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We present another interpretation of the data by P. Markos and give numerous new illustrations of our concep-
tion. All the existing numerical data look perfectly compatible with predictions of the self-consistent theory of

localization.

My paper [1] presents detailed predictions of the
self-consistent theory of localization for the quantities
that are immediately measured in numerical experi-
ments; it allows making a comparison on the level of
the raw data, avoiding the ambiguous treatment pro-
cedure. Such an approach is motivated by the different
status of numerical results. The raw data are obtained
independently by different groups and there is a cer-
tain consensus in this respect; it is not reasonable to
question these data. However, it is possible to doubt
numerical algorithms themselves, which are not based
on a firm theoretical ground. Such an approach is in the
interest of numerical researches as long as their present-
day results contradict both experiment and the gen-
eral theoretical principles. The self-consistent theory
by Vollhardt and Wolfle (for the first time) allows jus-
tifying one of the popular variants of finite-size scaling
based on the consideration of auxiliary quasi-1D sys-
tems [2, 3] with a finite transverse size L. This theory
also predicts essential scaling corrections, such that the
scaling parameter behaves as C'(L + Lg) with Lo > 0
in the vicinity of the transition, which can be practi-
cally interpreted as CLY" with v > 1. Analysis of the
existing numerical data shows that there are no serious
contradictions between the self-consistent theory and
the raw numerical data.

Of course, this does not prove the validity of the
self-consistent theory: deviations can be small but sig-
nificant, and a serious analysis is necessary. The analy-
sis of this kind is expected from an expert in numerical
research such as P. Markos. In fact, in his comment [4],
he makes no effort to follow my suggestions but is fully
satisfied with the use of the “standard scaling formu-
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Fig.1. Our interpretation of the 3D data in [4]

las”. First of all, there are no “standard scaling formu-
las”, since corrections to scaling certainly exist and no
reliable procedure to deal with them is available. Fur-
ther, the conventional scaling is certainly invalid for
dimensions d > 4; this is a theorem [1]. Finally, in [1],
I did not deny the possibility to fit the data by a sim-
ple power law dependence but I stressed the ambiguity
of such procedure. From this point of view, Figs. 2—5
in [4] have no relation to the criticism of my paper.

The 3D system. In this case, P. Markos provides
not much progress: he extends his results to L = 34,
while data up to L = 50 were discussed in Ref. [1]. Our
interpretation of 3D data is presented in Fig. 1. The
following points should be noted.

a) The most interesting question is: does Lo have
essential drift when the range of L is extended? If we
try to retain the estimate Ly = 5 obtained in [1] for
L < 24, then the data for W = 16.5 and 16.6 are fitted
well with such a restriction.
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Fig.2. The same as in Fig. 1, but with smaller L and higher accuracy (from paper [5]). For large deviations from the
critical point, the dependences are seen to acquire an essential curvature, while Ly changes significantly. To be compared
with Fig. 1
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Fig.3. The 5D data in [4] and its comparison with
scaling relation (2)

b) The data for W = 16 and W = 17 show cer-
tain deviations from the linear behavior but they are
not very impressive because the scattering of points is
rather large.

¢) In fact, the data for W = 16 and W = 17 contain
the effect of the W nonlinearity. If we suppose v = 1,
then ¢ ~ 30 for |IW — W,| = 0.5 and nonlinear effects
are essential for L ~ 30. Figure 1 confirms this conclu-
sion, since the data for W = 16 and W = 17 are not
symmetric with respect to the curve W = 16.5 '). De-

D In fact, Fig. 1 roughly confirms that £ ~ 30 because devi-
ations of z; from its critical value are of the order of unity (if
v = 1.5, then £ should be something like 150).

viations from the linear behavior are on the same level
as symmetry violation. It looks rather probable that
for the a narrower interval (like W = 16.25-16.75), fit-
ting by a linear dependence will be satisfactory 2. This
argument is supported by other numerical data (Fig. 2).

Marko$ has an illusion that a more complicated pro-
cedure allows obtaining a higher accuracy. In particu-
lar, in the treatment of the W dependence, he relies on
the quadratic expansion in W-W,. In fact, one cannot
exclude possibility that the coefficient of the quadratic
term is small and higher-order corrections are essen-
tial. If different nonlinear functions are allowed, the
uncertainty will be the same as for a simple linear fit
in a narrower interval. In the latter case, it is impos-
sible to obtain a nonlinear behavior for the derivative
s(L) = [z1(L)]. from the apparently linear dependen-
cies z1 (L) (Fig. 2). With a nonlinear treatment, Markos
was able to do it (see Fig. 3 in [4]).

The comparison in Fig. 3 in [4] is not honest, be-
cause the dashed line does not correspond to predic-
tions of Ref. [1]. The predicted dependence is C'(L+ Ly)
and not C'L, and hence the straight line with the unit
slope is irrelevant. In fact, our concept works excel-
lently in the range L < 20 (Fig. 2), where Markos shows
disastrous deviations.

The 5D model. In this section we read:

“Our data in Fig. 4 do not indicate any discontinuity
in the L dependence. On the contrary, z; is a smooth
analytic function of both parameters, W and L”.

2) 1t is clear from Fig. 2 in [4] that the author has the inter-
mediate data for Fig. 1. Why does he not show them?
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Fig.4. Data for the conductance distribution [7] and their fitting by the dependence C(L + Lo). The scaling parameter is
the 0.17 percentile of the distribution
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Fig.5. Data for the inverse participation ratio I, with

q = 5 [8] and their fitting by the dependence C'(L+Lyo).

We can see an essential change in Ly for large devia-
tions from the critical point

I do not predict any discontinuity, it is a fantasy of
Markos. Tt is easy to see from Eq. (45) in [1],

TA2 = ! !

— 2Ad—4
Li—2 2m[L ’

—cm

that mL = z; is aregular function of L and 7 = W-W...
A singularity is developed only in the thermodynamic
limit L — oo, as in all scaling theories. Modifications
suggested for d > 4 correspond to the usual scaling
constructions, but in different variables

_&ip faN(d=1/3 & ran\d=9/3
YTL (L) ’ x_L(L) -
The scaling relation is found in the analytic form
1 1
5 =y- 2 (2)

where the proper scales for £ p and £ are chosen. Fig-
ure 3 shows the quantity z;L'/? = 1/y as a function
of L. Tts dependence on 1/x o L**® has the same
form but the logarithmic scale should be changed by
the factor 4/3. The solid lines correspond to the scal-
ing relation (2).

Conclusion. After repeating the legend on dis-
continuities, the author provides additional argumen-
tation:

“We also note that the same value of the critical ex-
ponent was obtained from numerical analysis of other
physical quantities: mean conductance, conductance
distribution, inverse participation ratio ... ”

In fact, two variants of scaling, (a) quasi-1D sys-
tems and (b) level statistics, were discussed in Ref. [1].
The third variant, (c) mean conductance, is discussed
in recent paper [6]. The next two variants, (d) con-
ductance distribution [7] and (e) inverse participation
ratio [8] are illustrated in Figs. 4 and 5.

The final arguments are also not serious:

“This value of the critical exponent was recently
verified experimentally [11] and calculated analyti-
cally [12]".

Papers [11] deal with a quasiperiodic kicked rotor,
whose equivalence to the 3D Anderson model is only
a hypothesis essentially based on questionable numer-
ical data 3). The real experiments on disordered sys-
tems [10-12] support the results of the self-consistent
theory.

The “analytic” result is the relation s = v(d — 2),
which is accepted by all serious theoreticians. Its viola-

3) In fact, localization in quasiperiodical systems has an essen-
tial specificity in comparison with random systems [9].
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tion means incorrectness of the one-parameter scaling
hypothesis [13], which is a basis for practically all nu-
merical studies.

In conclusion, Markos does not see the central idea
of my paper [1] and continues to use sophisticated treat-
ment instead of direct comparison on the level of raw
data. If such a comparison is made, all existing numer-
ical data look perfectly compatible with predictions of
the self-consistent theory of localization.
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