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REPLY TO THE COMMENT BY P. MARKO�I. M. Suslov *Kapitza Institute for Physi
al Problems, Russian A
ademy of S
ien
es119334, Mos
ow, RussiaRe
eived May 18, 2012We present another interpretation of the data by P. Marko² and give numerous new illustrations of our 
on
ep-tion. All the existing numeri
al data look perfe
tly 
ompatible with predi
tions of the self-
onsistent theory oflo
alization.My paper [1℄ presents detailed predi
tions of theself-
onsistent theory of lo
alization for the quantitiesthat are immediately measured in numeri
al experi-ments; it allows making a 
omparison on the level ofthe raw data, avoiding the ambiguous treatment pro-
edure. Su
h an approa
h is motivated by the di�erentstatus of numeri
al results. The raw data are obtainedindependently by di�erent groups and there is a 
er-tain 
onsensus in this respe
t; it is not reasonable toquestion these data. However, it is possible to doubtnumeri
al algorithms themselves, whi
h are not basedon a �rm theoreti
al ground. Su
h an approa
h is in theinterest of numeri
al resear
hes as long as their present-day results 
ontradi
t both experiment and the gen-eral theoreti
al prin
iples. The self-
onsistent theoryby Vollhardt and Wöl�e (for the �rst time) allows jus-tifying one of the popular variants of �nite-size s
alingbased on the 
onsideration of auxiliary quasi-1D sys-tems [2, 3℄ with a �nite transverse size L. This theoryalso predi
ts essential s
aling 
orre
tions, su
h that thes
aling parameter behaves as C(L + L0) with L0 > 0in the vi
inity of the transition, whi
h 
an be pra
ti-
ally interpreted as CL1=� with � > 1. Analysis of theexisting numeri
al data shows that there are no serious
ontradi
tions between the self-
onsistent theory andthe raw numeri
al data.Of 
ourse, this does not prove the validity of theself-
onsistent theory: deviations 
an be small but sig-ni�
ant, and a serious analysis is ne
essary. The analy-sis of this kind is expe
ted from an expert in numeri
alresear
h su
h as P. Marko². In fa
t, in his 
omment [4℄,he makes no e�ort to follow my suggestions but is fullysatis�ed with the use of the �standard s
aling formu-*E-mail: suslov�kapitza.ras.ru
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L0 = 5Fig. 1. Our interpretation of the 3D data in [4℄las�. First of all, there are no �standard s
aling formu-las�, sin
e 
orre
tions to s
aling 
ertainly exist and noreliable pro
edure to deal with them is available. Fur-ther, the 
onventional s
aling is 
ertainly invalid fordimensions d > 4; this is a theorem [1℄. Finally, in [1℄,I did not deny the possibility to �t the data by a sim-ple power law dependen
e but I stressed the ambiguityof su
h pro
edure. From this point of view, Figs. 2�5in [4℄ have no relation to the 
riti
ism of my paper.The 3D system. In this 
ase, P. Marko² providesnot mu
h progress: he extends his results to L = 34,while data up to L = 50 were dis
ussed in Ref. [1℄. Ourinterpretation of 3D data is presented in Fig. 1. Thefollowing points should be noted.a) The most interesting question is: does L0 haveessential drift when the range of L is extended? If wetry to retain the estimate L0 = 5 obtained in [1℄ forL � 24, then the data for W = 16:5 and 16:6 are �ttedwell with su
h a restri
tion.1230
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1.4Fig. 2. The same as in Fig. 1, but with smaller L and higher a

ura
y (from paper [5℄). For large deviations from the
riti
al point, the dependen
es are seen to a
quire an essential 
urvature, while L0 
hanges signi�
antly. To be 
omparedwith Fig. 1
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Fig. 3. The 5D data in [4℄ and its 
omparison withs
aling relation (2)b) The data for W = 16 and W = 17 show 
er-tain deviations from the linear behavior but they arenot very impressive be
ause the s
attering of points israther large.
) In fa
t, the data forW = 16 andW = 17 
ontainthe e�e
t of the W nonlinearity. If we suppose � = 1,then � � 30 for jW �W
j = 0:5 and nonlinear e�e
tsare essential for L � 30. Figure 1 
on�rms this 
on
lu-sion, sin
e the data for W = 16 and W = 17 are notsymmetri
 with respe
t to the 
urve W = 16:5 1). De-1) In fa
t, Fig. 1 roughly 
on�rms that � � 30 be
ause devi-ations of z1 from its 
riti
al value are of the order of unity (if� = 1:5, then � should be something like 150).

viations from the linear behavior are on the same levelas symmetry violation. It looks rather probable thatfor the a narrower interval (like W = 16:25�16.75), �t-ting by a linear dependen
e will be satisfa
tory 2). Thisargument is supported by other numeri
al data (Fig. 2).Marko² has an illusion that a more 
ompli
ated pro-
edure allows obtaining a higher a

ura
y. In parti
u-lar, in the treatment of the W dependen
e, he relies onthe quadrati
 expansion in W�W
. In fa
t, one 
annotex
lude possibility that the 
oe�
ient of the quadrati
term is small and higher-order 
orre
tions are essen-tial. If di�erent nonlinear fun
tions are allowed, theun
ertainty will be the same as for a simple linear �tin a narrower interval. In the latter 
ase, it is impos-sible to obtain a nonlinear behavior for the derivatives(L) = [z1(L)℄0� from the apparently linear dependen-
ies z1(L) (Fig. 2). With a nonlinear treatment, Marko²was able to do it (see Fig. 3 in [4℄).The 
omparison in Fig. 3 in [4℄ is not honest, be-
ause the dashed line does not 
orrespond to predi
-tions of Ref. [1℄. The predi
ted dependen
e is C(L+L0)and not CL, and hen
e the straight line with the unitslope is irrelevant. In fa
t, our 
on
ept works ex
el-lently in the range L � 20 (Fig. 2), where Marko² showsdisastrous deviations.The 5D model. In this se
tion we read:�Our data in Fig. 4 do not indi
ate any dis
ontinuityin the L dependen
e. On the 
ontrary, z1 is a smoothanalyti
 fun
tion of both parameters, W and L�.2) It is 
lear from Fig. 2 in [4℄ that the author has the inter-mediate data for Fig. 1. Why does he not show them?1231
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ondu
tan
e distribution [7℄ and their �tting by the dependen
e C(L+ L0). The s
aling parameter isthe 0:17 per
entile of the distribution42
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Fig. 5. Data for the inverse parti
ipation ratio Iq withq = 5 [8℄ and their �tting by the dependen
e C(L+L0).We 
an see an essential 
hange in L0 for large devia-tions from the 
riti
al pointI do not predi
t any dis
ontinuity, it is a fantasy ofMarko². It is easy to see from Eq. (45) in [1℄,��d�2 = 1Ld�2 12mL � 
m2�d�4;thatmL � z1 is a regular fun
tion of L and � = W�W
.A singularity is developed only in the thermodynami
limit L ! 1, as in all s
aling theories. Modi�
ationssuggested for d > 4 
orrespond to the usual s
aling
onstru
tions, but in di�erent variablesy = �1DL � aL�(d�4)=3 ; x = �L � aL�(d�4)=3 : (1)The s
aling relation is found in the analyti
 form� 1x2 = y � 1y2 ; (2)

where the proper s
ales for �1D and � are 
hosen. Fig-ure 3 shows the quantity z1L1=3 � 1=y as a fun
tionof L. Its dependen
e on 1=x / L4=3 has the sameform but the logarithmi
 s
ale should be 
hanged bythe fa
tor 4=3. The solid lines 
orrespond to the s
al-ing relation (2).Con
lusion. After repeating the legend on dis-
ontinuities, the author provides additional argumen-tation:�We also note that the same value of the 
riti
al ex-ponent was obtained from numeri
al analysis of otherphysi
al quantities: mean 
ondu
tan
e, 
ondu
tan
edistribution, inverse parti
ipation ratio : : : �In fa
t, two variants of s
aling, (a) quasi-1D sys-tems and (b) level statisti
s, were dis
ussed in Ref. [1℄.The third variant, (
) mean 
ondu
tan
e, is dis
ussedin re
ent paper [6℄. The next two variants, (d) 
on-du
tan
e distribution [7℄ and (e) inverse parti
ipationratio [8℄ are illustrated in Figs. 4 and 5.The �nal arguments are also not serious:�This value of the 
riti
al exponent was re
entlyveri�ed experimentally [11℄ and 
al
ulated analyti-
ally [12℄�.Papers [11℄ deal with a quasiperiodi
 ki
ked rotor,whose equivalen
e to the 3D Anderson model is onlya hypothesis essentially based on questionable numer-i
al data 3). The real experiments on disordered sys-tems [10�12℄ support the results of the self-
onsistenttheory.The �analyti
� result is the relation s = �(d � 2),whi
h is a

epted by all serious theoreti
ians. Its viola-3) In fa
t, lo
alization in quasiperiodi
al systems has an essen-tial spe
i�
ity in 
omparison with random systems [9℄.1232
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tness of the one-parameter s
alinghypothesis [13℄, whi
h is a basis for pra
ti
ally all nu-meri
al studies.In 
on
lusion, Marko² does not see the 
entral ideaof my paper [1℄ and 
ontinues to use sophisti
ated treat-ment instead of dire
t 
omparison on the level of rawdata. If su
h a 
omparison is made, all existing numer-i
al data look perfe
tly 
ompatible with predi
tions ofthe self-
onsistent theory of lo
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