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We study the process of resonant charge exchange involving excited helium atoms with the principal quantum
number n = 5 colliding with the helium ion in the ground state in the collision energy range from thermal
up to 10 €V. This information may be important for the analysis of planet atmospheres containing helium,
in particular, for Jupiter's atmosphere, but our basic interest is the transition from the quantum to classical
description of this process, where, due to large cross sections, evaluations of the cross sections are possible. For
chosen process, quantum theory allows determining the cross section as a result of a tunnel electron transition,
while classical theory accounts for over-barrier electron transitions. The classical theory additionally requires
effective transitions between states with close energies. The analysis of these transitions for helium with n =5
shows that electron momenta and their projections are mixed for a part of the states, while for other states, the
mixing is absent. A simple criterion to separate such states is given. In addition, the main contribution to the
cross section of resonant charge exchange follows from tunnel electron transitions. As a result, the quantum
theory is better for calculating the cross sections of resonant charge exchange than the classical one and also
allows finding the partial cross sections of resonant charge exchange, while the classical approach gives the cross
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section of resonant charge exchange in a simple manner with the accuracy of 20 %.

1. INTRODUCTION

The process of resonant charge exchange involving
highly excited atoms is important for a weakly ion-
ized nonequilibrium gas and influences transport phe-
nomena in such a plasma. In analyzing this process,
we are guided by Jupiter’s atmosphere where nonequi-
librium helium plasma with excited helium atoms is
formed under the action of solar radiation, and highly
excited atoms influence the transport properties of this
plasma because of the low gaseous temperature [1-4].
For definiteness, in the analysis of the resonant charge
exchange process with the participation of highly ex-
cited atoms, we are guided by processes involving ex-
cited helium atoms with the principal quantum number
n =>5.

There are two methods to evaluate the cross section
of resonant charge exchange. In the classical limit, this

* . . B
E-mail: bmsmirnov@Qgmail.com

process is considered as an over-barrier electron tran-
sition from one charged core to another. The quantum
theory is based on the ion-atom exchange interaction
potential that characterizes the rate of electron tran-
sition between two cores as a result of overlapping of
electron wave functions centered on different cores. In
the quantum case, we are based on the asymptotic the-
ory that represents the ion—atom exchange interaction
potential and the cross section of resonance charge ex-
change as the result of an expansion of these quantities
over a small parameter, which is a reciprocal value of
the large distance between the cores that determines
the cross section.

For electron transfer involving highly excited atoms,
one can expect that the classical theory holds true in
contrast to the asymptotic theory [5-7], which is not
applicable to highly excited atoms. But we can show
that the criteria of both classical and asymptotic theo-
ries are valid simultaneously in a wide range of param-
eters, and we use them below for the helium-ion—-atom
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collisions in the range of collision energies 0.1-10 eV and
atom excitations with the principal electron quantum
number n = 5. But the quantum and classical theories
are related to different physical situations. Namely,
the classical theory in its simple version considers an
electron with averaged parameters, while the quantum
theory corresponds to certain quantum numbers of the
electron. The question is what occurs in reality and
what is the rate of transitions between energetically
close states in the course of the resonant charge ex-
change process.

The goal of this paper is to study in detail the pos-
sibilities of using simple versions of classical and quan-
tum theories for the resonant charge exchange process
and the criteria of these approaches. In this analy-
sis, we are guided by highly excited helium atoms with
n =o.

2. EXCHANGE INTERACTION OF AN
EXCITED ATOM WITH AN ION

We construct the wave functions of an excited elec-
tron in the helium atom for the principal quantum num-
ber n = 5 and the exchange interaction potential for
this atom with a parent ion. Because an excited elec-
tron is located mostly in the spatial region where the
Coulomb field of the atomic core acts on it, we can
use the wave functions of the hydrogen atom for this
electron. The radial wave function of an electron in
the hydrogen atom with the principal quantum num-
ber n = 5 has the form [8, 9]
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where the distance r between the electron and the
Coulomb center is given in atomic units (ag), and all
these wave functions are normalized by the relation

oo

/T2¢2(r) dr = 1.

0

Using these wave functions, we can construct the
exchange interaction potential A(R) of the ion and ex-
cited atom. Along with the principal quantum number
n = 5, the electron states in the field of the Coulomb
center are characterized by the electron orbital momen-
tum [, its projection m onto a given direction, the atom
spin, and its projection onto this direction. We first
consider the stationary problem where nuclei are mo-
tionless and restrict ourselves to the case m = 0. We
also first ignore the influence of the electron spin on
the symmetry of molecular wave functions and subse-
quently on the exchange interaction potential. Under
these conditions, the exchange interaction potential has
the form [10]

2
A =5 |omar (5) (26)
We also use the atomic units for the interaction poten-
tial. Expressing the molecular wave functions ,,, of
the electron through its atomic wave functions ¢,—5(r),
i.e., taking the action of the second Coulomb center
into account, we obtain [7,9]

R[4\ R\ |
A = |- n=s | — 2.
(R) 4() " (2) (27)
Since in this case v = 0.2, from (2.7) we obtain
R\ 2
A(R) = 1.725R |3 (5> (2.8)

Table 1 gives the values R4, > 45 at which the ex-
change interaction potential A(R) has the last max-
imum as a function of the ion—atom distance, the ex-
change interaction potential A(R,4. ), and the distance
R> > Ryae such that

A (Rmax )
—

The parameter R, characterizes the decrease in the ex-
change interaction potential after the last maximum. If
the cross section of resonant charge exchange is deter-
mined by ion—atom distances R > Ry,q., this transition
has the tunnel character.

A(Ry) =
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Table 1
1 Rmama ap A(Rmam)a Cmil R27 Qg
0 77.6 868 95.9
1 75 891 93.8
2 70.7 950 89.2
3 62.4 1080 81.1
4 45 1596 65.0

3. CLASSICAL THEORY OF RESONANT
CHARGE EXCHANGE

We analyze the resonant charge exchange process
from the classical standpoint for a transferring elec-
tron. We consider the resonant exchange process in-
volving highly excited atoms at low collision velocities
compared with a typical energy of the bound excited
electron in its orbit. Then the significant contribution
to the cross section of resonant charge exchange fol-
lows from over-barrier electron transition. Then elec-
tron motion has a classical character and the electron
transition from the region of action of one core to that
of the other occurs when the barrier separating fields of
the action of these cores disappears. The Hamiltonian
of the interacting electron and the ion has the form

ﬁZ 62 62 62

H=

2me. r;1 ry R’

where p is the operator of the electron momentum, m,
is the electron mass, e is the electron and ion charge, 1
and re are distances of the electron from the first and
second ion, and R is a distance between ions. We note
two possibilities for transition of a classical electron
between two Coulombs wells, adiabatic and diabatic
ones [11], depending on the ion participation in the en-
ergy balance. In the adiabatic case, ions exchange by
energy of electrons in the course of the electron tran-
sition, whereas in the diabatic case, this transition is
fast and the transferring electron does not draw ions in
an energy exchange.

In the adiabatic case, the barrier separating the re-
gion of action of the first and second ion disappears at
the distance between ions R = Ry, where

3e?

= =,

Ry
and .J is the ionization potential of an excited atom.

Below, we use the atomic units and set J = ~2/2,
whence Ry = 6/72, and the classical cross section of

resonant charge exchange in the limit of low collision
velocities is [12, 13]
9m 187

1
Ocl =00 = iﬂ'R% = =

—— = — = 18mn*,
2J2 44

(3.1)
where n is the principal quantum number for the ex-
cited electron.

In the diabatic case where the collision is fast and
the ion—electron equilibrium is not fulfilled, the sepa-
ration Ry of the barrier disappearence follows from the
relation )

e

Ro
and the classical cross section of electron transfer is
given by

327

1
UC[ZEWR?):?:

32mnt, (3.2)
It is simple to extend this result to the collision of a
multicharge ion of a charge Z if the excited electron is
located in the field of another multicharge ion of the
same charge. Instead of formula (3.2), replacing the
interaction electron—ion parameter e by Ze?, we then

obtain
w72t

w5 =32r 2%’

Ocl — gR% = (33)
in the diabatic limit.

If the collision energy increases, the transferring
electron cannot overcome the barrier along some tra-
jectories, and the cross section of resonant charge ex-
change decreases with an increase in the collision veloc-
ity v. In the framework of statistical physics, the classi-
cal cross section in the adiabatic limit has the form [14]

o\ 2/°
Ocl = 00 |}—08<;> ], v LY,

which is confirmed by evaluations using the method of
molecular dynamics [15]. In the limit of large collision
velocities, the statistical method of averaging over elec-
tron trajectories gives [15]

127
?7 v > .

(3.4)

(3.5)

Ocl =
v

Combining formulas (3.1) and (3.5), we obtain the clas-
sical cross section of resonant charge exchange based on
the computer simulation of this process [15]

o l8x <1 3v>_1
1= — {1—-5 .
Y 2y

Below, we use this expression for evaluation of the cross
section of resonant charge exchange.

(3.6)
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4. RESONANT CHARGE EXCHANGE WITH
TUNNEL ELECTRON TRANSITION

We now consider the tunnel electron transition if a
potential barrier separates the action of two Coulomb
centers. Due to the symmetry of the problem, the
states of a bound electron are separated into even (g)
and odd (u) ones, such that the corresponding electron
wave functions preserve or reverse their sign as a re-
sult of electron reflection with respect to the symmetry
plane that is perpendicular to the axis joining the cores
and bisects this axis [9]. If electron states are degen-
erate, the probability P of electron transition from the
region of action of the first core to that of the second
core is expressed in terms of the exchange interaction
potential

A(R) = g4(R) — cu(R)

(where ¢4(R) and £,(R) are the energies of the even
and odd electron states at a distance R between cores)
as [10]

5 (4.1)

o0
P = sin? / M dt,

— 00
and the classical motion of nuclei is characterized by a
certain trajectory R(t). We assume here that resonant
charge exchange is not entangled with other processes
in this collision process, such as rotation of electron
momenta and transitions between different spin states.
Under this assumption, which is connected with the rel-
ative narrowness of the transition region, we can simply

generalize to the case of degenerate levels [11].

For the resonant charge exchange process involv-
ing atoms in the ground and weakly excited states,
the asymptotic theory [5, 7] is applicable that repre-
sents the cross section of this process as an expan-
sion in the small parameter 1/Rpy (the cross section
is 0o, = mR2/2). The asymptotic theory is violated for
highly excited atoms, but the method for evaluating
the probability of the tunnel electron transition can be
used in evaluating the resonant charge exchange cross
section with participation of highly excited atoms. As-
suming the angle of rotation of the molecular axis dur-
ing the electron transition from one core to another to
be small due to a sharp dependence of the ion—atom
exchange interaction potential on the distance between
them, we can then separate transitions with different
directions of the orbital electron momentum, and then
average over this direction. Below, we do this for res-
onant charge exchange involving excited helium atoms
with n = 5.

The asymptotic theory of resonant charge ex-
change [5, 7] is used under the condition that the second
core acts on the wave function of the electron whose
wave function is centered on the first core, at distances
r from the core where the asymptotic expression for
the atomic wave function holds true (i. e., in the region
where the electron binding energy is large compared
with the Coulomb interaction potential of this electron
with the core). This condition is expressed as the cri-
terion

2> 1.

Representing the resonant charge exchange cross sec-

tion as
ﬂ'R%
Oex = )

2
we have the asymptotic theory applicability criterion
in the form
1 o Ro’}/2
a2

> 1, (4.2)
and « is the small parameter of the asymptotic the-
ory. The first two terms of the expansion in this small
parameter are typically used in the calculated cross sec-
tion of resonant charge exchange [7, 16, 17].

If a valence electron with an orbital momentum /[,
and its projection p onto the molecular axis is located
in the field of two structureless cores, the exchange in-
teraction potential A, is given by [6, 7, 11]

Apu(R) = A2RY 1= lule=Ry=1/7 o
(20 4+ 1)(1 + |u)!
(= D!l ()l

where R is the distance between the nuclei, and v and
A are the parameters of the asymptotic wave function
of the valence electron, such that the radial wave func-
tion of this electron in an atom at a large distance r
from the nucleus is given by

W(r) = Art/7 " exp(—ry),

(4.3)

ry? > 1. (4.4)

We calculate the resonant charge exchange cross
section based on the asymptotic formula in the two-
state approximation for the electron transition with
m = 0, which has the form [5,7,10]

TR2
Ores = 5

4.5
Al,u(RO) ﬂ'RO _ d _ 0 28 ( )
v 2 2 o

We can extend the asymptotic theory of resonant
charge exchange to the case of the tunnel transition of
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a highly excited electron. Indeed, we assume that the
transition occurs in a region of ion—atom distances R
where the exchange interaction potential varies sharply
with R. Instead of formula (4.5), we then obtain the
cross section of resonant charge exchange as

TR2
Ores = Tov
Aiu(Ro) [7Ro _ e _ 0.28 (4.6)
v 200 2 o
o _dlnA[,u(Ro)
B dRy

We use this formula in what follows to evaluate the
cross section of resonant charge exchange involving
a highly excited atom. We note that the differ-
ence between the cross sections evaluated on the ba-
sis of formulas (4.5) and (4.6) is small in reality, when
Ry > Rynaz- Indeed, in this case,

dIn Ay, (Ro) 2
= - 1- ~
@ dRo 7 Ro’}/2

(RO - Rmaa:)
Ry ’

~ (4.7)
and because Ry is mostly determined by an exponen-
tial dependence of the ion—-atom exchange interaction
potential on the distance between them, this variation
of the value in the radicand is not essential. Using for-
mula (4.6), we drop criterion (4.2), but require a sharp
decrease of the ion—atom exchange interaction potential
Ay, (R) with a decreasing ion—atom distance R,

Ap,u(R) x exp(—aR).

5. RESONANT CHARGE EXCHANGE
INVOLVING EXCITED HELIUM ATOMS

In the foregoing, we have considered two versions
of resonant charge exchange involving excited atoms.
In the first, classical version, an over-barrier electron
transfer occurs, and the behavior of the valence elec-
tron is described by the laws of classical mechanics. In
the second version, the cross section of resonant charge
exchange is determined by tunnel electron transitions
from one core to another, and the electron quantum
numbers are conserved in the course of this transition.
In Table 2, we give the cross sections of resonant charge
exchange for the tunnel electron transition according to
formula (4.6) for the collision energy E = 1leV in the
laboratory frame of reference and for the electron mo-
mentum projection y = 0. For comparison, the clas-
sical cross sections for an over-barrier transition are

given in Table 2. We note that the collision velocity is
v = 6.6- 1072 in this case, i.e., v € 7 ~ 0.2, which
allows using formula (3.4) for the classical cross sec-
tion given in Table 2. Tt follows that the quantum and
classical cross sections are comparable. We note that
characteristic distances Ry for the electron transition
in the quantum and classical cases are almost identical,
but correspond to the different nature of the process.
It is essential that in the classical case, we use a certain
assumption for averaging over the electron momentum
during collision, and hence the coincidence of the clas-
sical and quantum cross sections does not contradict
the nature of this transition. Moreover, the criterion of
the validity of a tunnel transition, Ry > Rpqz, 1S sat-
isfied. Based on the obtained data, we can expect that
the accuracy of the classical theory for highly excited
atoms is approximately 20 %.

In Table 2, the electron binding energies in the he-
lium atom with n = 5 are expressed in ecm™'. The
quantum cross section of resonant charge exchange

ﬂ'R%
2

Otun =

at the collision energy of 1 eV in the laboratory frame
of reference for a state with the projection p = 0 of
the momentum of the excited electron onto the impact
parameter vector are evaluated based on formula (4.6),
A(Rp) is the ion—atom interaction potential for this
collision energy, and

is the classical cross section evaluated by formula (3.4)
at the collision energy 1 €V in the laboratory frame.
The cross sections o4, and o, are expressed in
10~ cm?.

Table 3 contains the resonant charge exchange cross
sections for states of the excited electron with any mo-
mentum projection onto the impact parameter of colli-
sion. We note that if the states with the total electron
spin S = 0 and S = 1 are separated, i.e., the energy
difference for atoms in these states is greater than the
exchange interaction potential A(Ry) = 0.3-0.5 ecm™1,
the total spin is conserved in the course of resonant
charge exchange. In such cases, it is necessary to mul-
tiply the ion-atom exchange interaction potential in
formula (4.5) by the respective factor 1/4 or 3/4 for
states with the total spin S =0 and S = 1.

The tunnel cross sections oy, of resonant charge
exchange are given in 10~'* ¢cm? at an indicated colli-
sion energy in the laboratory frame of reference. The
ion—-atom exchange interaction potential is evaluated
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Table 2
Electron state State Energy, cm ! o Otun Ry, ag A(Ryp), em ™! Oecl Ry, ag
1s5s 528 4963.8 0.213 75 131 0.5 58 132
1s5s 518 4647.3 0.206 75 132 0.4 66 141
1s5p 53 P 4510.1 0.203 97 148 04 69 146
1s5d 52D 4393.6 0.200 108 157 0.3 74 150
1s5d 5'D 4392.5 0.200 109 157 0.3 74 150
1s5f 53F 4389.7 0.200 109 157 0.3 74 150
1s5f 5LF 4389.7 0.200 109 157 0.3 74 150
1s5¢g 53G 4389.2 0.200 109 157 0.3 74 150
1s5g 5'G 4389.2 0.200 109 157 0.3 74 150
1s5p 5tp 4368.3 0.200 93 145 0.3 74 150
Table 3 low a typical electron velocity on the electron orbit for
an excited state of the helium atom. Then the analysis
> > - of the processes in such a collision reduces to finding
Electron state|m fum fums fum the behavior of the electron terms of the quasimolecule
E=01eV | E=1eV|E=10eV consisting of the colliding particles and motionless nu-
1555 538 0 ]5 75 66 clei. In the simplest case with one electron state for the
1555 519 0 36 6 66 transferring electron in each atomic core, the electron
1s5p 53 P 0 100 o7 a7 transfer probability is determined by the splitting of
5oP R the electron term into even and odd parts with respect
Ls5p 5°P 1 83 74 64 to reflection in the symmetry plane. The quantum the-
1s5d 543D 0 117 105 94 ory of resonant charge exchange [5, 6] then holds true
185d 583D 1 101 90 80 because it is based on the fact that the electron transfer
1s5d 513D 9 7 63 60 proceeds at large distances between colliding particles
1s5f 5L3F 0 106 05 84 compared with the atom size. The theory uses the fact
s5f L that the parameter 1/a Ry is small, where mR2/2 is the
Ls5f 507 F 1 98 87 T resonant charge exchange cross section. The basis of
1s5f 543 F 2 82 73 64 the quantum theory is the tunnel character of electron
1s5f 513 F 3 63 54 A7 transition, and this is violated for high excitation. In
1559 513G 0 38 o 67 the f:lassical v.ersion7 the charge exchange process in-
13 volving an excited electron state can be represented as
1s5g9 5 °G 1 85 75 65 . o
L a classical electron transition between two cores [12—
1s5g 5°G 2 75 66 58 15]. Below, we consider these two types of electron
1s5g 513G 3 63 54 47 transitions as the limit cases for electron transfer in
1s5g 513G 4 46 40 33 the resonant charge process involving excited states.
1s5p 5' P 0 104 93 82 We note one more peculiarity of the case where
1s5p 51 P 1 79 69 59 an excited state partakes in the resonant charge ex-

based on formula (4.3), and the exchange interaction
potential is connected with the resonant charge ex-
change cross section by formula (4.6).

We consider collisions of an excited helium atom
with its ion in the ground state at collision velocities be-

change process. Quasimolecular levels with different
quantum numbers become then closer to one another,
and hence the resonant charge process involves pro-
cesses such as transitions between states with different
orbital moments of electrons and different momentum
projections [11], and we account for these transitions in
describing classical behavior of an excited bound elec-
tron.
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Electron transfer involving an excited atom state
includes two simultaneous processes, charge exchange
for an electron in the ground state of the helium atom
and transition between two cores for an excited elec-
tron. Hence, the cross section of excitation transfer is
close to the cross section of resonant charge exchange
involving the helium ion and atom in the ground states.
The change of the momentum and the momentum pro-
jection of an excited electron are the subject of inves-
tigation. Simultaneously, we consider these transitions
for an excited electron without transfer of excitation
(i.e., without resonant charge exchange for the helium
atom and ion in the ground state). It is clear that this
cross section significantly exceeds the excitation trans-
fer cross section.

We consider the resonant charge exchange process
in slow collisions from another standpoint. In the
course of interaction, the colliding ion and atom form
a quasimolecule whose parameters vary slowly during
the collision process. In this treatment, the electron
transfer results from the interference of electron wave
functions for the even and odd states, but the character
of this interference depends on electron quantum num-
bers. Averaging over these states depends on the rate of
transitions between states with different electron quan-
tum numbers, such as the electron momentum and its
projection onto the molecular axis, and the total atom
spin. In this treatment, we assume these rates to be
small compared with the rate of electron transfer be-
tween cores.

6. TRANSITIONS BETWEEN EXCITED
STATES IN ION-ATOM COLLISIONS

We analyze the possibility of transitions between
electron states in the course of collision between an ion
and an excited atom. In the first place, such transitions
are possible under the action of the electric field of a
moving ion, and hence the operator of ion—atom inter-
action corresponds to an expansion of the interaction
potential in the small separation R,

1 1 r-R

- __r= 1
IR—-r] R R’ (6.1)

v
where r is the electron coordinate and R is the vec-
tor connecting the nuclei. We give the matrix elements
that determine these transitions between excited elec-
tron states with the same principal quantum number

n [8]:

(nlm|zn,l +1,m) = gn\/nZ —(I+1)2x

(+1)°—m2
QI+1)(2 +3)’

(nlm|z|n,l —1,m) = ;n\/ n? — 12 x

l2 _m2
QI+ 12 -1)’

(6.2)

(6.3)

(nlm|z+iy|n', I+1,m+1) = %n\/n2—(l+1)2 X

" (l+m+2)(l+m+1)
(21 +3)(20 + 1)

, (6.4)

(nlm|z—iy|n,l+1,m—1) = —%n\/n2—(l+1)2 X

" (l—m+2)(l—m+1)
20+3)(2l+1)

(6.5)
(nlml|z +iyn,l —1,m+1) = %n\/n2 — 1% x
" (l—m)(l—m-—-1)

2r+12-1) °

(nlm|z —iyn,l —1,m - 1) = %n\/n2 — 1% x
X\/(l-l-m)(l+m—1)‘

(6.6)

2t+1)(20-1) (6.7)

We now determine the amplitude of transitions be-
tween two highly excited states with the principal quan-
tum number n = 5 in the framework of the pertur-
bation theory. For simplicity, we now restrict ourself
to transitions with the conservation of the momentum
projection m onto the impact parameter of collision p.
In the first approximation of the perturbation theory,
the transition amplitude ¢;;, between states ¢ and k is
then given by

Cik, = /exp(iAst)Vik dt, (6.8)

where Vj, is the matrix element between transi-
tion states for the interaction operator given by for-
mula (6.1) and Ae is the energy difference for transi-
tion states. Taking the distance R between colliding
particles to be given by

R2 :pZ _}_1)27527

where v is the collision velocity and # is time, we reduce
formula (6.8) in the new variable
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Table 4 Table 5
Transition | Ae, cm™ | Ro, ag| =z £ c Initial elect- Otun, Otun, Otun,
ronstate |E=0.1eV|E=1eV|E =10¢eV
538 — 5P| 453.7 140 21 91 | 150
518 5P | 279 149 | 21 | 60 |141 1s5s 59 85 76 66
5P 5D| 165 153 | 12 | 36 | 81 1s5s 519 86 76 66
5P 5'D| 214 158 | 12 | 48 | 79 1s5p 5°P 92 82 72
5D 5 5F| 3.9 157 | 88| 0.88] 55 1s5p 5' P 87 7 67
51D 5 5'F | 28 157 88| 0.63| 55 1s5d, 155,
5F = 5G 0.5 157 | 57| 01| 57 1s59 51°D, 83 76 67
BLIF, 513G
z=wvt/p weak because of a large value of the parameter ¢, which
to the form is practically the Massey parameter [18] .The mixing
oo of states occurs for other states, and it is necessary
o Zik / exp(i€x) dx €= Aep (6.9) to use the mean value of the transition rate A(R) for
* T v P 1+22" > v’ ' these states. Table 5 gives the cross sections of resonant
-0

where z;;, is the matrix element given by formula (6.2)
for the projection of the electron coordinate r onto the
impact parameter of the collision. In Table 4, we give
the values of this matrix element for n = 5 and m = 0.
Tt then follows that formula (6.2) takes the form

(I+1)

W=y

We evaluate the integral in (6.9) by the standard
method by means of displacing the integration contour
into the complex plane of z and expressing the integral
through the residue of the integrand. We obtain
TZik

p (6.10)

ci, = cexp(—=§), c=
Table 4 contains parameters of some transitions be-
tween states with the principal quantum number n = 5.
The transition energy Ac is taken from Table 2, the
impact parameter of collision is p = Rp, where Ry de-
termines the resonant charge exchange cross section at
the collision energy 1 eV in the laboratory frame, and
the values of Ry are taken from Table 2. The matrix el-
ement z; is evaluated by formula (6.2) for states with
m = 0. The parameter ¢ is given by formula (6.10),
and the parameter £ is given by formula (6.9).
Although the process under consideration is charac-
terized by a large number of transitions and we restrict
ourself in Table 4 to transitions with m = 0, these data
lead to simple conclusions. We can divide the states
and transitions between highly excited states into two
groups. If the electron is located in the beginning in
the states 5s or 5p, the transitions are adiabatically

charge exchange obtained in this way.

In Table 5, the quantum cross sections oy, of res-
onant charge exchange are given in 107'* cm? at the
indicated collision energy in the laboratory frame. The
ion—atom exchange interaction potential is evaluated
by formula (2.8), and the exchange interaction poten-
tial is related to the resonance charge exchange cross
section by formula (4.6).

We note that in calculating the cross section of res-
onant charge exchange with the transition of an excited
electron, we used the one-electron approximation and
assumed the cores to be structureless. In this assump-
tion, we keep in mind that states with different core
structures are close in energy. Because this assump-
tion is violated for some electron states, we find correc-
tions to the ion—atom exchange interaction potential.
The electron states of an excited electron in the helium
atom are characterized by the total spin of the inner
and excited electrons, which can be zero or one. To
account for this, we represent the ion—-atom exchange
interaction potential in the general form (see, e, g., [7])

A(R) = 2(¢ [H 2) — 2001 | H|tb) (1 [102),

where H is the Hamiltonian of the electron system and
1 and 1o are the respective wave functions of all the
electrons if the excited (transferring) electron is cen-
tered on the first or second core. Because these wave
functions are the product of the spin and coordinate
wave functions, the general structure of the exchange
interaction potential is

(6.11)

A(R) = pspAcoor(R), (612)
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where the factor ps, is determined by the correlation
of electron spins and the factor A, is independent of
spins and in this case is related to structureless cores,
as it was used above. In other words, formula (6.12)
accounts for the correlation of total spins of the cores
and the transferring electron, and ps), is the probabil-
ity that the excited electron forms the same spin with
the second core as it had with the first core. Evidently,
this factor is ps, = 1/4 for states of an excited helium
atom with the total spin S = 0 (singlet states), and
psp = 3/4 for atom states with the total spin S =1
(triplet states). This factor is taken into account in
calculations of the cross sections in Table 5.

7. SEMICLASSICAL AND CLASSICAL
THEORY OF RESONANT CHARGE
EXCHANGE

The above analysis allows understanding why the
classical approach to the resonant charge exchange pro-
cess involving a highly excited electron can be used.
Based on the classical theory of the resonant charge
exchange process involving a highly excited electron,
we average the cross section over all quantum numbers
of this electron for states with a given quantum num-
ber. In reality, this corresponds to an average over the
quantum numbers [, m, and S, where [ is the orbital
electron moment, m is its projection onto a fixed axis,
and S is the atom total spin. Moreover, we usually
restrict ourself to over-barrier transitions in the clas-
sical approach. In this form, the classical approach is
rough, but it allows estimating the cross section in a
simple way.

Guided by resonant charge exchange involving the
excited helium atom with n = 5, we can formulate
a rigorous method for evaluating the cross sections of
resonant charge exchange for certain excited atoms and
their ions. The comparison of the data in Table 1 and in
Tables 2 and 3 shows that the quantum theory is appli-
cable in evaluating these cross sections, but the correct
averaging over some quantum numbers is required be-
cause of effective transitions between these states in the
course of collisions. These transitions are induced by
the interaction of the ion Coulomb field with the dipole
moment of the excited atom and mix states with close
energies if the energy gap for these states does not ex-
ceed a certain value. Transitions into other states have
a small probability because of a high Massey parame-
ter [18] for these transitions.

This analysis gives a simple recipe to divide the
states of excited atoms into groups such that effective

transitions occur inside each group, whereas transitions
from one group to another one have small probabil-
ity. Such a division for the resonant charge exchange
process with participation of the helium ion and atom
with n = 5 is given in Table 5. Although this relates
to the collision energy 1 eV, this division of states into
groups depends weakly on the collision energy because
the energy gap between groups is sufficiently large, i.e.,
the Massey criterion for transitions between groups of
states is much greater than unity. Next, the asymp-
totic theory for resonant charge exchange is applicable
inside each group, which follows from the comparison
of the data in Table 1 and Table 5. This means that in
collisions of a highly excited helium atom and its ion,
the main contribution to the resonant charge exchange
cross section is made by the tunnel transition of the ex-
cited electron. Averaging over states inside one group
is made over the momentum projection of the excited
electron or over states with a high orbital moment [ of
the electron and correspondingly over states with close
energies.

8. CONCLUSION

We usually treat an atomic system as a classical
one based on the Heisenberg principle, if the difference
of neighboring energy levels is small on the scale of
times under consideration. This allows using classical
laws in describing this system. But this criterion is
not sufficient for the classical description of this atomic
system because mixing of states with close energies is
required for the classical description. In addition, we
note that the apparatus of quantum mechanics is de-
veloped deeper than that of classical mechanics, and it
is sometimes convenient to use semiclassical methods
of quantum mechanics in the case where the classical
criterion holds true.

The analysis of the resonant charge exchange pro-
cess involving highly excited atoms from this stand-
point gives some experience in understanding the tran-
sition from the laws of quantum mechanics to classi-
cal laws for atomic systems. On the one hand, transi-
tions in this process proceed at large distances between
colliding particles, where perturbation theory methods
can be used. On the other hand, criteria of the classical
character of electron motion are fulfilled. Based on the
analysis in this paper, we conclude, first, that the semi-
classical description of an electron is valid along with
its classical description. Second, mixing of electron lev-
els occurs for a part of states only, i.e., the classical
approach holds true only for a part of electron states.
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The semiclassical approach of quantum mechanics in
the form of the asymptotic theory of resonant charge
exchange allows analyzing this process deeper. This
procedure consists in separating the electron states that
are not mixed in the course of the charge exchange pro-
cess and in averaging the transition rate for electron
transfer between atomic cores for the electron states
that are mixing in the course of ion—atom collision.

Therefore, in analyzing the process of resonant
charge exchange involving highly excited electron, we
can expect its classical description to be valid. In the
framework of a general approach [12], it is then nec-
essary to construct the potential energy surface for a
transferring electron; the charge exchange process must
result in an over-barrier transition between two poten-
tial wells. But the potential energy surface for the
transferring electron depends on the electron momen-
tum, and hence there are different potential energy sur-
faces, and the choice among them is ambiguous. In
reality, the potential energy surface is taken with zero
electron momentum [12-14], but this restricts the ac-
curacy of the classical approach. The problem of the
choice of the appropriate potential energy surface can
be resolved by using the classical approach with sta-
tistical averaging [15] where all electron trajectories
are accounted for and the transition cross section re-
sults from averaging over these trajectories. This ap-
proach requires choosing between the adiabatic or dia-
batic character of the electron interaction with ions in
the course of electron motion. Assuming that the clas-
sical description of the process is applicable, we can
then find the average electron transition cross section
at a given collision velocity rather roughly.

The experience with the analysis of charge exchange
processes involving highly excited atoms shows that the
classical criterion is fulfilled partially. First, the classi-
cal approach requires the mixing of all electron states
with a given energy, which is the case for a part of
these states. Second, along with over-barrier transi-
tions, tunnel transitions give a contribution to the cross
section. These transitions can be taken into account if
we drop the assumption of the asymptotic theory of res-
onant charge exchange [7, 11] that the distance of the
tunnel transition greatly exceeds the atom size. We
note that this remark about the validity of the clas-
sical approach for the charge exchange process has a
principal character. As regards classical cross sections
of resonant charge exchange within the simple analy-
sis in Sec. 3, they can be used as estimates, and their
accuracy is better than 20 %.

The above analysis allows formulating a rigorous
approach to this problem. We divide the electron states
of a given electron energy into several groups such that
the Massey criterion is small for transitions inside one
group of states. The electron transition proceeds for
each group independently and is characterized by a cer-
tain transition cross section for each group. But as can
be seen from Table 5, the cross sections for different
states coincide within the accuracy of 10 %.
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