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SMEARED SPIN-FLOP TRANSITION IN RANDOMANTIFERROMAGNETIC ISING CHAINP. N. Timonin*Southern Federal University344090, Rostov-on-Don, RussiaReeived Deember 7, 2011At T = 0 and a su�iently large �eld, the nearest-neighbor antiferromagneti Ising hain undergoes a �rst-orderspin-�op transition into the ferromagneti phase. We onsider its smearing under the random-bond disorder suhthat all independent random bonds are antiferromagneti (AF). It is shown that the ground-state thermodynam-is of this random AF hain an be desribed exatly for an arbitrary distribution P (J) of AF bonds. Moreover,the site magnetizations of �nite hains an be found analytially in this model. We onsider a ontinuous P (J)that is zero above some �J1 and behaves near it as (�J1�J)�, � > �1. In this ase, the ferromagneti phaseemerges ontinuously in a �eld H > H = 2J1. At 0 > � > �1, it has the usual seond-order anomalies nearH with the ritial indies obeying the saling relation and depending on �. At � > 0, higher-order transi-tions our (third, fourth, et.), marked by a divergene of the orresponding nonlinear suseptibilities. In thehains with an even number of spins, the intermediate �bow-tie� phase with linearly modulated AF order existsbetween the AF and ferromagneti phases at J1 < H < H. Its origin an be traed to the in�nite orrelationlength of the degenerate AF phase from whih it emerges. This implies the existene of similar inhomogeneousphases with size- and form-dependent order in a number of other systems with in�nite orrelation length. Thepossibility to observe the signs of the �bow-tie� phase in low-T neutron di�ration experiments is disussed.The in�uene of quenhed disorder on �rst-orderphase transitions was �rst desribed phenomenologi-ally by Imry and Wortis [1℄, who have shown that�random-temperature� disorder an diminish or eveneliminate jumps of the order parameter and other vari-ables at the transition point. Further studies have re-vealed a relation of suh smeared transitions to therandom-�eld Ising model [2℄; it was shown that thesmeared transitions an beome seond-order ones [3�5℄and an transform into a phase oexistene region in-stead of a sharp transition [6℄.Yet our understanding of these smearing phenom-ena is far from exhaustive. We still have no rigorousriteria to deide whih of the known outomes of thesmearing � softened jumps, phase oexistene region,or a seond-order transition � will be realized andtreat this point only qualitatively [7℄. For the resul-ting seond-order transition, it is not known de�nitelywhether the ritial indies are universal or depend ondisorder parameters [3�5℄. There is also the unexploredpossibility that the phase oexistene region, laking�rst- and seond-order transition anomalies, ontains*E-mail: pntim�live.ru

higher-order anomalies at some point, appropriate forthe higher-order transitions. And we know nothingabout the in�uene of disorder on the athermal andground-state transitions suh as spin-�op transitions inantiferromagnets (AF). At these �rst-order transitions,some spin sublattie upturns to beome (partially) par-allel to the external magneti �eld at some ritial �eldstrength [8℄. The AF Ising spin hain provides the sim-plest example of suh a transition from the AF phase tothe ferromagneti one at T = 0 and the �eld H = 2J ,where J is the absolute value of the AF exhange. Inthe presene of random J variations, some segments ofthe hain beome ferromagneti (F) at lower or higherH values, and we an therefore expet some smearingof this �rst-order transition.Fortunately, at T = 0, the magneti properties ofan AF random-bond hain an be desribed exatly foran arbitrary distribution of exhanges and even for anarbitrary hain length. Hene, we have a unique pos-sibility to study smeared spin-�op transition in �nitesamples analytially. Here, we present the results fora ontinuous distribution of exhanges that makes the�rst-order jumps ompletely smeared in the F phase.1164



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Smeared spin-�op transition in random : : :1. DISTRIBUTION FUNCTIONS FOREFFECTIVE RANDOM FIELDSWe onsider the short-range random-bond Isinghain with the HamiltonianH = �N�1Xn=0 JnSnSn+1 �H N�1Xn=0 Sn; (1)where Jn are random nearest-neighbor exhanges withthe idential distribution funtion P (J) suh thatP (J) = 0 for J � 0.To date, there are numerous studies of random bondIsing hains both at T = 0 and at �nite T [9�17℄. Theirommon feature is the existene of a de�nite thermo-dynami limit for the main funtion desribing theirproperties, that is, for the distribution of e�etive ran-dom �eldsWn(F ) = hÆ(F � Fn)iJ ; Fn � 12 ln Zn(+1)Zn(�1) ;where Zn(S) is the partial partition funtion of thelength-n hain (assuming the unit spaing betweenspins), summed over all spins exept the end one S,and the angular brakets denote averaging over thebond distribution funtion P (J). Reursion relationsfor Zn(S),Zn+1(S) = XS0=�1 exp�S0(JS+H)Zn(S0); � � T�1;generate the orresponding relations for Fn,Fn+1 = T th�1 [th�J th�(Fn +H)℄ � U(Fn; J); (2)and for Wn(F ),Wn+1(F ) = Z hÆ(F � U(F 0; J))iJWn(F 0) dF 0: (3)With the initial onditions F0 = 0 and, orrespond-ingly, W0(F ) = Æ(F ), we an �nd all Wn(F ) and allaverage thermodynami variables of our random hain.Thus, for the average magnetization of the site situatedat a distane n from one end of the hain with N spinsand at the distane n0 = N �n� 1 from the other end,we havemn;N = * XS=�1Zn(S)Se�HSZn0(S)XS=�1Zn(S)Zn0(S) +J == ZZ Wn(F )Wn0 (F 0) th �(F + F 0 +H) dF dF 0: (4)

Usually, it is a tedious task to �nd allWn(F ) even atT = 0, and therefore most of the previous studies relyheavily on the existene of the thermodynami limitW1(F ). In the random AF model with P (J) = 0 forJ � 0, the ground-state Wn(F ) an be easily found foreah n, as we show below. This not only allows study-ing the �nite-size e�ets analytially but also makesthe desription of ground-state properties of the hainswith an even number of sites N feasible. The �evenhains� preserve the two-fold degeneray of the groundstate in su�iently small H , whih results in the in�-nite orrelation length at T = 0. Therefore, the bound-ary e�ets an spread throughout the whole even hain,whih requires onsidering �nite samples. We note thatthe thermodynami limit W1(F ) an formally be ob-tained for odd and even n separately, but the resultsare sensible only for the interior of odd hains, whenthe orrelation length is �nite at all H .At T = 0, it is more onvenient to onsider reursionrelations for the integrated probability distributionsCn(F ) = FZ�1 Wn(F 0) dF 0:Evidently, Cn(�1) = 0; Cn(1) = 1: (5)Integrating (3), we obtainCn+1(F ) = Z h#[F � U(F 0; J)℄iJ�F 0Cn(F 0) dF 0 == h#[F � U(1; J)℄iJ ++ Z hÆ[F � U(F 0; J)℄�F 0U(F 0; J)iJCn(F 0) dF 0; (6)where #(F ) is the Heaviside step funtion, �F 0 �� �=�F 0, and U(1; J) = J (f. (2)). BeausejU(F 0; J)j � jJ j, the average in (6) is on�ned to theregion J2 � F 2. In this region, the equation F == U(F 0; J) has the unique solutionF 0 = �H + th�1� th �Fth �J � � V (F; J): (7)Hene, we an represent the delta-funtion in (6) asÆ[F � U(F 0; J)℄ = #(F 2 � J2)j�F 0U(F 0; J)j�1 �� Æ[V (F; J)� F 0℄: (8)Beause sign[�F 0U(F 0; J)℄ = signJ , it follows fromEqs. (6) and (8) thatCn+1(F ) = Q(F ) ++ Z hsign J#(F 2 � J2)Cn[V (F; J)℄iJ ; (9)1165



P. N. Timonin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012Q(F ) � h#(F � J)iJ = FZ�1 P (J) dJ: (10)At T = 0, Eq. (9) is greatly simpli�ed beause we anthen set V (F; J) = �H + F signJ (f. (7)). Hene, atT = 0, Eq. (9) beomesCn+1(F ) = Q(F ) + [1�Q(jF j)℄Cn(F �H) ++Q(�jF j)Cn(�F �H): (11)We thus have obtained funtional equations for theground-state Cn, whih in many ases an be easilysolved for n ! 1 at least. In partiular, for dis-rete bond distributions when P (J) is a sum of delta-funtions, Q is stepwise onstant and the same holdsfor Cn. Then Eqs. (11) beome algebrai equationsfor the jumps of the Cn at some points Fi whose posi-tion is ditated by Eq. (11) and by the initial onditionC0(F ) = #(F ). In this way, one an easily reproduemany known results for the ground state of various ran-dom hains obtained by other methods [9�17℄. But wehere deal with an even simpler model that has not en-joyed attention previously.2. GROUND-STATE FIELD DISTRIBUTIONSFOR RANDOM ANTIFERROMAGNETICCHAINSIf P (J) = 0 for J � 0, then Q(jF j) = 1 and Eq. (11)beomesCn+1(F ) = Q(F ) +Q(�jF j)Cn(�F �H): (12)Changing the variables as F ! �F � H , we obtainanother equation,Cn+1(�F �H) = Q(�F �H) ++Q(�jF +H j)Cn(F ): (13)We thus have two equations for two funtions, Cn(F )and ~Cn(F ) = Cn(�F �H). In matrix form, they anbe written as Cn+1 = R̂Cn +Q; (14)whereCn =  Cn(F )~Cn(F ) ! ; Qn =  Qn(F )~Qn(F ) ! ;R̂ =  0 �R(F )� ~R(F ) 0 ! ; R(F ) � Q(�jF j) (15)and the tilde denotes the substitution F ! �F � H .We note that this operation transforms the pair of fun-tions A(F ) and ~A(F ) one into another, and this is the

reason for the exat solvability of Eq. (12). Also usingthe notation ~A(F ) for this substitution we an drop thefuntion arguments in (14) beause they are the same(F ) for all funtions.Initial onditions for Eq. (14) areC0 =  #(F )#(�F �H) ! (16)and the solution for n � 1 isCn = R̂nC0 + n�1Xk=0 R̂kQ: (17)The eigenvalues of R̂ arer� = �pR ~R � �� (18)and hene in the regions of F where � < 1, Eq. (17)an be represented asCn = C1 + R̂n(C0 �C1);C1 � �Î � R̂��1Q = (1� �2)�1 �Î + R̂� Q: (19)It is easy to verify thatR̂n = �+n �nÎ + ��n �n�1R̂; ��n = 12 [1� (�1)n℄ : (20)Therefore, Cn has de�nite thermodynami limit C1 inthese regions. But in some regions of F , � an be equalto 1 and we then haveR̂ =  0 �1�1 0 ! � ��̂x;Cn = ��+n Î � ��n �̂x�C0 ++ 12 hn�Î � �̂x�+ ��n (I + �̂x)i Q: (21)In what follows, we onsider the model with asmooth P (J) suh that P (J) = 0 for J > �J1. The be-havior of Q, ~Q, R, and ~R in this ase is shown shemat-ially in Fig. 1 for three ranges of H . When H < 2J1there is the region �J1 < F < J1 �H in whih � = 1,while for 2J1 < H , we have � < 1 for all F . This andthe form of C0 in (16) predetermine the di�erenes ofCn in three regions of H values.From Eqs. (16) and (19)�(21), we obtain1) for H < J1,Cn(F ) = ��n #(F +H) + �+n #(F );Wn(F ) = ��n Æ(F +H) + �+n Æ(F ); (22)1166
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Fig. 2. C1(F ) and W1(F ) at 2J1 < H for bonddistribution (29) with � = 2 (dotted lines), � = 0(dashed lines), and � = �0:5 (solid lines); J0 = 10J1and H = 3J1In (25) and (26), C1(F ) and W1(F ) = �FC1(F ) arethe values of Cn(F ) and Wn(F ) in the thermodynamilimit n!1:C1(F ) = #(F + J1) + #(�F � J1)Q(1� ~Q)1�Q ~Q ; (27)
W1(F ) = P (1� ~Q) + ~PQ(1�Q)(1�Q ~Q)2 �� #(F + J1 �H)#(�J1 � F ); (28)where P = P (F ) and ~P = P (�F � H). In Fig. 2,C1(F ) and W1(F ) are shown at 2J1 < H for thebond distributionP (J) = #(J+J0)#(�J1�J)(�+1) (�J1 � J)�(J0 � J1)�+1 (29)with J0 = 10J1 and � > �1.Equations (22)�(28) su�e for giving the full de-sription of magneti properties of �nite random AFhains at T = 0.1167



P. N. Timonin ÆÝÒÔ, òîì 142, âûï. 6 (12), 20123. MAGNETIZATIONS AND PHASETRANSITIONS AT T = 0. ODD NThe average ground-state magnetizations an beobtained by taking the T = 0 limit of Eq. (4):mn;N = ZZ Wn(F )Wn0 (F 0)�� sign(F + F 0 +H) dF dF 0; sign(0) = 0: (30)This relation an be represented in a more onvenientform as mn;N = 1� 2 Z ~CnWn0dF: (31)In (31), expressions (22)�(28) should be used with#-funtions de�ned at zero as #(0) = 1=2 to on-form with sign(0) = 0 in (30) and the relationsign(x) = #(x) � #(�x) used in the derivation of (31).The magnetization for odd and even N an di�erdrastially. The formal reason for this is that the par-ity of the distanes of a given site from the ends of ahain (n and n0 = N�n�1) are the same in the formerase and di�erent in the latter.For odd N , it follows from (22)�(31) that forH < 2J1, mn;N = (�1)n;and for H > 2J1,mn;N = m1 + Z W1 n��n + �n0� �� h ~C1(1 + �)� �i+ �N�1 h�2 � ~C1(1 + �2)io dF ++ (�1)n Z W1 n��n + �n0� h ~C1(1� �) + �i ++ �N�1 h ~C1(�2 � 1)� �2io dF; (32)m1 = 1� 2 Z W1 ~C1dF: (33)Integration in (32) and (33) is limited to the intervalJ1 � H < F < �J1 in whih W1 6= 0 (f. (28)). Inthis interval, � = qQ ~Q < 1, and hene in the ther-modynami limit (n; n0; N !1), mn;N = m1 and wehave phase transition at H = H � 2J1 from the AFphase to the F one. From the F-side, this transition isontinuous beause m1 tends to zero as H ! H + 0.Indeed, if P (J) vanishes or stays �nite at �J1, thenW1 ! Æ(F +H=2) (see Fig. 2) and we havem1 � 1� 2C1(�H=2) = 1�Q(�H=2)1 +Q(�H=2) �� 12 �J1Z�H=2 P (J) dJ:

When P (J) diverges at �J1, we an represent m1 asm1 = 2 �J1ZJ1�H Q� ~Q(1�Q ~Q)3 �1� ~Q�2 P dF �� 2 �J1ZJ1�H P dF:With the power-law dependene of P (J) near �J1 asin Eq. (29), we havem1 � (H �H)�+1; � � �m1�H � (H �H)� (34)in both ases. Hene, for �1 < � < 0, there is a usualseond-order transition with the ritial indies� = �+ 1;  = ��:It follows from the relation � = ��2E=�H2 (where Eis the average energy) that the index � is equal to ,and hene the usual saling relation�+ 2� +  = 2holds. We an formally obtain the indies � and � as� = (2� �)=d = 2 + �;� = 2� � = 3�+ 4�+ 2 :These saling relations imply the following form of theaverage orrelation funtion near H:Gr � hSnSn+ri0;J � hhSni0hSn+ri0iJ = g(r=�)r2�=� : (35)Here, h: : : i0 denotes the average over (J-dependent)ground state(s), � � (H � H)�� is the orrelationlength, and g(x) dereases faster than any power ofx as x!1. We annot verify this predition beausethe alulation of Gr in the F phase is a separate tasklying beyond the sope of this paper.At � > 0, the higher-order �eld derivatives ofm1 diverge, and we an interpret the behavior in(34) as higher-order phase transitions (third order for0 < � < 1, fourth order for 1 < � < 2, and so on).When P (J) tends to zero near �J1 faster than anypower of (�J1�J), we would have a in�nite-order phasetransition. But from the AF phase side, there is alwaysa sharp drop of the AF order parameter from 1 to 0,i. e., the �rst-order transition anomaly. We also notethat for � = 0, we have only a jump of the linear sus-eptibility from zero to a �nite value atH = H as in an1168



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Smeared spin-�op transition in random : : :ordinary �rst-order transition. For integer � = 1; 2; : : : ,only the orresponding nonlinear suseptibilities expe-riene similar jumps, whih have no analogs among theknown types of transitions.In �nite samples, there is no sharp transition to theF phase; instead, at H > H, this phase starts to formgradually in the middle of a hain. When P (J)! 0 asJ ! �J1, we again use W1 � Æ(F +H=2) near H toobtain mn;N = m1(1� e��N ) ++(�1)n h(1�m1)(e��n + e��n0)� e��Ni ;� � � lnQ(�H=2) � 2m1: (36)Hene, the intervals of an order-��1 length at bothends are still oupied by the (exponentially modu-lated) AF phase. Therefore, both phases oexist inthe �nite hain when N� � 2 (m1 � N�1), thefration of the AF phase being 2=N� � (Nm1)�1,while when m1 < N�1, the whole hain is still inthe (slightly modulated) AF phase. We also note that��1 � (H �H)�� in general behaves di�erently fromthe orrelation length � � (H �H)�� . Similar resultshold when P (J) diverges as J ! �J1 (see Fig. 3).4. MAGNETIZATION AND PHASETRANSITIONS AT T = 0. EVEN NFor even N , Eqs. (22)�(28), (30), and (31) for 0 << H < J1 give mn;N = 0; (37)for J1 < H < 2J1,mn;N = h1�Q(�H)N=2i�n;N ;�n;N = N�1 [1 + (�1)n(n0 � n)℄ ; (38)and for 2J1 < Hmn;N = m1 + Z W1 n(�n + �n0) �� h ~C1(1 + �)� �i+ �N (1� 2 ~C1)o dF ++ (�1)n Z W1(�n � �n0) h ~C1(1� �) + �i dF ++ �n;N �Z W1�NdF �Q(�H)N=2� : (39)The vanishing magnetization at 0 < H < J1 is a onse-quene of the ground-state degeneray of even hains:they have two ground states in suh �elds, Sn = (�1)nand Sn = (�1)n+1, and mn;N = 0 results from aver-aging over them. Additionally applying a small loal
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Fig. 3. Average ground-state magnetizations of oddhains with N = 65 and P (J) from Eq. (29) withJ0 = 10J1: (a) H = 3J1, � = 0:1; (b) H = 3J1,� = �0:5; () H = 6J1, � = �0:5�eld ÆH > 0 to one of the spins, e. g., Sk, we an liftthis degeneray, thus reovering the straight AF orderwith the unique ground state having Sk > 0. This alsomeans that this phase has an in�nite orrelation lengthbeause a small loal �eld hanges the average magne-tization throughout the whole sample. It shows up inthe orrelation funtionGr = hSnSn+ri0 � hSni0hSn+ri0 = (�1)r;where h: : : i0 denotes the average over two ground statesuna�eted by disorder. The amplitude of Gr does notfall at large r, indiating a in�nite orrelation length.While Gr desribes the response of the system to in-�nitesimal loal perturbations, it annot quantitativelydesribe the e�et of strong perturbations suh as a lo-al spin upturn (see below). But we an naturally ex-pet that the variations of magnetization aused by astrong loal perturbation would also spread throughoutthe system.6 ÆÝÒÔ, âûï. 6 (12) 1169
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Fig. 4. Linearly modulated AF pro�le �n;N of a hainwith N = 32. The dotted line is a guide to the eyeThe spei� phase appearing at J1 < H < 2J1with a linearly modulated AF order (see Fig. 4) isalso a onsequene of the ground-state degeneray. Italso exists in the ordinary (nonrandom) AF hain withthe exhange �J and an even number of spins whenJ < H < 2J .The mehanism of its appearane is quite simple.In normal AF states, even hains always have one ofthe end spins, e. g., S0, pointing opposite to the �eld.At H > J , it would upturn to point along the �eld,thus diminishing the energy by 2(H � J). But the si-multaneous upturn of three spins at this end, S0, S1,and S2, gives the same energy gain and generally thesame e�et results from the upturn of any odd num-ber of spins S0; S1; : : : ; S2k. Thus we have N=2 groundstates, eah having a �kink� � one pair of neighboringspins pointing along the �eld (see Fig. 5). Averagingover them gives the �bow-tie� pro�le shown in Fig. 4.Indeed,mn;N = 2N N=2Xk=1 �(�1)n#�2k � n� 32� ++ (�1)n+1#�n� 2k + 32�� == (�1)n 2N �N2 � 2 �n+ 12 �� = �n;N :In the last expression, [(n+1)=2℄ is the integer part of(n+ 1)=2.This ordering an also be viewed as a boundary ef-fet aused by the end-spin upturn and propagatingthrough the whole sample due to the in�nite orrela-tion length of the degenerate AF phase in whih it orig-
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Fig. 5. The kink states (b)�(d) originated from theAF order (a) via upturn of the spins to the left of thedashed linesinated. We an therefore expet that suh inhomoge-neous phases with ordering dependent on the form andsize of a sample would also exist in many other systemswith an in�nite orrelation length. Among them areHeisenberg magnets that in the ordered phase have anin�nite transverse orrelation length and a number offrustrated magnets in whih the ground-state degener-ay also results in a divergene of the orrelation lengthat T = 0.It seems that the studies of statistial mehanis ofthe one-dimensional Ising model somehow overlookedthe existene of this �bow-tie� phase and the �kink�states in Fig. 5 were �rst found in the framework ofmarosopi Mill's model for a �nite-layered AF [18℄(see also [19℄). This model beomes the AF Ising hainin the limit of in�nite anisotropy, but, being maro-sopi, it does not require averaging over all kink states.The authors of Refs. [18; 19℄ therefore just noted thatthe system with an even number of layers an exist inone suh state hosen from the set of N=2 degenerateones. But in statistial mehanis dealing with sta-tistial ensembles, averaging over degenerate states isan inherent proedure. In this framework, taking the1170



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Smeared spin-�op transition in random : : :limit T ! 0 in the standard expressions for the AFhain [20℄, we would obtain mn;N = �n;N for even Nand J < H < 2J . Unfortunately, this is a rather di�-ult task that requires alulating the limits of umber-some expressions (f. Ref. [20℄). This probably explainswhy this has not been done before.Our expression for mn;N at J1 < H < 2J1 in (38)di�ers from that in the nonrandom ase by the fator1�Q(�H)N=2 only. Q(�H) is the probability to �nda �strong� AF bond with jJ j > H , and there are N=2bond positions around whih a kink an appear if thebond is �weak�, with jJ j < H (f. Fig. 5). Hene,Q(�H)N=2 is the probability that all these positionsare oupied by strong bonds and pure AF states arepreferable, while 1�Q(�H)N=2 is the probability thatthere is at least one weak bond in the allowed loationsand a kink with parallel spins an be reated.One may question the physial observability of the�bow-tie� phase beause it requires an ensemble ofhains with equal lengths. As a physial realizationof random AF hain ensembles, the quasi-1d AF andmagneti polymer solutions with vaanies and impu-rities an be mentioned, but they would have a largediversity of hain lengths. However, this diversity an-not hinder the observation of the �bow-tie� phase withneutron di�ration experiments if we have a numberof parallel hains having di�erent lengths. The reasonfor this is that the form of neutron sattering intensityI(k) does not hange qualitatively with the hain size.Indeed, I(k) � jmk;N j2;where mk;N is a Fourier transform of mn;N with a dis-rete transferred wave vetork = 2�lN ; l = 0; 1; : : : ; N � 1:In the linearly modulated AF phase under onsidera-tion we haveI(k) � j�k;N j2 = ����2(1� Æk;�)eik + 1 + Æk;0����2 == 1� Æk;�os2(k=2) + 3Æk;0 (40)for an arbitrary N . Hene, I(k) has the same pro�lefor all N , the only di�erene being in the set of trans-ferred wave vetors, whih do not interfere but rathersupplement eah other as Fig. 6 shows. This makes theobservation of the signs of the linearly modulated AFphase feasible in low-temperature neutron di�rationexperiments.

0:5 1:0k=2�0
510
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Fig. 6. I(k) for N = 16 (Æ), N = 18 (�), andN = 20 (�)In the limit n � n0 ! 1, N ! 1 we have�n;N ! 0. This means that every spin within an ar-bitrarily large but �nite distane from the enter ofthe hain has the average magnetization that tends tozero. This does not mean that there is no phase transi-tion in the thermodynami limit at H = J1 but meansonly that mn;N is not a orret order parameter for it.As Eq. (40) shows, mk;N is the true (multiomponent)order parameter and there is a �rst-order transition be-tween the AF and �bow-tie� phases.The transition at H = H = 2J1 in the thermo-dynami limit (n; n0; N ! 1) has the features similarto those of odd hains in this �eld: in the F phase, itis ontinuous of the seond or higher order, while inthe �bow-tie� phase, mk;N sharply drops to zero at thetransition point.In �nite samples, both transitions beome smeared;the fator 1�Q(�H)N=2 in (37) rapidly inreases fromzero to almost unity when H beomes greater than J1,while at H < H , the F order appears gradually inthe middle of the hain. Again when P (J) ! 0 asJ ! �J1, we havemn;N = m1(1 + e��N) + (�1)n(1�m1)�� (e��n � e��n0) + �n;N �e��N �Q(�H)N=2�near H, with � from Eq. (36). At �nite �, we thereforehave a distribution of average magnetizations similar tothat shown in Fig. 3b,, while lose to H when �! 0,it tends to that in Fig. 4 instead of the straight AForder as in odd hains. When P (J)!1 as J ! �J1,the magnetization pro�le shows similar behavior.1171 6*



P. N. Timonin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012We an estimate the temperatures at whih theabove results for the ground state still hold approxi-mately. The low-T ontribution to the partition fun-tion is of the order of exp(��Emin=T ), where �Eminis the lowest exitation energy above the ground state.We an therefore asertain the validity of the abovetheory at T � �Emin.For odd N in the AF phase (H < H), the low-energy exitations are the �ips of spins direted oppo-site to the �eld. Eah suh �ip results in the energyhange 2H � 2Jk � 2Jk�1, whene�Emin = mink (�2H � 2Jk � 2Jk�1) > 2(H �H):In the F phase (H > H), spin �ips to the diretionopposite to the �eld result in�Emin = mink (2H + 2Jk + 2Jk�1) > 2(H �H):Hene, in the hains with odd N , the above resultsertainly hold at T � jH �Hj:In the AF phase (H < H 0 � J1) of even hains, thelow-energy exitations are the �ips of spins onsideredfor the onstrution of �kink� states (f. Fig. 5). Forthem, we have�Emin = mink (�2H � 2Jk) > 2(H 0 �H):In the bow-tie phase (H 0 < H < H), the ordinary spin�ips to the �eld diretion an have the lowest energyalong with these kink exitations, and hene�Emin = mink (�2H � 2Jk � 2Jk�1; 2H + 2Jk) >> 2min(H �H;H �H 0):In the F phase, we also have single spin �ips at low T ,and therefore in the hains with even N , the range ofvalidity of the ground-state results isT � min (jH �Hj; jH �H 0j) :We onlude that for all hains, the above results analso hold at su�iently low T exept in the viinity ofthe transition points.5. DISCUSSION AND CONCLUSIONSThere are a variety of features spei� to the modelonsidered here (T = 0, d = 1, and the variation of theexternal parameterH onjugate to the order parameter

m of one of the phases) that distinguish it from a num-ber of onventional smeared �rst-order transitions. Itstill must be deided to what extent the present resultsare universal. Nevertheless, they are a useful exampleof a strong in�uene of disorder on a �rst-order transi-tion in whih it beomes a seond-or higher-order one(from the F-phase side) with anomalies depending onthe bond distribution funtion.Thus, we have the �rst de�nite evidene that riti-al indies in an emergent seond-order transition anbe nonuniversal and that higher-order transitions anappear in the phase oexistene region. Along withthis, the model exhibits the unexplored possibility thatthe �rst-order jumps an simultaneously be preservedon the other side of the smeared transition.The model also gives a unique opportunity to elu-idate the ordering in �nite samples, whih is quiteneessary for the desription of systems with in�niteorrelation lengths. Here, suh systems are exempli-�ed by the even-site AF hains. The existene of the�bow-tie� phase in these hains (either with or withoutdisorder) shows that inhomogeneous size-dependent or-der an emerge in a system with an in�nite orrela-tion length due to the in�uene of boundary e�ets onthe whole bulk ordering. This onlusion is importantfor systems with a broken ontinuous symmetry andother degenerate systems suh as frustrated magnets,where similar phenomena an our. The evidene ofthe boundary e�ets spreading throughout large meso-sopi samples are found in numerial studies of the 3duniaxial AF [21℄ and the 2d Heisenberg AF [22℄.Physial realization of the ontinuous distributionsonsidered here, with prede�ned behavior at the up-per end, an possibly be ahieved by subjeting AFhains to (arti�ial) random mehanial stresses thatwould result in random AF exhanges due to magne-toelasti ouplings. But to fully onform to the presentmodel, these random exhanges between nearest neigh-bors should be independent. This may be di�ult toful�ll owing to the long-range nature of deformationsaused by random stresses and it is urrently not learwhether bond orrelations an be negleted for somerandom-bond patterns produed via suh a mehanism.In any ase, the present model an be onsidered aproper starting point to study more realisti modelswith bond orrelations.We �nally note that the method presented here anhave generalizations to the random-bond Heisenberg,transverse Ising, or quasi-1d AF models.We gratefully aknowledge the useful disussionswith M. P. Ivliev and V. P. Sakhnenko.1172
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