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SCALE-INVARIANT STREAMLINE EQUATIONS AND STRINGSOF SINGULAR VORTICITY FOR PERTURBED ANISOTROPICSOLUTIONS OF THE NAVIER�STOKES EQUATIONA. Libin *Netsreens Ltd., Hertzlia, IsraelReeived May 23, 2012A linear ombination of a pair of dual anisotropi deaying Beltrami �ows with spatially onstant amplitudes(the Trkal solutions) with the same eigenvalue of the url operator and of a onstant veloity orthogonal vetorto the Beltrami pair yields a triplet solution of the fore-free Navier�Stokes equation. The amplitudes slightlyvariable in spae (large sale perturbations) yield the emergene of a time-dependent phase between the dualBeltrami �ows and of the upward veloity, whih are unstable at large values of the Reynolds number. Theyalso lead to the formation of large-sale urved prisms of streamlines with edges being the strings of singularvortiity. 1. INTRODUCTIONThe importane of oherent strutures in a turbu-lent �ow is undoubted. Nevertheless, the proess oftheir appearane remains unlear. In fat, the theoryof turbulene evolved in the opposite diretion dur-ing many years. Due to the seminal 1941 paper byKolmogorov, the emphasis was on statistial oneptsof �haotization� of turbulent �ows, while the initial3D Navier�Stokes equations remained in the shadows.The onept that Beltrami-type �ows are predominantin a developed turbulent �ow was initially proposedby Levih and oauthors [1�4℄ and by Mo�att [5�7℄.Although Beltrami �ows (anisotropi vetor eigenfun-tions of the url operator) are stationary solutions ofthe Euler equations ontaining no visosity terms, themodi�ed Beltrami �ows with their deay in a visous�uid, in the absene of external fores (solutions of the�fore-free Navier�Stokes equations�), were found in [8℄as early as 1918.The emergene of domains of helial Beltrami-type�ows haraterized by the ollinearity of the veloityand vortiity vetors is urrently �rmly established ingeophysial observations and numerial simulations ofthe Navier�Stokes equations [9�19℄. The fat of for-mation of large-sale Beltrami-like helial struturesin tornadoes, tropial storms, loud streets, et., is�rmly established by limate observations [20℄. There-*E-mail: a�libin�netvision.net.il

fore, we here assume the existene of Beltrami-type�utuations. To build a mathematial model of theemergene of the oherent strutures, we use the ideaand tehnique proposed by Sivashinsky [21℄, who re-garded a large-sale strutures as a manifestation of along-wavelength instability of spatially periodi solu-tions of the Navier�Stokes equations. This approahwas used in [22�25℄ to study mostly the instability ofthe linearized 2D Navier�Stokes equations, sometimesusing Galerkin approximations, whih ould possiblyderease the validity of the obtained analyti result.The 2D nonlinear equations have been investigated for�nite values of the Reynolds numbers R, when the ma-jor phenomena are related to the trespassing of the so-alled ritial value R0 of the Reynolds number [21℄,whereas oherent strutures appear only at large val-ues of R. In Ref. [26℄, the linear stability of the nonsta-tionary Trkal solution [8℄ for the fore-free 2D Navier�Stokes equations and the stationary Beltrami solutionfor the fored equations for large values of the Reynoldsnumber R was studied. Although the linearized fored2D Navier�Stokes equations with the Beltrami externalfore are unstable under perturbations with the wave-length L proportional to R, it was established that non-stationary solutions of the linearized fore-free Navier�Stokes equations an be unstable under perturbationswith an intermediate large wavelength L that is lessthan R; in this ase, the order of the quantity L re-mains unexplained.1284



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Sale-invariant streamline equations : : :In Ref. [27℄, a nonlinear asymptoti analysis of long-wavelength perturbations of the Trkal solution for thefore-free 3D Navier�Stokes equation at large Reynoldsnumbers R was performed and an asymptoti solutiononsisting of Beltrami-type �ows and terms assoiatedwith them was e�etively onstruted. It turned outthat the asymptoti proedure an be implemented inthat ase only for a single value of the saling parame-ter equal to R1=2, just as the redution of the ouplingonstant in the nonlinear term in renormalized pertur-bation expansions by R1=2, as done by Levih. This re-dution stems from the assumption that Beltrami �u-tuations dominate in a developed turbulent �ow [3℄.This allows writing equations for plane streamlines thatin the quasistationary ase turn out to be gradient linesof a funtion of two variables determined by the initialonditions (atually, the energy density); due to theemerging upward �ow, the resulting 3D streamlines, aswell as the vortiity lines, form 3D tubes invariant un-der �ow that an be regarded as large-sale strutures.Mo�att envisaged suh pitures for the solutions of theEuler equations [28℄.As is expliitly demonstrated here, the ruial pointof the whole analysis is the oupling of two large-sale amplitude-modulated anisotropi Beltrami �owswith the same eigenvalue of the url operator (�dualanisotropi Beltrami �ows�). Together with a on-stant vetor orthogonal to the pair of dual Beltrami�ows, linear ombinations of the three vetors form so-lutions of the fore-free Navier�Stokes equation, whihwe all triplets. No other �nite linear ombination oflinearly independent anisotropi Beltrami �ows yieldsa solution of the Euler equations. The same is truefor the orresponding Trkal solutions of the fore-freeNavier�Stokes equations. The oupling of two dual�plane� anisotropi Beltrami �ows with onstant ampli-tudes yields stationary geometry of streamlines. Spa-tially variable amplitudes yield the emergene of a timedepending phase between them, whih is unstable attimes of the order of R1=2. This time-dependent phaseyields an upward veloity and brings the formationof triplets transformed at large Reynolds numbers un-der long-wavelength amplitude perturbation into large-sale streamline tubes. At the initial stage at least, thevortiity and the veloity �elds are ollinear inside thesetubes. These streamline tubes are vortex tubes as well.As a result, large-sale streamline�vortex tubes are sta-ble at times of the order of R1=2 and vanish at timest / R2, and might therefore be regarded as metastableoherent strutures.The punh of the present endeavor lies in the on-vition that the fundamental phenomena of �ows of the

inompressible liquid in 3D spae are tied to the inter-play between the expliit time dependene and the in-ner stream geometry. This is exempli�ed by building alarge-sale �ow model that stems exlusively from the3D Navier�Stokes equations and relates to the au-mulated observation data as well as to the results ofomputer simulations. Many of them demonstrate theemergene in a �ow, right from the onset, of regularhelial strutures haraterized by an almost ompletealignment of the veloity and vortiity vetors as well asa built-in singularity of the vortiity inside streamline-vortex tubes. The proposed model demonstrates thatalthough the �ow veloity along the tubes is unstableat times of the order of R1=2, the streamline 3D ge-ometry remains stable almost permanently. For thispurpose, we apply Sivashinsky's method of multisal-ing analysis [21℄ to the long wavelength perturbationsof the so-alled Trkal �ows at large Reynolds numbers.2. EXPLICIT ANISOTROPIC SOLUTIONS OFTHE FORCE-FREE NAVIER�STOKESEQUATIONSThe Navier�Stokes equations for homogeneous in-ompressible visid �uids are�u�t + (u � r)u = �1�rp+ ��u+ f ;where u is the �ow veloity, p is the pressure, � is thedensity, assumed to be onstant, � is the kinemati vis-osity, and f is a body fore.The Euler equations for the ideal liquid (� = 0) are�u�t + (u � r)u = �1�rp+ f : (2.1)The so-alled Beltrami �owe0(z) = u00BBBB� sin zdos zd0 1CCCCAis a solution of Euler equation (2.1), whileu0 = exp���td2� � e0 = u0 exp���td2�0BBBB� sin zdos zd0 1CCCCAis a solution of the fore-free (f = 0) Navier�Stokesequation, where 2�d is the harateristi spatial periodof the �ow and u0 is the typial veloity [8℄.1285



A. Libin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012Navier�Stokes equation (2.1) is usually onsideredin the regularized dimensionless form�u�t + (u � r)u = rp+ 1R�u+ 1R f ;divu = 0; (2.2)where R = u0d=� is the so-alled Reynolds number.For our purposes, we prefer to apply the url operatorto both sides of the last equation. Due to the well-known formula(u � r)u = [rot u� u℄ + 12grad juj2 ;we obtain the so-alled vortiity equation�(rotu)�t + rot[rotu� u℄ = 1R�(rotu) + 1R rot f :Beause we intend to investigate the solutions of thefore-free Navier�Stokes equation, the last equation isredued to�(rotu)�t + rot[rotu� u℄ = 1R�(rotu);divu = 0: (2.3)In the dimensionless form, the Beltrami �owe1(z) = 0B� sin zos z0 1CAis a solution for the Euler equation�(rotu)�t � rot[u� rotu℄ = 0 ;divu = 0 (2.4)beause, obviously,rot e1(z) = e1(z);i. e., e1(z) is the eigenvetor of the url operator withthe eigenvalue 1. It is also obvious thatg1(z; t) = Ae�t=R e1(z)is a solution of fore-free Navier�Stokes equation (2.3)(the so-alled Trkal solution).In fat,em(z) = 0B� sinmzosmz0 1CA ; m = 0;�1;�2 : : : ;

is an eigenvetor of the url operator with the eigen-value m, andgm(z; t) = A exp��m2tR � em (z)is a solution of fore-free Navier�Stokes equation (2.3).On the other hand, it an be easily seen that the sameholds for the vetors hm de�ned ashm(z) = 0B� osmz� sinmz0 1CA ; m = 0;�1;�2 : : : ;i. e., rothm(z) = mhm(z);and �m = A exp(�m2t=R)hm(z) is a solution ofEq. (2.3). Obviously,[em(z)� en(z)℄ = 0B� 00sin(m� n)z 1CA ;[hm(z)� hn(z)℄ = 0B� 00sin(m� n)z 1CA ;[hm(z)� en(z)℄ = 0B� 00os(m� n)z 1CA : (2.5)
Clearly, em(z) and hm(z) are orthogonal. Follo-wing Ref. [29℄, we all them the dual Beltrami �ows.There are no other linearly independent eigenvetorsof the url operator with the eigenvalue m, whih areanisotropi in z.We onsider 2�-periodi three-dimensional vetor�elds with zero divergene, whih are anisotropi in z(i. e., depend only on z). Then the vetors1p2�fem(z)g; 1p2� fhm(z)g ; and 1p2� 0B� 001 1CAform an orthogonal basis in the spae of square-integrable vetor funtions of z on [0; 2�℄. If we seek ananisotropi solution of (2.3) as a �nite linear ombina-tion of fem(z)g and fhm(z)g, then, due to Eq. (2.2),the only possible �nite linear ombinations areu = 0em(z) + 1hm(z) +0B� 00Æ 1CA ; (2.6)1286



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Sale-invariant streamline equations : : :where 0, 1, and Æ are some funtions of time t. Thisfollows from the fat that for a given m, the vetorsem(z), hm(z), and 0B� 001 1CA form a losed set with re-spet to the ross-produt operation:[em � hm℄ = 0B� 001 1CA ; 264em(z)�0B� 001 1CA375 = hm;264hm �0B� 001 1CA375 = �em:Indeed, if u = � em + �en, then beause(g � r)f = 12frot[g � f ℄ + grad(g ; f)� f divg++ g div f � [f � rotg℄� [g � rot f ℄g;where (g; f) is the salar produt, it follows fromEqs. (2.5) that(u � r)u = (n�m)��[em � en℄ == (n�m)��0B� 00sin(n�m)z 1CA :Hene, new terms with new spae frequenies appear inEq. (2.2) and u annot be a solution of (2.2) if n 6= m.We all (2.6) the Beltrami triplet. Beause the disus-sion in what follows is entirely valid for any integer m,we set m = 1 from now on. Substitution of (2.6) into(2.3) yields�1�t h1 + �0�t e1(z) + Æ0h1(z)� Æ1e1(z) == �0R e1(z)� 1R h1(z):Hene, �0�t = Æ1 � 0R ;�1�t = �Æ0 � 1R : (2.7)It then follows that12 ��t(20 + 21) = �20 + 21Ror 20 + 21 = C20e�2t=R; C20 = 20(0) + 21(0);

and therefore 0 = C0e�t=R os�(t);1 = C0e�t=R sin�(t): (2.8)Substitution of (2.8) into (2.7) yields� sin����t = Æ sin�� 1R os�;os����t = �Æ os�� 1R sin�:Multiplying the �rst equation by sin� and the seondby � os� and adding them, we obtain����t = Æ:Hene, the Beltrami triplet an be presented asu0 = C0e�t=R os�(t)0B� sin zos z0 1CA++ C0e�t=R sin�(t)0B� os zsin z0 1CA+0B� 00���=�t 1CA == 0B� C0e�t=R sin(z + �(t))C0e�t=R os(z + �(t))���=�t 1CA : (2.9)The streamline equations are_x = C0e�t=R sin(z + �(t));_y = C0e�t=R os(z + �(t));d(z + �)dt = 0: (2.10)Thus, if the interation of two dual plane Beltrami�ows yields the time-dependent phase �(t), it alsoyields the upward �ow, depending only on �(t). Inother words, the �ow beomes three-dimensional onlyif the oe�ients in (2.6) are not onstant. The ve-tors u0 and rot u0 are not ollinear and the angle be-tween them is not small. However, �(t) is an arbitraryfuntion of time beause of the axial symmetry. Toeliminate this inde�nite state, we have to break thesymmetry.3. THE SCALING PROCEDUREWe deviate slightly from the strit anisotropy. Wesuppose that C0, �, and Æ (and hene u) in (2.9)1287



A. Libin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012�slowly� depend on x and y, and we extend this salingto time: �(t)! �("x; "y; "t); 1R < " < 1;where " is a small parameter; we �quenh�e�t=R = e��="R = b0 � 1for times under onsideration (t � 1="). Similarly, weregard 0 and 1 as funtions of "x, "y, and "t. Hene,C20 = 20(0) + 21(0)! 20("x; "y; 0)+ 21("x; "y; 0) == C20 ("x; "y):We assume that all the funtions of the new �slow� vari-ables � = "x � ��x ! " ���� ;� = "y � ��y ! " ���� ;� = "t � ��t ! " ��� � ;are periodi in spae. We are therefore dealing with�long-wave perturbations� of a �nite-amplitude Trkal�utuation g1(z; t) = Ae�t=R e1(z);whih is a solution for the fore-free Navier�Stokesequations.We seek the perturbed solutions in form (2.9). Wesupplement 0 and 1 as0(t)! A+ 0("x; "y; "t) = A+ 0(�; �; �);1(t)! 1("x; "y; "t) = 1(�; �; �);C20 (0)! C20 (�; �) = (0(�; �; 0) +A)2 + 21(�; �; 0):The oe�ients 0(t) and 1(t) in (2.6) then beomelong-wavelength amplitude modulation fators (in xand in y) for e1(z) and h1(z):u0 ! u0 + "Æ1 = (A+ 0(�; �; �))e1(z) ++ 1(�; �; �)h1(z) + "0BBBB� 00���(�; �; �)��
1CCCCA : (3.1)

In fat, we have already obtained another form of (2.9)for the saled Beltrami triplet:u0 + "Æ1 = 0B� C0(�; �) sin(z + �(�; �; �))C0(�; �) os(z + �(�; �; �))0 1CA++ "0BBBB� 00�����
1CCCCA ; (3.2)where C20 (�; �) = (A+0(�; �; 0))2+21(�; �; 0) is deter-mined by the initial onditions for 0 and 1, i. e., bythe initial small long-wavelength (�noise�) modulationsof e1(z) and h1(z) amplitudes. Beause the angle be-tween u0 and rot u0 is small and almost proportionalto ", these vetors are nearly ollinear. The resaledequation (2.3)" ��� rot u(�; �; �) + rot[rotu� u℄ = 1R�(rot u);where rotu(�; �; z; �) = rotz u+ " rot�� u;�u = �2u�z2 + "2��2u��2 + �2u��2 � ;i. e., the equationrotz [rotz u� u℄ ++"��(rotz u)�� +rot��[rotz u� u℄+ rotz[rot�� u� u℄ �� 1R �2(rot�� u)�z2 �+"2��(rot�� u)�� � 1R���(rotz u)��� "3R���(rot�� u) = 1R �2(rot�� u)�z2 (3.3)was investigated in Ref. [27℄ via an asymptoti expan-sion of the solution in powers of ",u(�; �; z; �) = u0(�; �; z; �) + "u1(�; �; z; �) ++ "2u2(�; �; z; �) + : : :Sine the term (1=R)�2(rotz u)=�z2 in Eq. (3.3)should be of some order in powers of ", we have"k = 1R for some integer k:Hene, we onsider the asymptoti behavior of u withR as a large parameter. In these terms, the inom-pressibility ondition divu = 0 beomesdivz u+ " div�� u = 0;1288



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Sale-invariant streamline equations : : :i. e., divz uk+1 = � div�� uk:Hene, ��z (uk+1)z = ���(uk)��� + �(uk)��� � :For k = 0, it follows from (3.2) that�(u1)z�z = ���C0�� � C0 ����� sin(z + �)����C0�� + C0 ����� os(z + �);i. e.,(u1)z = ��C0�� � C0 ����� os(z + �) ����C0�� + C0 ����� sin(z + �) + Æ1(�; �; �):We note that due to the last equation(u1)z = (rot�� u0(�; �; z; �))z + Æ1: (3.4)However, it also follows from (3.2) thatÆ1 = ����� : (3.5)We seek other terms of the asymptoti expansion inthe same form as u1 in (3.4):uk(�; �; z; �) = wk(�; �; z; �) ++ rot�� wk�1 + Æk(�; �; �); (3.6)wherewk = (k)0 (�; �; �)e1(z) + (k)1 (�; �; �)h1(z);i. e., rotzwk = wk;Æk = 0B� 00Æk(�; �; �) 1CA :As is proved in Ref. [27℄, if we seek the terms of theasymptoti expansion in form (3.6), then k = 2 and" = R1=2 :

4. SCALE-INVARIANT STREAMLINEEQUATIONSNow, due to (3.2) and (3.4), we an write the equa-tions for large-sale streamlines:( _� = C0(�; �) sin(z + �(�; �; �));_� = C0(�; �) os(z + �(�; �; �)); (4.1)anddzd� = ��C0�� � C0 ����� os(z + �)����C0�� + C0 ����� sin(z + �)� ��(�; �; �)�t :However, due to (4.1),d�d� = ���� _� + ���� _� + ���� == C0 ���� sin(z + �) + C0 ���� os(z + �) + ���� ;whened(z + �)d� = �C0�� os(z + �)� �C0�� sin(z + �) : (4.2)Streamline equations (4.1) and (4.2) are atuallythe saled equations (2.10). Equations (4.1) are identi-al to the �rst and seond equations in system (2.10).We impose the requirement of saling invariane on thestreamline equations. Hene, we onsider the stream-lines (��(�); ��(�); �z(�)) satisfying Eqs. (4.1) and theequation d(�z(�) + �(��(�); ��(�); �))d� � 0: (4.3)We all these streamlines �quasi-stationary trajeto-ries�. Due to (4.2), we then havetg(�z + �(��; ��; �)) = �C0=���C0=�� : (4.4)Thensin(�z + �(��; ��; �)) = �C0=��s��C0�� �2 +��C0�� �2 ;os(�z + �(��; ��; �)) = �C0=��s��C0�� �2 +��C0�� �2 ;1289



A. Libin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012and we an rewrite (4.1) for the quasi-stationary tra-jetories (��(�); ��(�); �z(�)),_�� = C0�C0=��s��C0�� �2 +��C0�� �2 ;_�� = C0�C0=��s��C0�� �2 +��C0�� �2 ; (4.5)or, in the vetor form,_�� = C0 ��� gradC0 ���jgradC0 ��� j ; (4.6)where � =  ��(�)��(�) ! :Thus, the hange of variables (�saling�) and therequirement of the saling invariane enabled the sep-aration of �slow�(�; �) and �fast� z variables for thequasi-stationary equations. Hene, (4.6) states thatthe tangent vetor to the quasistationary trajetory(��(�); ��(�)) is ollinear to the gradient vetor of thefuntion C0(�; �):gradC0(��; ��) = 0BB� �C0���C0�� 1CCA ;and the integral lines of the gradient vetor �eld for thefuntionC0(�; �) = h(Ab0 + 0(�; �))2+21(�; �)i1=2might be regarded as �large-sale strutures�, where0(�; �) and 1(�; �) are the initial small longwave am-plitude modulations (�noise�) of the dual Beltrami �owse1(z) = 0B� sin zos z0 1CA ; h1(z) = 0B� os z� sin z0 1CA ;and the projetion of the �quasistationary� stream-line onto the (�; �) plane is an integral line of thegrad C0(�; �) vetor �eld.It is well known (and an be easily demonstrated[27℄) that the integral lines of a gradient �eld onnetthe �stationary points� where the gradient of C0(�; �)vanishes:

j gradC0(��; ��) j = 0:As is proved in Ref. [27℄, the streamline projetion ofany perturbation of a quasistationary solution onto the�� plane is a urve asymptotially approahing a �limiturve� de�ned by the equations for the quasistationarystreamlines. Thus, �large sale strutures� are formedfrom these stable (t � 1=") urves in the xy plane.Hene, the question of the streamline behavior underlong-wavelength perturbations of the Trkal solution forthe fore-free Navier�Stokes equation is redued to thedetermination of gradient lines for the funtionC0(�; �) = h(Ab0 + 0(�; �))2 + 21(�; �)i1=2 :The stationary points of C0(�; �) are either points ofmaximum (�soures�) or minimum values (�sinks�) orsaddle points.Eah trajetory starts at some maximal point andends at some minimal point. The saddle point has oneinoming and one outgoing trajetory, the separatries.The plane domain is thus partitioned by the separa-tries into invariant subdomains ontaining the traje-tories (plane streamlines) that onnet one maximumritial point with one minimum ritial point, whilethere are no other ritial points inside these subdo-mains, i. e., the trajetories inside the subdomains arehomotopi. The assumption of the �long-wavelengthperturbation� means that 0(�; �) and 1 (�; �) are two-periodi funtions in the �� plane. Therefore, 0(�; �)and 1(�; �) are �nite trigonometri polynomials in twovariables, beause all spatial frequenies otherwise par-tiipate in any Fourier representation of these funtionsand the onept of the �long-wavelength perturbation�has no meaning.We restrit ourselves to the ase where only the �rstharmonis are present in these trigonometri polyno-mials. The ase of periodi boundary onditions wasinvestigated by Arnold [30℄, who wrote these funtionsin the form�0(�; �) = a os � + b sin � +  os � + d sin � ++ p os(� + �) + q sin(� + �)and proved that they have six stationary points andallow two di�erent topologial pitures (with respetto the di�eomorphism group of the torus) for the levellines. These two pitures (and onsequently the gra-dient line pitures) are determined by the struture ofthe six stationary points:one maximum point, three saddle points, and twominimum points;1290



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Sale-invariant streamline equations : : :two maximum points, three saddle points and oneminimum point.It an be easily seen that the plane is divided into�urved polygons�, the stationary points are the poly-gon verties, and the polygon sides are the separatri-es, the gradient lines that separate subsets of homo-topi gradient lines. Eah polygon is an invariant setunder the gradient �ow. This unveils the 3D pitureof a streamline-vortex tube, whih is in fat a �urvedupright prism� with vertial edges growing from thestationary points, based on the plane �urved polygon�made by the separatries.5. EXPLICIT TIME DEPENDENCE AND THEEMERGENCE OF THE UPWARD FLOWTo eluidate the 3D behavior of quasistationary tra-jetories, we have to �nd other terms of the asymptotiexpansion�u(�; �; z; �) = u0(�; �; z; �) + "u1 + "2u2 + : : : ;divu = 0: (5.1)We seek other terms in the same form as u1 in (3.4).For quasistationary trajetory (4.3), we have�z(�) = 0(�0; �0; �0)� �(��(�); ��(�); �);�0 = ��(�0); �0 = ��(�0); (5.2)i. e., we must �nd �(�; �; �). As is proved in Ref. [27℄,�(�; �; �) satis�es the equation�2���2 = �C20 (�; �)2 ������ C0��C0�� ���� + �C0�� ����� (5.3)with the initial onditions�(�; �; 0) = artg 1(�; �; 0)0(�; �; 0) +A;��� �(x; y; 0) = Æ0(�; �):Thus, we have a Cauhy problem (with periodi bound-ary onditions) for an ellipti partial di�erential equa-tion, whih is a lassi example of an �ill-posed prob-lem�, i. e., the ase of instability in time of the phase�(�; �; �) as well as of the upward veloity. Beause(5.3) was derived without involvement of the visousterms, we are dealing with the Eulerian instability ofthe phase. The negative sign before the Laplaianin (5.3) is usually onsidered as a manifestation of the

so-alled �negative visosity� [20; 24; 25℄ at times � � 1,(t � 1="). In the ase where the initial upward �ow isabsent, �(�; �; �) is nontrivial only if the initial long-wavelength amplitude modulation 1(�; �; 0) = 1(�; �)of the dual �ow is nonvanishing, i. e., the expliit timedependene of the �ow and the emergene of the up-ward �ow, whih makes the �ow essentially three di-mensional, are due to the initial spatial gradient of theseond oe�ient in (3.1). As a result, we have foundz(t) in (5.2).In fat, we an speak about the �pseudo haoti�behavior of z(t), due to (5.3), as opposed to sta-ble strutures de�ned by (4.6). The same funtionC0(�; �) determines (4.6) as well as (5.2), i. e., orderand �pseudo haos� emerge from the same ause: smalllong-wavelength amplitude modulation in the �� planeof a pair of dual anisotropi Beltrami �ows [11℄.This is beause the initial onditions in (5.3) involvethe funtion C0(�; �) that ours as the oe�ient atthe highest-order derivative, and hene a small varia-tion in the initial onditions an ause a large variationof the solution (in fat, this is the so-alled �Hadamardexample� of instability with respet to initial onditionsof the Cauhy problem for ellipti equations) as well asa variation of C0(�; �). Thus, variation of the initialonditions in (5.3) an ause instability of the solutionand of the vertial veloity, while the solutions of (4.5)remain stable.It an be easily seen from (3.4) and (5.1) thatu� rotu = "Æ1 +O("2);where rot! " rot�� +rotz :The last term in the right-hand side ontains all thehigher-order terms in the asymptoti expansion, whilethe �rst term in the right-hand side is a vetor, whih isparallel to the z axis. Therefore, up to terms of the or-der of "2, both veloity and vortiity vetors belong tothe tangent plane of a vertial surfae, whih ontainsa urve in the xy plane, determined by Eqs. (4.5). Thisis true even when the �rst term in the right-hand sideof the last equation is not small, i. e., when the veloityand vortiity ease to be almost ollinear. This sur-fae an therefore be onsidered a �streamline sheet�as well as a �vortex sheet�. Streamline sheets, whihontain homotopi quasistationary trajetories of thesame subdomain in the xy plane, onneting two �xedstationary points, form invariant 3D domains alled�streamline tubes�. Clearly, up to terms of the orderof "2, �streamline tubes� are at the same time �vortex1291



A. Libin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012tubes�. These streamline�vortex tubes are stable attimes � � 1; (t � 1=").Hene, R1=2 is the harateristi size of the invari-ant domains in the xy plane or the harateristi �di-ameter� of the 3D invariant streamline�vortex tubes.For times t � R1=2, the phase �(�; �; �) between twodual Beltrami �ows satis�es Eq. (5.3) with a negativeLaplaian in the right-hand side, i. e., the large salevisosity beomes negative, while the upward veloitybeomes unstable. In fat, the upward veloity wouldderease at times t / R2 [26, 27℄.6. SINGULARITY OF VORTICITY ATSTATIONARY POINTS AND STRINGS OFSINGULAR VORTICITYDue to (4.1) and (3.6), the quasistationary veloity�eld an be onsidered asu = C0(��) grad C0(��)jgrad C0(��)j+ 1pR �Æ(��; �)+ 1pR w1; (6.1)where, as was demonstrated in Ref. [27℄,w1 = ���~~C(��; ��; �)���0B� sin(z+�(��; ��; �)+~�0(��; ��))os(z+�(��; ��; �)+~�0(��; ��))0 1CA =
= ���~~C(��; ��; �)�����gradC0(��; ��)�� 0BBBBBB� �C0�� os ~�0 + �C0�� sin ~�0�C0�� os ~�0 � �C0�� sin ~�00

1CCCCCCA =
= ���~~C(��; ��; �)�����gradC0(��; ��)�� (os ~�0 gradC0 + sin ~�0 ngradC0);and ngradC0 = 0BB� �C0�� ;��C0�� 1CCAis a vetor normal to grad C0. In Eq. (6.1),� =  ���� ! ;C20 (��) = (A+ 0(��))2 + 21(��);�Æ(��; �) = 0B� 00�Æ1 ���; �� 1CA ;

�Æ1 = �d�d� = � C0jgradC0j ��C0�� ���� + �C0�� ������� ���� = �C0 � (gradC0; grad�)jgradC0j � ���� :We want to �nd the behavior ofrotu = 1pR rot�� �C0 gradC0jgradC0j��� 1R rot�� �Æ1(�; �; �) + 1R rot�� w1in the neighborhood of a stationary point (�0; �0) of thefuntion C0(�; �):�C0�� (� = �0; � = �0) = �C0�� (� = �0; � = �0) = 0:ThenC0(�; �) = C0(�0; �0) + 12(B ~�; ~�) + : : : ; (6.2)where ~� =  � � �0� � �0 ! =  ~�~� !and B is the Hessian of the funtion C0(�; �) at (�0; �0):B =  a bb  ! ; a = �2C0��2 (�0; �0);b = �2C0���� (�0; �0);  = �2C0��2 (�0; �0);while the trunated terms are of the order of O(�3),�2 = ~�2 + ~�2:Therefore, gradC0(~�; ~�) = B ~� + : : : (6.3)and ���gradC0(~�)��� = j B ~� j+ : : : (6.4)Beause rot(f �G) = f � rot G+ [gradf �G℄and grad 1���B ~���� = � B2 ~����B ~����3 ;1292



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Sale-invariant streamline equations : : :after some transformations, we obtain1pR rot�� C0 gradC0jgradC0j == �2C0pR hB2 ~��B ~�i���B ~����3 + : : : (6.5)Beause B is a symmetri matrix, we an onsider theright-hand side of (6.5) in the eigenbasis with the o-ordinates (~~�; ~~�):[B2 ~��B ~�℄���B ~����3 = �1�2(�1 � �2)~~� ~~�(�21~~�2 + �22~~�2)3=2 0B� 001 1CA == �1�2(�1 � �2) sin2 '~~�(�21 os2 '+ �22 sin2 ')3=2 0B� 001 1CA ;where~~�2 = ~~�2 + ~~�2 = ~�2 + ~�2 = ~�2 == (� � �0)2 + (� � �0)2 = 1R ((x� x0)2 + (y � y0)2) == r2R ; ~~� = ~~� os'; ~~� = ~~� sin':Hene,j(rot u)z j � 4C0(x0; y0)pR �1�2 ��(�1��2) sin2 '��(�21+�22+(�21��22) sin2 ')�� pRr = K(')C0 jdetBj3=2r :In the same way, we an prove that the upward ve-tor12 rotw1 = 12 rot�� ���~~C(��; ��; �)���jgradC0j �� (os ~�0gradC0 + sin ~�0 ngradC0)has singularities of the same type at the stationarypoints, i. e., the upward omponent of the vortiity hasa singularity of the K=r type at eah stationary point(�0; �0) of the funtionC0(�; �) = C0� xpR; ypR� ;where r = p(x� x0)2 + (y � y0)2 and K is indepen-dent of the Reynolds number R beause we derived the

zeroth term in the asymptoti expansion of the largesale vortiity in powers of " = R�1=2.To assess the ��-plane omponent of the vortiity(1=R) rot�� �Æ1(~�; ~�; �), we have to investigate the be-havior of �Æ1(�; �; �) in the viinity of the stationarypoint. Aording to (5.3), �(�; �; �) is a solution ofthe Cauhy problem�2���2 = �C20 (�; �)2 ������C0��C0�� ���� + �C0�� ����� ;�(�; �; 0) = artg 1(�; �; 0)0(�; �; 0) +A;���� (�; �; 0) = 0; (6.6)
where 0(�; �; 0) = 0(�; �) and 1(�; �; 0) = 1(�; �)are small initial perturbations with a �nite number ofterms in the Fourier expansion. We an seek a solutionof (5.3) in the viinity of the stationary point as a seriesin powers of ~� = ���0 and ~� = ���0. Then the zerothapproximation yields�2�0��2 = �12C0(�0; �0)�~�~��0(~�; ~�; �);�0(~�; ~�; 0) = artg 1(~�; ~�)0(~�; ~�) +A == artg �" ~1(~�; ~�)�" ~0(~�; ~�) +A = �" ~1A + : : : ; (6.7)
where �" is a small parameter (�initial noise�). Hene,the time dependene is determined by 1(�; �) (andtherefore ~1(~�; ~�)). As in Se. 6, we regard 1(�; �)(and therefore ~1(~�; ~�)) as a �nite double trigonomet-ri polynomial,~1(~�; ~�) =Xm;n�mn exp hi(m~� + n~�)i ;where m and n are bounded. Then�0(~�; ~�; �) = �"AXm;n�� exp hi(m~� + n~�)i exp"C0r �m2 + n22 �# :Thus, the growth of �0 in time is determined bymaxm;n pm2 + n2 =p �m2 + �n2 :We onsider only the fastest growing term:1293



A. Libin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012�0(~�; ~�; �) = � �m�n �"A ��Xm;n exp C0r �m2+n22 �! exp hi( �m~�+�n~�)i+ : : :Hene,��0�� =p �m2 + �n2 � �m�n �"A �� exp hi( �m~� + �n~�)i exp"C0r �m2 + �n22 �# ;grad�0 =p �m2 + �n2 � �m�n �"A �� exp hi( �m~� + �n~�)i exp"C0r �m2 + �n22 �# �m�n ! ;i. e., jgrad�0j = K exp"C0r �m2 + �n22 �# ;where C0 = C0(�0; �0). We now onsider the ��-planeomponent of the vortiity:1R rot�� �Æ1 = 1R ��0BBB� ��� �C0(~�) (gradC0; grad�0)jgradC0j �+ �2�0����� ��� �C0(~�) (gradC0; grad�0)jgradC0j �� �2�0���� 1CCCA =
= 1R 0BBBBB� (B ~�; grad�0) ��� C0(~�)���B ~�����(B ~�; grad�0) ��� C0(~�)���B ~���� 1CCCCCA+ : : : ;where the trunated terms are bounded funtions of ~�and ~� for any given � . It an be easily heked that0BBB� �C0(~�)����C0(~�)�� 1CCCA = ~B ~� + : : : ;where ~B =  b �a �b !, and heneB ~B =  0 a� b2b2 � a 0 ! = detB 0 1�1 0 ! :

Thus, it an be easily seen that0BBBBB� ��� C0(~�)���B ~����� ��� C0(~�)���B ~����
1CCCCCA = �C(�0) detB ~��~� !���B ~����3 + : : : ;where the trunated terms are bounded for a given � ,and �0 =  �0�0 !. It an be demonstrated that���� 1R rot�� �Æ1���� = 1R ����B ~�; grad�0������ �����������0BBBBB� ��� C0(~�)���B ~����� ��� C0(~�)���B ~���� 1CCCCCA����������� == exp"C0r �m2 + �n22 tpR#pRr K1( ) detB;where  is the angle between e1 = B ~�=���B ~���� and e2 == grad�0=jgrad�0j.Thus, in the original (�fast�) variables, the ampli-tude of the vortiity-plane omponent in the viinity ofthe stationary point (x0; y0) isK1( )C0 � x0pR; y0pR� detB exp"C0r �m2 + �n22R t#rpRwhere r =p(x� x0)2 + (y � y0)2:Therefore, the vertial line x = x0, y = y0 is a �string�,while the vortiity line rotates around it. Hene, verti-al edges of the large-sale streamline�vortiity prismare the strings of singular vortiity.7. CONCLUSIONS: EXPLICIT TIMEDEPENDENCE ANDTHREE-DIMENSIONALITY JOINTLYEMERGING FROM THE ENERGY DENSITYGRADIENTWe onsider the Beltrami triplet with variable o-e�ients (2.9) as the soure of the emergene of large-sale streamline tubes for large values of the Reynolds1294



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Sale-invariant streamline equations : : :number R. Although (2.9) learly indiates the pos-sibility of an upward �ow, indued by the presene ofthe dual Trkal �ows with time-dependent amplitudes,there is no inherent lue to an equation for the phase.In (2.9), the absolute value of the veloity in the xyplane is onstant. The breakthrough omes by varia-tion of C0 in the xy plane: it is now supposed to bea bounded smooth funtion of x and y with a smallgradient. Suh a funtion has maximum and minimumpoints. These are the points of the maximum and min-imum values of the plane veloity. The liquid �owsfrom the points of the maximal veloity to the pointsof the minimal veloity, i. e., the liquid �ows along thegradient lines of the funtion. The distane betweenthese points is determined by the ratio of the veloityhange between maximum and minimum values, andthe average value of the gradient of the funtion. Sinethe �rst number is �nite, while the gradient is small,the distane between maximum and minimum pointsis large. This is how the plane large-sale streamlinesemerge.The emergene of an unstable upward �ow (whih istied to the phase �(�; �; �) between the oupled Trkal�ows), i. e., the appearane of the �twins� � the ex-pliit time dependene and three-dimensionality of the�ow, is indued by a small gradient variation (i. e.,by �long-wavelength perturbation�) of C0 (in fat, of1(�; �; 0) = 1(�; �) ) in the xy plane. It might beseen as a manifestation of the �hydrodynami instabil-ity�, whih in this ase is atually the �Eulerian phaseinstability�. The equation for the phase between twodual Trkal �ows, whih beomes a funtion of x andy, might be dedued through a rigorous proedure forthe asymptoti expansion of the perturbed solution ofthe fore-free Navier�Stokes equation. It turns outthat the only possible value of the expansion param-eter of the asymptoti expansion onsistent with termsof type (5.2) equals R1=2.Hene, the inverse of the �average� gradient of thefuntion C0, and the distane between maximum andminimum points in the xy plane are lose to R1=2, as isthe harateristi size of the area in the xy plane. Thus,in the ase of an anisotropi helial solution for thefore-free Navier�Stokes equation at a large Reynoldsnumber R, the initial oupling of large-sale amplitude-modulated dual pair of Trkal (Beltrami) �ows togetherwith the orthogonal onstant veloity vetor form atriplet, whih is transformed by a long-wavelength per-turbation into a large-sale streamline tube, the planestreamlines being stable at times of the order of R1=2.These streamlines, whih are gradient lines of the en-ergy density in the orthogonal plane to the anisotropy

diretion, an be regarded as large-sale strutures withthe typial size R1=2. The gradient lines onnet the�stationary points�, where the energy density gradientvanishes. The streamlines inside the domains that donot ontain �stationary points� are homotopi. The do-mains of homotopi plane streamlines are bounded bythe �separatries� determining both invariant subsets ofthe plane �ow (invariant under the �ow of the liquid)and the invariant 3D polygon prisms (�tubes�); the lat-ter are also invariant under veloity and vortiity �eld�ows and are typially haraterized by the asymptotiollinearity of the veloity and vortiity vetors. Theomponent of the 3D large-sale veloity that is par-allel to the anisotropy diretion is tied to the phase�(�; �; �) between oupled Trkal �ows and an be ob-tained diretly as a solution of the Cauhy problem foran ellipti-type equation (the typial ase of an ill-posedproblem) whose oe�ients are determined by the ini-tial onditions. This veloity omponent outlives theinitial Trkal �ow and vanishes at times of the order oft / R2.If we all the initial Trkal �ow with a �nite ampli-tude A the dominant mode, then the amplitude long-wavelength modulation of the dominant mode 0(�; �)is responsible for the emergene of the gradient line pi-ture, while the long-wavelength amplitude modulation1 (�; �) of the dual mode is responsible for the unstableupward �ow, i. e., for the emergene of the �twins� �the expliit time dependene and three-dimensionalityof the seondary �ow. Thus, the large-sale streamline�vortex tubes are metastable oherent strutures. Al-though the stationary points inside streamline�vortextubes are singular points of vortiity, the vortiitylines remain inside the tube, while rotating around the�strings� � vertial lines of singularity that are growingfrom the stationary points in the xy plane.REFERENCES1. E. Levih and A. Tsinober, Phys. Lett. A 93, 293(1983).2. E. Levih and E. Tzvetkov, Phys. Lett. A 100, 53(1984).3. E. Levih, Conepts of Phys. VI, 239 (2009).4. A. Tsinober and E. Levih, Phys. Lett. A 99, 321(1983).5. H. K. Mo�att, J. Fluid Meh. 159, 359 (1985).6. H. K. Mo�att, J. Fluid Meh. 166, 359 (1986).1295
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