE
EQUATIONS
divz i1 = — diVCn ug.
Now, due to (3.2) and (3.4), we can write the equa-
Hence, tions for large-scale streamlines:
0 0 0 - = i
8_(uk+1)z _ ( (;k)§ + (:;k)ﬂ> ) f Co(&,m)sin(z + ¢(&,m, 7)), (4.1)
: ¢ " 7= Co(&,m) cos(z + 6(€,m, 7)),
For k = 0, it follows from (3.2) that and
8(111)2 _ 800 8¢ . dz _ 800 8¢
—5, =~ (6—5 — COB_ sin(z + ¢) — F T Co—- o cos(z + o)
aC, ¢ dCy 99 . _96(&,m.7)
< n + Cy 85) cos(z + @), < an + Co—=— B¢ sin(z + ¢) 5 .
ie., However, due to (4.1),
e d¢ d¢ _06. 9¢. 099 _
(u1)z—(a—£—C’oa)cos(z+¢)— i = o + ”+a —
aCy |, 99 . 9 ¢ 09
< i 008§>Sm(2+¢)+61(€’n’7-)' _0085 s1n(z:-|-gz5)+C'oa17 cos(z+¢)+a7_,
We note that due to the last equation whence
diz+¢) 9C oCy .
(u1): = (rotepuo(£,m,2,7)= + 61, (3.4) o = ag st — g rsin(z40). (42)
However, it also follows from (3.2) that Streamline equations (4.1) and (4.2) are actually
8¢ the scaled equations (2.10). Equations (4.1) are identi-
0 = 5 (3.5)  cal to the first and second equations in system (2.10).
T

We seek other terms of the asymptotic expansion in
the same form as uy in (3.4):

u,(&,n,2,7) =wr(&,n,2,7) +

+rot, W1 +0k(§,m,7), (3.6)

where

wi, =7 (€, m)en (2) + 1 (€ T (2),

rot, wp = wy,

5k(£77777.)

As is proved in Ref. [27], if we seek the terms of the
asymptotic expansion in form (3.6), then k¥ = 2 and

e=RY?.

We impose the requirement of scaling invariance on the
streamline equations. Hence, we consider the stream-
lines (£(7),7(7), 2(7)) satisfying Eqs. (4.1) and the
equation

d(z(r) + ¢(£(7),77(7), 7))
dr

=0. (4.3)

We call these streamlines “quasi-stationary trajecto-
ries”. Due to (4.2), we then have

- 0Cy/0
oz +0E R T) = Geres (4
Then
sin(z + 0(E7.7)) = %
20\, (9
\/( ) ()
0Co /0

cos(Z + o(&, 7,7

ey
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and we can rewrite (4.1) for the quasi-stationary tra-

jectories (£(7),7(1), 2(1)),

f— Co0Cy /0§
000 \* , (90"
o o 4.5
1.7_ 00800/877 ( ' )
00\* | (9C0\*
o0& on
or, in the vector form,
- — dCy (¥
S =0 (3) 22 0 (%) : (4.6)
lgradCly (E) |

where

Thus, the change of variables (“scaling”) and the
requirement of the scaling invariance enabled the sep-
aration of “slow”(£,n) and “fast” z variables for the
quasi-stationary equations. Hence, (4.6) states that
the tangent vector to the quasistationary trajectory
(&(1),7n(7)) is collinear to the gradient vector of the
function Co(&,n):

0Cy
dCo(&, 7 %
grad Co(&, 1) = ac, |
2
and the integral lines of the gradient vector field for the
function

Colen) = [(Ahn +20(em))* +22Em)]

might be regarded as “large-scale structures”, where
(&, 1) and 71 (&, n) are the initial small longwave am-
plitude modulations (“noise”) of the dual Beltrami flows

sin z cos z
ei(z) =] cosz |, hi(z)=| —sinz |,
0 0

and the projection of the “quasistationary” stream-
line onto the (&,n) plane is an integral line of the
grad Co(&,n) vector field.

It is well known (and can be easily demonstrated
[27]) that the integral lines of a gradient field connect
the “stationary points” where the gradient of Co(&,n)
vanishes:

| gradc{)(ga 77) | =0.

As is proved in Ref. [27], the streamline projection of
any perturbation of a quasistationary solution onto the
&n plane is a curve asymptotically approaching a “limit
curve” defined by the equations for the quasistationary
streamlines. Thus, “large scale structures” are formed
from these stable (¢ ~ 1/e¢) curves in the zy plane.
Hence, the question of the streamline behavior under
long-wavelength perturbations of the Trkal solution for
the force-free Navier—Stokes equation is reduced to the
determination of gradient lines for the function
1/2
Co(&,m) = [(Abo + 30 (Em) + 27 (Em)] -

The stationary points of Cy(&,n) are either points of
maximum (“sources”) or minimum values (“sinks”) or
saddle points.

Each trajectory starts at some maximal point and
ends at some minimal point. The saddle point has one
incoming and one outgoing trajectory, the separatrices.
The plane domain is thus partitioned by the separa-
trices into invariant subdomains containing the trajec-
tories (plane streamlines) that connect one maximum
critical point with one minimum critical point, while
there are no other critical points inside these subdo-
mains, i.e., the trajectories inside the subdomains are
homotopic. The assumption of the “long-wavelength
perturbation” means that 7o (&, n) and 1 (€, ) are two-
periodic functions in the &n plane. Therefore, vo(&, 1)
and 7, (¢, n) are finite trigonometric polynomials in two
variables, because all spatial frequencies otherwise par-
ticipate in any Fourier representation of these functions
and the concept of the “long-wavelength perturbation”
has no meaning.

We restrict ourselves to the case where only the first
harmonics are present in these trigonometric polyno-
mials. The case of periodic boundary conditions was
investigated by Arnold [30], who wrote these functions
in the form

Yo(&,m) = acos& + bsiné + ccosn + dsinn +
+pcos(§ +1) + gsin(§ +n)

and proved that they have six stationary points and
allow two different topological pictures (with respect
to the diffeomorphism group of the torus) for the level
lines. These two pictures (and consequently the gra-
dient line pictures) are determined by the structure of
the six stationary points:

one maximum point, three saddle points, and two
minimum points;
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two maximum points, three saddle points and one
minimum point.

It can be easily seen that the plane is divided into
“curved polygons”, the stationary points are the poly-
gon vertices, and the polygon sides are the separatri-
ces, the gradient lines that separate subsets of homo-
topic gradient lines. Each polygon is an invariant set
under the gradient flow. This unveils the 3D picture
of a streamline-vortex tube, which is in fact a “curved
upright prism” with vertical edges growing from the
stationary points, based on the plane “curved polygon”
made by the separatrices.

5. EXPLICIT TIME DEPENDENCE AND THE
EMERGENCE OF THE UPWARD FLOW

To elucidate the 3D behavior of quasistationary tra-
jectories, we have to find other terms of the asymptotic
expansion

a(fﬂ?azﬂ') = uO(fanazaT) +ewy +62112 + ... ) (5 1)
diva = 0. '

We seek other terms in the same form as u; in (3.4).
For quasistationary trajectory (4.3), we have

Z(1) = co(&0. 1m0, 70) — A(E(T), 77(7),7),

o = &(70), 1m0 = 71(70), (5:2)

i.e., we must find ¢(&,n, 7). As is proved in Ref. [27],
o(&,n, 7) satisfies the equation

Po _ Ci&n)
g T T At
0Cy 0  OCy O
“ ( oe o€ T oy 3n> (53)
with the initial conditions
71(677770)
,n,0) = arctg ——————,
P& 0) = arcte e o)+ A

0
E¢(xay70) = 60(5777)

Thus, we have a Cauchy problem (with periodic bound-
ary conditions) for an elliptic partial differential equa-
tion, which is a classic example of an “ill-posed prob-
lem”; i.e., the case of instability in time of the phase
o(&,m,7) as well as of the upward velocity. Because
(5.3) was derived without involvement of the viscous
terms, we are dealing with the Eulerian instability of
the phase. The negative sign before the Laplacian
in (5.3) is usually considered as a manifestation of the

so-called “negative viscosity” [20, 24, 25] at times 7 ~ 1,
(t ~ 1/e). In the case where the initial upward flow is
absent, ¢(&,n,7) is nontrivial only if the initial long-
wavelength amplitude modulation 1 (&,1,0) = v1(&, 1)
of the dual flow is nonvanishing, i.e., the explicit time
dependence of the flow and the emergence of the up-
ward flow, which makes the flow essentially three di-
mensional, are due to the initial spatial gradient of the
second coefficient in (3.1). As a result, we have found
z(t) in (5.2).

In fact, we can speak about the “pseudo chaotic”
behavior of z(t), due to (5.3), as opposed to sta-
ble structures defined by (4.6). The same function
Co(&,m) determines (4.6) as well as (5.2), i.e., order
and “pseudo chaos” emerge from the same cause: small
long-wavelength amplitude modulation in the &n plane
of a pair of dual anisotropic Beltrami flows [11].

This is because the initial conditions in (5.3) involve
the function Co(&,n) that occurs as the coefficient at
the highest-order derivative, and hence a small varia-
tion in the initial conditions can cause a large variation
of the solution (in fact, this is the so-called “Hadamard
example” of instability with respect to initial conditions
of the Cauchy problem for elliptic equations) as well as
a variation of Cy(&,n). Thus, variation of the initial
conditions in (5.3) can cause instability of the solution
and of the vertical velocity, while the solutions of (4.5)
remain stable.

It can be easily seen from (3.4) and (5.1) that

u —rotu = £d; + O(c?),
where
rot — ¢ rotg, +rot. .

The last term in the right-hand side contains all the
higher-order terms in the asymptotic expansion, while
the first term in the right-hand side is a vector, which is
parallel to the z axis. Therefore, up to terms of the or-
der of 2, both velocity and vorticity vectors belong to
the tangent plane of a vertical surface, which contains
a curve in the zy plane, determined by Eqs. (4.5). This
is true even when the first term in the right-hand side
of the last equation is not small, i. e., when the velocity
and vorticity cease to be almost collinear. This sur-
face can therefore be considered a “streamline sheet”
as well as a “vortex sheet”. Streamline sheets, which
contain homotopic quasistationary trajectories of the
same subdomain in the xy plane, connecting two fixed
stationary points, form invariant 3D domains called
“streamline tubes”. Clearly, up to terms of the order

of £2, “streamline tubes” are at the same time “vortex
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tubes”. These streamline-vortex tubes are stable at 5 =— @ — Co <8CO 8¢ 9Cq 8¢>
times 7 ~ 1, (t ~ 1/¢). dr lgrad Co| \ 96 0~ an ony
Hence, R'/? is the characteristic size of the invari- _9¢ _ Co-(gradCo,gradp) 3¢
ant domains in the xy  plane or the characteristic “di- Car |grad Co| o

ameter” of the 3D invariant streamline—vortex tubes.
For times ¢t ~ R'/2, the phase ¢(£,n,7) between two
dual Beltrami flows satisfies Eq. (5.3) with a negative
Laplacian in the right-hand side, i.e., the large scale
viscosity becomes negative, while the upward velocity
becomes unstable. In fact, the upward velocity would
decrease at times t oc R? |26, 27].

6. SINGULARITY OF VORTICITY AT
STATIONARY POINTS AND STRINGS OF
SINGULAR VORTICITY

Due to (4.1) and (3.6), the quasistationary velocity
field can be considered as

_avgrad Go(S) 1 <o 1
U—CO(Z)W 75( )+ TRV (6.1)
where, as was demonstrated in Ref. [27],

. sin(z+6(&, 1, 7)+00(, 7))
wi = |C(En.)| | cos(=+o(E ) +d0(En) | =
0
) 8865' cos o + 8867; sin ¢y

_leenn| | e o ae L |

|grad o (E,)] | Ty, 0590 ~ ¢ Sindo

CEnn| oo
= |grad o€ 77)| (cos ¢g grad Cy + sin ¢ ngrad Cj),

and
0Cy
on’
800
k3

is a vector normal to grad Cy. In Eq. (6.1),

ngrad Cy =

We want to find the behavior of

grad CO > _

1
rotu = ——rot C _—
VR 5”( ®lgrad Co

1 - 1
— R Moten 01(&n, 1)+ T Toten Wi

in the neighborhood of a stationary point (&, 7o) of the
function Cy(&,n):

9Cy

(€= o =m) = (€ = o, =m) =0,
Then

Co(&,m) = Coléo,m0) + =(BE, ) + ..., (6.2)
where

=(i0)-(0)

and B is the Hessian of the function Co(&,n) at (&0, m0):

B = ( Z lc)>7 a=882—§2()(§07770)7
= gzg;(ﬁo,no)v = 6200 —— (&05m0),
while the truncated terms are of the order of O(p?),
2 =24
Therefore,
grad Co(€,7) = BS + ... (6.3)
and
gradCO(f])‘ = |BS | +... (6.4)
Because
rot(f - G) = f-rot G+ [grad f x G]
and
grad 1~ 32237
‘BZ‘ ‘ BE
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after some transformations, we obtain

grad CO
ten Com——s =
Fo%en &0 |grad Co|

2¢y [B*S x B
===+ 4. .

VR fesf

1
VR
(6.5)

Because B is a symmetric matrix, we can consider the
right-hand side of (6.5) in the eigenbasis with the co-

ordinates (&, 17):

S - [0
[B°S x BY] _ Ao =)&)
E] - ~2 ~ -
‘BZ‘ (W€ +X37)2/2 \ 4
MM =) sin”
p(A2 cos? o + A} sin? )3/2 7
where

~2
P=E 4 =24t =p

1
= (5 - 50)2 + (77 — 7']0)2 - E((x _ 560)2 + (y o y0)2) _
7"2 = ~ < .
:§7 €=pCOSQD7 7 = psin .
Hence,
4 M [(A =) sin?
(ot w, | ~ 2C00a00) _Ade](ho)sin’e]
VR (AF4+A3+(Af=A3) sin” @)
BI3/2

In the same way, we can prove that the upward vec-
tor

‘C &7 )‘
I x
|grad Co|
x (cos gograd C + sin o ngrad Cp)

—rotwy =

5 2 I‘Otgn

has singularities of the same type at the stationary
points, i.e., the upward component of the vorticity has
a singularity of the K /r type at each stationary point
(&0,m0) of the function

Col&, ) = Co (ﬁ %)

where r = /(2 — 20)2 + (y — y0)? and K is indepen-
dent of the Reynolds number R because we derived the

zeroth term in the asymptotic expansion of the large
scale vorticity in powers of ¢ = R™1/2,

To assess the &n-plane component of the vorticity
(1/R)rote, 8, (£, 7, 7), we have to investigate the be-
havior of §;(£,n,7) in the vicinity of the stationary
point. According to (5.3), ¢(&,n,7) is a solution of
the Cauchy problem

?¢ _ Cg&n)

or2 5 Do

¢ <3C'0 09 0Cy 3(;5)
o0& 0& an an

(6.6)
71 (fa UB 0)

#(&,1,0) = arCth7

13J0) B
5(57 7, 0) - 07

where 70(577770) = 70(5777) and 71(57777 0) =N (5777)
are small initial perturbations with a finite number of

terms in the Fourier expansion. We can seek a solution
of (5.3) in the vicinity of the stationary point as a series
in powers of £ = £ —& and 77 = n—no. Then the zeroth
approximation yields

8¢ 1 -
87'20 - __00(507 770) Agﬁ¢0(£7 7, T)a
&= (57 ﬁ)
$o(&,7,0) = arctg% = 6.7
o€+ A (67
=—arctg —=———— = f 7£(§ ) = n +.
€% (ga ) + A A
where £ is a small parameter (“initial noise”). Hence,

the time dependence is determined by 71 (&,n) (and
therefore 4, (£,7)). As in Sec. 6, we regard ~i(&,n)
(and therefore 5, (€,7)) as a finite double trigonomet-
ric polynomial,

Z QU €XP [ mf + nn)]

where m and n are bounded. Then

T2

¢O(gvﬁ77—) =

X exp [ (mé + nn)] exp

[ 2 2
CO 7771 ;nT

Thus, the growth of ¢g in time is determined by

=V/m? + 02 .

max \/m2 +n?
m,n

We consider only the fastest growing term:
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do(&,1,7) = amﬁ% X
X n;lexp (C’o m2;-n2 7') exp [z(mgﬂiﬁ)] +...

Hence,

X exp [i(mg + ﬁﬁ)] exp

i.e.,

lgrad ¢o| = K exp | Cy

where Co = Cy(&,1m0). We now consider the {n-plane
component of the vorticity:

1 - 1
= rotg, 01 = IR
2 = (grad Cy, grad ¢p) 9% o
on <CO(E) |grad Co| OTon
0 () BradCosgrad dn) ) 20 -
e \7° |lgrad Cy| oroE
(BS, grad do) 2 )
1 7 ||
= — + ...
- 0 Co(Z ’
—(BZ,grad¢0)6— 0(~ )
¢ |z

where the truncated terms are bounded functions of &
and 7 for any given 7. It can be easily checked that

9Co (%)
0 .
7 _ =BY +...,
_800(2)
o€
- b c
where B = ( ), and hence
—a -

- — b2 1
BB = 0 ac —detB| .
b2 — ac 0 -1 0

Thus, it can be easily seen that

9 (%) i
an BY C(Xo)det B _N
- - +...,
_9 G \Bif
9 |Bs

where the truncated terms are bounded for a given 7,

and Y9 = ( o > It can be demonstrated that
o
1 - 1 ~
‘}_% rotey 01| = ‘(BXgradqﬁo)‘ X

9  |B%
m2+n2 t
exp CO B ﬁ
= K det B,
o 1(¥)

where ¢ is the angle between e; = Bi/‘Bi‘ and ey =
= grad ¢ /|grad ¢g.
Thus, in the original (“fast”) variables, the ampli-

tude of the vorticity-plane component in the vicinity of
the stationary point (o, yo) is

Ky (Q,D)CO ( 0 %0 > detBeXp CO —

VR' VR
rvVR

where

r=V(@—20)? + (y — y0)2.

Therefore, the vertical line x = xg, y = yo is a “string”,
while the vorticity line rotates around it. Hence, verti-
cal edges of the large-scale streamline—vorticity prism
are the strings of singular vorticity.

7. CONCLUSIONS: EXPLICIT TIME
DEPENDENCE AND
THREE-DIMENSIONALITY JOINTLY
EMERGING FROM THE ENERGY DENSITY
GRADIENT

We consider the Beltrami triplet with variable co-
efficients (2.9) as the source of the emergence of large-
scale streamline tubes for large values of the Reynolds
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number R. Although (2.9) clearly indicates the pos-
sibility of an upward flow, induced by the presence of
the dual Trkal flows with time-dependent amplitudes,
there is no inherent clue to an equation for the phase.
In (2.9), the absolute value of the velocity in the xy
plane is constant. The breakthrough comes by varia-
tion of C in the xy plane: it is now supposed to be
a bounded smooth function of # and y with a small
gradient. Such a function has maximum and minimum
points. These are the points of the maximum and min-
imum values of the plane velocity. The liquid flows
from the points of the maximal velocity to the points
of the minimal velocity, i.e., the liquid flows along the
gradient lines of the function. The distance between
these points is determined by the ratio of the velocity
change between maximum and minimum values, and
the average value of the gradient of the function. Since
the first number is finite, while the gradient is small,
the distance between maximum and minimum points
is large. This is how the plane large-scale streamlines
emerge.

The emergence of an unstable upward flow (which is
tied to the phase ¢(&,n, 7) between the coupled Trkal
flows), i.e., the appearance of the “twins” — the ex-
plicit time dependence and three-dimensionality of the
flow, is induced by a small gradient variation (i.e.,
by “long-wavelength perturbation”) of Cy (in fact, of
v(&,1,0) = 7(&,n)) in the zy plane. It might be
seen as a manifestation of the “hydrodynamic instabil-
ity”, which in this case is actually the “Eulerian phase
instability”. The equation for the phase between two
dual Trkal flows, which becomes a function of x and
y, might be deduced through a rigorous procedure for
the asymptotic expansion of the perturbed solution of
the force-free Navier—Stokes equation. It turns out
that the only possible value of the expansion param-
eter of the asymptotic expansion consistent with terms
of type (5.2) equals R'/2.

Hence, the inverse of the “average” gradient of the
function Cy, and the distance between maximum and
minimum points in the zy plane are close to R'/2, as is
the characteristic size of the area in the xy plane. Thus,
in the case of an anisotropic helical solution for the
force-free Navier—Stokes equation at a large Reynolds
number R, the initial coupling of large-scale amplitude-
modulated dual pair of Trkal (Beltrami) flows together
with the orthogonal constant velocity vector form a
triplet, which is transformed by a long-wavelength per-
turbation into a large-scale streamline tube, the plane
streamlines being stable at times of the order of R'/2.
These streamlines, which are gradient lines of the en-
ergy density in the orthogonal plane to the anisotropy

direction, can be regarded as large-scale structures with
the typical size R'/2. The gradient lines connect the
“stationary points”, where the energy density gradient
vanishes. The streamlines inside the domains that do
not contain “stationary points” are homotopic. The do-
mains of homotopic plane streamlines are bounded by
the “separatrices” determining both invariant subsets of
the plane flow (invariant under the flow of the liquid)
and the invariant 3D polygon prisms (“tubes”); the lat-
ter are also invariant under velocity and vorticity field
flows and are typically characterized by the asymptotic
collinearity of the velocity and vorticity vectors. The
component of the 3D large-scale velocity that is par-
allel to the anisotropy direction is tied to the phase
o(&,m,7) between coupled Trkal flows and can be ob-
tained directly as a solution of the Cauchy problem for
an elliptic-type equation (the typical case of an ill-posed
problem) whose coefficients are determined by the ini-
tial conditions. This velocity component outlives the
initial Trkal flow and vanishes at times of the order of
t o< R2.

If we call the initial Trkal flow with a finite ampli-
tude A the dominant mode, then the amplitude long-
wavelength modulation of the dominant mode (&, 1)
is responsible for the emergence of the gradient line pic-
ture, while the long-wavelength amplitude modulation
v (&,m) of the dual mode is responsible for the unstable
upward flow, i.e., for the emergence of the “twins” —
the explicit time dependence and three-dimensionality
of the secondary flow. Thus, the large-scale streamline—
vortex tubes are metastable coherent structures. Al-
though the stationary points inside streamline-vortex
tubes are singular points of vorticity, the vorticity
lines remain inside the tube, while rotating around the
“strings” — vertical lines of singularity that are growing
from the stationary points in the xy plane.
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