ФАЗОВЫЕ СОСТОЯНИЯ ДВУМЕРНОГО ЛЕГКОПЛОСКОСТНОГО ФЕРРОМАГНЕТИКА С БОЛЬШОЙ НАКЛОННОЙ АНИЗОТРОПИЕЙ

Ю. А. Фридман^а^{*}, Ф. Н. Клевец^{а,b}, Г. А. Гореликов^а, А. Г. Мелешко^а

^а Таврический национальный университет им. В. И. Вернадского 95007, Симферополь, АР Крым, Украина

> ^bInstitut für Physik, Universität Augsburg 86159, Augsburg, Germany

Поступила в редакцию 19 марта 2012 г.

Изучены спиновые состояния двумерной пленки, обладающей легкоплоскостной анизотропией и большой одноионной наклонной анизотропией, ось которой образует некоторый угол с нормалью к плоскости пленки. В такой системе возможна реализация угловой ферромагнитной фазы, пространственнонеоднородного состояния и квадрупольной фазы, реализация которых существенно зависит как от величины наклонной анизотропии, так и от ориентации волнового вектора в плоскости пленки.

1. ВВЕДЕНИЕ

Как известно, при микроскопическом описании магнитных диэлектриков в спиновом гамильтониане возникают слагаемые вида $S_n^i \beta_{ij} S_n^j$, соответствующие энергии одноионной анизотропии, возникновение которой обусловлено спин-орбитальным взаимодействием ($S_n^i - i$ -я компонента спинового оператора в узле $n; \beta_{ii}$ — компоненты тензора одноионной анизотропии) [1]. Аналогичного вида слагаемые можно выделить из энергии магнитодипольного взаимодействия, однако вклад этого взаимодействия обычно мал по сравнению с одноионной анизотропией. Простейшей магнитной системой, обладающей одноионной анизотропией, является магнетик со спином магнитного иона равным единице. В такой системе тензор одноионной анизотропии, обычно, является диагональным, причем $\beta_{zz} \neq \beta_{xx} = \beta_{yy}$. Такой вид компонент тензора анизотропии приводит к возникновению в магнетике одноосной одноионной анизотропии. Данная модель хорошо зарекомендовала себя при описании многих магнитных систем, однако технологические сложности, возникающие при создании магнитоупорядоченных систем, приводят к нарушению диагональности тензора анизотропии. Поэтому более реалистичной моделью является также учет недиагональных компонент тензора одноионной анизотропии $\beta_{zz} \neq \beta_{xx} = \beta_{yy}$ $\beta_{xz} = \beta_{zx}$. Такая модель описывает наклонную анизотропию, лежащую в плоскости xz, с осью легкого намагничения, образующей угол φ с осью z. Интерес к такого рода моделям обусловлен тем, что они достаточно адекватно описывают энергию анизотропии разориентированных пленок феррит-гранатов. Так, например, в работе [2] показано, что в рамках двухпараметрической модели [3] в (111)-разориентированных пленках реализуется наклонная анизотропия. Причем ось легкого намагничения лежит в той же плоскости, что и угол разориентации — в работе [2] это плоскость (110). В работе [4] изучались процессы перемагничивания (112)-пленок (частный случай разориентированной (111)-пленки). В этой работе показано, что если внешнее поле приложено в плоскости (110), то в той же плоскости лежит и вектор намагниченности. Таким образом, если ввести в плоскости ($\overline{1}10$) координаты x и z, то можно показать, что энергия анизотропии будет описываться двумя константами: β_{zz} и β_{xz} [4,5].

Практическая ценность исследований систем с наклонной ориентацией легкоосной одноионной анизотропии состоит в том, что такие системы перспективны при создании устройств магнитооптической обработки информации, дефектоскопии, визуализа-

^{*}E-mail: frid@tnu.crimea.ua

ции неоднородных магнитных полей, при исследовании наноструктурных магнитных материалов и др. [6–8]. Так, например, исследования магнитных свойств наногранулярных пленок с анизотропией типа «легкая ось» имеют большой научный и практический интерес [9–12] как минимум потому, что они перспективны для создания сред с высокой плотностью записи информации.

Системы со сложной одноионной анизотропией, описанные выше, достаточно хорошо изучены для случая малой величины одноионных анизотропий $(\beta, \beta_{xz} \ll J_0)$ [13, 14]. Однако существует больший класс магнитоупорядоченных систем, в которых энергия одноионной анизотропии достаточно велика. В настоящей работе нами рассмотрен класс магнитных систем, обладающих как большой легкоплоскостной одноионной анизотропией β , сравнимой или даже превышающей величину обменного взаимодействия J_0 , так и большой наклонной анизотропией β_{xz} . Наличие в системе большой легкоплоскостной анизотропии приводит к целому ряду интересных эффектов, которые имеют чисто квантовый характер и не могут быть объяснены в рамках феноменологических моделей [15-21]. Среди этих эффектов выделим образование так называемых квадрупольных фаз, характеризуемых наличием дальнего магнитного порядка, но не векторного типа (намагниченность системы равна нулю), а тензорного типа [21].

В данной работе будут рассмотрены фазовые состояния и фазовые переходы по материальным параметрам двумерной системы с большой наклонной анизотропией ($\beta_{xz} > \beta$). Двумерность системы подразумевает существенное влияние магнитодипольного взаимодействия, которое может приводить к реализации пространственно-неоднородных фазовых состояний [22, 23]. Кроме того, мы предполагаем, что пленка имеет толщину в несколько атомных слоев, т. е. является 2D-объектом. Это предположение означает, что материальные параметры системы, такие как обменный интеграл и константы одноионной анизотропии, невозможно разделить на «объемные» и «поверхностные». Такое разделение параметров на поверхностные и объемные является важным для пленок конечной толщины. Кроме того, при таком подходе необходимо учитывать кристаллографическую симметрию системы. Однако для рассматриваемой в данной работе модели разделение параметров на объемные и поверхностные невозможно, и, естественно, не учитывается. Также, не теряя общности, будем считать спин магнитного иона равным единице.

2. ФАЗОВЫЕ СОСТОЯНИЯ ДВУМЕРНОГО ФЕРРОМАГНЕТИКА С ПРЕОБЛАДАЮЩИМ ОБМЕННЫМ ВЗАИМОДЕЙСТВИЕМ $(J_0 > \beta_{xz} > \beta)$

Как нам кажется, наиболее интересным является случай тонких ферромагнитных пленок, в которых необходимо учитывать влияние магнитодипольного взаимодействия. Рассмотрим тонкую ферромагнитную пленку со спином S = 1. Гамильтониан такой системы можно представить в следующем виде:

$$\begin{aligned} \mathcal{H} &= -\frac{1}{2} \sum_{n,n'} (J_{nn'} \delta_{ij} + V_{nn'}^{ij}) S_n^i S_{n'}^j + \\ &+ \beta \sum_n O_{2n}^0 - \beta_{xz} \sum_n O_{2n}^{xz}, \quad (1) \end{aligned}$$

где $J_{nn'}$ — обменный интеграл; S_n^i — *i*-я компонента спинового оператора в узле n; β — константа легкоплоскостной одноионной анизотропии (базисная плоскость xy); β_{xz} — константа легкоосной одноионной наклонной анизотропии в плоскости xz; $O_{2n}^0 = 3(S_n^z)^2 - S(S+1)$ и $O_{2n}^{xz} = S_n^x S_n^z + S_n^z S_n^x$ — операторы Стивенса; $V_{nn'}^{ij}$ — компоненты тензора магнитодипольного взаимодействия, фурье-образы которых имеют следующий вид:

$$V_{k}^{xx} = \frac{A_{0}}{3} - \Omega_{0}k \cos^{2}\psi,$$

$$V_{k}^{yy} = \frac{A_{0}}{3} - \Omega_{0}k \sin^{2}\psi,$$

$$V_{k}^{zz} = -\frac{2}{3}A_{0} + \Omega_{0}k,$$

$$V_{k}^{xy} = V_{k}^{yx} = -\frac{\Omega_{0}k}{2}\sin 2\psi,$$

$$V_{k}^{xz} = V_{k}^{zx} = V_{k}^{yz} = V_{k}^{zy} = 0.$$
(2)

Здесь

$$A_0 = \frac{3}{2} (g\mu_B)^2 \sum_{R \neq 0} R^{-3}, \quad \Omega_0 = \frac{2\pi (g\mu_B)^2}{a^2};$$

 a^2 — «объем» плоской элементарной ячейки; g — гиромагнитное отношение; μ_B — магнетон Бора; ψ — угол между направлением волнового вектора **k** в базисной плоскости xy и осью x. Дальнейшее рассмотрение будем проводить для случая низких температур, много меньших температуры Кюри. При этом предполагается, что константа наклонной анизотронии превышает константу легкоплоскостной анизотропии ($\beta_{xz} > \beta$).

Конкуренция легкоплоскостной и наклонной анизотропий приводит к тому, что магнитный момент будет лежать в плоскости *xz* под некоторым углом θ к оси z. Повернем систему координат, связанную с магнитным ионом, вокруг оси y на угол θ так, чтобы магнитный момент был направлен по оси z:

$$U(\theta) = \prod_{n} \exp[i\theta S_{n}^{y}],$$

и, выделяя среднее поле, получим одноузельный гамильтониан

$$\mathcal{H}_{0}(\theta) = -\overline{H}_{z}(\theta) \sum_{n} S_{n}^{z} - \overline{H}_{x}(\theta) \sum_{n} S_{n}^{x} + B_{2}^{0}(\theta) \times \\ \times \sum_{n} O_{2n}^{0} + B_{2}^{2}(\theta) \sum_{n} O_{2n}^{2} - B_{2}^{xz}(\theta) \sum_{n} O_{2n}^{xz}, \quad (3)$$

где

$$B_2^0(\theta) = \frac{\beta}{8} (1 + 6\cos 2\theta) + \frac{3\beta_{xz}}{2}\sin 2\theta;$$

$$B_2^2(\theta) = \frac{\beta}{8} (1 - 2\cos 2\theta) - \frac{\beta_{xz}}{2}\sin 2\theta,$$

$$B_2^{xz}(\theta) = \frac{\beta}{4}\sin 2\theta - \frac{\beta_{xz}}{2}\cos 2\theta;$$

$$\overline{H}_z(\theta) = \left(J_0 + V_0^{xx}\sin^2\theta + V_0^{zz}\cos^2\theta\right) \langle S^z \rangle,$$

$$\overline{H}_x(\theta) = \frac{\sin 2\theta}{2} (V_0^{zz} - V_0^{xx}) \langle S^z \rangle.$$

Решая с гамильтонианом (3) одноузельную задачу, получим энергетические уровни магнитного иона

$$E_{1} = \left(B_{2}^{0} - \overline{H}_{z} \cos 2\alpha + B_{2}^{2} \sin 2\alpha\right) \cos^{2} \delta + \\ + \frac{B_{2}^{zz} - \overline{H}_{x}}{\sqrt{2}} \left(\cos \alpha - \sin \alpha\right) \sin 2\delta, \\ E_{0} = \left(B_{2}^{0} - \overline{H}_{z} \cos 2\alpha + B_{2}^{2} \sin 2\alpha\right) \sin^{2} \delta - \\ - \frac{B_{2}^{zz} - \overline{H}_{x}}{\sqrt{2}} \left(\cos \alpha - \sin \alpha\right) \sin 2\delta, \\ E_{-1} = B_{2}^{0} + \overline{H}_{z} \cos 2\alpha - B_{2}^{2} \sin 2\alpha, \end{cases}$$
(4)

и собственные функции гамильтониана (3)

$$\begin{aligned} |\psi(1)\rangle &= \cos\alpha\cos\delta|1\rangle + \sin\delta|0\rangle + \sin\alpha\cos\delta|-1\rangle, \\ |\psi(0)\rangle &= -\cos\alpha\sin\delta|1\rangle + \cos\delta|0\rangle + \\ &+ \sin\alpha\sin\delta|-1\rangle, \end{aligned}$$
(5)
$$|\psi(-1)\rangle &= -\sin\alpha|1\rangle + \cos\alpha|-1\rangle. \end{aligned}$$

Параметры α , δ — параметры обобщенного *u*-*v*-преобразования [24], возникающие при диагонализации гамильтониана (3).

На базисе собственных функций (5) одноузельного гамильтониана построим операторы Хаббарда $X^{MM'} = |\psi(M')\rangle\langle\psi(M)|$ [25], описывающие переход магнитного иона из состояния M в состояние M'.

Эти операторы связаны со спиновыми операторами следующим образом:

$$S^{z} = \cos 2\alpha \cos^{2} \delta X^{11} + \cos 2\alpha \sin^{2} \delta X^{00} - - \cos 2\alpha X^{-1-1} - \frac{1}{2} \cos 2\alpha \sin 2\delta (X^{10} + X^{01}) + + \sin 2\alpha \sin \delta (X^{0-1} + X^{-10}) - + \sin 2\alpha \cos \delta (X^{1-1} + X^{-11}), S^{+} = \frac{1}{\sqrt{2}} \left[\sin 2\delta (\cos \alpha + \sin \alpha) X^{11} - - \sin 2\delta (\cos \alpha + \sin \alpha) X^{00} \right] + + \sqrt{2} \left[(\cos \alpha \cos^{2} \delta - \sin \alpha \sin^{2} \delta) X^{10} + + (\sin \alpha \cos^{2} \delta - \cos \alpha \sin^{2} \delta) X^{01} + + \cos \alpha \cos^{2} \delta X^{0-1} - \sin \alpha \cos \delta X^{-10} + + \cos \alpha \sin \delta X^{1-1} - \sin \alpha \sin \delta X^{-11} \right], S^{-} = (S^{+})^{+}.$$

Из вида энергетических уровней (4) видно, что при рассматриваемом соотношении параметров системы ($J_0 > \beta_{xz} > \beta$) низший энергетический уровень, соответствующий основному состоянию, будет уровень E_1 . Это означает, что в низкотемпературном пределе, который мы исследуем, уровень E_1 определяет плотность свободной энергии. Из анализа плотности свободной энергии системы можно определить параметры α , δ обобщенного u-v-преобразования, а также значение равновесного угла θ , которые имеют следующие значения:

$$\operatorname{tg} 2\theta = -\frac{2\beta_{xz}}{\beta + 2A_0}, \quad \operatorname{tg} 2\alpha = -\frac{B_2^2}{\overline{H}_z}, \quad \delta = 0.$$
(7)

Используя соотношения (6), найденные значения параметров α , δ , а также значение равновесного угла θ (см. (7)), получим, что $\langle S^z \rangle \approx 1$. Такое значение параметра порядка характерно для ферромагнитного упорядочения, и это состояние, в данном случае, мы назовем угловой ферромагнитной фазой (УФМ).

Нас интересуют спектры элементарных возбуждений рассматриваемой системы, которые позволяют исследовать не только динамику системы, но и линии (точки) устойчивости соответствующих фаз. Спектры магнонов можно получить, воспользовавшись методом бозонизации операторов Хаббарда [26]. Основная идея метода состоит в построении бозевского аналога гамильтониана (1). Первый этап заключается в представлении спиновых операторов через операторы Хаббарда. Далее хаббардовским операторам X_n^{α} ставятся в соответствие псевдохаббардовские операторы \tilde{X}_n^{α} , связанные с операторами рождения и уничтожения магнонов, и путем диагонализации вторично квантованного гамильтониана получаются спектры элементарных возбуждений.

Используя выражения (7), перепишем энергетические уровни (4) и волновые функции (5) системы следующим образом:

$$E_1 = B_2^0 - \chi, \quad E_0 = 0, \quad E_{-1} = B_2^0 + \chi, \quad (8)$$

$$\begin{split} |\psi(1)\rangle &= \sqrt{\frac{\chi + \overline{H}_z}{2\chi}} |1\rangle + \sqrt{\frac{\chi - \overline{H}_z}{2\chi}} |-1\rangle, \\ |\psi(0)\rangle &= |0\rangle, \end{split}$$
(9)

$$|\psi(-1)\rangle = -\sqrt{\frac{\chi - \overline{H}_z}{2\chi}} |1\rangle + \sqrt{\frac{\chi + \overline{H}_z}{2\chi}} |-1\rangle,$$

где $\chi = \sqrt{\left(\overline{H}_z\right)^2 + (B_2^2)^2}.$

Построенные на базисе волновых функций системы операторы Хаббарда для данного случая связаны со спиновыми операторами следующими соотношениями:

$$S^{z} = \frac{\overline{H}_{z}}{\chi} (X^{11} - X^{-1-1}) + \frac{B_{2}^{2}}{\chi} (X^{1-1} + X^{-11}),$$

$$S^{+} = \sqrt{\frac{\chi + \overline{H}_{z}}{\chi}} (X^{10} + X^{0-1}) +$$
(10)

$$+ \sqrt{\frac{\chi - \overline{H}_{z}}{\chi}} (X^{01} - X^{-10}); \quad S^{-} = (S^{+})^{+}.$$

В терминах операторов Хаббарда одноузельный гамильтониан является диагональным:

$$\mathcal{H}_0(\theta) = \sum_{M=\pm 1,0} E_M X^{MM}.$$

Таким образом, первый этап задачи по нахождению спектра магнонов завершен. Далее хаббардовским операторам ставятся в соответствие псевдохаббардовские операторы, связанные с бозевскими операторами рождения и уничтожения соотношениями

$$\begin{split} \tilde{X}_{n}^{11} &= 1 - a_{n}^{+}a_{n} - b_{n}^{+}b_{n}; \quad \tilde{X}_{n}^{00} &= a_{n}^{+}a_{n}; \\ \tilde{X}_{n}^{-1-1} &= b_{n}^{+}b_{n}; \quad \tilde{X}_{n}^{10} &= (1 - a_{n}^{+}a_{n} - b_{n}^{+}b_{n})a_{n}; \\ \tilde{X}_{n}^{01} &= a_{n}^{+}; \quad \tilde{X}_{n}^{1-1} &= (1 - a_{n}^{+}a_{n} - b_{n}^{+}b_{n})b_{n}; \\ \tilde{X}_{n}^{-11} &= b_{n}^{+}; \quad \tilde{X}_{n}^{0-1} &= a_{n}^{+}b_{n}; \quad \tilde{X}_{n}^{-10} &= b_{n}^{+}a_{n}. \end{split}$$
(11)

Здесь a — бозе-операторы, соответствующие переходу иона из состояния E_1 в состояние E_0 и наоборот, b — бозе-операторы, соответствующие переходу из состояния E_1 в состояние E_{-1} и наоборот. Используя (11), перепишем гамильтониан (1) в терминах вторично квантованных операторов:

$$\begin{aligned} \mathcal{H} &= \sum_{k} \left[(E_{-1} - E_{1}) b_{k} b_{k}^{+} + (E_{0} - E_{1}) a_{k} a_{k}^{+} \right] - \\ &- \frac{1}{4} \sum_{k} \left\{ \left[J_{k} + \frac{1}{2} (V_{k}^{xx} + V_{k}^{zz}) + \frac{\cos 2\theta}{2} (V_{k}^{xx} - V_{k}^{zz}) \right] \times \\ &\times \left(1 + \frac{B_{2}^{2}}{\chi} \right) (a_{k} a_{-k} + a_{k}^{+} a_{-k}^{+} + 2a_{k} a_{k}^{+}) - \\ &- (J_{k} + V_{k}^{yy}) \left(1 - \frac{B_{2}^{2}}{\chi} \right) (a_{k} a_{-k} + a_{k}^{+} a_{-k}^{+} - 2a_{k} a_{k}^{+}) + \\ &+ i \cos \theta V_{k}^{xy} (a_{k}^{+} a_{-k}^{+} - a_{k} a_{-k}) \right\}. \end{aligned}$$
(12)

Диагонализуя (12) стандартным образом, получим

$$\mathcal{H} = \sum_{k} \varepsilon_{\alpha}(k) \alpha_{k}^{+} \alpha_{k} + \sum_{k} \varepsilon_{\beta}(k) \beta_{k}^{+} \beta_{k}, \qquad (13)$$

где $\varepsilon_{\alpha}(k)$ и $\varepsilon_{\beta}(k)$ — спектры соответственно низкочастотных и высокочастотных магнонов:

$$\begin{split} \varepsilon_{\alpha}^{2}(k) &= \left\{ E_{0} - E_{1} - \frac{1}{2} \left[\left[J_{k} + \frac{1}{2} (V_{k}^{xx} + V_{k}^{zz}) \right. + \right. \\ &+ \frac{\cos 2\theta}{2} (V_{k}^{xx} - V_{k}^{zz}) \right] \left(1 + \frac{B_{2}^{2}}{\chi} \right) + \\ &+ \left(J_{k} + V_{k}^{yy} \right) \left(1 + \frac{B_{2}^{2}}{\chi} \right) \right] \right\}^{2} - \\ &- \frac{1}{4} \left\{ \left[J_{k} + \frac{1}{2} (V_{k}^{xx} + V_{k}^{zz}) + \frac{\cos 2\theta}{2} (V_{k}^{xx} - V_{k}^{zz}) \right] \right. \\ &\times \left(1 + \frac{B_{2}^{2}}{\chi} \right) - \left(J_{k} + V_{k}^{yy} \right) \left(1 - \frac{B_{2}^{2}}{\chi} \right) \right\}^{2} - \\ &- \left. - \left(V_{k}^{xy} \right)^{2} \cos^{2} \theta, \quad (14) \end{split}$$

$$\varepsilon_{\beta}^2(k) = (E_{-1} - E_1)^2.$$
 (15)

Очевидно, что спектр высокочастотных магнонов (15) является бездисперсионным, и мы сфокусируем наше внимание на наиболее интересном низкочастотном спектре (14). Напомним, что волновой вектор **k** ориентирован в плоскости xy и составляет угол ψ с осью x. Далее рассмотрим выражение для низкочастотного спектра элементарных возбуждений (14) в приближении $J_0 \gg \beta_{xz} \gg \beta$:

$$\begin{aligned} \varepsilon_{\alpha}^{2}(k) &= \left\{ \frac{5\beta_{xz}}{4} - \frac{3\beta}{16} \left(1 + \frac{5\beta}{2\beta_{xz}} \right) - \frac{A_{0}}{24} - \right. \\ &- \frac{23\beta A_{0}}{16\beta_{xz}} - \frac{A_{0}^{2}}{\beta_{xz}} - \frac{\Omega_{0}}{8} \times \\ \times \left[\sin^{2}\psi - 3\frac{\beta + 2A_{0}}{2\beta_{xz}} (1 + \cos^{2}\psi) \right] k + \frac{J_{0}}{2}k^{2} \right\} \times \\ &\times \left\{ \frac{7\beta_{xz}}{4} - \frac{\beta}{16} \left(1 + \frac{21\beta}{2\beta_{xz}} \right) - \frac{5A_{0}}{24} - \frac{29\beta A_{0}}{16\beta_{xz}} - \right. \\ &- \frac{A_{0}^{2}}{\beta_{xz}} + \frac{\Omega_{0}}{8} \left[5\sin^{2}\psi + \frac{\beta + 2A_{0}}{2\beta_{xz}} (1 + \cos^{2}\psi) \right] k + \\ &+ \frac{J_{0}}{2}k^{2} \right\}. \end{aligned}$$
(16)

Как следует из выражения (16), спектр низкочастотных магнонов существенно зависит от ориентации волнового вектора в базисной плоскости. Так, в зависимости от величины угла ψ знак линейного по волновому вектору слагаемого в спектре (16) может меняться. Очевидно, что когда это слагаемое будет отрицательным, мы получим так называемый неоднородный спектр элементарных возбуждений знак при линейных и квадратичных по **k** слагаемых будет разным. В результате минимуму энергии элементарных возбуждений соответствует не k = 0, а некоторое критическое значение $k = k^*$. Угол ψ_0 , соответствующий изменению знака при линейном по **k** слагаемом связан с параметрами системы следующим образом:

$$\cos\psi_0 = 1 - 3\frac{\beta + 2A_0}{2\beta_{xz}}.$$
 (17)

Если $\psi > \psi_0$, то система переходит в пространственно-неоднородное состояние (HC) с периодом неоднородности

 $\frac{1}{k^*} = \frac{8J_0}{\Omega_0 \eta(\psi)},$

где

$$\eta(\psi) = \sin^2 \psi - 3 \frac{\beta + 2A_0}{2\beta_{xz}} (1 + \cos^2 \psi).$$

Напомним, что мы рассматриваем случай разориентированных магнитных пленок, т.е. $\beta_{xz} \gg \beta, A_0, \Omega_0$. С учетом этого, а также соотношения (18) энергетическая щель в спектре (16) обращается в нуль при следующем критическом значении константы наклонной анизотропии:

$$\beta_{xz}^{C_1} \approx \beta + 2.6A_0 + \frac{\Omega_0^2}{50J_0} \sin^4 \psi,$$
 (19)

которое соответствует фазовому переходу из фазы у
ФМ в HC.

(18)

Рис. 1. Зависимость критического угла ψ_0 от материальных параметров системы. Кривая 1 соответствует значению $A_0/\beta=0.1$, кривая 2 соответствует значению $A_0/\beta=0.5$

В случае, когда $\psi < \psi_0$, мы получаем стандартный вид спектра элементарных возбуждений, который имеет минимум при k = 0. Из условия обращения в нуль щели в спектре магнонов получим линию устойчивости УФМ-фазы

$$\beta_{xz}^{C_2} \approx \beta + 2.6A_0. \tag{20}$$

Таким образом, учет влияния магнитодипольного взаимодействия приводит к формированию неоднородного состояния, реализация которого существенно зависит от ориентации волнового вектора в базисной плоскости. Как следует из соотношения (17), при $\beta_{xz} \to \infty$ угол $\psi_0 \to 0$, и, следовательно, НС может реализовываться практически при произвольной ориентации волнового вектора. Необходимо также отметить, что период пространственной неоднородности также зависит от ориентации волнового вектора, и при стремлении $\psi \to \psi_0$, как следует из (18), $1/k^* \to \infty$, что соответствует реализации однородного (монодоменного) состояния. Зависимость критического угла ψ_0 от величины константы наклонной анизотропии (при различных значениях легкоплоскостной анизотропии и величины магнитодипольного взаимодействия) приведена на рис. 1. Необходимо отметить, что угол ψ_0 , как следует из (17), может меняться в пределах $(-\pi/2, \pi/2)$, причем предельное значение ψ_0 существенно зависит от величины параметра магнитодипольного взаимодействия A_0 , и достигает значения $\pm \pi/2$ при

Рис.2. Область существования пространственнонеоднородного состояния при различных значениях материальных параметров: линия $1 - \beta_{xz}/\beta = 10$, $A_0/\beta = 0.1$, линия $2 - \beta_{xz}/\beta = 10$, $A_0/\beta = 0.5$

 $\begin{array}{c} 0 \\ \psi \end{array}$

-45 - 35

90

 $35\ 45$

-90

 $A_0 > \beta$, что для рассматриваемого здесь случая не реализуется. Кроме того, на рис. 2 приведена зависимость периода пространственной неоднородности от ориентации волнового вектора в плоскости пленки. Как видно на рис. 1 и 2, НС реализуется при $\psi > \psi_0$ и $\psi < -|\psi_0|$ (т. е. когда волновой вектор ${f k}$ ориентирован в первом или четвертом квадранте), и при увеличении модуля угла ψ период неоднородности уменьшается, т.е. влияние магнитодипольного взаимодействия усиливается. В интервале углов $-|\psi_0| < \psi < \psi_0$ период неоднородности отрицателен, т.е. в этом интервале углов в системе реализуется пространственно-однородная фаза. По мере приближения к ψ_0 в HC, как видно на рис. 2, период неоднородности увеличивается. Таким образом, существенное уменьшение периода неоднородности может быть достигнуто путем соответствующей ориентации волнового вектора, что выгодно с точки зрения практического применения в устройствах хранения информации.

3. ФАЗОВЫЕ СОСТОЯНИЯ ДВУМЕРНОГО ФЕРРОМАГНЕТИКА С БОЛЬШОЙ НАКЛОННОЙ АНИЗОТРОПИЕЙ $(\beta_{xz} > \beta > J_0)$

Предположим теперь, что энергия наклонной анизотропии β_{xz} существенно превышает все осталь-

ные взаимодействия, включая энергию обменного взаимодействия $J_0: \beta_{xz} > \beta > J_0 > A_0, \Omega_0$. Как было показано в работах [27–29], в сильноанизотропном магнетике возможна реализация магнитоупорядоченного состояния с равной нулю намагниченностью ($\langle S^z \rangle = 0$), характеризуемого не векторным, а тензорным параметром порядка. Это фазовое состояние получило название квадрупольной фазы. В квадрупольной фазе параметрами порядка являются следующие величины: $q_0^0 = \langle O_2^0 \rangle, q_2^2 = \langle O_2^2 \rangle$ и $q_2^{xz} = \langle O_2^{xz} \rangle$. Чтобы упростить задачу, как и ранее, выполним поворот системы координат на угол θ так, чтобы тензор квадрупольных параметров порядка имел диагональный вид ($q_2^{xz} = 0$). При этом угол такого поворота будет иметь значение:

$$\operatorname{tg} 2\theta = -\frac{2\beta_{xz}}{\beta},\tag{21}$$

а геометрическим образом квадрупольной фазы будет бесконечно тонкий диск. После этого унитарного преобразования константы эффективных одноионных анизотропий в квадрупольной фазе примут следующие значения:

$$B_{2}^{0} = -\frac{1}{16\beta_{xz}} (24\beta_{xz}^{2} - 2\beta_{xz}\beta - 9\beta^{2});$$

$$B_{2}^{2} = \frac{1}{16\beta_{xz}} (8\beta_{xz}^{2} + 2\beta_{xz}\beta - 3\beta^{2}); \quad B_{2}^{xz} = 0.$$
(22)

В этом случае одноузельный гамильтониан системы (3) примет довольно простой вид:

$$\mathcal{H}_0 = B_2^0 \sum_n O_{2n}^0 + B_2^2 \sum_n O_{2n}^2.$$
(23)

Как и ранее, исследуем систему для случая низких температур, т.е. много меньших температуры Кюри. Решая с гамильтонианом (23) одноузельную задачу, найдем энергетические уровни магнитного иона и собственные функции гамильтониана (23) в квадрупольной фазе:

$$E_{1} = -2\beta_{xz} + \frac{3\beta^{2}}{4\beta_{xz}}; \quad E_{0} = 0;$$

$$E_{-1} = -\beta_{xz} + \frac{\beta}{4} + \frac{3\beta^{2}}{8\beta_{xz}},$$
(24)

$$|\psi(1)\rangle = \frac{1}{\sqrt{2}} (|1\rangle - |-1\rangle); \quad |\psi(0)\rangle = |0\rangle; |\psi(-1)\rangle = \frac{1}{\sqrt{2}} (|1\rangle + |-1\rangle).$$
(25)

Из выражения (25) следует, что в системе не происходит инверсии энергетических уровней и низшим энергетическим уровням остается E_1 . Связь спиновых операторов с операторами Хаббарда в квадрупольной фазе также существенно упрощается по сравнению со случаем, рассмотренным выше, и имеет вид

$$S_n^z = X_n^{-11} + X_n^{1-1},$$

$$S_n^+ = X_n^{10} - X_n^{01} + X_n^{0-1} + X_n^{-10}, \quad S_n^- = (S_n^+)^+.$$
(26)

Воспользовавшись выражением (26), найдем параметры порядка в квадрупольной фазе:

$$\langle S^{z} \rangle = 0, \quad q_{2}^{0} = \langle O_{2}^{0} \rangle = 1, q_{2}^{2} = \langle O_{2}^{2} \rangle = -1, \quad q_{2}^{zz} = \langle O_{2}^{zz} \rangle = 0.$$
 (27)

Как и ранее, для определения спектров элементарных возбуждений воспользуемся методом бозонизации операторов Хаббарда. Тогда гамильтониан (1) в квадрупольной фазе в терминах бозевских операторов имеет вид

$$\mathcal{H} = \sum_{k} \left[(E_{-1} - E_{1})b_{k}b_{k}^{+} + (E_{0} - E_{1})a_{k}a_{k}^{+} \right] + \frac{1}{2}\sum_{k} (J_{k} + V_{k}^{yy})(a_{k}a_{-k} + a_{k}^{+}a_{-k}^{+} - 2a_{k}a_{k}^{+}).$$
(28)

Диагонализуя гамильтониан (28), получим

$$\mathcal{H} = \sum_{k} \varepsilon_{\alpha}'(k) \alpha_{k}^{'+} \alpha_{k}' + \sum_{k} \varepsilon_{\beta}'(k) \beta_{k}^{'+} \beta_{k}'.$$
(29)

Здесь $\varepsilon'_{\alpha}(k)$ и $\varepsilon'_{\beta}(k)$ — спектры магнонов в квадрупольной фазе, имеющие следующий вид:

$$\varepsilon_{\alpha}^{\prime 2}(k) = \left[E_0 - E_1 - (J_k + V_k^{yy})\right]^2 - \frac{1}{4}(J_k + V_k^{yy})^2, \quad (30)$$

$$\varepsilon_{\beta}^{'2}(k) = (E_{-1} - E_1)^2.$$
 (31)

Спектр $\varepsilon'_{\alpha}(k)$ является низкочастотным, а $\varepsilon'_{\beta}(k)$, соответственно, высокочастотным. Низкочастотный спектр в отличие от высокочастотного является дисперсионным, поэтому сфокусируем наше внимание на нем. Напомним, что мы работаем в приближении малого обменного взаимодействия, поэтому спектр (30) можно представить следующим образом:

$$\varepsilon_{\alpha}^{'2}(k) = \beta_{xz}^2 - 4\beta_{xz} \left(J_0 + \frac{A_0}{3}\right) - 3\beta^2 + \frac{3}{4}J_0^2 + \frac{J_0A_0}{2} + \frac{A_0^2}{12} + \left(4\beta_{xz} - \frac{3\beta^2}{2\beta_{xz}} - \frac{3}{4}J_0 - \frac{A_0}{2}\right) \times \left(\Omega_0 k \sin^2 \psi + \frac{J_0}{2}k^2\right) + \frac{3}{4}\Omega_0^2 k^2 \sin^4 \psi. \quad (32)$$

Из выражения (32) следует, что минимум энергии магнонов будет наблюдаться при k = 0. Из условия обращения в нуль энергетической щели низкочастотного спектра найдем критическое значение константы наклонной анизотропии, при котором фазовое состояние теряет устойчивость:

Как следует из (33), критическое значение константы наклонной анизотропии не зависит от ориентации волнового вектора. Это связано с тем, что в квадрупольной фазе намагниченность (на один узел) равна нулю, а компоненты тензора квадрупольных моментов лежат в плоскости yz ($q_2^0 = 1$, $q_2^2 = -1$), т. е. геометрический образ квадрупольного состояния — бесконечно тонкий диск — лежит в плоскости, перпендикулярной базисной. Это приводит к тому, что влияние магнитодипольного взаимодействия проявляется только в статической перенормировке щели в спектре магнонов (32), но не проявляется динамически, и, следовательно, минимуму энергии возбуждения соответствует k = 0. Кроме того, из спектра (32) следует, что минимальное значение константы легкоплоскостной анизотропии, начиная с которого возможна реализация квадрупольной фазы равно

$$\beta_c = \frac{J_0}{2} + \frac{A_0}{6}$$

4. ЗАКЛЮЧЕНИЕ

Нами исследовано влияние большой наклонной одноионной легкоосной анизотропии на фазовые состояния и фазовые переходы в двумерной ферромагнитной пленке с легкоплоскостной одноионной анизотропией. Показано, что в рассматриваемой системе в зависимости от соотношения материальных параметров возможна реализация трех фазовых состояний. В случае превалирующего обменного взаимодействия ($J_0 > \beta_{zx} > \beta, A_0, \Omega_0$) в системе реализуется угловая ферромагнитная фаза, благодаря влиянию большой наклонной одноионной анизотропии типа «легкая ось». В этой фазе равновесный угол ориентации намагниченности зависит от констант анизотропии следующим образом:

$$\theta_0 = \operatorname{arctg}\left(\frac{\beta + A_0}{2\beta_{xz}}\right)$$

и при $\beta_{xz} = 0$ достигает предельного значения $\pi/2$, что соответствует легкоплоскостной ферромагнитной фазе.

Дальнейшее увеличение констант одноионной анизотропии ($\beta_{zx} > \beta > J_0$) приводит к реализации фазы с намагниченностью (на узле) равной нулю. Но это фазовое состояние не является парамагнитным, поскольку для него соотношение

$$\langle (S^x)^2 \rangle = \langle (S^y)^2 \rangle = \langle (S^z)^2 \rangle = \frac{S(S+1)}{3} = \frac{2}{3}$$

не выполняется, а реализуется следующее соотношение:

$$\langle (S^y)^2 \rangle = \langle (S^z)^2 \rangle = 1, \quad \langle (S^z)^2 \rangle = 0.$$

Это фазовое состояние — квадрупольная (КУ) фаза, параметрами порядка в которой являются компоненты тензора квадрупольного момента. Как следует из анализа спектров элементарных возбуждений, «прямого» фазового перехода между УФМ-фазой и КУ-фазой в двумерном ферромагнетике с наклонной анизотропией нет. Фазовый переход между этими состояниями является переходом первого рода, и, как следует из соотношений (16)-(20), существенно зависит от ориентации волнового вектора в «легкой» плоскости. При значениях угла ψ (определяющих ориентацию волнового вектора в плоскости пленки), превышающих критическое значение ψ_0 (см. (17)), фазовый переход из УФМ-фазы в КУ-фазу осуществляется через неоднородное состояние с периодом неоднородности, определяемым соотношением (18). При этом линии потери устойчивости УФМ-фазы и КУ-фазы определяются соотношениями соответственно (19) и (33). Необходимо отметить, что линия потери устойчивости КУ-фазы лежит выше соответствующей линии УФМ-фазы, что характерно для фазовых переходов первого рода.

Если же $\psi < \psi_0$, то в системе не реализуется пространственно-неоднородное состояние, а фазовый переход из УФМ-фазы в КУ-фазу также является переходом первого рода и проходит через область сосуществования фаз с тензорным и векторным параметрами порядка, т. е. через квадрупольно-ферромагнитное (КФМ) состояние. Область существования КФМ-состояния ограничена линиями потери устойчивости УФМ-фазы и КУ-фазы (см. выражения соответственно (20) и (33)). Необходимо отметить, что область существования КУ-фазы в этом случае уменьшается.

Таким образом, можно построить фазовую диаграмму двумерного ферромагнетика с большой наклонной анизотропией типа легкая ось. Для двух предельных случаев $\psi > \psi_0$ и $\psi < \psi_0$ эта фазовая диаграмма приведена соответственно на рис. За и Зб. Необходимо отметить, что ранее рассматривалась аналогичная система с малой наклонной анизотропией ($\beta > \beta_{xz}$) [30]. В отличие от рассмотренного в работе [30] случая, ситуация в данной работе более интересна. В данном случае влияние большой наклонной анизотропии приводит к существенному ограничению области существования пространственно-неоднородного состояния, причем область существования этого состояния в большой ме-

Рис. 3. Фазовая диаграмма легкоплоскостного двумерного ферромагнетика с большой наклонной анизотропией при $\psi > \psi_0$ (*a*), $\psi < \psi_0$ (б)

ре определяется ориентацией волнового вектора в плоскости пленки. Следовательно, большая наклонная анизотропия существенно влияет на поведение размагничивающих полей, действующих в пленке, т. е. на компоненты тензора магнитодипольного взаимодействия.

Необходимо отметить еще одно обстоятельство. Согласно теореме Мермина–Вагнера [31], в двумерных изотропных или легкоплоскостных магнетиках дальний магнитный порядок разрушается тепловыми (или квантовыми) флуктуациями при сколь угодно низких температурах, отличных от нуля. Однако в рассматриваемом в данной работе случае флуктуации малы и не разрушают дальний магнитный (или квадрупольный) порядок, который стабилизирован двумя факторами. Во-первых, как показано в работе [32], учет магнитодипольного взаимодействия приводит к модификации закона дисперсии магнонов на корневой по волновому вектору, что приводит к сходимости интеграла флуктуаций на нижнем пределе, и, следовательно, к существованию дальнего магнитного порядка. Кроме того, учет наклонной анизотропии типа легкая ось делает спектр магнонов щелевым как в угловой ферромагнитной фазе, так и в квадрупольной, что также приводит к сходимости интеграла флуктуаций на нижнем пределе. Это обстоятельство наиболее существенно в квадрупольной фазе, так как магнитодипольное взаимодействие в квадрупольной фазе не модифицирует законы дисперсии магнонов, но в этой фазе стабилизация дальнего магнитного порядка обеспечивается вкладом наклонной анизотропии в спектр магнонов.

Работа выполнена при финансовой поддержке Министерства образования и науки Украины и НАН Украины.

ЛИТЕРАТУРА

- M. Farle, B. Mirwald-Schulz, A. N. Anisimov et al., Phys. Rev. B 55, 3708 (1997).
- F. Schedin, L. Hewitt, P. Morrall et al., Phys. Rev. B 58, 11861 (1998).
- E. M. Gyorgy, A. Rosencwaig, E. I. Blount et al., Appl. Phys. Lett. 18, 479 (1971).
- А. Р. Прокопов, С. В. Дубинко, А. О. Хребтов и др., ФТТ 39, 1415 (1997).
- **5**. Л. Я. Арифов, Ю. А. Фридман, В. И. Бутрим и др., ФНТ **27**, 860 (2001).
- В. И. Бутрим, С. В. Дубинко, Ю. Н. Мицай, ФТТ 45, 1052 (2003).
- В. В. Рандошкин, М. Ю. Гусев, Ю. Ф. Козлов и др., ЖТФ 70, 118 (2000).
- M. J. Donahue, L. H. Bennet, R. D. McMichael et al., J. Appl. Phys. 79, 5315 (1996).
- C. L. Dennis, R. P. Borges, L. D. Buda et al., J. Phys.: Condens. Matter 14, R1175 (2002).
- 10. J. M. Shaw, W. H. Rippard, S. E. Russek, T. Reith, and C. M. Falco, J. Appl. Phys. 101, 023909 (2007).

- O. Hellwig, A. Berger, T. Thomson et al., Appl. Phys. Lett. 90, 162516 (2007).
- 12. C. Bunce, J. Wu, G. Ju et al., Phys. Rev. B 81, 174428 (2010).
- Yu. A. Fridman, Ph. N. Klevets, and D. V. Spirin, PSS (b) 241, 1106 (2004).
- 14. Yu. A. Fridman, Ph. N. Klevets, and D. V. Spirin, New Developments in Ferromagnetism Research, Nova Science, New York (2005), p. 291.
- 15. Y. A. Fridman, O. A. Kosmachev, and P. N. Klevets, Eur. Phys. J. B 81, 185 (2011).
- 16. В. М. Калита, И. М. Иванова, В. М. Локтев, ФНТ 28, 667 (2002).
- **17**. В. М. Калита, В. М. Локтев, ЖЭТФ **125**, 1149 (2004).
- I. M. Ivanova, V. M. Kalita, V. O. Pashkov et al., Condens. Matter Phys. 11, 509 (2008).
- 19. Ю. В. Переверзев, В. Г. Борисенко, ФТТ 26, 1249 (1984).
- 20. Ю. В. Переверзев, В. Г. Борисенко, ФНТ 11, 730 (1985).
- 21. Ф. П. Онуфриева, ЖЭТФ 89, 2270 (1985).
- 22. R. P. Erickson and D. L. Mills, Phys. Rev. B 46, 861 (1992).
- 23. Yu. A. Fridman, D. A. Matunin, Ph. N. Klevets et al., JMMM 321, 3782 (2009).
- **24**. В. В. Вальков, ТМФ **76**, 143 (1988).
- **25**. Р. О. Зайцев, ЖЭТФ **68**, 207 (1975).
- 26. В. В. Вальков, Т. А. Валькова, Применение индефинитной метрики при переходе от атомного к бозевскому (бозевско-фермиевскому) представлению квантовых гамильтонианов, Препринт ИФ СО АН СССР № 644Ф, Красноярск (1990).
- 27. Э. Л. Нагаев, Магнетики со сложным обменным взаимодействием, Наука, Москва (1988), с. 231.
- **28**. Ю. Н. Мицай, Ю. А. Фридман, УФЖ **35**, 459 (1990).
- 29. В. И. Бутрим, Б. А. Иванов, А. С. Кузнецов и др., ФНТ 34, 1266 (2008).
- 30. Ю. А. Фридман, Ф. Н. Клевец, Г. А. Гореликов, ЖЭТФ 141, 748 (2012).
- 31. N. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
- 32. С. В. Малеев, ЖЭТФ 70, 2344 (1976).