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SCALE-INVARIANT STREAMLINE EQUATIONS AND STRINGSOF SINGULAR VORTICITY FOR PERTURBED ANISOTROPICSOLUTIONS OF THE NAVIER�STOKES EQUATIONA. Libin *Nets
reens Ltd., Hertzlia, IsraelRe
eived May 23, 2012A linear 
ombination of a pair of dual anisotropi
 de
aying Beltrami �ows with spatially 
onstant amplitudes(the Trkal solutions) with the same eigenvalue of the 
url operator and of a 
onstant velo
ity orthogonal ve
torto the Beltrami pair yields a triplet solution of the for
e-free Navier�Stokes equation. The amplitudes slightlyvariable in spa
e (large s
ale perturbations) yield the emergen
e of a time-dependent phase between the dualBeltrami �ows and of the upward velo
ity, whi
h are unstable at large values of the Reynolds number. Theyalso lead to the formation of large-s
ale 
urved prisms of streamlines with edges being the strings of singularvorti
ity. 1. INTRODUCTIONThe importan
e of 
oherent stru
tures in a turbu-lent �ow is undoubted. Nevertheless, the pro
ess oftheir appearan
e remains un
lear. In fa
t, the theoryof turbulen
e evolved in the opposite dire
tion dur-ing many years. Due to the seminal 1941 paper byKolmogorov, the emphasis was on statisti
al 
on
eptsof �
haotization� of turbulent �ows, while the initial3D Navier�Stokes equations remained in the shadows.The 
on
ept that Beltrami-type �ows are predominantin a developed turbulent �ow was initially proposedby Levi
h and 
oauthors [1�4℄ and by Mo�att [5�7℄.Although Beltrami �ows (anisotropi
 ve
tor eigenfun
-tions of the 
url operator) are stationary solutions ofthe Euler equations 
ontaining no vis
osity terms, themodi�ed Beltrami �ows with their de
ay in a vis
ous�uid, in the absen
e of external for
es (solutions of the�for
e-free Navier�Stokes equations�), were found in [8℄as early as 1918.The emergen
e of domains of heli
al Beltrami-type�ows 
hara
terized by the 
ollinearity of the velo
ityand vorti
ity ve
tors is 
urrently �rmly established ingeophysi
al observations and numeri
al simulations ofthe Navier�Stokes equations [9�19℄. The fa
t of for-mation of large-s
ale Beltrami-like heli
al stru
turesin tornadoes, tropi
al storms, 
loud streets, et
., is�rmly established by 
limate observations [20℄. There-*E-mail: a�libin�netvision.net.il

fore, we here assume the existen
e of Beltrami-type�u
tuations. To build a mathemati
al model of theemergen
e of the 
oherent stru
tures, we use the ideaand te
hnique proposed by Sivashinsky [21℄, who re-garded a large-s
ale stru
tures as a manifestation of along-wavelength instability of spatially periodi
 solu-tions of the Navier�Stokes equations. This approa
hwas used in [22�25℄ to study mostly the instability ofthe linearized 2D Navier�Stokes equations, sometimesusing Galerkin approximations, whi
h 
ould possiblyde
rease the validity of the obtained analyti
 result.The 2D nonlinear equations have been investigated for�nite values of the Reynolds numbers R, when the ma-jor phenomena are related to the trespassing of the so-
alled 
riti
al value R0 of the Reynolds number [21℄,whereas 
oherent stru
tures appear only at large val-ues of R. In Ref. [26℄, the linear stability of the nonsta-tionary Trkal solution [8℄ for the for
e-free 2D Navier�Stokes equations and the stationary Beltrami solutionfor the for
ed equations for large values of the Reynoldsnumber R was studied. Although the linearized for
ed2D Navier�Stokes equations with the Beltrami externalfor
e are unstable under perturbations with the wave-length L proportional to R, it was established that non-stationary solutions of the linearized for
e-free Navier�Stokes equations 
an be unstable under perturbationswith an intermediate large wavelength L that is lessthan R; in this 
ase, the order of the quantity L re-mains unexplained.1284
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ale-invariant streamline equations : : :In Ref. [27℄, a nonlinear asymptoti
 analysis of long-wavelength perturbations of the Trkal solution for thefor
e-free 3D Navier�Stokes equation at large Reynoldsnumbers R was performed and an asymptoti
 solution
onsisting of Beltrami-type �ows and terms asso
iatedwith them was e�e
tively 
onstru
ted. It turned outthat the asymptoti
 pro
edure 
an be implemented inthat 
ase only for a single value of the s
aling parame-ter equal to R1=2, just as the redu
tion of the 
oupling
onstant in the nonlinear term in renormalized pertur-bation expansions by R1=2, as done by Levi
h. This re-du
tion stems from the assumption that Beltrami �u
-tuations dominate in a developed turbulent �ow [3℄.This allows writing equations for plane streamlines thatin the quasistationary 
ase turn out to be gradient linesof a fun
tion of two variables determined by the initial
onditions (a
tually, the energy density); due to theemerging upward �ow, the resulting 3D streamlines, aswell as the vorti
ity lines, form 3D tubes invariant un-der �ow that 
an be regarded as large-s
ale stru
tures.Mo�att envisaged su
h pi
tures for the solutions of theEuler equations [28℄.As is expli
itly demonstrated here, the 
ru
ial pointof the whole analysis is the 
oupling of two large-s
ale amplitude-modulated anisotropi
 Beltrami �owswith the same eigenvalue of the 
url operator (�dualanisotropi
 Beltrami �ows�). Together with a 
on-stant ve
tor orthogonal to the pair of dual Beltrami�ows, linear 
ombinations of the three ve
tors form so-lutions of the for
e-free Navier�Stokes equation, whi
hwe 
all triplets. No other �nite linear 
ombination oflinearly independent anisotropi
 Beltrami �ows yieldsa solution of the Euler equations. The same is truefor the 
orresponding Trkal solutions of the for
e-freeNavier�Stokes equations. The 
oupling of two dual�plane� anisotropi
 Beltrami �ows with 
onstant ampli-tudes yields stationary geometry of streamlines. Spa-tially variable amplitudes yield the emergen
e of a timedepending phase between them, whi
h is unstable attimes of the order of R1=2. This time-dependent phaseyields an upward velo
ity and brings the formationof triplets transformed at large Reynolds numbers un-der long-wavelength amplitude perturbation into large-s
ale streamline tubes. At the initial stage at least, thevorti
ity and the velo
ity �elds are 
ollinear inside thesetubes. These streamline tubes are vortex tubes as well.As a result, large-s
ale streamline�vortex tubes are sta-ble at times of the order of R1=2 and vanish at timest / R2, and might therefore be regarded as metastable
oherent stru
tures.The pun
h of the present endeavor lies in the 
on-vi
tion that the fundamental phenomena of �ows of the

in
ompressible liquid in 3D spa
e are tied to the inter-play between the expli
it time dependen
e and the in-ner stream geometry. This is exempli�ed by building alarge-s
ale �ow model that stems ex
lusively from the3D Navier�Stokes equations and relates to the a

u-mulated observation data as well as to the results of
omputer simulations. Many of them demonstrate theemergen
e in a �ow, right from the onset, of regularheli
al stru
tures 
hara
terized by an almost 
ompletealignment of the velo
ity and vorti
ity ve
tors as well asa built-in singularity of the vorti
ity inside streamline-vortex tubes. The proposed model demonstrates thatalthough the �ow velo
ity along the tubes is unstableat times of the order of R1=2, the streamline 3D ge-ometry remains stable almost permanently. For thispurpose, we apply Sivashinsky's method of multis
al-ing analysis [21℄ to the long wavelength perturbationsof the so-
alled Trkal �ows at large Reynolds numbers.2. EXPLICIT ANISOTROPIC SOLUTIONS OFTHE FORCE-FREE NAVIER�STOKESEQUATIONSThe Navier�Stokes equations for homogeneous in-
ompressible vis
id �uids are�u�t + (u � r)u = �1�rp+ ��u+ f ;where u is the �ow velo
ity, p is the pressure, � is thedensity, assumed to be 
onstant, � is the kinemati
 vis-
osity, and f is a body for
e.The Euler equations for the ideal liquid (� = 0) are�u�t + (u � r)u = �1�rp+ f : (2.1)The so-
alled Beltrami �owe0(z) = u00BBBB� sin zd
os zd0 1CCCCAis a solution of Euler equation (2.1), whileu0 = exp���td2� � e0 = u0 exp���td2�0BBBB� sin zd
os zd0 1CCCCAis a solution of the for
e-free (f = 0) Navier�Stokesequation, where 2�d is the 
hara
teristi
 spatial periodof the �ow and u0 is the typi
al velo
ity [8℄.1285
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onsideredin the regularized dimensionless form�u�t + (u � r)u = rp+ 1R�u+ 1R f ;divu = 0; (2.2)where R = u0d=� is the so-
alled Reynolds number.For our purposes, we prefer to apply the 
url operatorto both sides of the last equation. Due to the well-known formula(u � r)u = [rot u� u℄ + 12grad juj2 ;we obtain the so-
alled vorti
ity equation�(rotu)�t + rot[rotu� u℄ = 1R�(rotu) + 1R rot f :Be
ause we intend to investigate the solutions of thefor
e-free Navier�Stokes equation, the last equation isredu
ed to�(rotu)�t + rot[rotu� u℄ = 1R�(rotu);divu = 0: (2.3)In the dimensionless form, the Beltrami �owe1(z) = 0B� sin z
os z0 1CAis a solution for the Euler equation�(rotu)�t � rot[u� rotu℄ = 0 ;divu = 0 (2.4)be
ause, obviously,rot e1(z) = e1(z);i. e., e1(z) is the eigenve
tor of the 
url operator withthe eigenvalue 1. It is also obvious thatg1(z; t) = Ae�t=R e1(z)is a solution of for
e-free Navier�Stokes equation (2.3)(the so-
alled Trkal solution).In fa
t,em(z) = 0B� sinmz
osmz0 1CA ; m = 0;�1;�2 : : : ;

is an eigenve
tor of the 
url operator with the eigen-value m, andgm(z; t) = A exp��m2tR � em (z)is a solution of for
e-free Navier�Stokes equation (2.3).On the other hand, it 
an be easily seen that the sameholds for the ve
tors hm de�ned ashm(z) = 0B� 
osmz� sinmz0 1CA ; m = 0;�1;�2 : : : ;i. e., rothm(z) = mhm(z);and �m = A exp(�m2t=R)hm(z) is a solution ofEq. (2.3). Obviously,[em(z)� en(z)℄ = 0B� 00sin(m� n)z 1CA ;[hm(z)� hn(z)℄ = 0B� 00sin(m� n)z 1CA ;[hm(z)� en(z)℄ = 0B� 00
os(m� n)z 1CA : (2.5)
Clearly, em(z) and hm(z) are orthogonal. Follo-wing Ref. [29℄, we 
all them the dual Beltrami �ows.There are no other linearly independent eigenve
torsof the 
url operator with the eigenvalue m, whi
h areanisotropi
 in z.We 
onsider 2�-periodi
 three-dimensional ve
tor�elds with zero divergen
e, whi
h are anisotropi
 in z(i. e., depend only on z). Then the ve
tors1p2�fem(z)g; 1p2� fhm(z)g ; and 1p2� 0B� 001 1CAform an orthogonal basis in the spa
e of square-integrable ve
tor fun
tions of z on [0; 2�℄. If we seek ananisotropi
 solution of (2.3) as a �nite linear 
ombina-tion of fem(z)g and fhm(z)g, then, due to Eq. (2.2),the only possible �nite linear 
ombinations areu = 
0em(z) + 
1hm(z) +0B� 00Æ 1CA ; (2.6)1286
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ale-invariant streamline equations : : :where 
0, 
1, and Æ are some fun
tions of time t. Thisfollows from the fa
t that for a given m, the ve
torsem(z), hm(z), and 0B� 001 1CA form a 
losed set with re-spe
t to the 
ross-produ
t operation:[em � hm℄ = 0B� 001 1CA ; 264em(z)�0B� 001 1CA375 = hm;264hm �0B� 001 1CA375 = �em:Indeed, if u = � em + �en, then be
ause(g � r)f = 12frot[g � f ℄ + grad(g ; f)� f divg++ g div f � [f � rotg℄� [g � rot f ℄g;where (g; f) is the s
alar produ
t, it follows fromEqs. (2.5) that(u � r)u = (n�m)��[em � en℄ == (n�m)��0B� 00sin(n�m)z 1CA :Hen
e, new terms with new spa
e frequen
ies appear inEq. (2.2) and u 
annot be a solution of (2.2) if n 6= m.We 
all (2.6) the Beltrami triplet. Be
ause the dis
us-sion in what follows is entirely valid for any integer m,we set m = 1 from now on. Substitution of (2.6) into(2.3) yields�
1�t h1 + �
0�t e1(z) + Æ
0h1(z)� Æ
1e1(z) == �
0R e1(z)� 
1R h1(z):Hen
e, �
0�t = Æ
1 � 
0R ;�
1�t = �Æ
0 � 
1R : (2.7)It then follows that12 ��t(
20 + 
21) = �
20 + 
21Ror 
20 + 
21 = C20e�2t=R; C20 = 
20(0) + 
21(0);

and therefore 
0 = C0e�t=R 
os�(t);
1 = C0e�t=R sin�(t): (2.8)Substitution of (2.8) into (2.7) yields� sin����t = Æ sin�� 1R 
os�;
os����t = �Æ 
os�� 1R sin�:Multiplying the �rst equation by sin� and the se
ondby � 
os� and adding them, we obtain����t = Æ:Hen
e, the Beltrami triplet 
an be presented asu0 = C0e�t=R 
os�(t)0B� sin z
os z0 1CA++ C0e�t=R sin�(t)0B� 
os zsin z0 1CA+0B� 00���=�t 1CA == 0B� C0e�t=R sin(z + �(t))C0e�t=R 
os(z + �(t))���=�t 1CA : (2.9)The streamline equations are_x = C0e�t=R sin(z + �(t));_y = C0e�t=R 
os(z + �(t));d(z + �)dt = 0: (2.10)Thus, if the intera
tion of two dual plane Beltrami�ows yields the time-dependent phase �(t), it alsoyields the upward �ow, depending only on �(t). Inother words, the �ow be
omes three-dimensional onlyif the 
oe�
ients in (2.6) are not 
onstant. The ve
-tors u0 and rot u0 are not 
ollinear and the angle be-tween them is not small. However, �(t) is an arbitraryfun
tion of time be
ause of the axial symmetry. Toeliminate this inde�nite state, we have to break thesymmetry.3. THE SCALING PROCEDUREWe deviate slightly from the stri
t anisotropy. Wesuppose that C0, �, and Æ (and hen
e u) in (2.9)1287
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alingto time: �(t)! �("x; "y; "t); 1R < " < 1;where " is a small parameter; we �quen
h�e�t=R = e��="R = b0 � 1for times under 
onsideration (t � 1="). Similarly, weregard 
0 and 
1 as fun
tions of "x, "y, and "t. Hen
e,C20 = 
20(0) + 
21(0)! 
20("x; "y; 0)+ 
21("x; "y; 0) == C20 ("x; "y):We assume that all the fun
tions of the new �slow� vari-ables � = "x � ��x ! " ���� ;� = "y � ��y ! " ���� ;� = "t � ��t ! " ��� � ;are periodi
 in spa
e. We are therefore dealing with�long-wave perturbations� of a �nite-amplitude Trkal�u
tuation g1(z; t) = Ae�t=R e1(z);whi
h is a solution for the for
e-free Navier�Stokesequations.We seek the perturbed solutions in form (2.9). Wesupplement 
0 and 
1 as
0(t)! A+ 
0("x; "y; "t) = A+ 
0(�; �; �);
1(t)! 
1("x; "y; "t) = 
1(�; �; �);C20 (0)! C20 (�; �) = (
0(�; �; 0) +A)2 + 
21(�; �; 0):The 
oe�
ients 
0(t) and 
1(t) in (2.6) then be
omelong-wavelength amplitude modulation fa
tors (in xand in y) for e1(z) and h1(z):u0 ! u0 + "Æ1 = (A+ 
0(�; �; �))e1(z) ++ 
1(�; �; �)h1(z) + "0BBBB� 00���(�; �; �)��
1CCCCA : (3.1)

In fa
t, we have already obtained another form of (2.9)for the s
aled Beltrami triplet:u0 + "Æ1 = 0B� C0(�; �) sin(z + �(�; �; �))C0(�; �) 
os(z + �(�; �; �))0 1CA++ "0BBBB� 00�����
1CCCCA ; (3.2)where C20 (�; �) = (A+
0(�; �; 0))2+
21(�; �; 0) is deter-mined by the initial 
onditions for 
0 and 
1, i. e., bythe initial small long-wavelength (�noise�) modulationsof e1(z) and h1(z) amplitudes. Be
ause the angle be-tween u0 and rot u0 is small and almost proportionalto ", these ve
tors are nearly 
ollinear. The res
aledequation (2.3)" ��� rot u(�; �; �) + rot[rotu� u℄ = 1R�(rot u);where rotu(�; �; z; �) = rotz u+ " rot�� u;�u = �2u�z2 + "2��2u��2 + �2u��2 � ;i. e., the equationrotz [rotz u� u℄ ++"��(rotz u)�� +rot��[rotz u� u℄+ rotz[rot�� u� u℄ �� 1R �2(rot�� u)�z2 �+"2��(rot�� u)�� � 1R���(rotz u)��� "3R���(rot�� u) = 1R �2(rot�� u)�z2 (3.3)was investigated in Ref. [27℄ via an asymptoti
 expan-sion of the solution in powers of ",u(�; �; z; �) = u0(�; �; z; �) + "u1(�; �; z; �) ++ "2u2(�; �; z; �) + : : :Sin
e the term (1=R)�2(rotz u)=�z2 in Eq. (3.3)should be of some order in powers of ", we have"k = 1R for some integer k:Hen
e, we 
onsider the asymptoti
 behavior of u withR as a large parameter. In these terms, the in
om-pressibility 
ondition divu = 0 be
omesdivz u+ " div�� u = 0;1288
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ale-invariant streamline equations : : :i. e., divz uk+1 = � div�� uk:Hen
e, ��z (uk+1)z = ���(uk)��� + �(uk)��� � :For k = 0, it follows from (3.2) that�(u1)z�z = ���C0�� � C0 ����� sin(z + �)����C0�� + C0 ����� 
os(z + �);i. e.,(u1)z = ��C0�� � C0 ����� 
os(z + �) ����C0�� + C0 ����� sin(z + �) + Æ1(�; �; �):We note that due to the last equation(u1)z = (rot�� u0(�; �; z; �))z + Æ1: (3.4)However, it also follows from (3.2) thatÆ1 = ����� : (3.5)We seek other terms of the asymptoti
 expansion inthe same form as u1 in (3.4):uk(�; �; z; �) = wk(�; �; z; �) ++ rot�� wk�1 + Æk(�; �; �); (3.6)wherewk = 
(k)0 (�; �; �)e1(z) + 
(k)1 (�; �; �)h1(z);i. e., rotzwk = wk;Æk = 0B� 00Æk(�; �; �) 1CA :As is proved in Ref. [27℄, if we seek the terms of theasymptoti
 expansion in form (3.6), then k = 2 and" = R1=2 :

4. SCALE-INVARIANT STREAMLINEEQUATIONSNow, due to (3.2) and (3.4), we 
an write the equa-tions for large-s
ale streamlines:( _� = C0(�; �) sin(z + �(�; �; �));_� = C0(�; �) 
os(z + �(�; �; �)); (4.1)anddzd� = ��C0�� � C0 ����� 
os(z + �)����C0�� + C0 ����� sin(z + �)� ��(�; �; �)�t :However, due to (4.1),d�d� = ���� _� + ���� _� + ���� == C0 ���� sin(z + �) + C0 ���� 
os(z + �) + ���� ;when
ed(z + �)d� = �C0�� 
os(z + �)� �C0�� sin(z + �) : (4.2)Streamline equations (4.1) and (4.2) are a
tuallythe s
aled equations (2.10). Equations (4.1) are identi-
al to the �rst and se
ond equations in system (2.10).We impose the requirement of s
aling invarian
e on thestreamline equations. Hen
e, we 
onsider the stream-lines (��(�); ��(�); �z(�)) satisfying Eqs. (4.1) and theequation d(�z(�) + �(��(�); ��(�); �))d� � 0: (4.3)We 
all these streamlines �quasi-stationary traje
to-ries�. Due to (4.2), we then havetg(�z + �(��; ��; �)) = �C0=���C0=�� : (4.4)Thensin(�z + �(��; ��; �)) = �C0=��s��C0�� �2 +��C0�� �2 ;
os(�z + �(��; ��; �)) = �C0=��s��C0�� �2 +��C0�� �2 ;1289



A. Libin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012and we 
an rewrite (4.1) for the quasi-stationary tra-je
tories (��(�); ��(�); �z(�)),_�� = C0�C0=��s��C0�� �2 +��C0�� �2 ;_�� = C0�C0=��s��C0�� �2 +��C0�� �2 ; (4.5)or, in the ve
tor form,_�� = C0 ��� gradC0 ���jgradC0 ��� j ; (4.6)where � =  ��(�)��(�) ! :Thus, the 
hange of variables (�s
aling�) and therequirement of the s
aling invarian
e enabled the sep-aration of �slow�(�; �) and �fast� z variables for thequasi-stationary equations. Hen
e, (4.6) states thatthe tangent ve
tor to the quasistationary traje
tory(��(�); ��(�)) is 
ollinear to the gradient ve
tor of thefun
tion C0(�; �):gradC0(��; ��) = 0BB� �C0���C0�� 1CCA ;and the integral lines of the gradient ve
tor �eld for thefun
tionC0(�; �) = h(Ab0 + 
0(�; �))2+
21(�; �)i1=2might be regarded as �large-s
ale stru
tures�, where
0(�; �) and 
1(�; �) are the initial small longwave am-plitude modulations (�noise�) of the dual Beltrami �owse1(z) = 0B� sin z
os z0 1CA ; h1(z) = 0B� 
os z� sin z0 1CA ;and the proje
tion of the �quasistationary� stream-line onto the (�; �) plane is an integral line of thegrad C0(�; �) ve
tor �eld.It is well known (and 
an be easily demonstrated[27℄) that the integral lines of a gradient �eld 
onne
tthe �stationary points� where the gradient of C0(�; �)vanishes:

j gradC0(��; ��) j = 0:As is proved in Ref. [27℄, the streamline proje
tion ofany perturbation of a quasistationary solution onto the�� plane is a 
urve asymptoti
ally approa
hing a �limit
urve� de�ned by the equations for the quasistationarystreamlines. Thus, �large s
ale stru
tures� are formedfrom these stable (t � 1=") 
urves in the xy plane.Hen
e, the question of the streamline behavior underlong-wavelength perturbations of the Trkal solution forthe for
e-free Navier�Stokes equation is redu
ed to thedetermination of gradient lines for the fun
tionC0(�; �) = h(Ab0 + 
0(�; �))2 + 
21(�; �)i1=2 :The stationary points of C0(�; �) are either points ofmaximum (�sour
es�) or minimum values (�sinks�) orsaddle points.Ea
h traje
tory starts at some maximal point andends at some minimal point. The saddle point has onein
oming and one outgoing traje
tory, the separatri
es.The plane domain is thus partitioned by the separa-tri
es into invariant subdomains 
ontaining the traje
-tories (plane streamlines) that 
onne
t one maximum
riti
al point with one minimum 
riti
al point, whilethere are no other 
riti
al points inside these subdo-mains, i. e., the traje
tories inside the subdomains arehomotopi
. The assumption of the �long-wavelengthperturbation� means that 
0(�; �) and 
1 (�; �) are two-periodi
 fun
tions in the �� plane. Therefore, 
0(�; �)and 
1(�; �) are �nite trigonometri
 polynomials in twovariables, be
ause all spatial frequen
ies otherwise par-ti
ipate in any Fourier representation of these fun
tionsand the 
on
ept of the �long-wavelength perturbation�has no meaning.We restri
t ourselves to the 
ase where only the �rstharmoni
s are present in these trigonometri
 polyno-mials. The 
ase of periodi
 boundary 
onditions wasinvestigated by Arnold [30℄, who wrote these fun
tionsin the form�
0(�; �) = a 
os � + b sin � + 
 
os � + d sin � ++ p 
os(� + �) + q sin(� + �)and proved that they have six stationary points andallow two di�erent topologi
al pi
tures (with respe
tto the di�eomorphism group of the torus) for the levellines. These two pi
tures (and 
onsequently the gra-dient line pi
tures) are determined by the stru
ture ofthe six stationary points:one maximum point, three saddle points, and twominimum points;1290
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ale-invariant streamline equations : : :two maximum points, three saddle points and oneminimum point.It 
an be easily seen that the plane is divided into�
urved polygons�, the stationary points are the poly-gon verti
es, and the polygon sides are the separatri-
es, the gradient lines that separate subsets of homo-topi
 gradient lines. Ea
h polygon is an invariant setunder the gradient �ow. This unveils the 3D pi
tureof a streamline-vortex tube, whi
h is in fa
t a �
urvedupright prism� with verti
al edges growing from thestationary points, based on the plane �
urved polygon�made by the separatri
es.5. EXPLICIT TIME DEPENDENCE AND THEEMERGENCE OF THE UPWARD FLOWTo elu
idate the 3D behavior of quasistationary tra-je
tories, we have to �nd other terms of the asymptoti
expansion�u(�; �; z; �) = u0(�; �; z; �) + "u1 + "2u2 + : : : ;divu = 0: (5.1)We seek other terms in the same form as u1 in (3.4).For quasistationary traje
tory (4.3), we have�z(�) = 
0(�0; �0; �0)� �(��(�); ��(�); �);�0 = ��(�0); �0 = ��(�0); (5.2)i. e., we must �nd �(�; �; �). As is proved in Ref. [27℄,�(�; �; �) satis�es the equation�2���2 = �C20 (�; �)2 ������ C0��C0�� ���� + �C0�� ����� (5.3)with the initial 
onditions�(�; �; 0) = ar
tg 
1(�; �; 0)
0(�; �; 0) +A;��� �(x; y; 0) = Æ0(�; �):Thus, we have a Cau
hy problem (with periodi
 bound-ary 
onditions) for an ellipti
 partial di�erential equa-tion, whi
h is a 
lassi
 example of an �ill-posed prob-lem�, i. e., the 
ase of instability in time of the phase�(�; �; �) as well as of the upward velo
ity. Be
ause(5.3) was derived without involvement of the vis
ousterms, we are dealing with the Eulerian instability ofthe phase. The negative sign before the Lapla
ianin (5.3) is usually 
onsidered as a manifestation of the

so-
alled �negative vis
osity� [20; 24; 25℄ at times � � 1,(t � 1="). In the 
ase where the initial upward �ow isabsent, �(�; �; �) is nontrivial only if the initial long-wavelength amplitude modulation 
1(�; �; 0) = 
1(�; �)of the dual �ow is nonvanishing, i. e., the expli
it timedependen
e of the �ow and the emergen
e of the up-ward �ow, whi
h makes the �ow essentially three di-mensional, are due to the initial spatial gradient of these
ond 
oe�
ient in (3.1). As a result, we have foundz(t) in (5.2).In fa
t, we 
an speak about the �pseudo 
haoti
�behavior of z(t), due to (5.3), as opposed to sta-ble stru
tures de�ned by (4.6). The same fun
tionC0(�; �) determines (4.6) as well as (5.2), i. e., orderand �pseudo 
haos� emerge from the same 
ause: smalllong-wavelength amplitude modulation in the �� planeof a pair of dual anisotropi
 Beltrami �ows [11℄.This is be
ause the initial 
onditions in (5.3) involvethe fun
tion C0(�; �) that o

urs as the 
oe�
ient atthe highest-order derivative, and hen
e a small varia-tion in the initial 
onditions 
an 
ause a large variationof the solution (in fa
t, this is the so-
alled �Hadamardexample� of instability with respe
t to initial 
onditionsof the Cau
hy problem for ellipti
 equations) as well asa variation of C0(�; �). Thus, variation of the initial
onditions in (5.3) 
an 
ause instability of the solutionand of the verti
al velo
ity, while the solutions of (4.5)remain stable.It 
an be easily seen from (3.4) and (5.1) thatu� rotu = "Æ1 +O("2);where rot! " rot�� +rotz :The last term in the right-hand side 
ontains all thehigher-order terms in the asymptoti
 expansion, whilethe �rst term in the right-hand side is a ve
tor, whi
h isparallel to the z axis. Therefore, up to terms of the or-der of "2, both velo
ity and vorti
ity ve
tors belong tothe tangent plane of a verti
al surfa
e, whi
h 
ontainsa 
urve in the xy plane, determined by Eqs. (4.5). Thisis true even when the �rst term in the right-hand sideof the last equation is not small, i. e., when the velo
ityand vorti
ity 
ease to be almost 
ollinear. This sur-fa
e 
an therefore be 
onsidered a �streamline sheet�as well as a �vortex sheet�. Streamline sheets, whi
h
ontain homotopi
 quasistationary traje
tories of thesame subdomain in the xy plane, 
onne
ting two �xedstationary points, form invariant 3D domains 
alled�streamline tubes�. Clearly, up to terms of the orderof "2, �streamline tubes� are at the same time �vortex1291
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e, R1=2 is the 
hara
teristi
 size of the invari-ant domains in the xy plane or the 
hara
teristi
 �di-ameter� of the 3D invariant streamline�vortex tubes.For times t � R1=2, the phase �(�; �; �) between twodual Beltrami �ows satis�es Eq. (5.3) with a negativeLapla
ian in the right-hand side, i. e., the large s
alevis
osity be
omes negative, while the upward velo
itybe
omes unstable. In fa
t, the upward velo
ity wouldde
rease at times t / R2 [26, 27℄.6. SINGULARITY OF VORTICITY ATSTATIONARY POINTS AND STRINGS OFSINGULAR VORTICITYDue to (4.1) and (3.6), the quasistationary velo
ity�eld 
an be 
onsidered asu = C0(��) grad C0(��)jgrad C0(��)j+ 1pR �Æ(��; �)+ 1pR w1; (6.1)where, as was demonstrated in Ref. [27℄,w1 = ���~~C(��; ��; �)���0B� sin(z+�(��; ��; �)+~�0(��; ��))
os(z+�(��; ��; �)+~�0(��; ��))0 1CA =
= ���~~C(��; ��; �)�����gradC0(��; ��)�� 0BBBBBB� �C0�� 
os ~�0 + �C0�� sin ~�0�C0�� 
os ~�0 � �C0�� sin ~�00

1CCCCCCA =
= ���~~C(��; ��; �)�����gradC0(��; ��)�� (
os ~�0 gradC0 + sin ~�0 ngradC0);and ngradC0 = 0BB� �C0�� ;��C0�� 1CCAis a ve
tor normal to grad C0. In Eq. (6.1),� =  ���� ! ;C20 (��) = (A+ 
0(��))2 + 
21(��);�Æ(��; �) = 0B� 00�Æ1 ���; �� 1CA ;

�Æ1 = �d�d� = � C0jgradC0j ��C0�� ���� + �C0�� ������� ���� = �C0 � (gradC0; grad�)jgradC0j � ���� :We want to �nd the behavior ofrotu = 1pR rot�� �C0 gradC0jgradC0j��� 1R rot�� �Æ1(�; �; �) + 1R rot�� w1in the neighborhood of a stationary point (�0; �0) of thefun
tion C0(�; �):�C0�� (� = �0; � = �0) = �C0�� (� = �0; � = �0) = 0:ThenC0(�; �) = C0(�0; �0) + 12(B ~�; ~�) + : : : ; (6.2)where ~� =  � � �0� � �0 ! =  ~�~� !and B is the Hessian of the fun
tion C0(�; �) at (�0; �0):B =  a bb 
 ! ; a = �2C0��2 (�0; �0);b = �2C0���� (�0; �0); 
 = �2C0��2 (�0; �0);while the trun
ated terms are of the order of O(�3),�2 = ~�2 + ~�2:Therefore, gradC0(~�; ~�) = B ~� + : : : (6.3)and ���gradC0(~�)��� = j B ~� j+ : : : (6.4)Be
ause rot(f �G) = f � rot G+ [gradf �G℄and grad 1���B ~���� = � B2 ~����B ~����3 ;1292
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ale-invariant streamline equations : : :after some transformations, we obtain1pR rot�� C0 gradC0jgradC0j == �2C0pR hB2 ~��B ~�i���B ~����3 + : : : (6.5)Be
ause B is a symmetri
 matrix, we 
an 
onsider theright-hand side of (6.5) in the eigenbasis with the 
o-ordinates (~~�; ~~�):[B2 ~��B ~�℄���B ~����3 = �1�2(�1 � �2)~~� ~~�(�21~~�2 + �22~~�2)3=2 0B� 001 1CA == �1�2(�1 � �2) sin2 '~~�(�21 
os2 '+ �22 sin2 ')3=2 0B� 001 1CA ;where~~�2 = ~~�2 + ~~�2 = ~�2 + ~�2 = ~�2 == (� � �0)2 + (� � �0)2 = 1R ((x� x0)2 + (y � y0)2) == r2R ; ~~� = ~~� 
os'; ~~� = ~~� sin':Hen
e,j(rot u)z j � 4C0(x0; y0)pR �1�2 ��(�1��2) sin2 '��(�21+�22+(�21��22) sin2 ')�� pRr = K(')C0 jdetBj3=2r :In the same way, we 
an prove that the upward ve
-tor12 rotw1 = 12 rot�� ���~~C(��; ��; �)���jgradC0j �� (
os ~�0gradC0 + sin ~�0 ngradC0)has singularities of the same type at the stationarypoints, i. e., the upward 
omponent of the vorti
ity hasa singularity of the K=r type at ea
h stationary point(�0; �0) of the fun
tionC0(�; �) = C0� xpR; ypR� ;where r = p(x� x0)2 + (y � y0)2 and K is indepen-dent of the Reynolds number R be
ause we derived the

zeroth term in the asymptoti
 expansion of the larges
ale vorti
ity in powers of " = R�1=2.To assess the ��-plane 
omponent of the vorti
ity(1=R) rot�� �Æ1(~�; ~�; �), we have to investigate the be-havior of �Æ1(�; �; �) in the vi
inity of the stationarypoint. A

ording to (5.3), �(�; �; �) is a solution ofthe Cau
hy problem�2���2 = �C20 (�; �)2 ������C0��C0�� ���� + �C0�� ����� ;�(�; �; 0) = ar
tg 
1(�; �; 0)
0(�; �; 0) +A;���� (�; �; 0) = 0; (6.6)
where 
0(�; �; 0) = 
0(�; �) and 
1(�; �; 0) = 
1(�; �)are small initial perturbations with a �nite number ofterms in the Fourier expansion. We 
an seek a solutionof (5.3) in the vi
inity of the stationary point as a seriesin powers of ~� = ���0 and ~� = ���0. Then the zerothapproximation yields�2�0��2 = �12C0(�0; �0)�~�~��0(~�; ~�; �);�0(~�; ~�; 0) = ar
tg 
1(~�; ~�)
0(~�; ~�) +A == ar
tg �" ~
1(~�; ~�)�" ~
0(~�; ~�) +A = �" ~
1A + : : : ; (6.7)
where �" is a small parameter (�initial noise�). Hen
e,the time dependen
e is determined by 
1(�; �) (andtherefore ~
1(~�; ~�)). As in Se
. 6, we regard 
1(�; �)(and therefore ~
1(~�; ~�)) as a �nite double trigonomet-ri
 polynomial,~
1(~�; ~�) =Xm;n�mn exp hi(m~� + n~�)i ;where m and n are bounded. Then�0(~�; ~�; �) = �"AXm;n�� exp hi(m~� + n~�)i exp"C0r �m2 + n22 �# :Thus, the growth of �0 in time is determined bymaxm;n pm2 + n2 =p �m2 + �n2 :We 
onsider only the fastest growing term:1293



A. Libin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012�0(~�; ~�; �) = � �m�n �"A ��Xm;n exp C0r �m2+n22 �! exp hi( �m~�+�n~�)i+ : : :Hen
e,��0�� =p �m2 + �n2 � �m�n �"A �� exp hi( �m~� + �n~�)i exp"C0r �m2 + �n22 �# ;grad�0 =p �m2 + �n2 � �m�n �"A �� exp hi( �m~� + �n~�)i exp"C0r �m2 + �n22 �# �m�n ! ;i. e., jgrad�0j = K exp"C0r �m2 + �n22 �# ;where C0 = C0(�0; �0). We now 
onsider the ��-plane
omponent of the vorti
ity:1R rot�� �Æ1 = 1R ��0BBB� ��� �C0(~�) (gradC0; grad�0)jgradC0j �+ �2�0����� ��� �C0(~�) (gradC0; grad�0)jgradC0j �� �2�0���� 1CCCA =
= 1R 0BBBBB� (B ~�; grad�0) ��� C0(~�)���B ~�����(B ~�; grad�0) ��� C0(~�)���B ~���� 1CCCCCA+ : : : ;where the trun
ated terms are bounded fun
tions of ~�and ~� for any given � . It 
an be easily 
he
ked that0BBB� �C0(~�)����C0(~�)�� 1CCCA = ~B ~� + : : : ;where ~B =  b 
�a �b !, and hen
eB ~B =  0 a
� b2b2 � a
 0 ! = detB 0 1�1 0 ! :

Thus, it 
an be easily seen that0BBBBB� ��� C0(~�)���B ~����� ��� C0(~�)���B ~����
1CCCCCA = �C(�0) detB ~��~� !���B ~����3 + : : : ;where the trun
ated terms are bounded for a given � ,and �0 =  �0�0 !. It 
an be demonstrated that���� 1R rot�� �Æ1���� = 1R ����B ~�; grad�0������ �����������0BBBBB� ��� C0(~�)���B ~����� ��� C0(~�)���B ~���� 1CCCCCA����������� == exp"C0r �m2 + �n22 tpR#pRr K1( ) detB;where  is the angle between e1 = B ~�=���B ~���� and e2 == grad�0=jgrad�0j.Thus, in the original (�fast�) variables, the ampli-tude of the vorti
ity-plane 
omponent in the vi
inity ofthe stationary point (x0; y0) isK1( )C0 � x0pR; y0pR� detB exp"C0r �m2 + �n22R t#rpRwhere r =p(x� x0)2 + (y � y0)2:Therefore, the verti
al line x = x0, y = y0 is a �string�,while the vorti
ity line rotates around it. Hen
e, verti-
al edges of the large-s
ale streamline�vorti
ity prismare the strings of singular vorti
ity.7. CONCLUSIONS: EXPLICIT TIMEDEPENDENCE ANDTHREE-DIMENSIONALITY JOINTLYEMERGING FROM THE ENERGY DENSITYGRADIENTWe 
onsider the Beltrami triplet with variable 
o-e�
ients (2.9) as the sour
e of the emergen
e of large-s
ale streamline tubes for large values of the Reynolds1294
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ale-invariant streamline equations : : :number R. Although (2.9) 
learly indi
ates the pos-sibility of an upward �ow, indu
ed by the presen
e ofthe dual Trkal �ows with time-dependent amplitudes,there is no inherent 
lue to an equation for the phase.In (2.9), the absolute value of the velo
ity in the xyplane is 
onstant. The breakthrough 
omes by varia-tion of C0 in the xy plane: it is now supposed to bea bounded smooth fun
tion of x and y with a smallgradient. Su
h a fun
tion has maximum and minimumpoints. These are the points of the maximum and min-imum values of the plane velo
ity. The liquid �owsfrom the points of the maximal velo
ity to the pointsof the minimal velo
ity, i. e., the liquid �ows along thegradient lines of the fun
tion. The distan
e betweenthese points is determined by the ratio of the velo
ity
hange between maximum and minimum values, andthe average value of the gradient of the fun
tion. Sin
ethe �rst number is �nite, while the gradient is small,the distan
e between maximum and minimum pointsis large. This is how the plane large-s
ale streamlinesemerge.The emergen
e of an unstable upward �ow (whi
h istied to the phase �(�; �; �) between the 
oupled Trkal�ows), i. e., the appearan
e of the �twins� � the ex-pli
it time dependen
e and three-dimensionality of the�ow, is indu
ed by a small gradient variation (i. e.,by �long-wavelength perturbation�) of C0 (in fa
t, of
1(�; �; 0) = 
1(�; �) ) in the xy plane. It might beseen as a manifestation of the �hydrodynami
 instabil-ity�, whi
h in this 
ase is a
tually the �Eulerian phaseinstability�. The equation for the phase between twodual Trkal �ows, whi
h be
omes a fun
tion of x andy, might be dedu
ed through a rigorous pro
edure forthe asymptoti
 expansion of the perturbed solution ofthe for
e-free Navier�Stokes equation. It turns outthat the only possible value of the expansion param-eter of the asymptoti
 expansion 
onsistent with termsof type (5.2) equals R1=2.Hen
e, the inverse of the �average� gradient of thefun
tion C0, and the distan
e between maximum andminimum points in the xy plane are 
lose to R1=2, as isthe 
hara
teristi
 size of the area in the xy plane. Thus,in the 
ase of an anisotropi
 heli
al solution for thefor
e-free Navier�Stokes equation at a large Reynoldsnumber R, the initial 
oupling of large-s
ale amplitude-modulated dual pair of Trkal (Beltrami) �ows togetherwith the orthogonal 
onstant velo
ity ve
tor form atriplet, whi
h is transformed by a long-wavelength per-turbation into a large-s
ale streamline tube, the planestreamlines being stable at times of the order of R1=2.These streamlines, whi
h are gradient lines of the en-ergy density in the orthogonal plane to the anisotropy

dire
tion, 
an be regarded as large-s
ale stru
tures withthe typi
al size R1=2. The gradient lines 
onne
t the�stationary points�, where the energy density gradientvanishes. The streamlines inside the domains that donot 
ontain �stationary points� are homotopi
. The do-mains of homotopi
 plane streamlines are bounded bythe �separatri
es� determining both invariant subsets ofthe plane �ow (invariant under the �ow of the liquid)and the invariant 3D polygon prisms (�tubes�); the lat-ter are also invariant under velo
ity and vorti
ity �eld�ows and are typi
ally 
hara
terized by the asymptoti

ollinearity of the velo
ity and vorti
ity ve
tors. The
omponent of the 3D large-s
ale velo
ity that is par-allel to the anisotropy dire
tion is tied to the phase�(�; �; �) between 
oupled Trkal �ows and 
an be ob-tained dire
tly as a solution of the Cau
hy problem foran ellipti
-type equation (the typi
al 
ase of an ill-posedproblem) whose 
oe�
ients are determined by the ini-tial 
onditions. This velo
ity 
omponent outlives theinitial Trkal �ow and vanishes at times of the order oft / R2.If we 
all the initial Trkal �ow with a �nite ampli-tude A the dominant mode, then the amplitude long-wavelength modulation of the dominant mode 
0(�; �)is responsible for the emergen
e of the gradient line pi
-ture, while the long-wavelength amplitude modulation
1 (�; �) of the dual mode is responsible for the unstableupward �ow, i. e., for the emergen
e of the �twins� �the expli
it time dependen
e and three-dimensionalityof the se
ondary �ow. Thus, the large-s
ale streamline�vortex tubes are metastable 
oherent stru
tures. Al-though the stationary points inside streamline�vortextubes are singular points of vorti
ity, the vorti
itylines remain inside the tube, while rotating around the�strings� � verti
al lines of singularity that are growingfrom the stationary points in the xy plane.REFERENCES1. E. Levi
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