МОДЕЛЬ ДЕЛОКАЛИЗОВАННЫХ АТОМОВ В ФИЗИКЕ СТЕКЛООБРАЗНОГО СОСТОЯНИЯ

Д. С. Сандитов*

Бурятский государственный университет 670000, Улан-Удэ, Россия

Институт физического материаловедения Сибирского отделения Российской академии наук 670047, Улан-Удэ, Россия

Поступила в редакцию 11 ноября 2011 г.

Предлагается развитие модели делокализованных атомов жидкостей и стекол. Показано, что основное уравнение модели для вероятности делокализации (возбуждения) атома можно получить не только на основе соотношения Клаузиуса, но и с помощью других методов статистической физики. Разработаны способы расчета параметров модели. Критическое смещение атома из равновесного положения, соответствующее максимуму силы межатомного притяжения, можно рассматривать как его делокализацию (локальное возбуждение) в упругой сплошной среде. Расчет энергии критического смещения атома как работы предельной упругой деформации межатомной связи в упругом континууме находится в согласии с результатами расчета по модели делокализации атома. Эту энергию можно вычислить также из данных о поверхностном натяжении и атомном объеме. В силикатных стеклах «процесс делокализации атома» представляет собой критическое смещение мостикового атома кислорода в структурном фрагменте кремнекислородной сетки Si-O-Si перед переключением валентной связи, а в аморфных органических полимерах делокализации атома соответствует предельное смещение участка основной цепи макромолекулы (группы атомов в соединительном звене).

1. ВВЕДЕНИЕ

Разработка строгих физических теорий неупорядоченных структур, основанных на первых принципах статистической физики и квантовой механики, встречает серьезные трудности. Поэтому на данном этапе по-прежнему актуальны приближенные модельные подходы к жидкостям и аморфным твердым телам [1–17].

Настоящая работа посвящена развитию модели делокализованных атомов этих систем [13, 14].

2. ФЛУКТУАЦИОННЫЙ ОБЪЕМ И ДЕЛОКАЛИЗАЦИЯ АТОМА

Элементарным актом ряда молекулярно-кинетических процессов в жидкостях и аморфных твердых телах служит предельная упругая деформация межатомной или межмолекулярной связи Δr_m , соответствующая максимуму квазиупругой силы (рис. 1). Такой элементарный акт можно интерпретировать по другому как флуктуационное смещение кинетической единицы на критическое расстояние Δr_m , соответствующее максимуму силы межатомного притяжения F_m (рис. 1). Кинетическая единица (атом, группа атомов), которая испытывает критическое смещение — делокализацию, называется делокализованным (возбужденным) атомом, а сам подход — моделью делокализованных атомов (моделью возбужденного состояния) [14]. Под делокализацией атома подразумевается его значительное отклонение из равновесного положения, характерное для процессов типа структурной релаксации, а не потеря локализации атома при небольших тепловых колебаниях около положения равновесия.

Одним из важных параметров модели является флуктуационный объем системы ΔV_e , обусловленный критическими отклонениями частиц из равновесных положений,

$$\Delta V_e = N_e \Delta v_e, \tag{1}$$

где N_e — число делокализованных атомов, Δv_e —

^{*}E-mail: Sanditov@bsu.ru

Рис. 1. Схема механизма делокализации атома (возбуждения межатомной связи): r_0 — равновесное межатомное расстояние, Δr_m — критическое смещение атома, соответствующее максимуму силы F_m межатомного взаимодействия

элементарный флуктуационный объем, необходимый для делокализации атома. Этот микрообъем определяется главным образом масштабом критического смещения атома Δr_m [13, 14]

$$\Delta v_e = \pi d^2 \Delta r_m,\tag{2}$$

где πd^2 — площадь эффективного сечения атома.

В результате флуктуационной перегруппировки кинетических единиц может произойти уплотнение небольшого кооператива частиц, так что флуктуационный объем, принадлежащий всем молекулам кооператива, аккумулируется в одном месте у одной из частиц. Следовательно, время от времени у кинетической единицы аморфной среды может образоваться локальный флуктуационный объем \tilde{v} , сравнимый с ее размерами.

Будем полагать, что необходимым условием критического смещения частицы из равновесного положения является образование в ее окрестности флуктуационного объема \tilde{v} , превышающего элементарный объем делокализации атома (объем атомного возбуждения): $\tilde{v} \geq \Delta v_e$.

Таким образом, вероятность делокализации (возбуждения) атома сводится к вероятности образования элементарного флуктуационного микрообъема Δv_e у данного атома.

3. ВЕРОЯТНОСТЬ ДЕЛОКАЛИЗАЦИИ КИНЕТИЧЕСКОЙ ЕДИНИЦЫ

Из модели следует, что частицы аморфных сред отличаются друг от друга главным образом величиной локального флуктуационного объема, который образуется в их окрестности. Предположим, что число частиц dn, обладающих флуктуационным объемом от \tilde{v} до $\tilde{v} + d\tilde{v}$, описывается функцией [6, 15]

$$dn = A \exp\left(-\frac{\Delta H}{kT}\right) \, d\tilde{v},\tag{3}$$

где ΔH — энтальпия образования объема \tilde{v} ,

$$\Delta H = (p_i + p)\tilde{v}.\tag{4}$$

При данных условиях сумма внутреннего p_i и внешнего p давлений $(p_i + p)$ выступает в качестве константы, не зависящей от \tilde{v} .

Нормировка проводится так, чтобы общее число молекул N в рассматриваемом объеме было равно сумме частиц dn:

$$\int_{0}^{N} dn = N, \quad A \int_{0}^{\infty} \exp\left[-\frac{(p_i + p)\tilde{v}}{kT}\right] d\tilde{v} = N,$$

откуда для множителя А следует выражение

$$A = \frac{(p_i + p)N}{kT}$$

Число делокализованных кинетических единиц N_e , обладающих локальным флуктуационным объемом, превышающим объем атомного возбуждения Δv_e , равно

$$N_e = \int_{\Delta v_e}^{\infty} \frac{(p_i + p)N}{kT} \exp\left[-\frac{(p_i + p)\tilde{v}}{kT}\right] d\tilde{v} =$$
$$= N \exp\left[-\frac{(p_i + p)\Delta v_e}{kT}\right]. \quad (5)$$

В соответствии с равенством (4) энтальпия делокализации атома ΔH_e определяется выражением

$$\Delta H_e = (p_i + p)\Delta v_e = \Delta \varepsilon_e + p\Delta v_e, \qquad (6)$$

где величина $\Delta \varepsilon_e$ представляет собой энергию делокализации атома (энергию образования микрообъема Δv_e):

$$\Delta \varepsilon_e = p_i \Delta v_e. \tag{7}$$

Принимая во внимание условие (6) в равенстве (5), окончательно приходим к следующей формуле для вероятности делокализации кинетической единицы $W_e = N_e/N$:

$$\frac{N_e}{N} = \exp\left(-\frac{\Delta\varepsilon_e + p\Delta v_e}{kT}\right),\tag{8}$$

которую можно рассматривать как основное уравнение модели делокализованных атомов жидкостей и стекол.

Ранее это выражение (8) было выведено на основе предположения о том, что вероятность критического смещения атома аморфной среды определяется соотношением [13, 14]

$$W_e = \exp\left(-\frac{\Delta r_m}{\Delta \overline{r}}\right),\tag{9}$$

аналогичным уравнению Клаузиуса для вероятности свободного пробега молекулы газа. Для сравнения кратко воспроизведем схему вывода (8) из такой газовой модели.

Среднее смещение атома жидкости $\Delta \overline{r}$ как аналог средней длины свободного пробега молекулы газа $\lambda = 1/\sqrt{2} \pi d^2 n$ зависит от площади его эффективного сечения πd^2 и концентрации атомов n:

$$\Delta \overline{r} \approx \frac{1}{\pi d^2 n} \,. \tag{10}$$

Уравнение состояния можно представить в виде условия баланса давлений:

$$p + p_i = p_t, \tag{11}$$

где p_t — тепловое давление, уравновешивающее сумму внешнего и внутреннего давлений [6, 16]. Полагая $p_t = nkT$ и подставив n(p, T) из уравнения состояния (11) в равенство (10), а затем равенство (10) в соотношение (9), приходим к основному уравнению (8) для вероятности возбуждения атома $W_e = N_e/N$:

$$\frac{N_e}{N} = \exp\left[-\frac{(\pi d^2 \Delta r_m)(p+p_i)}{kT}\right] = \\ = \exp\left(-\frac{\Delta \varepsilon_e + p\Delta v_e}{kT}\right), \quad (12)$$

где $\Delta v_e = \pi d^2 \Delta r_m$ и $\Delta \varepsilon_e = p_i \Delta v_e$. Как видим, такой подход позволяет получить формулу (2) для элементарного флуктуационного объема Δv_e и соотношение (7) для энергии образования этого микрообъема $\Delta \varepsilon_e$.

Вероятность рождения делокализованного атома (как гетерофазной флуктуации плотности [17]) носит энтропийный характер:

$$W_e = \frac{N_e}{N} = \exp\left(-\frac{\Delta S_e}{k}\right) = \exp\left(-\frac{T\Delta S_e}{kT}\right) = \\ = \exp\left(-\frac{\Delta H_e}{kT}\right) = \exp\left[-\frac{(p_i + p)\Delta v_e}{kT}\right] = \\ = \exp\left(-\frac{\Delta\varepsilon_e + p\Delta v_e}{kT}\right), \quad (13)$$

где ΔS_e — энтропия возбуждения атома [14, 18].

Таким образом, основное уравнение модели делокализованных атомов можно вывести двумя-тремя различными способами.

Как отмечалось выше, важным параметром модели является флуктуационный объем системы (1), объемная доля которого $f = \Delta V_e/V = (\Delta v_e/v)N_e/N$ с учетом формулы (8) определяется равенством

$$f = \frac{\Delta v_e}{v} \exp\left(-\frac{\Delta \varepsilon_e + p\Delta v_e}{kT}\right),\tag{14}$$

где v = V/N — объем, приходящийся на атом.

4. ФОРМУЛА КОЕНА – ТЕРНБУЛЛА В МОДЕЛИ ДЕЛОКАЛИЗОВАННЫХ АТОМОВ

Убедимся, что из приведенных выше представлений вытекает известная формула Коена – Тернбулла [10] для молекулярной подвижности в жидкостях и стеклах:

$$W_e = \exp\left(-b\frac{v_0}{v_f}\right),\tag{15}$$

где v_0 — объем дырки, куда может переместиться молекула, $v_f = V_f/N$ — средний флуктуационный свободный объем, приходящийся на одну частицу, b — коэффициент, учитывающий перекрытие дырок: $0.5 \le b \le 1$.

Ранее было развито представление о том, что флуктуационный свободный объем V_f по физическому смыслу совпадает с флуктуационным объемом ΔV_e в модели делокализованных атомов [14]. Поэтому отношения V_f/N и $\Delta V_e/N$ обозначаем одинаковым символом v_f .

Найдем флуктуационный объем системы ΔV_e как сумму элементарных флуктуационных объемов любых размеров

$$\Delta V_e = \int_0^N \tilde{v} \, dn = \int_0^\infty \frac{(p_i + p)N}{kT} \times \\ \times \exp\left[-\frac{(p_i + p)\tilde{v}}{kT}\right] \tilde{v} \, d\tilde{v} = \frac{NkT}{p_i + p},$$

откуда средний флуктуационный объем $v_f = = \Delta V_e \, / N,$ приходящийся на молекулу, равен

$$v_f = \frac{kT}{p_i + p}.\tag{16}$$

Используя это выражение (16) в равенстве (5), приходим к соотношению

$$W_e = \frac{N_e}{N} = \exp\left(-\frac{\Delta v_e}{v_f}\right),\tag{17}$$

которое с точностью до $b \approx 1$ совпадает с уравнением Коена – Тернбулла (15), поскольку величину v_f можно интерпретировать как средний флуктуационный свободный объем, приходящийся на частицу, а Δv_e — как объем дырки v_0 , куда может сместиться частица [14]. При этом необходимо пояснить, что флуктуационный свободный объем V_f не является собственно свободным объемом в смысле «пустого пространства» между молекулами по Ван дер Ваальсу и поэтому носит условный характер [14] (см. ниже разд. 6).

5. ФЛУКТУАЦИОННЫЙ ОБЪЕМ И ВЯЗКОСТЬ В ОБЛАСТИ СТЕКЛОВАНИЯ ЖИДКОСТЕЙ

Согласно уравнению Стокса-Эйнштейна, вязкость η выражается через коэффициент самодиффузии $D = g dv W_e$ следующим образом

$$\eta = \frac{kT}{3\pi dD} = \frac{kT}{3\pi d^2 gv} \frac{1}{W_e},\tag{18}$$

где g — геометрический фактор, d — диаметр кинетической единицы, v — газовая кинетическая скорость, $v = \sqrt{3kT/m}$, m — масса кинетической единицы.

Подставив в равенство (18) величину W_e из соотношения (17), получаем уравнение вязкости в виде

$$\eta = A \exp\left(\frac{\Delta v_e}{v_f}\right),\tag{19}$$

где $A = (mkT/3)^{1/2}/3\pi d^2g$. Элементарный объем Δv_e , необходимый для критического смещения атома, по порядку величины совпадает с объемом атома $\Delta v_e \approx v$. Поэтому величину $f = v_f/\Delta v_e \approx v_f/v$ можно рассматривать как долю флуктуационного объема, откуда уравнение вязкости (19) можно переписать в виде

$$\eta = A \exp\left(\frac{1}{f}\right). \tag{20}$$

Введем относительную вязкость a_T как отношение вязкости при данной температуре к вязкости при температуре стеклования T_q [19]:

$$a_T = \frac{\eta(T)}{\eta(T_g)} \,.$$

Из уравнения (20) для $\ln a_T$ следует выражение

$$\ln a_T = \frac{1}{f} - \frac{1}{f_g},\tag{21}$$

где f_g — значение f при температуре стеклования $T = T_g$.

Вблизи T_g примем линейную аппроксимацию температурной зависимости доли флуктуационного объема:

$$f = f_g + \beta_f (T - T_g), \qquad (22)$$

где β_f — коэффициент теплового расширения флуктуационного объема ($\beta_f = (df/dT)_{T_g}$). Подстановка выражения (22) в (21) приводит к соотношению

$$\ln a_T = -\frac{1}{f_g} \frac{T - T_g}{T - T_g + f_g / \beta_f},$$
 (23)

которое совпадает с известным эмпирическим уравнением Вильямса-Ландела-Ферри (ВЛФ), получившим широкое распространение в физике аморфных полимеров и стекол [6, 19]:

$$\ln a_T = -C_1 \frac{T - T_g}{T - T_g + C_2}.$$
 (24)

Уравнение ВЛФ (24) успешно описывает температурную зависимость вязкости и времени релаксации вблизи T_g (для аморфных полимеров в интервале от T_g до $T_g + 50^\circ$, для неорганических стекол в интервале от T_g до $T_g + 500^\circ$ [6, 19]).

Коэффициент C_1 определяется из данных о вязкости вблизи T_g и оказывается практически универсальной постоянной для всех стеклующихся веществ $C_1 \approx \text{const}$ (табл. 1–3) [6, 19]. Из сравнения выражений (23) и (24) следует, что доля флуктуационного объема f_g , замороженная при T_g , является фактически постоянной величиной у аморфных органических полимеров (табл. 1) [19], неорганических стекол (табл. 2) [6] и металлических аморфных сплавов (металлических стекол) (табл. 3) [20]:

$$f_g = \frac{1}{C_1} \approx \text{const} \approx 0.020 - 0.030.$$
 (25)

С этой точки зрения, жидкость переходит в твердое стекло, когда доля флуктуационного объема уменьшается до некоторого минимального значения (25). Данный критерий можно рассматривать как условие прекращения вязкого течения стеклообразующей жидкости [21, 22].

Соотношение вязкости (19) представляет собой частный случай более общего уравнения [21]

$$\eta = A \exp\left[\frac{\Delta F_{\infty}}{kT} + \frac{\Delta v_e}{v_f}\right],\tag{26}$$

где ΔF_{∞} — потенциал элементарного акта вязкого течения — высокотемпературный предел свободной энергии активации текучести ΔF_{η} :

$$\Delta F_{\eta} = \Delta F_{\infty} + \Delta F_S(T),$$

Полимер	T_g, \mathbf{K}	C_1, \mathbf{K}	C_2, \mathbf{K}	f_g	$\Delta arepsilon_{e}, \mathrm{кДж}/\mathrm{моль}$	
Поливинилацетат	305	36	47	0.028	9	
Натуральный каучук	300	38	54	0.026	9	
Метакрилатные полимеры						
Этиловый	335	40	65	0.025	10	
<i>п</i> -бутиловый	300	39	97	0.026	9	
n-октиловый	253	37	107	0.027	7	
Трибутират целлюлозы в						
диметилфталате, %						
21	188	48	43	0.021	6	
43	193	54	39	0.019	6	

Таблица 1. Параметры уравнения ВЛФ и модели делокализованных атомов для аморфных органических полимеров [6, 19]

Таблица 2. Параметры уравнения ВЛФ и модели делокализованных атомов для натриевосиликатных стекол Na₂O-SiO₂ и ряда многокомпонентных неорганических стекол [6]

Стекло	T_g, \mathbf{K}	C_1, \mathbf{K}	C_2, \mathbf{K}	f_g	$\Delta arepsilon_e,$ кДж/моль
Na ₂ O–SiO ₂					
Na ₂ O, мол. %					
19.0	746	38	317	0.026	23
26.1	721	39	339	0.026	22
32.9	704	36	275	0.028	21
36.2	694	34	246	0.029	21
44.8	667	44	211	0.023	21
Многокомпонентные					
оптические стекла					
БФ 12	759	34	196	0.032	22
БК 9	851	32	192	0.031	25
К 2	844	32	216	0.031	24
TK 2	887	31	199	0.032	26

 $\Delta F_S(T)$ — потенциал локального изменения структуры:

$$\Delta F_S(T) = \frac{\Delta v_e}{v_f} kT \approx kT \left[\exp\left(\frac{\Delta \varepsilon_e}{kT}\right) - 1 \right].$$

При высоких температурах $(T \to \infty) \Delta F_S = 0$ и $\Delta F_{\eta} = \Delta F_{\infty} \approx \text{const. B}$ области стеклования выражение (26) переходит в соотношение (19) [21, 22], ибо $\Delta F_S(T) \gg \Delta F_{\infty}$ и $\Delta F_{\eta} \approx \Delta F_S(T)$.

6. ФЛУКТУАЦИОННЫЙ ОБЪЕМ И ФЛУКТУАЦИЯ ПЛОТНОСТИ

Коэффициент сжимаемости стеклообразующей жидкости χ_l можно представить в виде двух слагаемых [6, 17]:

$$\chi_l = \chi_g + \chi_f,$$

где χ_g отражает «геометрическую» сжимаемость твердого стекла, обусловленную пропорциональным уменьшением межатомных расстояний при всестороннем сжатии, а структурное слагаемое χ_f , рав-

Nº	Аморфный сплав	T_g, K	C_1, \mathbf{K}	C_2, \mathbf{K}	f_g	$\Delta arepsilon_e,$ кДж/моль
1	Ni	430	35	135	0.029	13
2	$\mathrm{Ni}_{62.4}\mathrm{Nb}_{37.6}$	945	40	135	0.025	29
3	$\mathrm{Ni}_{75}\mathrm{Si}_8\mathrm{B}_{17}$	782	38	112	0.026	24
4	$\mathrm{Fe}_{91}\mathrm{B}_9$	600	53	87	0.019	20
5	$\mathrm{Fe}_{89}\mathrm{B}_{11}$	640	37	125	0.027	19
6	$\mathrm{Fe}_{83}\mathrm{B}_{17}$	760	38	122	0.026	23
7	$\rm Fe_{41.5}Ni_{41.5}B_{17}$	720	38	119	0.026	22
8	$\mathrm{Fe_{79}Si_{10}B_{11}}$	818	38	117	0.026	25
9	$\mathrm{Fe}_{80}\mathrm{P}_{13}\mathrm{C}_7$	736	38	120	0.026	22
10	$\mathrm{Pd}_{82}\mathrm{Si}_{18}$	657	37	100	0.027	20
11	$\mathrm{Pd}_{40}\mathrm{Ni}_{40}\mathrm{P}_{20}$	602	39	93	0.026	18
12	$\mathrm{Pt}_{60}\mathrm{Ni}_{15}\mathrm{P}_{25}$	500	37	95	0.027	15
13	Te	290	41	92	0.024	9
14	$\mathrm{Co}_{75}\mathrm{Si}_{15}\mathrm{B}_{10}$	785	38	110	0.026	24
15	Ge	750	39	50	0.026	23

Таблица 3. Параметры уравнения ВЛФ и модели делокализованных атомов для металлических стекол — аморфных сплавов (использованы данные из работы [20])

ное сжимаемости флуктуационного объема жидкости, связано с изменением взаимных расположений частиц относительно друг друга в результате их локальных перегруппировок. В величину сжимаемости жидкости доминирующий вклад вносит именно эта структурная составляющая χ_f , наличием которой объясняется существенно большая сжимаемость жидкостей в сравнении с твердыми телами.

Поэтому принимается вполне приемлемое приближение $\chi_f \gg \chi_g$, откуда, полагая $\chi_l \approx \chi_f$ и используя зависимость f(p) из уравнения состояния (14), для сжимаемости жидкости $\chi_l = -(df/dp)_T$ выводится соотношение [17,23]

$$\chi_l = f \frac{\Delta v_e}{kT}.$$
 (27)

Из термодинамики известно, что средний квадрат относительной разности флуктуации плотности выражается формулой

$$\left\langle \frac{\Delta \rho}{\rho} \right\rangle^2 = \frac{\chi_l kT}{v}.$$
 (28)

Выразив величину f из выражения (27),

$$f = \frac{\chi_l kT}{\Delta v_e},$$

и сопоставив ее с флуктуацией плотности (28), приходим к выводу, что доля флуктуационного объема аморфных сред является функцией относительной флуктуации плотности

$$f = \frac{v}{\Delta v_e} \left\langle \frac{\Delta \rho}{\rho} \right\rangle^2,$$

что указывает на тесную связь процесса делокализации (возбуждения) атома с флуктуацией плотности.

Отсюда видно, что в отсутствие флуктуации плотности $\langle \Delta \rho / \rho \rangle^2 = 0$ флуктуационный объем аморфных систем равен нулю f = 0. Этот факт подтверждает представление о том, что флуктуационный объем $\Delta V_e = N_e \Delta v_e$ (следовательно, флуктуационный свободный объем $V_f = \Delta V_e$) не имеет никакого отношения к традиционному структурно-обусловленному [24] геометрическому [6] свободному объему по Ван дер Ваальсу («пустому объему» между молекулами и атомами).

По поводу взаимосвязи f и $\langle \Delta \rho / \rho \rangle^2$ необходимо сделать некоторое пояснение.

В теории флуктуации плотности образование флуктуационного объема обусловлено небольшими средними смещениями Δr всех N частиц из равновесных положений [25]:

$$\Delta V_f = (\Delta r)^3 N,$$

где $(\Delta r)^3$ — усредненный флуктуационный объем, приходящийся на одну частицу. Флуктуационный

объем ΔV_f равномерно распределяется между всеми частицами аморфной среды.

А в модели делокализованных (возбужденных) атомов флуктуационный объем ΔV_e образуется в результате критических смещений Δr_m сравнительно небольшого числа N_e возбужденных атомов (см. (1)). Отсюда, на первый взгляд, кажется, что ΔV_f и ΔV_e — различные объемы.

Однако, с точки зрения равновесной термодинамики, имеющей дело со средними значениями физических величин за очень большие (практически бесконечно большие) промежутки времени, различие между указанными двумя способами определения флуктуационного объема жидкости не имеет принципиального значения. Образование флуктуационного объема аморфной системы в результате критических смещений N_e возбужденных атомов, по существу, эквивалентно образованию такого же объема за счет средних флуктуационных смещений всех Nатомов [17, 23]: $\Delta V_e = \Delta V_f$.

В самом деле, на примере простой жидкости, межатомное взаимодействие которой подчиняется потенциалу Леннарда-Джонса, с помощью метода молекулярной динамики было установлено, что объемные доли этих двух флуктуационных объемов ΔV_f и ΔV_e при температуре стеклования совпадают [25].

В отличие от гомофазной флуктуации плотности, рождение возбужденного делокализованного атома можно рассматривать как частный случай гетерофазной флуктуации [17].

7. РАСЧЕТ ЭЛЕМЕНТАРНОГО Φ ЛУКТУАЦИОННОГО ОБЪЕМА Δv_e

Обратимся к уравнению (27). Переходя от коэффициента сжимаемости к изотермическому модулю всестороннего сжатия $B = 1/\chi_l$, разрешим это уравнение относительно объема атомного возбуждения (объема делокализации атома)

$$\Delta v_e = \frac{kT}{fB}$$

Применим данное соотношение к области стеклования, где при $T \leq T_g$ доля флуктуационного объема остается постоянной $f_g \approx \text{const}$ (см. (25)),

$$\Delta v_e = \frac{kT_g}{f_g B}.$$
(29)

Под величиной B будем понимать м
гновенный модуль объемного сжатия стекла при $T < T_g$, который

9 ЖЭТФ, вып.1(7)

можно выразить через мгновенный модуль упругости *E* при одноосной деформации и коэффициент Пуассона *µ*:

$$B = \frac{E}{3(1-2\mu)}$$

В справочниках и в научной литературе обычно приводятся экспериментальные данные о величинах E и μ , поэтому для расчета объема делокализации атома Δv_e равенство (29) удобнее представить в виде

$$\Delta v_e = \frac{3(1-2\mu)kT_g}{f_g E} \,. \tag{30}$$

Здесь значения упругих постоянных E и μ относятся, как правило, к комнатной температуре. Следовательно, формула (30) основана на приближении слабой температурной зависимости этих величин. Под E и B подразумеваются мгновенные модули упругости, которые при нагревании стекол от комнатной температуры до области их размягчения меняются незначительно. Результаты расчета Δv_e по этой формуле в качестве примеров приведены в табл. 4 и 5 для аморфных полимеров и ряда неорганических стекол.

8. РАСЧЕТ ЭНЕРГИИ ДЕЛОКАЛИЗАЦИИ АТОМА

Формулу для расчета энергии делокализации атома $\Delta \varepsilon_e$ можно получить из уравнения (14), записанного при $T \leq T_q$,

$$f_g = \frac{\Delta v_e}{v} \exp\left(-\frac{\Delta \varepsilon_e + p \Delta v_e}{kT_g}\right)$$

Разрешив это уравнение относительно энтальпии делокализации атома $\Delta H_e = \Delta \varepsilon_e + p \Delta v_e$, имеем

$$\Delta H_e = kT_g \left(\ln \frac{1}{f_g} + \ln \frac{\Delta v_e}{v} \right). \tag{31}$$

Элементарный флуктуационный объем Δv_e , который можно рассматривать как объем «дырки», куда может переместиться кинетическая единица, по порядку величины должен быть близок к объему v = V/N, приходящемуся на частицу. Поэтому в равенстве (31) вторым слагаемым в скобках можно пренебречь: $\ln(1/f_g) \gg \ln(\Delta v_e/v)$, поэтому равенство (31) упрощается:

$$\Delta H_e \approx kT_g \ln \frac{1}{f_g}.$$
 (32)

Принимая во внимание формулу (6), где при обычном атмосферном внешнем давлении $p \approx 1$ атм

Стекло	T_g, \mathbf{K}	μ	f_g	$\Delta v_e, \mathrm{\AA^3}$	$\Delta arepsilon_e,$ кДж/моль
${ m SiO}_2$	1423	0.170	0.030	17	39
R_2O-SiO_2					
Li_2O , мол. %					
28.6	688	0.205	0.028	8	19
30.0	686	0.208	0.027	8	19
32.6	684	0.213	0.029	7	18
35.9	680	0.200	0.029	7	18
41.3	675	0.231	0.029	6	17
Na_2O , мол. %					
19.6	744	0.234	0.029	10	19
29.45	715	0.254	0.028	9	18
30.1	713	0.255	0.028	9	18
32.9	704	0.255	0.028	9	18
36.3	694	0.255	0.029	8	18
K_2O , мол. %					
16.7	766	0.236	0.030	11	20
18.8	760	0.244	0.029	11	20
21.4	745	0.254	0.029	11	19
26.9	733	0.275	0.028	11	18
28.7	728	0.281	0.028	11	17
33.0	715	0.295	0.027	11	17

Таблица 4. Параметры модели делокализованных атомов для кварцевого стекла ${
m SiO}_2$ и щелочносиликатных стекол ${
m R}_2{
m O}-{
m SiO}_2$ (${
m R}={
m Li},~{
m Na},~{
m K}$)

Таблица 5. Параметры модели делокализованных атомов для аморфных органических полимеров

Полимер	T_g, K	μ	f_g	$\Delta v_e, {\rm \AA}^3$	$\Delta arepsilon_{e},$ кДж/моль
Полипропилен	258	0.32	0.035	26	5
Полистирол	363	0.34	0.030	39	7
Полиметилметакрилат	373	0.33	0.030	25	8
Полиформальдегид	213	0.31	0.037	12	4
Поликарбонат	420	0.38	0.036	33	7
Полиэтилен	248	0.36	0.032	30	5

можно считать, что $p_i \gg p$, поскольку внутреннее давление жидкостей и твердых тел, обусловленное силами межатомного притяжения, составляет значительную величину $p_i \approx 10^4 - 10^5$ атм [6,16], поэтому при атмосферном давлении $p \approx 1$ атм энтальпия ΔH_e и энергия $\Delta \varepsilon_e$ возбуждения атома фактически совпадают:

$$\Delta H_e = (p_i + p) \Delta v_e \approx p_i \Delta v_e = \Delta \varepsilon_e.$$

Таким образом, энергию делокализации атома при данном приемлемом приближении можно рассчитывать по формуле (32) при $\Delta H_e \approx \Delta \varepsilon_e$,

$$\Delta \varepsilon_e \approx k T_g \ln \frac{1}{f_g}.$$
(33)

Результаты расчета $\Delta \varepsilon_e$ по этой формуле приведены в табл. 1–5.

9. ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ И ЭНЕРГИЯ ДЕЛОКАЛИЗАЦИИ АТОМА

Поверхностное натяжение жидкости σ равно работе, необходимой для того, чтобы путем растяжения поверхностного слоя увеличить его поверхность на единицу площади (1 см²). Средние межатомные расстояния и силы межатомного взаимодействия в твердых телах и соответствующих жидкостях примерно одинаковы. Объясняется это тем, что в жидкостях ближний порядок в первом приближении такой же, как и в твердых телах. Поэтому понятие поверхностного натяжения имеет смысл и для твердых тел [17, 23].

Работу разрыва стержня площадью сечения 1 см² на две половинки, т.е. работу образования свободной поверхности в 2 см² при отрыве друг от друга двух единичных атомных площадок по 1 см², можно определить соотношением

$$2\sigma = \int p_i(x) \, dx \approx p_{im} \Delta r_m,$$

где $p_i(x)$ — внутреннее давление, равное силе притяжения между частицами, отнесенной к единице площади, x — расстояние между единичными площадками, p_{im} — максимальное внутреннее давление, соответствующее предельному удлинению связи между частицами Δr_m .

Внутреннее давление p_i полностью определяется потенциальным полем, созданным ближайшим окружением частицы (ближним порядком), и быстро убывает с ростом расстояния между атомами. Поэтому в первом приближении $p_i(x)$ можно заменить на p_{im} , а dx — на величину Δr_m (см. выше).

При переходе от единичных площадок к предельной деформации связи между соседними атомами вместо σ следует брать атомарное поверхностное натяжение σ_A , равное произведению σ на площадь сечения атома πd^2 ,

$$2\sigma_A = 2\sigma\pi d^2 = p_{im}(\pi d^2\Delta r_m) \approx p_{im}\Delta v_e = \Delta\varepsilon_e.$$

Выразив площадь сечения атома πd^2 через атомный объем $v_A^{2/3}$, приходим к выводу о том, что энергию возбуждения атома можно рассчитать по данным о поверхностном натяжении и атомном объеме [26]:

$$\Delta \varepsilon_e = 2\sigma v_A^{2/3} N_A^{1/3}, \qquad (34)$$

где N_A — число Авогадро (энергия $\Delta \varepsilon_e$ отнесена к одному молю).

Атомный объем стекол вычисляется по плотности ρ и средней массе атома M:

$$v_A = \frac{M}{\rho}, \quad M = \frac{\sum z_i M_i}{\sum z_i n_i}$$

 z_i и M_i — соответственно молярная доля и молярная масса *i*-го окисла, n_i — число атомов в *i*-м окисле, i — число окислов в данном стекле.

Несмотря на приближенный характер формулы (34), у ряда стеклообразных полимеров (полистирол, полибутадиен) и неорганических стекол расчет энергии $\Delta \varepsilon_e$ по этой формуле (34) на основе данных о поверхностном натяжении и атомном объеме хорошо согласуется со значениями $\Delta \varepsilon_e$, полученными по соотношению модели делокализованных атомов (33) (табл. 6).

В табл. 6 приведены значения доли флуктуационного объема f_g при T_g , рассчитанные из экспериментальных данных T_g и скачка коэффициента объемного теплового расширения $\Delta\beta$ при температуре стеклования с помощью соотношения [6, 26],

$$\Delta\beta T_g = f_g \ln \frac{1}{f_g}, \qquad (35)$$

где $\Delta\beta = \beta_l - \beta_g$, β_l и β_g — коэффициенты объемного теплового расширения соответственно выше и ниже T_g . Как видно в табл. 1–3, 6, значения f_g , определенные из данных о вязкости вблизи T_g и скачка коэффициента теплового расширения при температуре стеклования, находятся в удовлетворительном согласии между собой.

Равенство (35) получено из следующих соображений.

Используя зависимость f(T) из уравнения (14) в производной от f(T) по температуре, можно вывести следующее выражение для $\beta_f = (df/dT)_P$:

$$\beta_f T = f \ln \frac{1}{f} \,. \tag{36}$$

Трактовка постоянных C_1 и C_2 уравнения ВЛФ, следующая из сравнения уравнений (23) и (24), позволяет выразить коэффициент теплового расширения флуктуационного объема через произведение $C_1 \cdot C_2$: 1

$$\beta_f = \frac{1}{C_1 C_2}$$

У многих органических и неорганических стекол величина β_f , рассчитанная по этой формуле на основе данных о постоянных C_1 и C_2 , совпадает со скачком коэффициента теплового расширения при температуре стеклования: $\beta_f \approx \Delta\beta$ [6,19]. Подставив в формулу (36) $\beta_f = \Delta\beta$ и $f = f_g$ при $T = T_g$, приходим к приведенной выше формуле (35).

Стекло	T_g, \mathbf{K}	f_g	$\sigma \cdot 10^3,$ Дж/м 3	$v_A \cdot 10^6, \mathrm{m}^3/\mathrm{моль}$	$\Delta \varepsilon_e, \mathbf{k}_e$	Дж/моль
					(34)	(33)
ПС	370	0.032	173	6.3	10	10.6
ПБ	189	0.026	110	5.5	5.8	5.8
$Li_2O\cdot 3B_2O_3$	693	0.019	406	6.1	22.8	23.1
F2	705	0.044	250	9.1	18.5	18.4
SF64	851	0.054	290	8.4	20.3	20.7
8209	785	0.022	340	8.6	24.2	24.9
8330	803	0.029	340	8.5	24.0	24.0
8558	948	0.020	430	8.2	29.5	31.0
Li_2O-SiO_2						
Li ₂ O, мол. %						
20	697	0.028	310	7.9	20.8	20.7
30	686	0.027	314	7.3	20.0	20.6
35.9	680	0.029	323	6.9	19.9	20.0
41.3	675	0.029	334	6.6	19.9	19.9
Na_2O-SiO_2						
Na ₂ O, мол. %						
19.6	744	0.029	276	8.9	20.1	21.9
30.1	713	0.028	282	8.9	20.4	21.2
32.9	704	0.028	284	8.8	20.5	20.9
36.2	694	0.029	286	8.8	20.6	20.4

Таблица 6. Поверхностное натяжение σ и параметры модели делокализованных атомов аморфных полимеров (ПС и ПБ) и неорганических стекол (использованы данные из работы [26])

Примечание. Обозначение стекол — по каталогу фирмы "Schott" [26]: F2 — флинтглас, SF64 — тяжелый флинт, 8209 — телевизионный экран, 8330 — стекло «Дуран-50», 8558 — стекло «Керан». ПС — полистирол, ПБ — полибутадиен.

Равенство $\beta_f \approx \Delta\beta$ означает, что скачок коэффициента теплового расширения $\Delta\beta$ (а также скачок теплоемкости ΔC_P) при температуре стеклования T_g обусловлен замораживанием («выключением из игры») подвижности возбужденных (делокализованных) кинетических единиц, которые при $T > T_g$ обеспечивают лабильность структуры и вязкое течение стеклообразующего расплава [22].

10. ОЦЕНКА ЭНЕРГИИ ДЕЛОКАЛИЗАЦИИ АТОМА ИЗ ТЕОРИИ УПРУГОСТИ

Рассмотрим расчет энергии делокализации атома $\Delta \varepsilon_e$ как работу предельной упругой деформации межатомной связи Δr_m в упругой сплошной среде.

Указанная работа деформации идет на приращение упругой энергии связи

$$\Delta \varepsilon_e = \frac{k_0 (\Delta r_m)^2}{2} \,, \tag{37}$$

где k_0 — коэффициент упругости, который можно выразить через модуль упругости при одноосной деформации E,

$$E \approx k_0 / r_0, \tag{38}$$

 r_0 — межатомное равновесное расстояние. Полагаем, что закон Гука в первом приближении справедлив вплоть до предельной деформации Δr_m .

Умножив и разделив на площадь эффективного сечения атома r_0^2 , формулу упругой энергии предельно растянутой межатомной связи (37) представим в виде

$$\Delta \varepsilon_e = \frac{1}{2} \frac{k_0}{r_0} \frac{\Delta r_m}{r_0} r_0^2 \Delta r_m = \frac{1}{2} E \frac{1}{6\gamma} \Delta v_e, \qquad (39)$$

Стекло	T_g, \mathbf{K}	f_g	μ	$R \cdot 10^7$, Па	$\Delta v_e,{ m cm}^3/{ m моль}$	$\Delta \varepsilon_e, 1$	кДж/моль
						(33)	(42)
$16 Na_2 O \cdot 84 SiO_2$	703	0.026	0.218	6027	6.3	23.3	21.3
$20 Na_2 O \cdot 80 SiO_2$	740	0.026	0.235	5647	6.7	21.9	22.4
$33.3 Na_2 O{\cdot}66.7 SiO_2$	744	0.028	0.255	5879	5.5	17.7	22.1
$10 \text{Li}_2 \text{SO}_4 \cdot 90 \text{NaPO}_3$	451	0.014	0.300	4061	7.9	15.1	15.9
$20 \mathrm{Li}_2 \mathrm{SO}_4 \cdot 80 \mathrm{NaPO}_3$	447	0.013	0.303	4130	8.2	15.7	16.1
$30 \mathrm{Li}_2 \mathrm{SO}_4 \cdot 70 \mathrm{NaPO}_3$	429	0.014	0.304	4150	7.2	13.9	15.2
Многокомпонентные							
оптические стекла							
БК4	478	0.024	0.255	7032	3.5	13.3	14.8
БК10	501	0.026	0.244	7343	3.3	13.9	15.2
БФ12	400	0.023	0.243	6115	3.6	12.7	12.5
$T\Phi 1$	370	0.027	0.227	5368	3.5	11.1	11.1
ΤΦ10	357	0.025	0.245	5422	3.3	10.2	10.9
ΟΦ1	385	0.026	0.225	5312	3.8	12.2	11.7

Таблица 7. Сравнение результатов расчета энергии делокализации атома \Deltaarepsilon_e по формулам (33) и (42)

где учтено, что произведение площади сечения атома r_0^2 на его критическое смещение Δr_m имеет смысл элементарного объема Δv_e , необходимого для делокализации атома,

$$\Delta v_e \approx r_0^2 \Delta r_m,$$

а относительная предельная упругая деформация связи между атомами ($\Delta r_m/r_0$) выражается через параметр Грюнайзена γ [6, с. 16, 24]:

$$\frac{\Delta r_m}{r_0} \approx \frac{1}{6\gamma}.$$
(40)

Принята также во внимание связь между k_0 и E в виде (38).

Используя для γ соотношение Беломестных — Теслевой [27]

$$\gamma = \frac{3}{2} \, \frac{1+\mu}{2-3\mu} \,, \tag{41}$$

равенство (39) приводим окончательно к следующему виду:

$$\Delta \varepsilon_e = \frac{2 - 3\mu}{18(1 + \mu)} E \Delta v_e. \tag{42}$$

Как видим, с этой точки зрения энергия критического смещения атома $\Delta \varepsilon_e$ оказывается функцией параметров теории упругого континуума E и μ . Оценка $\Delta \varepsilon_e$ по формуле (42) из данных о модуле упругости *E*, коэффициенте Пуассона μ и об элементарном объеме Δv_e , вычисленном с помощью соотношения (30), для ряда стекол (табл. 7), в частности, для натриевосиликатного стекла (20 мол. % Na₂O),

$$\Delta \varepsilon_e = \frac{2 - 3\mu}{18(1 + \mu)} E \Delta v_e = 21.9 \text{ кДж/моль},$$

находится в удовлетворительном согласии с расчетом $\Delta \varepsilon_e$ по уравнению модели возбужденного состояния (33),

$$\Delta arepsilon_e = RT_g \ln rac{1}{f_g} = 22.4$$
 кДж/моль.

Таким образом, энергию возбуждения (делокализации) атома можно оценить как работу предельной локальной упругой деформации межатомной связи в упругой сплошной среде.

11. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

1. Немиловым [8,9] предложено обоснование сочетания континуальных теорий (теорий упругости и гидродинамики) и молекулярно-кинетических (дискретных) моделей при анализе вязкого течения и стеклования жидкостей. Развито представление о том, что «смещения частиц при преодолении потенциальных барьеров есть реальные молекулярные процессы, сводящиеся к локальным возбуждениям (локальным упругим деформациям). Окружающая среда реагирует на такое возмущение как непрерывный упругий континуум, в котором тензоры упругих напряжений и деформаций описываются в рамках теории сплошной среды — теории упругого (или вязкого) континуума [9]».

На наш взгляд, в определенной степени модель делокализованных атомов вписывается в данную концепцию. Критическое смещение атома, соответствующее максимуму силы межатомного притяжения, можно рассматривать как локальное возбуждение (локальную упругую деформацию) в упругой сплошной среде. Тогда становится понятным, почему дискретные микроскопические параметры модели делокализованных атомов оказываются связанными с модулем упругости и коэффициентом Пуассона (см. (30), (42)).

Вместе с тем следует отметить различие этих двух подходов. В теории Немилова атом взбирается на вершину потенциального барьера, т. е. он смещается из равновесного положения до точки, соответствующей вершине барьера. А в нашей модели атом смещается до точки перегиба кривой потенциала. Поэтому энергия делокализации (критического смещения) атома в нашей модели $\Delta \varepsilon_e$ на порядок меньше свободной энергии активации вязкого течения $\Delta F_{\eta}(T_g)$ в теории Немилова [4, 8, 9].

В последние годы интенсивно разрабатывается модель мерцающих фракталов и конфигуронов-разрывов валентных связей [1-3, 7, 28], которая близка к теории Немилова [4, 8]. Конфигурон представляет собой квазичастицу (дефект), связанную с разрывом валентной связи типа Si-O в силикатных стеклах. Энергия образования конфигурона (см., например, [29]) также существенно больше энергии критического смещения атома в модели делокализованных атомов.

2. В исследованиях внутреннего трения, диэлектрических потерь и уплотнения под высоким давлением у силикатных и других неорганических стекол обнаруживаются низкоэнергетические мелкомасштабные процессы с низкой энергией активации около 16–23 кДж/моль (4–5 ккал/моль), которая совпадает с энергией делокализации атома $\Delta \varepsilon_e$ (см. ссылки в книге [6, с. 200]).

Под действием больших механических напряжений при T = 20 °C (при температурах ниже температуры стеклования T_g) в силикатных стеклах возникает деформация, которая после снятия внешнего напряжения может сохраняться сколь угодно долго. Такую деформацию (не совсем удачно) стали называть пластической. Она характеризуется энергией активации порядка энергии делокализации атома 20 кДж/моль [6,30]. Примечательно, что при нагревании (ниже T_g) пластическая деформация релаксирует с такой же низкой энергией активации вплоть до исчезновения [6, 30–32]. Следовательно, она оказывается не пластической, а замороженной обратимой деформацией.

Пластичность стекол наблюдается при всестороннем сжатии (при $P > P_0 \approx 5 \cdot 10^4 - 10^5$ атм), при микровдавливании алмазной пирамидки Виккерса, а также при растяжении тонкой стеклянной нити (см. [6, 30]).

На основе модели делокализованных атомов ранее была предложена интерпретация данного явления (см., например, [14, 33]). Представление о том, что элементарный акт пластической деформации стекол сводится к критическому смещению мостикового атома, соответствующему максимуму силы межатомного притяжения, находится в согласии с экспериментальными данными. Расчеты в рамках модели предела текучести, энергии активации и других параметров этой деформации согласуются с экспериментом. Тот факт, что данная деформация стекол оказывается замороженной деформацией, можно объяснить недостаточностью интенсивности теплового движения при T = 20 °C для возвращения критически смещенного атома в исходное недеформированное состояние. Для этого необходима, например, термическая стимуляция — нагревание.

Таким образом, при трактовке и описании замороженной обратимой деформации стекол критическое смещение атома в модели делокализованных атомов должно быть, в принципе, обратимым процессом.

По-видимому, данный молекулярный механизм играет важную роль и в других низкоактивационных мелкомасштабных процессах в стеклах и их расплавах.

3. Низкие значения энергии делокализации атома $\Delta \varepsilon_e \approx 20-25 \text{ кДж}/\text{моль}$ и объема атомной делокализации $\Delta v_e \approx 8-12 \text{ Å}^3$ в силикатных и других неорганических стеклах (табл. 4) указывают на тот факт, что образование делокализованного атома в этих системах представляет собой мелкомасштабный низкоэнергетический процесс.

Анализ этих и других данных приводит к выводу о том, что делокализация атома в неорганических стеклах и их расплавах соответствует низкоактивационному процессу локальной предельной упругой деформации структурной сетки, обусловленной критическим смещением мостикового атома. В силикат-

Рис. 2. Переключение валентной связи в силикатных стеклах по Немилову [4]

ных стеклах процесс делокализации атома представляет собой критическое смещение мостикового атома кислорода Δr_m в структурном фрагменте кремнекислородной сетки Si–O–Si перед переключением валентной связи (рис. 2) [14].

Вместо возбуждения — делокализации атома можно говорить о возбуждении межатомной связи, ибо критическое смещение мостикового атома связано с предельной локальной упругой деформацией межатомных валентных связей (рис. 2).

На основе данных о параметрах Δv_e и $\Delta \varepsilon_e$ предполагается, что процессу делокализации атома в стеклообразных органических полимерах соответствует предельное смещение небольшого участка основной цепи макромолекулы — вероятно, группы атомов в соединительном звене (типа группы –СН₂–). Низкое значение $\Delta \varepsilon_e$ (табл. 1, 5) свидетельствует о том, что критическое смещение групп атомов связано со сравнительно небольшими силами межмолекулярного взаимодействия [14].

4. Полагаем, что предельная упругая деформация межатомной связи Δr_m , соответствующая максимуму силы притяжения между атомами, протекает внутри так называемого дилатона [11,12] под действием флуктуационного теплового давления. Тем самым учитывается коллективный характер взаимодействия атомов в процессе делокализации атома (предельной деформации межатомной связи).

Дилатоном называется микрообласть структуры с растянутыми межатомными связями. Его линейный размер определяется длиной свободного пробега фононов. В дилатонной модели [11,12] твердое тело рассматривается как совокупность взаимодействующих фононов.

Вследствие пониженной плотности дилатоны оказываются ловушками для фононов. Как показано авторами работы [12], при благоприятных условиях они могут аккумулировать энергию из окружающей среды, что приводит к их разогреву и тепловому расширению и, в конечном итоге, к возникновению предельно растянутых связей между атомами. Когда мы говорим о деформации одиночной межатомной связи, то подразумеваем, что она протекает внутри дилатона в условиях коллективного взаимодействия атомов.

Ранее предполагалось [34], что как при температуре плавления кристалла, так и при температуре размягчения стекла под действием теплового давления происходит делокализация атома, которая приводит к предельной упругой деформации связи (к ее возбуждению). В самом деле, недавно экспериментально установлено, что при температуре плавления полиэтилена межмолекулярные связи растянуты до предельной величины [35]. В последние годы развивается представление о том, что причиной плавления кристаллов является резкая делокализация определенной группы атомов решетки [36].

В дилатонной модели принципиальным оказывается учет динамики решетки в ангармоническом приближении, позволяющий обосновать деформацию связей в дилатоне под действием флуктуационного теплового давления. Делокализация атома связана с его значительным флуктуационным смещением из равновесного положения, при котором нарушается линейная зависимость силы межатомного притяжения от смещения атома (рис. 1) и проявляется ангармонизм колебаний решетки, мерой которого служит параметр Грюнайзена γ (см. соотношения (39) и (40), куда входит γ). В этом отношении модель делокализации атома находится в согласии с дилатонной моделью, согласно которой критическая деформация межатомной связи (так же, как и в соотношении (40)) оказывается обратно пропорциональной параметру Грюнайзена (см. [12, с. 90, 91]).

5. В последние годы методом аннигиляции позитронов проведены измерения параметров теории флуктуационного свободного объема стеклообразных полимеров [37–39]. Интересно отметить, что для эпоксидного аморфного полимера получены следующие значения объема флуктуационной дырки v_h и доли флуктуационного свободного объема f_g , замороженной при температуре стеклования [37],

$$v_h = 62 \,\text{\AA}^3, \quad f_g = 0.029,$$
 (43)

которые находятся в согласии с результатами расчета по модели делокализованных атомов, что следовало ожидать, поскольку объем дырки совпадает с объемом делокализации атома: $v_h = \Delta v_e$ [14].

В самом деле, у сетчатых эпоксидных полимеров типа модифицированной эпоксидной смолы ЭД-16 значения основных параметров модели делокализованных атомов

$$\Delta v_e \approx 45-74 \,\mathrm{\AA}^3, \quad \Delta \varepsilon_e = 11 \,\mathrm{кДж/моль}, \quad f_g \approx 0.025,$$

рассчитанные по формулам (25), (30), (33), имеют такой же порядок величины, что и приведенные выше значения (43). Для указанных эпоксидных полимеров в расчетах приняты следующие данные [40]: $T_q = 358$ K, $\mu = 0.33$ –0.37, E = (28–35) · 10⁸ Па.

По-видимому, ловушками позитронов служат те микрообласти структуры полимерных стекол типа дилатонов, где располагаются критически деформированные межмолекулярные связи (возбужденные делокализованные атомы — «дырки»).

6. Модель делокализованных атомов может быть привлечена при интерпретации переходов стекло-жидкость [13, 14, 18], кристалл-жидкость [14, 34], при трактовке температурной зависимости вязкости стеклообразующих жидкостей [21, 22], «пластичности» стекол [33, 41], ангармонизма колебаний решетки и нелинейности силы межатомного взаимодействия [34, 41].

12. ЗАКЛЮЧЕНИЕ

Флуктуационное критическое смещение кинетической единицы, соответствующее максимуму силы межатомного притяжения, рассматривается как процесс делокализации (возбуждения) атома. В силикатных стеклах он представляет собой критическое смещение мостикового атома кислорода в мостике Si-O-Si (рис. 2), а в полимерных углеводородах — предельное смещение соединительного звена в основной цепи макромолекулы.

Образование элементарного флуктуационного объема, необходимого для делокализации атома,

обусловлено локальной (гетерофазной) флуктуацией плотности.

Флуктуационный объем аморфных веществ, обусловленный критическими отклонениями (делокализацией) частиц из равновесных положений, играет доминирующую роль в молекулярной подвижности кинетических единиц в области стеклования. Когда объемная доля флуктуационного объема уменьшается до некоторого минимального значения (2–3 %), прекращается вязкое течение стеклообразующей жидкости, и она переходит в стекло.

Показано, что основное уравнение модели делокализованных атомов жидкостей и стекол можно вывести двумя-тремя различными способами. Рассчитаны параметры данной модели для неорганических стекол, аморфных органических полимеров и металлических аморфных сплавов.

Предполагается, что предельная упругая деформация межатомной связи (ее возбуждение) происходит внутри дилатона [11, 12] — микрообласти структуры с растянутыми связями, линейный размер которой определяется длиной свободного пробега фонона. Тем самым в неявном виде учитывается коллективный характер взаимодействия атомов в процессе делокализации атома (возбуждения межатомной связи).

ЛИТЕРАТУРА

- M. I. Ojovan, Adv. Condens. Matter Phys., Article ID 817829 (2008).
- J. F. Stanzione III, K. E. Stranwhecker, and R. P. Wool, J. Non-Cryst. Sol. 357, 311 (2011).
- M. I. Ojovan and W. E. Lee, J. Non-Cryst. Sol. 356, 2534 (2010).
- S. V. Nemilov, Thermodynamic and Kinetic Aspects of the Vitreous State, CRC Press Inc., London; Tokyo; Roca Raton; Ann Arbor (1995).
- 5. М. Д. Бальмаков, Стеклообразное состояние вещества, СПбГУ, СПб (1996).
- Д. С. Сандитов, Г. М. Бартенев, Физические свойства неупорядоченных структур, Наука, Новосибирск (1982).
- 7. М. И. Ожован, ЖЭТФ **130**, 944 (2006).
- 8. S. V. Nemilov, J. Non. Cryst. Sol. 352, 2715 (2006).
- 9. С. В. Немилов, Физ. и хим. стекла 3, 315 (2010).
- 10. M. N. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).

- 11. В. А. Петров, ДАН СССР 301, 1107 (1988).
- 12. В. А. Петров, А. Я. Башкарев, В. И. Веттегрень, Физические основы прогнозирования долговечности конструкционных материалов, Политехника, СПб (1993).
- 13. Д. С. Сандитов, ДАН 390, 209 (2003).
- 14. Д. С. Сандитов, ЖЭТФ 135, 108 (2009).
- А. Н. Соловьев, А. Б. Каплун, Вибрационный метод измерения вязкости жидкостей, Наука, Новосибирск (1970).
- А. И. Бурштейн, Молекулярная физика, Наука, Новосибирск (1986).
- 17. Я. И. Френкель, Кинетическая теория жидкостей, АН СССР, М.-Л. (1945).
- 18. Д. С. Сандитов, С. Б. Мункуева, Д. З. Батлаев,
 Б. Д. Сандитов, ЖФХ 85, 914 (2011).
- 19. Дж. Ферри, Вязкоупругие свойства полимеров, Изд-во иностр. лит., Москва (1963).
- **20**. Д. С. Сандитов, С. Ш. Сангадиев, Б. Д. Сандитов, Физ. и хим. стекла **1**, 84 (2000).
- 21. Д. С. Сандитов, ЖЭТФ 137, 767 (2010).
- 22. Д. С. Сандитов, ЖЭТФ 138, 850 (2010).
- 23. Я. И. Френкель, Введение в теорию металлов, Гостехиздат, Л.-М. (1948).
- 24. В. И. Бетехтин, А. М. Глезер, А. Г. Кадомцев, А. Ю. Кипяткова, ФТТ 40, 85 (1998).
- Д. С. Сандитов, А. Н. Парфенов, Ш. Б. Цыдыпов, ЖФХ 79, 1464 (2005).

- Модель делокализованных атомов . . .
- 26. M. Coenen, Glastechn. Ber. 40, 74 (1977).
- **27**. В. Н. Беломестных, Е. П. Теслева, ЖТФ **74**, 140 (2004).
- 28. R. H. Doremus, Amer. Ceram. Soc. Bull. 82, 59 (2003).
- 29. M. I. Ojovan, K. P. Travis, and R. J. Hand, J. Phys.: Condens. Matter 19, 415107 (2007).
- 30. J. D. Mackenzie, J. Amer. Ceram. Soc. 47, 76 (1964).
- 31. Г. М. Бартенев, Д. С. Сандитов, ДАН СССР 176, 66 (1967).
- 32. G. M. Bartenev, I. V. Rasumovskaya, and D. S. Sanditov, J. Non-Cryst. Sol. 1, 388 (1969).
- **33**. Д. С. Сандитов, Высокомолек. соед. А **49**, 832 (2007).
- 34. Б. Д. Сандитов, М. В. Дармаев, Д. С. Сандитов,
 В. В. Мантатов, ЖФХ 82, 812 (2008).
- 35. В. И. Веттегрень, А. И. Слуцкер, В. Б. Кулик, ФТТ 51, 198 (2009).
- **36**. М. Н. Магомедов, Письма в ЖТФ **35**, 67 (2009).
- 37. Q. Deng, C. S. Sunder, and Y. C. Jean, J. Phys. Chem. 96, 492 (1992).
- 38. Y. Y. Wang, H. Nakashi, Y. C. Jean, and T. C. Sandareski, J. Polym. Sci. 28, 1431 (1990).
- 39. Y. C. Jean, H. Nakanishi, L. Y. Hao, and T. C. Sandareski, Phys. Rev. 2, 9705 (1990).
- 40. Е. М. Филянов, Высокомолек. соед. А 29, 975 (1987).
- **41**. Б. Д. Сандитов, В. В. Мантатов, Д. С. Сандитов, Высокомолек. соед. А **49**, 1679 (2007).