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SMEARED SPIN-FLOP TRANSITION IN RANDOMANTIFERROMAGNETIC ISING CHAINP. N. Timonin*Southern Federal University344090, Rostov-on-Don, RussiaRe
eived De
ember 7, 2011At T = 0 and a su�
iently large �eld, the nearest-neighbor antiferromagneti
 Ising 
hain undergoes a �rst-orderspin-�op transition into the ferromagneti
 phase. We 
onsider its smearing under the random-bond disorder su
hthat all independent random bonds are antiferromagneti
 (AF). It is shown that the ground-state thermodynam-i
s of this random AF 
hain 
an be des
ribed exa
tly for an arbitrary distribution P (J) of AF bonds. Moreover,the site magnetizations of �nite 
hains 
an be found analyti
ally in this model. We 
onsider a 
ontinuous P (J)that is zero above some �J1 and behaves near it as (�J1�J)�, � > �1. In this 
ase, the ferromagneti
 phaseemerges 
ontinuously in a �eld H > H
 = 2J1. At 0 > � > �1, it has the usual se
ond-order anomalies nearH
 with the 
riti
al indi
es obeying the s
aling relation and depending on �. At � > 0, higher-order transi-tions o

ur (third, fourth, et
.), marked by a divergen
e of the 
orresponding nonlinear sus
eptibilities. In the
hains with an even number of spins, the intermediate �bow-tie� phase with linearly modulated AF order existsbetween the AF and ferromagneti
 phases at J1 < H < H
. Its origin 
an be tra
ed to the in�nite 
orrelationlength of the degenerate AF phase from whi
h it emerges. This implies the existen
e of similar inhomogeneousphases with size- and form-dependent order in a number of other systems with in�nite 
orrelation length. Thepossibility to observe the signs of the �bow-tie� phase in low-T neutron di�ra
tion experiments is dis
ussed.The in�uen
e of quen
hed disorder on �rst-orderphase transitions was �rst des
ribed phenomenologi-
ally by Imry and Wortis [1℄, who have shown that�random-temperature� disorder 
an diminish or eveneliminate jumps of the order parameter and other vari-ables at the transition point. Further studies have re-vealed a relation of su
h smeared transitions to therandom-�eld Ising model [2℄; it was shown that thesmeared transitions 
an be
ome se
ond-order ones [3�5℄and 
an transform into a phase 
oexisten
e region in-stead of a sharp transition [6℄.Yet our understanding of these smearing phenom-ena is far from exhaustive. We still have no rigorous
riteria to de
ide whi
h of the known out
omes of thesmearing � softened jumps, phase 
oexisten
e region,or a se
ond-order transition � will be realized andtreat this point only qualitatively [7℄. For the resul-ting se
ond-order transition, it is not known de�nitelywhether the 
riti
al indi
es are universal or depend ondisorder parameters [3�5℄. There is also the unexploredpossibility that the phase 
oexisten
e region, la
king�rst- and se
ond-order transition anomalies, 
ontains*E-mail: pntim�live.ru

higher-order anomalies at some point, appropriate forthe higher-order transitions. And we know nothingabout the in�uen
e of disorder on the athermal andground-state transitions su
h as spin-�op transitions inantiferromagnets (AF). At these �rst-order transitions,some spin sublatti
e upturns to be
ome (partially) par-allel to the external magneti
 �eld at some 
riti
al �eldstrength [8℄. The AF Ising spin 
hain provides the sim-plest example of su
h a transition from the AF phase tothe ferromagneti
 one at T = 0 and the �eld H = 2J ,where J is the absolute value of the AF ex
hange. Inthe presen
e of random J variations, some segments ofthe 
hain be
ome ferromagneti
 (F) at lower or higherH values, and we 
an therefore expe
t some smearingof this �rst-order transition.Fortunately, at T = 0, the magneti
 properties ofan AF random-bond 
hain 
an be des
ribed exa
tly foran arbitrary distribution of ex
hanges and even for anarbitrary 
hain length. Hen
e, we have a unique pos-sibility to study smeared spin-�op transition in �nitesamples analyti
ally. Here, we present the results fora 
ontinuous distribution of ex
hanges that makes the�rst-order jumps 
ompletely smeared in the F phase.1164



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Smeared spin-�op transition in random : : :1. DISTRIBUTION FUNCTIONS FOREFFECTIVE RANDOM FIELDSWe 
onsider the short-range random-bond Ising
hain with the HamiltonianH = �N�1Xn=0 JnSnSn+1 �H N�1Xn=0 Sn; (1)where Jn are random nearest-neighbor ex
hanges withthe identi
al distribution fun
tion P (J) su
h thatP (J) = 0 for J � 0.To date, there are numerous studies of random bondIsing 
hains both at T = 0 and at �nite T [9�17℄. Their
ommon feature is the existen
e of a de�nite thermo-dynami
 limit for the main fun
tion des
ribing theirproperties, that is, for the distribution of e�e
tive ran-dom �eldsWn(F ) = hÆ(F � Fn)iJ ; Fn � 12 ln Zn(+1)Zn(�1) ;where Zn(S) is the partial partition fun
tion of thelength-n 
hain (assuming the unit spa
ing betweenspins), summed over all spins ex
ept the end one S,and the angular bra
kets denote averaging over thebond distribution fun
tion P (J). Re
ursion relationsfor Zn(S),Zn+1(S) = XS0=�1 exp�S0(JS+H)Zn(S0); � � T�1;generate the 
orresponding relations for Fn,Fn+1 = T th�1 [th�J th�(Fn +H)℄ � U(Fn; J); (2)and for Wn(F ),Wn+1(F ) = Z hÆ(F � U(F 0; J))iJWn(F 0) dF 0: (3)With the initial 
onditions F0 = 0 and, 
orrespond-ingly, W0(F ) = Æ(F ), we 
an �nd all Wn(F ) and allaverage thermodynami
 variables of our random 
hain.Thus, for the average magnetization of the site situatedat a distan
e n from one end of the 
hain with N spinsand at the distan
e n0 = N �n� 1 from the other end,we havemn;N = * XS=�1Zn(S)Se�HSZn0(S)XS=�1Zn(S)Zn0(S) +J == ZZ Wn(F )Wn0 (F 0) th �(F + F 0 +H) dF dF 0: (4)

Usually, it is a tedious task to �nd allWn(F ) even atT = 0, and therefore most of the previous studies relyheavily on the existen
e of the thermodynami
 limitW1(F ). In the random AF model with P (J) = 0 forJ � 0, the ground-state Wn(F ) 
an be easily found forea
h n, as we show below. This not only allows study-ing the �nite-size e�e
ts analyti
ally but also makesthe des
ription of ground-state properties of the 
hainswith an even number of sites N feasible. The �even
hains� preserve the two-fold degenera
y of the groundstate in su�
iently small H , whi
h results in the in�-nite 
orrelation length at T = 0. Therefore, the bound-ary e�e
ts 
an spread throughout the whole even 
hain,whi
h requires 
onsidering �nite samples. We note thatthe thermodynami
 limit W1(F ) 
an formally be ob-tained for odd and even n separately, but the resultsare sensible only for the interior of odd 
hains, whenthe 
orrelation length is �nite at all H .At T = 0, it is more 
onvenient to 
onsider re
ursionrelations for the integrated probability distributionsCn(F ) = FZ�1 Wn(F 0) dF 0:Evidently, Cn(�1) = 0; Cn(1) = 1: (5)Integrating (3), we obtainCn+1(F ) = Z h#[F � U(F 0; J)℄iJ�F 0Cn(F 0) dF 0 == h#[F � U(1; J)℄iJ ++ Z hÆ[F � U(F 0; J)℄�F 0U(F 0; J)iJCn(F 0) dF 0; (6)where #(F ) is the Heaviside step fun
tion, �F 0 �� �=�F 0, and U(1; J) = J (
f. (2)). Be
ausejU(F 0; J)j � jJ j, the average in (6) is 
on�ned to theregion J2 � F 2. In this region, the equation F == U(F 0; J) has the unique solutionF 0 = �H + th�1� th �Fth �J � � V (F; J): (7)Hen
e, we 
an represent the delta-fun
tion in (6) asÆ[F � U(F 0; J)℄ = #(F 2 � J2)j�F 0U(F 0; J)j�1 �� Æ[V (F; J)� F 0℄: (8)Be
ause sign[�F 0U(F 0; J)℄ = signJ , it follows fromEqs. (6) and (8) thatCn+1(F ) = Q(F ) ++ Z hsign J#(F 2 � J2)Cn[V (F; J)℄iJ ; (9)1165



P. N. Timonin ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012Q(F ) � h#(F � J)iJ = FZ�1 P (J) dJ: (10)At T = 0, Eq. (9) is greatly simpli�ed be
ause we 
anthen set V (F; J) = �H + F signJ (
f. (7)). Hen
e, atT = 0, Eq. (9) be
omesCn+1(F ) = Q(F ) + [1�Q(jF j)℄Cn(F �H) ++Q(�jF j)Cn(�F �H): (11)We thus have obtained fun
tional equations for theground-state Cn, whi
h in many 
ases 
an be easilysolved for n ! 1 at least. In parti
ular, for dis-
rete bond distributions when P (J) is a sum of delta-fun
tions, Q is stepwise 
onstant and the same holdsfor Cn. Then Eqs. (11) be
ome algebrai
 equationsfor the jumps of the Cn at some points Fi whose posi-tion is di
tated by Eq. (11) and by the initial 
onditionC0(F ) = #(F ). In this way, one 
an easily reprodu
emany known results for the ground state of various ran-dom 
hains obtained by other methods [9�17℄. But wehere deal with an even simpler model that has not en-joyed attention previously.2. GROUND-STATE FIELD DISTRIBUTIONSFOR RANDOM ANTIFERROMAGNETICCHAINSIf P (J) = 0 for J � 0, then Q(jF j) = 1 and Eq. (11)be
omesCn+1(F ) = Q(F ) +Q(�jF j)Cn(�F �H): (12)Changing the variables as F ! �F � H , we obtainanother equation,Cn+1(�F �H) = Q(�F �H) ++Q(�jF +H j)Cn(F ): (13)We thus have two equations for two fun
tions, Cn(F )and ~Cn(F ) = Cn(�F �H). In matrix form, they 
anbe written as Cn+1 = R̂Cn +Q; (14)whereCn =  Cn(F )~Cn(F ) ! ; Qn =  Qn(F )~Qn(F ) ! ;R̂ =  0 �R(F )� ~R(F ) 0 ! ; R(F ) � Q(�jF j) (15)and the tilde denotes the substitution F ! �F � H .We note that this operation transforms the pair of fun
-tions A(F ) and ~A(F ) one into another, and this is the

reason for the exa
t solvability of Eq. (12). Also usingthe notation ~A(F ) for this substitution we 
an drop thefun
tion arguments in (14) be
ause they are the same(F ) for all fun
tions.Initial 
onditions for Eq. (14) areC0 =  #(F )#(�F �H) ! (16)and the solution for n � 1 isCn = R̂nC0 + n�1Xk=0 R̂kQ: (17)The eigenvalues of R̂ arer� = �pR ~R � �� (18)and hen
e in the regions of F where � < 1, Eq. (17)
an be represented asCn = C1 + R̂n(C0 �C1);C1 � �Î � R̂��1Q = (1� �2)�1 �Î + R̂� Q: (19)It is easy to verify thatR̂n = �+n �nÎ + ��n �n�1R̂; ��n = 12 [1� (�1)n℄ : (20)Therefore, Cn has de�nite thermodynami
 limit C1 inthese regions. But in some regions of F , � 
an be equalto 1 and we then haveR̂ =  0 �1�1 0 ! � ��̂x;Cn = ��+n Î � ��n �̂x�C0 ++ 12 hn�Î � �̂x�+ ��n (I + �̂x)i Q: (21)In what follows, we 
onsider the model with asmooth P (J) su
h that P (J) = 0 for J > �J1. The be-havior of Q, ~Q, R, and ~R in this 
ase is shown s
hemat-i
ally in Fig. 1 for three ranges of H . When H < 2J1there is the region �J1 < F < J1 �H in whi
h � = 1,while for 2J1 < H , we have � < 1 for all F . This andthe form of C0 in (16) predetermine the di�eren
es ofCn in three regions of H values.From Eqs. (16) and (19)�(21), we obtain1) for H < J1,Cn(F ) = ��n #(F +H) + �+n #(F );Wn(F ) = ��n Æ(F +H) + �+n Æ(F ); (22)1166
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�H�J1�H J1�HFig. 1. S
hemati
 behavior of Q, ~Q, R, and ~R for arandom AF with P (J) = 0 for J > �J12) for J1 < H < 2J1,Cn(F ) = ��n #(F +H)�� ��n�1(F )R(F )#(�J1 � F ) + #(J1 + F )�++ �+n #(F +H � J1) [1� #(�F )�n(F )℄ ; (23)Wn(F ) = ��n #(F +H)�� �F ��n�1(F )R(F )#(�J1 � F )��� �+n #(F +H � J1)�F [#(�F )�n(F )℄ ; (24)3) for 2J1 < H ,Cn(F ) = ��n �#(F +H)�n+1(F ) ++ C1(F ) �1� �n+1(F )�	++ �+n C1(F ) [1� #(�F )�n(F )℄ ; (25)Wn(F ) = ��n ��F �#(F +H)�n+1(F )� ++ �F �C1(F ) �1� �n+1(F )��	++ �+n fW1(F ) [1� �n(F )℄ �� C1(F )�F [#(�F )�n(F )℄g : (26)
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1
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Fig. 2. C1(F ) and W1(F ) at 2J1 < H for bonddistribution (29) with � = 2 (dotted lines), � = 0(dashed lines), and � = �0:5 (solid lines); J0 = 10J1and H = 3J1In (25) and (26), C1(F ) and W1(F ) = �FC1(F ) arethe values of Cn(F ) and Wn(F ) in the thermodynami
limit n!1:C1(F ) = #(F + J1) + #(�F � J1)Q(1� ~Q)1�Q ~Q ; (27)
W1(F ) = P (1� ~Q) + ~PQ(1�Q)(1�Q ~Q)2 �� #(F + J1 �H)#(�J1 � F ); (28)where P = P (F ) and ~P = P (�F � H). In Fig. 2,C1(F ) and W1(F ) are shown at 2J1 < H for thebond distributionP (J) = #(J+J0)#(�J1�J)(�+1) (�J1 � J)�(J0 � J1)�+1 (29)with J0 = 10J1 and � > �1.Equations (22)�(28) su�
e for giving the full de-s
ription of magneti
 properties of �nite random AF
hains at T = 0.1167



P. N. Timonin ÆÝÒÔ, òîì 142, âûï. 6 (12), 20123. MAGNETIZATIONS AND PHASETRANSITIONS AT T = 0. ODD NThe average ground-state magnetizations 
an beobtained by taking the T = 0 limit of Eq. (4):mn;N = ZZ Wn(F )Wn0 (F 0)�� sign(F + F 0 +H) dF dF 0; sign(0) = 0: (30)This relation 
an be represented in a more 
onvenientform as mn;N = 1� 2 Z ~CnWn0dF: (31)In (31), expressions (22)�(28) should be used with#-fun
tions de�ned at zero as #(0) = 1=2 to 
on-form with sign(0) = 0 in (30) and the relationsign(x) = #(x) � #(�x) used in the derivation of (31).The magnetization for odd and even N 
an di�erdrasti
ally. The formal reason for this is that the par-ity of the distan
es of a given site from the ends of a
hain (n and n0 = N�n�1) are the same in the former
ase and di�erent in the latter.For odd N , it follows from (22)�(31) that forH < 2J1, mn;N = (�1)n;and for H > 2J1,mn;N = m1 + Z W1 n��n + �n0� �� h ~C1(1 + �)� �i+ �N�1 h�2 � ~C1(1 + �2)io dF ++ (�1)n Z W1 n��n + �n0� h ~C1(1� �) + �i ++ �N�1 h ~C1(�2 � 1)� �2io dF; (32)m1 = 1� 2 Z W1 ~C1dF: (33)Integration in (32) and (33) is limited to the intervalJ1 � H < F < �J1 in whi
h W1 6= 0 (
f. (28)). Inthis interval, � = qQ ~Q < 1, and hen
e in the ther-modynami
 limit (n; n0; N !1), mn;N = m1 and wehave phase transition at H = H
 � 2J1 from the AFphase to the F one. From the F-side, this transition is
ontinuous be
ause m1 tends to zero as H ! H
 + 0.Indeed, if P (J) vanishes or stays �nite at �J1, thenW1 ! Æ(F +H=2) (see Fig. 2) and we havem1 � 1� 2C1(�H=2) = 1�Q(�H=2)1 +Q(�H=2) �� 12 �J1Z�H=2 P (J) dJ:

When P (J) diverges at �J1, we 
an represent m1 asm1 = 2 �J1ZJ1�H Q� ~Q(1�Q ~Q)3 �1� ~Q�2 P dF �� 2 �J1ZJ1�H P dF:With the power-law dependen
e of P (J) near �J1 asin Eq. (29), we havem1 � (H �H
)�+1; � � �m1�H � (H �H
)� (34)in both 
ases. Hen
e, for �1 < � < 0, there is a usualse
ond-order transition with the 
riti
al indi
es� = �+ 1; 
 = ��:It follows from the relation � = ��2E=�H2 (where Eis the average energy) that the index � is equal to 
,and hen
e the usual s
aling relation�+ 2� + 
 = 2holds. We 
an formally obtain the indi
es � and � as� = (2� �)=d = 2 + �;� = 2� 
� = 3�+ 4�+ 2 :These s
aling relations imply the following form of theaverage 
orrelation fun
tion near H
:Gr � hSnSn+ri0;J � hhSni0hSn+ri0iJ = g(r=�)r2�=� : (35)Here, h: : : i0 denotes the average over (J-dependent)ground state(s), � � (H � H
)�� is the 
orrelationlength, and g(x) de
reases faster than any power ofx as x!1. We 
annot verify this predi
tion be
ausethe 
al
ulation of Gr in the F phase is a separate tasklying beyond the s
ope of this paper.At � > 0, the higher-order �eld derivatives ofm1 diverge, and we 
an interpret the behavior in(34) as higher-order phase transitions (third order for0 < � < 1, fourth order for 1 < � < 2, and so on).When P (J) tends to zero near �J1 faster than anypower of (�J1�J), we would have a in�nite-order phasetransition. But from the AF phase side, there is alwaysa sharp drop of the AF order parameter from 1 to 0,i. e., the �rst-order transition anomaly. We also notethat for � = 0, we have only a jump of the linear sus-
eptibility from zero to a �nite value atH = H
 as in an1168



ÆÝÒÔ, òîì 142, âûï. 6 (12), 2012 Smeared spin-�op transition in random : : :ordinary �rst-order transition. For integer � = 1; 2; : : : ,only the 
orresponding nonlinear sus
eptibilities expe-rien
e similar jumps, whi
h have no analogs among theknown types of transitions.In �nite samples, there is no sharp transition to theF phase; instead, at H > H
, this phase starts to formgradually in the middle of a 
hain. When P (J)! 0 asJ ! �J1, we again use W1 � Æ(F +H=2) near H
 toobtain mn;N = m1(1� e��N ) ++(�1)n h(1�m1)(e��n + e��n0)� e��Ni ;� � � lnQ(�H=2) � 2m1: (36)Hen
e, the intervals of an order-��1 length at bothends are still o

upied by the (exponentially modu-lated) AF phase. Therefore, both phases 
oexist inthe �nite 
hain when N� � 2 (m1 � N�1), thefra
tion of the AF phase being 2=N� � (Nm1)�1,while when m1 < N�1, the whole 
hain is still inthe (slightly modulated) AF phase. We also note that��1 � (H �H
)�� in general behaves di�erently fromthe 
orrelation length � � (H �H
)�� . Similar resultshold when P (J) diverges as J ! �J1 (see Fig. 3).4. MAGNETIZATION AND PHASETRANSITIONS AT T = 0. EVEN NFor even N , Eqs. (22)�(28), (30), and (31) for 0 << H < J1 give mn;N = 0; (37)for J1 < H < 2J1,mn;N = h1�Q(�H)N=2i�n;N ;�n;N = N�1 [1 + (�1)n(n0 � n)℄ ; (38)and for 2J1 < Hmn;N = m1 + Z W1 n(�n + �n0) �� h ~C1(1 + �)� �i+ �N (1� 2 ~C1)o dF ++ (�1)n Z W1(�n � �n0) h ~C1(1� �) + �i dF ++ �n;N �Z W1�NdF �Q(�H)N=2� : (39)The vanishing magnetization at 0 < H < J1 is a 
onse-quen
e of the ground-state degenera
y of even 
hains:they have two ground states in su
h �elds, Sn = (�1)nand Sn = (�1)n+1, and mn;N = 0 results from aver-aging over them. Additionally applying a small lo
al

a
b

�10

1m
n0 20 40 60
n0 20 40 60
n0 20 40 60

�10
1m�1
01m

Fig. 3. Average ground-state magnetizations of odd
hains with N = 65 and P (J) from Eq. (29) withJ0 = 10J1: (a) H = 3J1, � = 0:1; (b) H = 3J1,� = �0:5; (
) H = 6J1, � = �0:5�eld ÆH > 0 to one of the spins, e. g., Sk, we 
an liftthis degenera
y, thus re
overing the straight AF orderwith the unique ground state having Sk > 0. This alsomeans that this phase has an in�nite 
orrelation lengthbe
ause a small lo
al �eld 
hanges the average magne-tization throughout the whole sample. It shows up inthe 
orrelation fun
tionGr = hSnSn+ri0 � hSni0hSn+ri0 = (�1)r;where h: : : i0 denotes the average over two ground statesuna�e
ted by disorder. The amplitude of Gr does notfall at large r, indi
ating a in�nite 
orrelation length.While Gr des
ribes the response of the system to in-�nitesimal lo
al perturbations, it 
annot quantitativelydes
ribe the e�e
t of strong perturbations su
h as a lo-
al spin upturn (see below). But we 
an naturally ex-pe
t that the variations of magnetization 
aused by astrong lo
al perturbation would also spread throughoutthe system.6 ÆÝÒÔ, âûï. 6 (12) 1169
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0 10 20 30n�1
1
0
�n;N

Fig. 4. Linearly modulated AF pro�le �n;N of a 
hainwith N = 32. The dotted line is a guide to the eyeThe spe
i�
 phase appearing at J1 < H < 2J1with a linearly modulated AF order (see Fig. 4) isalso a 
onsequen
e of the ground-state degenera
y. Italso exists in the ordinary (nonrandom) AF 
hain withthe ex
hange �J and an even number of spins whenJ < H < 2J .The me
hanism of its appearan
e is quite simple.In normal AF states, even 
hains always have one ofthe end spins, e. g., S0, pointing opposite to the �eld.At H > J , it would upturn to point along the �eld,thus diminishing the energy by 2(H � J). But the si-multaneous upturn of three spins at this end, S0, S1,and S2, gives the same energy gain and generally thesame e�e
t results from the upturn of any odd num-ber of spins S0; S1; : : : ; S2k. Thus we have N=2 groundstates, ea
h having a �kink� � one pair of neighboringspins pointing along the �eld (see Fig. 5). Averagingover them gives the �bow-tie� pro�le shown in Fig. 4.Indeed,mn;N = 2N N=2Xk=1 �(�1)n#�2k � n� 32� ++ (�1)n+1#�n� 2k + 32�� == (�1)n 2N �N2 � 2 �n+ 12 �� = �n;N :In the last expression, [(n+1)=2℄ is the integer part of(n+ 1)=2.This ordering 
an also be viewed as a boundary ef-fe
t 
aused by the end-spin upturn and propagatingthrough the whole sample due to the in�nite 
orrela-tion length of the degenerate AF phase in whi
h it orig-

a
b


d

Fig. 5. The kink states (b)�(d) originated from theAF order (a) via upturn of the spins to the left of thedashed linesinated. We 
an therefore expe
t that su
h inhomoge-neous phases with ordering dependent on the form andsize of a sample would also exist in many other systemswith an in�nite 
orrelation length. Among them areHeisenberg magnets that in the ordered phase have anin�nite transverse 
orrelation length and a number offrustrated magnets in whi
h the ground-state degener-a
y also results in a divergen
e of the 
orrelation lengthat T = 0.It seems that the studies of statisti
al me
hani
s ofthe one-dimensional Ising model somehow overlookedthe existen
e of this �bow-tie� phase and the �kink�states in Fig. 5 were �rst found in the framework ofma
ros
opi
 Mill's model for a �nite-layered AF [18℄(see also [19℄). This model be
omes the AF Ising 
hainin the limit of in�nite anisotropy, but, being ma
ro-s
opi
, it does not require averaging over all kink states.The authors of Refs. [18; 19℄ therefore just noted thatthe system with an even number of layers 
an exist inone su
h state 
hosen from the set of N=2 degenerateones. But in statisti
al me
hani
s dealing with sta-tisti
al ensembles, averaging over degenerate states isan inherent pro
edure. In this framework, taking the1170
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hain [20℄, we would obtain mn;N = �n;N for even Nand J < H < 2J . Unfortunately, this is a rather di�-
ult task that requires 
al
ulating the limits of 
umber-some expressions (
f. Ref. [20℄). This probably explainswhy this has not been done before.Our expression for mn;N at J1 < H < 2J1 in (38)di�ers from that in the nonrandom 
ase by the fa
tor1�Q(�H)N=2 only. Q(�H) is the probability to �nda �strong� AF bond with jJ j > H , and there are N=2bond positions around whi
h a kink 
an appear if thebond is �weak�, with jJ j < H (
f. Fig. 5). Hen
e,Q(�H)N=2 is the probability that all these positionsare o

upied by strong bonds and pure AF states arepreferable, while 1�Q(�H)N=2 is the probability thatthere is at least one weak bond in the allowed lo
ationsand a kink with parallel spins 
an be 
reated.One may question the physi
al observability of the�bow-tie� phase be
ause it requires an ensemble of
hains with equal lengths. As a physi
al realizationof random AF 
hain ensembles, the quasi-1d AF andmagneti
 polymer solutions with va
an
ies and impu-rities 
an be mentioned, but they would have a largediversity of 
hain lengths. However, this diversity 
an-not hinder the observation of the �bow-tie� phase withneutron di�ra
tion experiments if we have a numberof parallel 
hains having di�erent lengths. The reasonfor this is that the form of neutron s
attering intensityI(k) does not 
hange qualitatively with the 
hain size.Indeed, I(k) � jmk;N j2;where mk;N is a Fourier transform of mn;N with a dis-
rete transferred wave ve
tork = 2�lN ; l = 0; 1; : : : ; N � 1:In the linearly modulated AF phase under 
onsidera-tion we haveI(k) � j�k;N j2 = ����2(1� Æk;�)eik + 1 + Æk;0����2 == 1� Æk;�
os2(k=2) + 3Æk;0 (40)for an arbitrary N . Hen
e, I(k) has the same pro�lefor all N , the only di�eren
e being in the set of trans-ferred wave ve
tors, whi
h do not interfere but rathersupplement ea
h other as Fig. 6 shows. This makes theobservation of the signs of the linearly modulated AFphase feasible in low-temperature neutron di�ra
tionexperiments.

0:5 1:0k=2�0
510
I(k)

Fig. 6. I(k) for N = 16 (Æ), N = 18 (�), andN = 20 (�)In the limit n � n0 ! 1, N ! 1 we have�n;N ! 0. This means that every spin within an ar-bitrarily large but �nite distan
e from the 
enter ofthe 
hain has the average magnetization that tends tozero. This does not mean that there is no phase transi-tion in the thermodynami
 limit at H = J1 but meansonly that mn;N is not a 
orre
t order parameter for it.As Eq. (40) shows, mk;N is the true (multi
omponent)order parameter and there is a �rst-order transition be-tween the AF and �bow-tie� phases.The transition at H = H
 = 2J1 in the thermo-dynami
 limit (n; n0; N ! 1) has the features similarto those of odd 
hains in this �eld: in the F phase, itis 
ontinuous of the se
ond or higher order, while inthe �bow-tie� phase, mk;N sharply drops to zero at thetransition point.In �nite samples, both transitions be
ome smeared;the fa
tor 1�Q(�H)N=2 in (37) rapidly in
reases fromzero to almost unity when H be
omes greater than J1,while at H
 < H , the F order appears gradually inthe middle of the 
hain. Again when P (J) ! 0 asJ ! �J1, we havemn;N = m1(1 + e��N) + (�1)n(1�m1)�� (e��n � e��n0) + �n;N �e��N �Q(�H)N=2�near H
, with � from Eq. (36). At �nite �, we thereforehave a distribution of average magnetizations similar tothat shown in Fig. 3b,
, while 
lose to H
 when �! 0,it tends to that in Fig. 4 instead of the straight AForder as in odd 
hains. When P (J)!1 as J ! �J1,the magnetization pro�le shows similar behavior.1171 6*
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an estimate the temperatures at whi
h theabove results for the ground state still hold approxi-mately. The low-T 
ontribution to the partition fun
-tion is of the order of exp(��Emin=T ), where �Eminis the lowest ex
itation energy above the ground state.We 
an therefore as
ertain the validity of the abovetheory at T � �Emin.For odd N in the AF phase (H < H
), the low-energy ex
itations are the �ips of spins dire
ted oppo-site to the �eld. Ea
h su
h �ip results in the energy
hange 2H � 2Jk � 2Jk�1, when
e�Emin = mink (�2H � 2Jk � 2Jk�1) > 2(H
 �H):In the F phase (H > H
), spin �ips to the dire
tionopposite to the �eld result in�Emin = mink (2H + 2Jk + 2Jk�1) > 2(H �H
):Hen
e, in the 
hains with odd N , the above results
ertainly hold at T � jH �H
j:In the AF phase (H < H 0
 � J1) of even 
hains, thelow-energy ex
itations are the �ips of spins 
onsideredfor the 
onstru
tion of �kink� states (
f. Fig. 5). Forthem, we have�Emin = mink (�2H � 2Jk) > 2(H 0
 �H):In the bow-tie phase (H 0
 < H < H
), the ordinary spin�ips to the �eld dire
tion 
an have the lowest energyalong with these kink ex
itations, and hen
e�Emin = mink (�2H � 2Jk � 2Jk�1; 2H + 2Jk) >> 2min(H
 �H;H �H 0
):In the F phase, we also have single spin �ips at low T ,and therefore in the 
hains with even N , the range ofvalidity of the ground-state results isT � min (jH �H
j; jH �H 0
j) :We 
on
lude that for all 
hains, the above results 
analso hold at su�
iently low T ex
ept in the vi
inity ofthe transition points.5. DISCUSSION AND CONCLUSIONSThere are a variety of features spe
i�
 to the model
onsidered here (T = 0, d = 1, and the variation of theexternal parameterH 
onjugate to the order parameter

m of one of the phases) that distinguish it from a num-ber of 
onventional smeared �rst-order transitions. Itstill must be de
ided to what extent the present resultsare universal. Nevertheless, they are a useful exampleof a strong in�uen
e of disorder on a �rst-order transi-tion in whi
h it be
omes a se
ond-or higher-order one(from the F-phase side) with anomalies depending onthe bond distribution fun
tion.Thus, we have the �rst de�nite eviden
e that 
riti-
al indi
es in an emergent se
ond-order transition 
anbe nonuniversal and that higher-order transitions 
anappear in the phase 
oexisten
e region. Along withthis, the model exhibits the unexplored possibility thatthe �rst-order jumps 
an simultaneously be preservedon the other side of the smeared transition.The model also gives a unique opportunity to elu-
idate the ordering in �nite samples, whi
h is quitene
essary for the des
ription of systems with in�nite
orrelation lengths. Here, su
h systems are exempli-�ed by the even-site AF 
hains. The existen
e of the�bow-tie� phase in these 
hains (either with or withoutdisorder) shows that inhomogeneous size-dependent or-der 
an emerge in a system with an in�nite 
orrela-tion length due to the in�uen
e of boundary e�e
ts onthe whole bulk ordering. This 
on
lusion is importantfor systems with a broken 
ontinuous symmetry andother degenerate systems su
h as frustrated magnets,where similar phenomena 
an o

ur. The eviden
e ofthe boundary e�e
ts spreading throughout large meso-s
opi
 samples are found in numeri
al studies of the 3duniaxial AF [21℄ and the 2d Heisenberg AF [22℄.Physi
al realization of the 
ontinuous distributions
onsidered here, with prede�ned behavior at the up-per end, 
an possibly be a
hieved by subje
ting AF
hains to (arti�
ial) random me
hani
al stresses thatwould result in random AF ex
hanges due to magne-toelasti
 
ouplings. But to fully 
onform to the presentmodel, these random ex
hanges between nearest neigh-bors should be independent. This may be di�
ult toful�ll owing to the long-range nature of deformations
aused by random stresses and it is 
urrently not 
learwhether bond 
orrelations 
an be negle
ted for somerandom-bond patterns produ
ed via su
h a me
hanism.In any 
ase, the present model 
an be 
onsidered aproper starting point to study more realisti
 modelswith bond 
orrelations.We �nally note that the method presented here 
anhave generalizations to the random-bond Heisenberg,transverse Ising, or quasi-1d AF models.We gratefully a
knowledge the useful dis
ussionswith M. P. Ivliev and V. P. Sakhnenko.1172
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