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At T = 0 and a sufficiently large field, the nearest-neighbor antiferromagnetic Ising chain undergoes a first-order
spin-flop transition into the ferromagnetic phase. We consider its smearing under the random-bond disorder such
that all independent random bonds are antiferromagnetic (AF). It is shown that the ground-state thermodynam-
ics of this random AF chain can be described exactly for an arbitrary distribution P(.J) of AF bonds. Moreover,
the site magnetizations of finite chains can be found analytically in this model. We consider a continuous P(.J)
that is zero above some —.J; and behaves near it as (—.Ji — J)*, A > —1. In this case, the ferromagnetic phase
emerges continuously in a field H > H. = 2J;. At 0 > XA > —1, it has the usual second-order anomalies near
H. with the critical indices obeying the scaling relation and depending on A. At A > 0, higher-order transi-
tions occur (third, fourth, etc.), marked by a divergence of the corresponding nonlinear susceptibilities. In the
chains with an even number of spins, the intermediate “bow-tie” phase with linearly modulated AF order exists
between the AF and ferromagnetic phases at J; < H < H.,. Its origin can be traced to the infinite correlation
length of the degenerate AF phase from which it emerges. This implies the existence of similar inhomogeneous
phases with size- and form-dependent order in a number of other systems with infinite correlation length. The
possibility to observe the signs of the “bow-tie” phase in low-T neutron diffraction experiments is discussed.

© 2012

The influence of quenched disorder on first-order
phase transitions was first described phenomenologi-
cally by Imry and Wortis [1], who have shown that
“random-temperature” disorder can diminish or even
eliminate jumps of the order parameter and other vari-
ables at the transition point. Further studies have re-
vealed a relation of such smeared transitions to the
random-field Ising model [2]; it was shown that the
smeared transitions can become second-order ones [3-5]
and can transform into a phase coexistence region in-
stead of a sharp transition [6].

Yet our understanding of these smearing phenom-
ena is far from exhaustive. We still have no rigorous
criteria to decide which of the known outcomes of the
smearing — softened jumps, phase coexistence region,
or a second-order transition — will be realized and
treat this point only qualitatively [7]. For the resul-
ting second-order transition, it is not known definitely
whether the critical indices are universal or depend on
disorder parameters [3-5]. There is also the unexplored
possibility that the phase coexistence region, lacking
first- and second-order transition anomalies, contains
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higher-order anomalies at some point, appropriate for
the higher-order transitions. And we know nothing
about the influence of disorder on the athermal and
ground-state transitions such as spin-flop transitions in
antiferromagnets (AF). At these first-order transitions,
some spin sublattice upturns to become (partially) par-
allel to the external magnetic field at some critical field
strength [8]. The AF Ising spin chain provides the sim-
plest example of such a transition from the AF phase to
the ferromagnetic one at T'= 0 and the field H = 2J,
where J is the absolute value of the AF exchange. In
the presence of random J variations, some segments of
the chain become ferromagnetic (F) at lower or higher
H values, and we can therefore expect some smearing
of this first-order transition.

Fortunately, at T = 0, the magnetic properties of
an AF random-bond chain can be described exactly for
an arbitrary distribution of exchanges and even for an
arbitrary chain length. Hence, we have a unique pos-
sibility to study smeared spin-flop transition in finite
samples analytically. Here, we present the results for
a continuous distribution of exchanges that makes the
first-order jumps completely smeared in the F phase.
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1. DISTRIBUTION FUNCTIONS FOR
EFFECTIVE RANDOM FIELDS

We consider the short-range random-bond Ising
chain with the Hamiltonian

N-1 N—-1
H== JuSnSur1 —H Y Si, (1)
n=0 n=0

where J,, are random nearest-neighbor exchanges with
the identical distribution function P(J) such that
P(J)=0for J > 0.

To date, there are numerous studies of random bond
Ising chains both at T = 0 and at finite 7" [9-17]. Their
common feature is the existence of a definite thermo-
dynamic limit for the main function describing their
properties, that is, for the distribution of effective ran-
dom fields
1. Z,(+1)

F,=-In

WalF) = (O(F = Fu))y, Fa=gin 5",

where Z,(S) is the partial partition function of the
length-n chain (assuming the unit spacing between
spins), summed over all spins except the end one S,
and the angular brackets denote averaging over the
bond distribution function P(.J). Recursion relations
for Z,(S),

Zni1(S)= Y expBS(JS+H)Z,(S"), B=T",
S'=+1

generate the corresponding relations for Fj,,
Foy1 =Tth ' th3Jth B(F, + H)| = U(F,,J), (2)

and for W, (F),
Woir (F) = / (6(F — U(F', J)),Wo(F)dF'. (3)

With the initial conditions F, = 0 and, correspond-

ingly, Wo(F) = §(F), we can find all W, (F) and all

average thermodynamic variables of our random chain.

Thus, for the average magnetization of the site situated

at a distance n from one end of the chain with N spins

and at the distance n’ = N —n — 1 from the other end,
> Zn(S)SePTS 7, (S)

we have
B <szﬂ > B
Mp, N = =
> Zu(S)Zw(S)

S5=+1 7

://Wn(F)Wn/(F’)thB(F+F’+H) dF dF'. (4)

Usually, it is a tedious task to find all W, (F') even at
T = 0, and therefore most of the previous studies rely
heavily on the existence of the thermodynamic limit
Weo (F). In the random AF model with P(J) = 0 for
J > 0, the ground-state W,,(F') can be easily found for
each n, as we show below. This not only allows study-
ing the finite-size effects analytically but also makes
the description of ground-state properties of the chains
with an even number of sites N feasible. The “even
chains” preserve the two-fold degeneracy of the ground
state in sufficiently small H, which results in the infi-
nite correlation length at 7" = 0. Therefore, the bound-
ary effects can spread throughout the whole even chain,
which requires considering finite samples. We note that
the thermodynamic limit W, (F') can formally be ob-
tained for odd and even n separately, but the results
are sensible only for the interior of odd chains, when
the correlation length is finite at all H.

At T = 0, it is more convenient to consider recursion
relations for the integrated probability distributions

F
Cp(F) = / W, (F')dF'.

Evidently,
Cp(—0) =0, Cp(oc0)=1. (5)

Integrating (3), we obtain

Coii(F) = / O[F — U(F", J)]);0p Co(F') dF' =
= ([F = U(oo, J)])s +
+ /(6[F —U(F', N0 UF", 7)) ;Cu(F') dE',  (6)

where 9(F) is the Heaviside step function, 9pr =
= 9/0F', and U(oco,J) = J (cf. (2)). Because
|[U(F',J)| < |J], the average in (6) is confined to the
region J? < F2. In this region, the equation F =
= U(F',J) has the unique solution

thBF\
W) =V(FJ). (7

Hence, we can represent the delta-function in (6) as

F'= —H+th™! (

S[F—U(F", )] =0(F*— J*|0pU(F',J)| 7! x
x 8[V(F,J) = F']. (8)

Because sign[@pU(F',J)] = signJ, it follows from
Eqs. (6) and (8) that

Cni1(F) = Q(F) +
+ / (sign JO(F? — T CR[V(F, N5, (9)
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AP = W(F -1, = [ PUas (o)

At T =0, Eq. (9) is greatly simplified because we can
then set V(F,J) = —H + F'sign.J (cf. (7)). Hence, at
T =0, Eq. (9) becomes
Cna (F) = Q(F) + [1 = Q(F))] Cn(F — H) +
+Q-IF)Ca(—-F — H). (11)

We thus have obtained functional equations for the
ground-state C),, which in many cases can be easily
solved for n — oo at least. In particular, for dis-
crete bond distributions when P(J) is a sum of delta-
functions, @ is stepwise constant and the same holds
for C,,. Then Eqs. (11) become algebraic equations
for the jumps of the ), at some points F; whose posi-
tion is dictated by Eq. (11) and by the initial condition
Co(F) = 9(F). In this way, one can easily reproduce
many known results for the ground state of various ran-
dom chains obtained by other methods [9-17]. But we
here deal with an even simpler model that has not en-
joyed attention previously.

2. GROUND-STATE FIELD DISTRIBUTIONS
FOR RANDOM ANTIFERROMAGNETIC
CHAINS

If P(J) =0for .J >0, then Q(|F|) = 1 and Eq. (11)
becomes

Cr1(F) = Q(F) + Q(=|F)Cn(=F - H).  (12)
Changing the variables as F — —F — H, we obtain
another equation,

Coi(—F — H) = Q(—F — H) +
+Q(=[F + H)Cn(F). (13)
We thus have two equations for two functions, Cy(F)
and C,,(F) = Cy(—F — H). In matrix form, they can

be written as
Cn+1 = ch + Q7 (14)

where

Cﬂ;(qnw)), Qn:(cgnw)),
Cn(F) Qn(F)

0 —R(F) _

=
I
//

and the tilde denotes the substitution F* — —F — H.
We note that this operation transforms the pair of func-
tions A(F') and A(F') one into another, and this is the

reason for the exact solvability of Eq. (12). Also using
the notation A(F) for this substitution we can drop the
function arguments in (14) because they are the same
(F) for all functions.

Initial conditions for Eq. (14) are

c0:< 9(F) ) (16)
I(—F — H)

and the solution for n > 1 is

n—1
C.,=R"Co+ ) RFQ. (17)

k=0

The eigenvalues of R are
r+ =+VRR =4p (18)

and hence in the regions of F' where p < 1, Eq. (17)
can be represented as

C, = Cx + R"(Cy — Cx),
N .
Coo = (I—R) Q=(1-p" (I+R) Q.
It is easy to verify that

. . . 1

R =vlp"T+v, p" 'R, vEi= 5 1+ (=1)". (20)
Therefore, C,, has definite thermodynamic limit C,, in
these regions. But in some regions of F', p can be equal
to 1 and we then have

. 0 -1
R= = -0y,

C, = (U;IA - U;&x) Cy + (21)

+% [n(f—&x)+1/,j(f+5x)] Q.

In what follows, we consider the model with a
smooth P(.J) such that P(J) = 0for J > —J;. The be-
havior of @, Q, R, and R in this case is shown schemat-
ically in Fig. 1 for three ranges of H. When H < 2.J;
there is the region —J; < F' < J; — H in which p =1,
while for 2.J; < H, we have p < 1 for all F. This and
the form of Cp in (16) predetermine the differences of
C,, in three regions of H values.

From Egs. (16) and (19)—(21), we obtain

1) for H < Jy,

Cn(F) = v, 9(F + H) + v 9(F),

Wn(F) =v, 6(F + H) + v} §(F), (22)
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H~< Jl WOO7 Coo
Q 1 Q
v NN
QR!
: : : 2L
i =N i iJ1
“h-H “H 0 1 r
Ji < H<2J;
Q . . M . Q
| N L 1}
v/ e/ NN,
-H
—Ji -1 N1 0 .1 F
21 < H F/J
Q 1 Q
~ Fig.2. Cx(F) and W (F) at 2J; < H for bond
R R distribution (29) with A = 2 (dotted lines), A = 0
(dashed lines), and A = —0.5 (solid lines); Jo = 10.J;
and H = 3]1
H —H H H H
—-Ji-H J1-H —Ji 0 J; F
Fig.1. Schematic behavior of Q, Q R, and R for a In (25) and (26), Cso(F) and Woo (F) = OpCo (F) are

random AF with P(J) =0 for J > —J;

2) for 1 < H < 2J1,

Cn(F) = v;9(F + H) x
X [p’H(F)R( YI(=J1 — F)+9(Ji + F)] +
+ z/,fﬁ(F +H—-J)[1=9(—F)p"(F)],

Wo(F) = v, 9(F + H) x
x OF [p" " (F)R(F)O(=J1 — F)] —
— vy 9(F + H = J1)0p [0(=F)p" (F)],

3) for 2J; < H,

Co(F) = vy {9(F + H)p" " (F) +
+ Coo(F) [L = p" TN (F)]} +
+ Uy Coo(F) [1 = O(=F)p"(F)],

Wa(F) = v, {0p [9(F + H)p""" (F)] +
+ 0 [Coo(F) (1= p"*H(F))] } +
+ i W (F) [1 = p"(F)] —

Coo(F)OR [D(=F)p" (F)]} -

(23)

(24)

(25)

(26)

the values of C,,(F) and W,,(F) in the thermodynamic
limit n — oo:

QUL-Q)
Coo(F) =9(F + J)) + 9(—F — J)) 2L (27
(F) = 9(F + J1) +9( )I—QQ (27)
(1-QQ)?
x O(F +J, — HY)(—J, — F), (28)
where P = P(F) and P = P(—F — H). In Fig. 2,

Co(F) and W (F) are shown at 2J; < H for the
bond distribution

(=h —J)»

P(J) AL

= I(J+Jo)I(—=Jy — ) (A +1) (29)

with Jy = 10J7 and A\ > —1.

Equations (22)—(28) suffice for giving the full de-
scription of magnetic properties of finite random AF
chains at T'= 0.
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3. MAGNETIZATIONS AND PHASE
TRANSITIONS AT T =0. ODD N

The average ground-state magnetizations can be
obtained by taking the T' = 0 limit of Eq. (4):

o = [ [ WalE)Wor () x

x sign(F' + F' + H)dF dF', sign(0) =0. (30)

This relation can be represented in a more convenient
form as

Mpn =1— Z/C‘anrdF. (31)

In (31), expressions (22)—(28) should be used with
J-functions defined at zero as ¥(0) = 1/2 to con-
form with sign(0) = 0 in (30) and the relation
sign(z) = ¥(r) — I(—z) used in the derivation of (31).

The magnetization for odd and even N can differ
drastically. The formal reason for this is that the par-
ity of the distances of a given site from the ends of a
chain (n and n’ = N —n—1) are the same in the former
case and different in the latter.

For odd N, it follows from (2
H <2J,

2)—(31) that for

and for H > 2.5,
M N = Moo +/Woo {(p” +p”’) x
x [C*oo(l +p)— p] 4N [p2 Gl p2)] } dF +
—1)”/Woo {(p” + p”') [C‘oo(l -p)+ p] +
+ oV [Colp? = 1) = 2] b aF, (32)

Moo =1—2 / WaoCoodF. (33)

Integration in (32) and (33) is limited to the interval
Ji — H < F < —J; in which W, # 0 (cf. (28)). In

this interval, p = \/@ < 1, and hence in the ther-
modynamic limit (n,n’, N = 00), m, Ny = Moo and we
have phase transition at H = H. = 2.J; from the AF
phase to the F one. From the F-side, this transition is
continuous because my, tends to zero as H — H. + 0.
Indeed, if P(J) vanishes or stays finite at —.J;, then
Wy — 0(F + H/2) (see Fig. 2) and we have

Moo & 1 — 200 (—HJ2) = %z
.y A
/ P(I)dJ
—H/2

When P(J) diverges at —.J;, we can represent me, as

_Jl -
Moo = 2 / % (1—@)2Pd1~w
Ji—H
_J1
~2 [ PdF
Jl/H

With the power-law dependence of P(.JJ) near —.J; as
in Eq. (29), we have
0
H-H)M, y= 2~
~ ( c) X= S
in both cases. Hence, for —1 < A < 0, there is a usual
second-order transition with the critical indices

(H = H.)* (34)

It follows from the relation y = —9?E/0H? (where E
is the average energy) that the index « is equal to ~,
and hence the usual scaling relation

a+20+y=2
holds. We can formally obtain the indices v and n as
v=02-a)/d=2+ ]\,

n=2-— 7 o_3A+4
v A2
These scaling relations imply the following form of the
average correlation function near H.:

—((Suo(Suertots = L8 (35)

Gr = <Snsn+r>0,J

Here, (...)o denotes the average over (J-dependent)
ground state(s), & ~ (H — H.)™" is the correlation
length, and g(z) decreases faster than any power of
x as ¥ — co. We cannot verify this prediction because
the calculation of GG, in the F phase is a separate task
lying beyond the scope of this paper.

At A > 0, the higher-order field derivatives of
Moo diverge, and we can interpret the behavior in
(34) as higher-order phase transitions (third order for
0 < A < 1, fourth order for 1 < A < 2, and so on).
When P(J) tends to zero near —.J; faster than any
power of (—.J;—J), we would have a infinite-order phase
transition. But from the AF phase side, there is always
a sharp drop of the AF order parameter from 1 to 0,
i.e., the first-order transition anomaly. We also note
that for A = 0, we have only a jump of the linear sus-
ceptibility from zero to a finite value at H = H, as in an
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ordinary first-order transition. Forinteger A = 1,2,...,
only the corresponding nonlinear susceptibilities expe-
rience similar jumps, which have no analogs among the
known types of transitions.

In finite samples, there is no sharp transition to the
F phase; instead, at H > H,, this phase starts to form
gradually in the middle of a chain. When P(J) — 0 as
J — —Jp, we again use Wy ~ 6(F + H/2) near H, to
obtain

My, N = Moo (1 — e*“N) +
HD [ = ma) e 4 ey — e N] L (36)
k=—InQ(—H/2) ~ 2my.

Hence, the intervals of an order-x~' length at both
ends are still occupied by the (exponentially modu-
lated) AF phase. Therefore, both phases coexist in
the finite chain when Nk > 2 (ms > N71), the
fraction of the AF phase being 2/Nk =~ (Nmuo)~!,
while when me < N !, the whole chain is still in
the (slightly modulated) AF phase. We also note that
k™' ~ (H — H.)~? in general behaves differently from
the correlation length ¢ ~ (H — H.)~”. Similar results
hold when P(J) diverges as J — —.J; (see Fig. 3).

4. MAGNETIZATION AND PHASE
TRANSITIONS AT T'=0. EVEN N

For even N, Egs. (22)—(28), (30), and (31) for 0 <
< H < J; give
Mp,N = 07 (37)

for 1 < H < 2J1,
mnp,N = |:1 - Q(_H)N/2] Hn,N,
oy = N7V [ (=17 = )]

and for 2J; < H

(38)

Mp N = Moo +/Woo {(p” + ") x
X [C’oo(l +p) — p] +oN(1 - 26'00)} dF +
1 [ Waaloh = ) [Coalt = p) 4 ] dF 4
+ fn,N (/ WeopNdF — Q(—H)N/2> . (39)
The vanishing magnetization at 0 < H < .J; is a conse-
quence of the ground-state degeneracy of even chains:
they have two ground states in such fields, S, = (—1)"

and S, = (—=1)""' and m,, y = 0 results from aver-
aging over them. Additionally applying a small local

6 ZKOT®, Bem. 6 (12)
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Fig.3. Average ground-state magnetizations of odd

chains with N = 65 and P(J) from Eq. (29) with
Jo = 10Jy: (a) H = 3J1, A = 0.1; (b) H = 3Ji,
A=-=0.5; (¢) H=6J1, A\ =-0.5

field §H > 0 to one of the spins, e.g., Sk, we can lift
this degeneracy, thus recovering the straight AF order
with the unique ground state having S, > 0. This also
means that this phase has an infinite correlation length
because a small local field changes the average magne-
tization throughout the whole sample. It shows up in
the correlation function
Gr = (SnSntr)o = (Sn)o(Sntr)o = (=1)",

where (... )o denotes the average over two ground states
unaffected by disorder. The amplitude of G, does not
fall at large r, indicating a infinite correlation length.
While G, describes the response of the system to in-
finitesimal local perturbations, it cannot quantitatively
describe the effect of strong perturbations such as a lo-
cal spin upturn (see below). But we can naturally ex-
pect that the variations of magnetization caused by a
strong local perturbation would also spread throughout
the system.
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Fig.4. Linearly modulated AF profile pi,,,n of a chain
with N = 32. The dotted line is a guide to the eye

The specific phase appearing at J; < H < 2J;
with a linearly modulated AF order (see Fig. 4) is
also a consequence of the ground-state degeneracy. It
also exists in the ordinary (nonrandom) AF chain with
the exchange —.J and an even number of spins when
J<H<2J.

The mechanism of its appearance is quite simple.
In normal AF states, even chains always have one of
the end spins, e.g., Sy, pointing opposite to the field.
At H > J, it would upturn to point along the field,
thus diminishing the energy by 2(H — J). But the si-
multaneous upturn of three spins at this end, Sy, Si,
and S», gives the same energy gain and generally the
same effect results from the upturn of any odd num-
ber of spins Sy, S1, ..., Sar. Thus we have N/2 ground
states, each having a “kink” — one pair of neighboring
spins pointing along the field (see Fig. 5). Averaging
over them gives the “bow-tie” profile shown in Fig. 4.
Indeed,

Mn, N = %kNZ: [(—1)"19 (Zk —n— g) +
(1) (n—2k+ g)] _

SN LS %)

In the last expression, [(n + 1)/2] is the integer part of
(n+1)/2.

This ordering can also be viewed as a boundary ef-
fect caused by the end-spin upturn and propagating
through the whole sample due to the infinite correla-
tion length of the degenerate AF phase in which it orig-

L

Fig.5. The kink states (b)—(d) originated from the
AF order (a) via upturn of the spins to the left of the
dashed lines

inated. We can therefore expect that such inhomoge-
neous phases with ordering dependent on the form and
size of a sample would also exist in many other systems
with an infinite correlation length. Among them are
Heisenberg magnets that in the ordered phase have an
infinite transverse correlation length and a number of
frustrated magnets in which the ground-state degener-
acy also results in a divergence of the correlation length
at T'=0.

It seems that the studies of statistical mechanics of
the one-dimensional Ising model somehow overlooked
the existence of this “bow-tie” phase and the “kink”
states in Fig. 5 were first found in the framework of
macroscopic Mill’s model for a finite-layered AF [18]
(see also [19]). This model becomes the AF Ising chain
in the limit of infinite anisotropy, but, being macro-
scopic, it does not require averaging over all kink states.
The authors of Refs. [18,19] therefore just noted that
the system with an even number of layers can exist in
one such state chosen from the set of N/2 degenerate
ones. But in statistical mechanics dealing with sta-
tistical ensembles, averaging over degenerate states is
an inherent procedure. In this framework, taking the
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limit 7" — 0 in the standard expressions for the AF
chain [20], we would obtain my N = pn,n for even N
and J < H < 2J. Unfortunately, this is a rather diffi-
cult task that requires calculating the limits of cumber-
some expressions (cf. Ref. [20]). This probably explains
why this has not been done before.

Our expression for my, ny at J;1 < H < 2.J; in (38)
differs from that in the nonrandom case by the factor
1 — Q(—H)N/? only. Q(—H) is the probability to find
a “strong” AF bond with |J| > H, and there are N/2
bond positions around which a kink can appear if the
bond is “weak”, with |J| < H (cf. Fig. 5). Hence,
Q(—H)N/? is the probability that all these positions
are occupied by strong bonds and pure AF states are
preferable, while 1 — Q(—H)N/? is the probability that
there is at least one weak bond in the allowed locations
and a kink with parallel spins can be created.

One may question the physical observability of the
“bow-tie” phase because it requires an ensemble of
chains with equal lengths. As a physical realization
of random AF chain ensembles, the quasi-1d AF and
magnetic polymer solutions with vacancies and impu-
rities can be mentioned, but they would have a large
diversity of chain lengths. However, this diversity can-
not hinder the observation of the “bow-tie” phase with
neutron diffraction experiments if we have a number
of parallel chains having different lengths. The reason
for this is that the form of neutron scattering intensity
I(k) does not change qualitatively with the chain size.
Indeed,

I(k) ~ |mp,n |,

where my, v is a Fourier transform of m,, x with a dis-
crete transferred wave vector

In the linearly modulated AF phase under considera-
tion we have

2(1 — b ) °
2 _ ; _
L(k) ~ lpe N ™ = | =7 + Oko
1- 61@ T
=" 4
cos?(k/2) 300 (40)

for an arbitrary N. Hence, I(k) has the same profile
for all N, the only difference being in the set of trans-
ferred wave vectors, which do not interfere but rather
supplement each other as Fig. 6 shows. This makes the
observation of the signs of the linearly modulated AF
phase feasible in low-temperature neutron diffraction
experiments.

I(k)
0l ° ° |
X X
@] @]
5 ° ° .
» >é;: ﬁ;&
‘5.@@8 %a

0 0.5 1.0
k/2m
Fig.6. I(k) for N = 16 (o), N = 18 (x), and

In the limit n ~ n’ — oo, N — oo we have
pn,~v — 0. This means that every spin within an ar-
bitrarily large but finite distance from the center of
the chain has the average magnetization that tends to
zero. This does not mean that there is no phase transi-
tion in the thermodynamic limit at H = J; but means
only that m,_ n is not a correct order parameter for it.
As Eq. (40) shows, my, n is the true (multicomponent)
order parameter and there is a first-order transition be-
tween the AF and “bow-tie” phases.

The transition at H = H. = 2J; in the thermo-
dynamic limit (n,n’, N — oo) has the features similar
to those of odd chains in this field: in the F phase, it
is continuous of the second or higher order, while in
the “bow-tie” phase, my,n sharply drops to zero at the
transition point.

In finite samples, both transitions become smeared;
the factor 1 —Q(—H)™/? in (37) rapidly increases from
zero to almost unity when H becomes greater than .Jy,
while at H. < H, the F order appears gradually in
the middle of the chain. Again when P(J) — 0 as
J — —Jp, we have

Mp, N = Moo(1+ e_’"‘N) + (—1D)™(1 —myso) X

X (7% — 7" 4 pip N (e‘”N — Q(—H)N/Q)

near H., with k from Eq. (36). At finite s, we therefore
have a distribution of average magnetizations similar to
that shown in Fig. 3b,c¢, while close to H. when x — 0,
it tends to that in Fig. 4 instead of the straight AF
order as in odd chains. When P(J) — oo as J — —Ji,
the magnetization profile shows similar behavior.
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We can estimate the temperatures at which the
above results for the ground state still hold approxi-
mately. The low-T" contribution to the partition func-
tion is of the order of exp(—AE,,n/T), where AE, i,
is the lowest excitation energy above the ground state.
We can therefore ascertain the validity of the above
theory at T' < AEin.

For odd N in the AF phase (H < H.), the low-
energy excitations are the flips of spins directed oppo-
site to the field. Each such flip results in the energy
change 2H — 2J;, — 2J;_1, whence

AFE, in = mkin(—ZH —2Jr — 2Jk71) > Q(Hc — H)

In the F phase (H > H.), spin flips to the direction
opposite to the field result in

AFE,in = mkln(ZH +2J, + 2Jk71) > 2(H — HC)

Hence, in the chains with odd N, the above results
certainly hold at

T < |H — H,|.

In the AF phase (H < H. = J;) of even chains, the
low-energy excitations are the flips of spins considered
for the construction of “kink” states (cf. Fig. 5). For
them, we have

AEnin = mkin(—ZH —2J) > 2(H, - H).

In the bow-tie phase (H. < H < H.), the ordinary spin
flips to the field direction can have the lowest energy
along with these kink excitations, and hence

AFE,in = mkin(_2H —2J — 2J—1,2H + 2.J3) >
> 2min(H. — H,H — H}).

In the F phase, we also have single spin flips at low T,
and therefore in the chains with even N, the range of
validity of the ground-state results is

T < min (|H — H,|,|H — H!|).

We conclude that for all chains, the above results can
also hold at sufficiently low T except in the vicinity of
the transition points.

5. DISCUSSION AND CONCLUSIONS

There are a variety of features specific to the model
considered here (T' =0, d = 1, and the variation of the
external parameter H conjugate to the order parameter

m of one of the phases) that distinguish it from a num-
ber of conventional smeared first-order transitions. It
still must be decided to what extent the present results
are universal. Nevertheless, they are a useful example
of a strong influence of disorder on a first-order transi-
tion in which it becomes a second-or higher-order one
(from the F-phase side) with anomalies depending on
the bond distribution function.

Thus, we have the first definite evidence that criti-
cal indices in an emergent second-order transition can
be nonuniversal and that higher-order transitions can
appear in the phase coexistence region. Along with
this, the model exhibits the unexplored possibility that
the first-order jumps can simultaneously be preserved
on the other side of the smeared transition.

The model also gives a unique opportunity to elu-
cidate the ordering in finite samples, which is quite
necessary for the description of systems with infinite
correlation lengths. Here, such systems are exempli-
fied by the even-site AF chains. The existence of the
“bow-tie” phase in these chains (either with or without
disorder) shows that inhomogeneous size-dependent or-
der can emerge in a system with an infinite correla-
tion length due to the influence of boundary effects on
the whole bulk ordering. This conclusion is important
for systems with a broken continuous symmetry and
other degenerate systems such as frustrated magnets,
where similar phenomena can occur. The evidence of
the boundary effects spreading throughout large meso-
scopic samples are found in numerical studies of the 3d
uniaxial AF [21] and the 2d Heisenberg AF [22].

Physical realization of the continuous distributions
considered here, with predefined behavior at the up-
per end, can possibly be achieved by subjecting AF
chains to (artificial) random mechanical stresses that
would result in random AF exchanges due to magne-
toelastic couplings. But to fully conform to the present
model, these random exchanges between nearest neigh-
bors should be independent. This may be difficult to
fulfill owing to the long-range nature of deformations
caused by random stresses and it is currently not clear
whether bond correlations can be neglected for some
random-bond patterns produced via such a mechanism.
In any case, the present model can be considered a
proper starting point to study more realistic models
with bond correlations.

We finally note that the method presented here can
have generalizations to the random-bond Heisenberg,
transverse Ising, or quasi-1d AF models.

We gratefully acknowledge the useful discussions
with M. P. Ivliev and V. P. Sakhnenko.
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