# МАГНИТОЭЛЕКТРИЧЕСКИЕ И МАГНИТОУПРУГИЕ СВОЙСТВА ЛЕГКОПЛОСКОСТНЫХ ФЕРРОБОРАТОВ С МАЛЫМ ИОННЫМ РАДИУСОМ

А. М. Кадомцева<sup>a</sup>, Г. П. Воробьев<sup>a</sup>, Ю. Ф. Попов<sup>a</sup>, А. П. Пятаков<sup>a,b</sup>, А. А. Мухин<sup>b</sup>, В. Ю. Иванов<sup>b</sup>, А. К. Звездин<sup>b</sup>, И. А. Гудим<sup>c</sup>, В. Л. Темеров<sup>c</sup>, Л. Н. Безматерных<sup>c</sup>

> <sup>а</sup> Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

<sup>b</sup> Институт общей физики им. А. М. Прохорова Российской академии наук 119991, Москва, Россия

<sup>с</sup> Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 26 июля 2011 г.

Проведено комплексное исследование магнитных, магнитоэлектрических и магнитоупругих свойств ферроборатов  $\operatorname{RFe}_3(\operatorname{BO}_3)_4$ . Измерение полевых зависимостей магнитоэлектрической поляризации вдоль оси a кристалла для наименее изученного ферробората гольмия, а также для смешанного состава  $\operatorname{Ho}_{0.5}\operatorname{Sm}_{0.5}\operatorname{Fe}_3(\operatorname{BO}_3)_4$  позволило для легкоплоскостных ферроборатов установить следующие закономерности: а) продольный и поперечный магнитоэлектрические эффекты имеют противоположные знаки; б) в поле, близком к полю обмена между редкоземельными ионами и ионами железа, магнитоиндуцированная поляризация меняет знак. Данные закономерности хорошо согласуются с предсказаниями теории на основе анализа симметрии соединений. Относительно небольшое значение поля f-d-обмена в ферроборате гольмия (примерно 20 кЭ), подмагничивающего редкоземельную подсистему, обусловливает меньшие по величине скачки поляризации (около 30 мкКл/м<sup>2</sup>), наблюдаемые в полях менее 10 кЭ, по сравнению с теми, которые проявляются в других легкоплоскостных ферроборатах ( $\operatorname{R} = \operatorname{Sm}$ ,  $\operatorname{Nd}$ ). Индуцированный в  $\operatorname{HoFe}_3(\operatorname{BO}_3)_4$  в магнитных полях более 100 кЭ рост электрической поляризации до 200–300 мкКл/м<sup>2</sup> оказался заметно меньше, чем в неодимовом ферроборате, что указывает на существенную зависимость магнитоэлектрических эффектов от электронной структуры редкоземельных ионов.

### 1. ВВЕДЕНИЕ

Редкоземельные ферробораты с общей формулой  $RFe_3(BO_3)_4$  как новый класс мультиферроиков интенсивно исследуются последние годы [1–10]. Было выявлено влияние основного состояния редкоземельного иона на магнитоэлектрические свойства ферроборатов, в частности, было показано, что наибольшие величины магнитоиндуцированной поляризации должны наблюдаться у ферроборатов, анизотропия которых соответствует типу «легкая плоскость» (ферробораты Sm и Nd) [3, 11, 12]. Представляет интерес расширение круга возможных механизмов, влияющих на величину магнитоэлектрической поляризации, в частности на ее зависимость от величины обменного взаимодействия между подсистемой железа и ионами редкой земли, характеризующегося полем f-d-обмена. С этой целью были проведены магнитные, магнитоэлектрические и магнитоупругие измерения для сравнительно мало изученных легкоплоскостных ферроборатов HoFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> и смешанных составов Ho<sub>0.5</sub>Sm<sub>0.5</sub>Fe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>, особенностью которых являются наблюдаемые в них разнообразные фазовые переходы: структурные, а также спин-переориентационные как спонтанные, так и индуцированные внешним магнитным полем.

<sup>\*</sup>E-mail: pyatakov@physics.msu.ru

## 2. МЕТОДИКА ЭКСПЕРИМЕНТА

Кристаллы ферроборатов  $HoFe_3(BO_3)_4$ И Но<sub>0.5</sub>Sm<sub>0.5</sub>Fe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> были выращены методом спонтанной кристаллизации из растворов в расплавах (подробнее см. работу [13]). Естественная огранка кристаллов соответствовала кристаллографическим направлениям, определенным рентгенографическим методом. Магнитные измерения проводились на установке MPMS-5 (Quantum Design). Основные измерения магнитоэлектрических и магнитоупругих свойств проводились в импульсных магнитных полях до 250 кЭ в диапазоне температур от 4.2 до 50 К. На перпендикулярные к направлению измеряемой поляризации грани исследуемого образца наносились электроды из эпоксидной смолы с проводящим наполнителем. Измерялась величина электрического напряжения на электродах, пропорциональная электрической поляризации, при изменении величины магнитного поля, которое прикладывалось вдоль различных кристаллографических направлений. Магнитострикция измерялась с помощью приклеенного к образцу пьезодатчика из монокристаллической кварцевой пластинки, реагирующей на деформацию только в одном направлении. Температурные зависимости электрической поляризации в статических магнитных полях до 15 кЭ измерялись пироэлектрическим методом с помощью электрометра В7-45.

#### 3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

На рис. 1 приведены кривые намагничивания монокристалла HoFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> вдоль осей с и а при низких температурах (около 1.9 К) в относительно слабых магнитных полях. Наблюдается сопровождающееся гистерезисом достаточно резкое (особенно вдоль оси c) возрастание намагниченности, соответствующее индуцированному полем фазовому переходу от легкоосного к легкоплоскостному состоянию (переход типа спин-флоп). Наряду с переходом типа спин-флоп наблюдается и необычный спин-переориентационный переход в магнитном поле **H**, направленном вдоль оси  $a(H_a)$ , с возвратом спинов в плоскость *ab* при температурах ниже температуры спонтанного переориентационного перехода  $T_{SR} \approx 5$  К (так называемый возвратный переход [1]). При температурах, больших 5 К, подобных аномалий на кривых намагничивания не наблюдалось.

На рис. 2*a* показаны температурные зависимости продольной и поперечной электрической поля-



Рис.1. Кривые намагничивания  $HoFe_3(BO_3)_4$ вдоль осей c (кривая 1) и a (кривая 2) при T = 1.9 К

ризации P в НоFе<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>, возникающей в малых статических магнитных полях (меньше 10 кЭ), при которых устанавливается однодоменное состояние. Величина магнитоэлектрической поляризации растет при понижении температуры вплоть до точки спин-переориентационного перехода T = 5 К. Ниже этой температуры магнитоэлектрическая поляризация в малых полях не наблюдается. На рис. 26 приведены температурные зависимости продольной магнитоэлектрической поляризации  $\Delta P_a$ , снятые в импульсных полях, для различных легкоплоскостных ферроборатов.

На рис. З показаны полевые зависимости продольного (в поле  $H_a$ ) и поперечного (в поле  $H_b$ ) эффектов в ферроборате гольмия. При малых полях видны скачки поляризации  $\Delta P_a$ , обусловленные установлением однородной антиферромагнитной структуры с ориентацией спинов перпендикулярно внешнему полю (однодоменное состояние). Ниже температуры  $T_{SR} = 5$  К скачок поляризации возникает в значительно больших полях (около 10 кЭ), соответствующих полям возвратного перехода (см. рис. 3b, а также кривую  $H_a$  на рис. 1), Дальнейшее уменьшение магнитоэлектрической поляризации и обращение ее в нуль в поле порядка 20 кЭ трактовалось в работе [14] как подавление спонтанной сегнетоэлектрической поляризации магнитным полем. Однако измерение магнитоэлектрического эффекта в более широком диапазоне полей (см. рис. 3) показывает, что в поле 20 кЭ происходит смена знака электрической поляризации подобно то-



Рис.2. Температурные зависимости магнитоиндуцированной поляризации  $\Delta P_a$  для a) HoFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> в магнитном поле H = 8.5 кЭ, направленном вдоль осей a ( $H_a$ ) и b ( $H_b$ ); (сплошная кривая — теоретическая зависимость, рассчитанная по формуле (3); штриховые линии показывают исчезновение поляризации при температуре ниже  $T_{SR} = 5$  K);  $\delta$ ) легкоплоскостных ферроборатов R = Sm, Nd, Ho в поле  $H_a = 10$  кЭ; на вставке приведены зависимости для ферроборатов с R = Er, Y



Рис. 3. *а*) Зависимости электрической поляризации  $\Delta P_a$  от магнитного поля, направленного вдоль осей *a* и *b* в ферроборате гольмия. *б*) Область малых полей в увеличенном масштабе: виден различный ход магнитоэлектрических кривых выше и ниже температуры  $T_{SR} = 5$  K

му, как это происходило в ферроборате неодима при поле, равном полю f-d-обмена [3]. Знак поперечного (при  $H_b$ ) магнитоэлектрического эффекта  $\Delta P_a$  был противоположен знаку продольного эффекта (при  $H_a$ ). Последнее свойство характерно для всех легкоплоскостных ферроборатов, включая и смешанные составы (рис. 4).

Схожие закономерности наблюдаются в полевых зависимостях магнитострикции (рис. 5), коррелирующих с полевыми зависимостями поляризации: видны возвратный переход при 10 кЭ и смена знака поляризации при внешнем поле 20–25 кЭ, приблизительно равном полю *f*-*d*-обмена.

На рис. 6 показаны зависимости поляризации вдоль различных осей в ферроборате гольмия при намагничивании вдоль оси c (поле  $H_c$ ). Аномалии на кривых в районе 10 кЭ имеют вид, характерный для перехода типа спин-флоп [10, 11], и сопровождаются гистерезисом, аналогичным наблюдаемому на рис. 1. Величина и конкретный вид полевых зависимостей поляризации при таком переходе во многом определяются присутствием неконтролируемых



Рис. 4. Полевые зависимости продольного (*a*) и поперечного (*б*) магнитоэлектрических эффектов для смешанного состава  $Ho_{0.5}Sm_{0.5}Fe_3(BO_3)_4$ . В иллюстративных целях зависимости при различных температурах разнесены (числа слева от кривых показывают величину смещения вдоль вертикальной оси)



Рис. 5. a) Полевые зависимости магнитострикции выше и ниже  $T_{SR}$  для  $\operatorname{HoFe}_3(\mathrm{BO}_3)_4$ .  $\delta$ ) Область малых полей в увеличенном масштабе



**Рис.6.** Зависимости поляризации в ферроборате гольмия вдоль различных осей от магнитного поля, приложенного вдоль оси c, при T=4.2 K  $< T_{SR}$ 

в эксперименте составляющих магнитного поля в базисной плоскости.

#### 4. ОБСУЖДЕНИЕ

Индуцированный магнитным полем спин-переориентационный переход с возвратом магнитных моментов ионов железа в базисную плоскость, наблюдаемый ниже температуры спиновой переориентации  $T_{SR} = 5$  К (возвратный переход), подобен переходу, происходящему при температурах ниже 10 К в GdFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> [1]. Его механизм связан с уменьшением (подавлением) в магнитном поле вклада редкоземельных ионов в энергию анизотропии, стабилизирующего одноосное состояние при низких температурах. Специфика иона Но<sup>3+</sup> состоит в том, что его спектр в кристаллическом и обменном полях [15] качественно отличается от эквидистантного спектра иона Gd<sup>3+</sup>. При этом, однако, ферроборат гольмия не демонстрирует такой сильной анизотропии магнитных свойств [16, 17], как ферробораты тербия или диспрозия, у которых сразу при *T* < *T<sub>N</sub>* R-подсистема стабилизирует одноосное состояние [8, 18, 19]. В НоFe<sub>3</sub>(ВО<sub>3</sub>)<sub>4</sub>, по-видимому, вклад в магнитные свойства четырех нижних и достаточно близко лежащих друг к другу уровней (0,  $8, 14, 18 \text{ см}^{-1}$  [16]) не является сильноанизотропным, т.е. имеет место своеобразная компенсация от разных пар уровней (переходов). Этим, в определенной степени, можно объяснить более низкую температуру  $T_{SR}$ , чем в GdFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub>, и относительно слабую магнитную анизотропию.

Результаты измерений полевых зависимостей электрической поляризации ферробората НоFe<sub>3</sub>(BO<sub>3</sub>)<sub>4</sub> находятся в хорошем согласии с температурными зависимостями поляризации в магнитных полях до 40 кЭ, полученными в работе [14]. Однако в нашей работе измерения проводились в большем диапазоне магнитных полей, в том числе и выше характерных полей обмена между редкоземельными ионами и ионами железа, что позволило обнаружить изменение знака магнитоиндуцированной поляризации (см. вставку на рис.  $3\delta$ ), характерное и для других легкоплоскостных ферроборатов [3].

Для объяснения характерных особенностей наблюдаемых температурных и полевых зависимостей воспользуемся подходом, который может быть назван квантово-феноменологическим. Он включает в себя как феноменологическую теорию магнитной симметрии, так и элементы квантовой механики для редкоземельных элементов. Этот метод доказал свою исключительную эффективность при исследовании широкого круга магнитных материалов [20]. Учитывая, что основной вклад в электрическую поляризацию ферроборатов связан с R-подсистемой и используя симметрийные свойства параметров порядка Fe- и R-подсистем (табл. 1), представим магнитоэлектрический вклад в свободную энергию в виде [3]

$$\Phi_{ME}^{\text{R-Fe}} = -P_x \left[ c_{1M} \left( m_x H_x^M - m_y H_y^M \right) + c_{1L} \left( l_x H_x^L - l_y H_y^L \right) + c_{2M} m_y H_z^M + c_{2L} l_y H_z^L + c'_{2L} l_z H_y^L \right] + P_y \left[ c_{1M} \left( m_x H_y^M + m_y H_x^M \right) + c_{1L} \left( l_x H_y^L + l_y H_x^L \right) + c_{2M} m_x H_z^M + c'_{2M} m_z H_x^M + c_{2L} l_x H_z^L + c'_{2L} l_z H_x^L \right], \quad (1)$$

где  $\mathbf{m}, \mathbf{l} = \mathbf{m}_1 \pm \mathbf{m}_2$  — векторы соответственно ферро- и антиферромагнетизма двух R-подрешеток  $\mathbf{m}_{1,2}$ , находящихся в эффективном (внешнем **H** и обменном  $\mathbf{H}^L$ ) поле

$$\mathbf{H}_{1,2}^{e\!f\!f} = \mathbf{H}^M \pm \mathbf{H}^L \equiv \mathbf{H} + \hat{a}\mathbf{M} \pm \hat{b}\mathbf{L},$$

 $c_{1M}, c_{1L}, c_{2M}, c_{2L}, c'_{2M}, c'_{2L}$  — магнитоэлектрические константы, **M**, **L** — векторы ферро- и антиферромагнетизма Fe-подсистемы,  $\hat{a}$  и  $\hat{b}$  — диагональные матрицы R-Fe-обмена ( $a_{xx} = a_{yy} \equiv a_{\perp}, a_{zz} \equiv a_{\parallel}, b_{xx} = b_{yy} \equiv b_{\perp}, b_{zz} \equiv b_{\parallel}$ ). Наличие разных магнитоэлектрических констант для слагаемых с  $\mathbf{H}^{M}$  и  $\mathbf{H}^{L}$ обусловлено их различными трансформационными свойствами при операциях группы симметрии кристалла.

Основной вклад в R–Fe-обмен (f-d-обмен) ферроборатов определяется изотропной частью соответствующего взаимодействия редкоземельного иона подрешеток 1, 2 с ближайшими N ионами железа:

$$\mathcal{H}_{1,2}^{fd} = \lambda \mathbf{S}_{\mathrm{R}}^{1,2} \cdot \sum_{i=1}^{N} \mathbf{S}_{\mathrm{Fe}}^{i} = -\boldsymbol{\mu}_{J}^{1,2} \cdot \mathbf{H}_{fd}^{1,2}, \qquad (2)$$

где  $\mathbf{S}_{\mathrm{R}}$  и  $\mathbf{S}_{\mathrm{Fe}}$  — спиновые моменты R- и Fe-ионов,  $\mathbf{J}_{\mathrm{R}}, \ \boldsymbol{\mu}_J = -g_J \mu_B \mathbf{J}_{\mathrm{R}}$  и  $g_J$  — соответственно полный угловой момент, магнитный момент и фактор Ланде основного мультиплета R-иона,  $\mu_B$  — магнетон Бора,

$$H_{fd} = \frac{(g_J - 1)\lambda}{g_J \mu_B} \sum_{i=1}^N S_{\rm Fe}^i$$

— обменное f-d-поле (изотропная часть),  $\lambda$  — обменная константа, зависящая от расстояний и углов связи между ионами  $\mathbb{R}^{3+}$  и Fe<sup>3+</sup>. Это определение обменного поля справедливо только для основного мультиплета  $\mathbb{R}$ -иона, когда  $\mathbf{S}_{\mathbf{R}} \approx (g_J - 1) \mathbf{J}_{\mathbf{R}}$  (см. также работы [10, 12]). В отсутствие внешнего поля, т. е.

|             | E | $T_{1}^{-}$ | $C_{3}^{+}$    | $2^{+}_{x}$    | $l_i, \\ L_i$                                                                           | $m_i, M_i$                                                                              | $l_i L_j$                                                                                                                                                                           | $m_i M_j$                                                                                                                                                                           | $P_i$                                              | $u_{ij}$                                                                                                        |
|-------------|---|-------------|----------------|----------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| $\Gamma_1$  | 1 | 1           | 1              | 1              | _                                                                                       | _                                                                                       | _                                                                                                                                                                                   | _                                                                                                                                                                                   | _                                                  | $u_{xx} + u_{yy}, \\ u_{zz}$                                                                                    |
| $\Gamma_1'$ | 1 | -1          | 1              | 1              | -                                                                                       | —                                                                                       | _                                                                                                                                                                                   | _                                                                                                                                                                                   | _                                                  | —                                                                                                               |
| $\Gamma_2$  | 1 | 1           | 1              | -1             | -                                                                                       | $m_z, M_z$                                                                              | _                                                                                                                                                                                   | _                                                                                                                                                                                   | $P_z$                                              | —                                                                                                               |
| $\Gamma_2'$ | 1 | -1          | 1              | -1             | $l_z, L_z$                                                                              | _                                                                                       | _                                                                                                                                                                                   | _                                                                                                                                                                                   | _                                                  | _                                                                                                               |
| $\Gamma_3$  | 1 | 1           | $\mathbf{R}_3$ | $\mathbf{R}_2$ | _                                                                                       | $\begin{pmatrix} m_x \\ m_y \end{pmatrix}, \\ \begin{pmatrix} M_x \\ M_y \end{pmatrix}$ | $\begin{pmatrix} l_x L_x - l_y L_y \\ -l_x L_y - l_y L_x \end{pmatrix}, \\ \begin{pmatrix} l_y L_z \\ -l_x L_z \end{pmatrix}, \\ \begin{pmatrix} l_z L_y \\ -l_z L_x \end{pmatrix}$ | $\begin{pmatrix} m_x M_x - m_y M_y \\ -m_x M_y - m_y M_x \end{pmatrix}, \\ \begin{pmatrix} m_y M_z \\ -m_x M_z \end{pmatrix}, \\ \begin{pmatrix} m_z M_y \\ -m_z M_x \end{pmatrix}$ | $\left(\begin{array}{c}P_x\\P_y\end{array}\right)$ | $\begin{pmatrix} u_{xx} - u_{yy} \\ -2u_{xy} \end{pmatrix}, \\ \begin{pmatrix} u_{yx} \\ -u_{xz} \end{pmatrix}$ |
| $\Gamma'_3$ | 1 | -1          | $\mathbf{R}_3$ | $\mathbf{R}_2$ | $\begin{pmatrix} l_x \\ l_y \end{pmatrix}, \\ \begin{pmatrix} L_x \\ L_y \end{pmatrix}$ | _                                                                                       |                                                                                                                                                                                     | _                                                                                                                                                                                   | _                                                  | _                                                                                                               |

**Таблица 1.** Трансформационные свойства векторов ферро- и антиферромагнетизма Fe-подсистемы (**M**, **L**), редкоземельной подсистемы (**m**, **l**), поляризации **P** и тензора деформации  $u_{ik}$  для ферроборатов в пространственной группе  $\tilde{G}_{32}$  [3], редуцированной из группы  $R32^*$ 

Примечание. \*Элементы  $T_1^-, C_3^+, 2_x^+$  группы  $\tilde{G}_{32}$  представляют соответственно трансляцию на один период решетки вдоль оси *c*, повороты вокруг оси третьего порядка и оси второго порядка; верхний индекс «+» означает, что элемент симметрии переводит антиферромагнитную подрешетку в саму себя, индекс «-» — в другую с противоположным направлением намагниченности;  $\mathbf{R}_2$  и  $\mathbf{R}_3$  — матрицы поворота соответственно на 180° и 120°. В таблице показаны только смешанные комбинации параметров порядка ионов Fe и R, дающие вклад в поляризацию и деформацию, остальные приведены в работе [3].

когда H = 0 и M = 0, обменное поле  $\mathbf{H}_{fd}^{1,2} = \pm \mathbf{H}^L$ пропорционально вектору антиферромагнетизма **L**. Полагая, что константа  $\lambda$  слабо зависит от структурных параметров решетки, можно провести сравнительную оценку полей обмена в ферроборатах с различным типом редкой земли (табл. 2), а также объяснить относительно небольшую величину электрической поляризации в ферроборатах с малым ионным радиусом, проявляющуюся в малых полях, когда основной вклад в эффективное поле, в котором находится ион, вносит поле f-d-обмена. Действительно, в случае иона самария поле  $|\mathbf{H}_{fd}|$  более чем на порядок превышает таковое для гольмия (см. табл. 2). В сильных магнитных полях (более 100 кЭ) наблюдается заметный рост электрической поляризации (до 200–300 мкКл/м<sup>2</sup>), которая намного превышает поляризацию, индуцированную f-d-обменом (см. рис. 3), однако оказывается заметно меньше, чем в неодимовом ферроборате [3]. Очевидно, что этот вклад определяется электронной структурой редкоземельного иона и его спектром в кристаллическом поле. Выявленное в гольмиевом ферроборате уменьшение этого магнитоиндуцированного вклада в поляризацию свидетельствует о его сильной зависимости от типа редкоземельного иона и, возможно, указывает на уменьшение магнитоэлектрической поляризации с уменьшением радиуса R-иона.

|    | $g_J$ | $\frac{g_{\rm Gd}}{g_{\rm Gd} - 1} \frac{g_J - 1}{g_J} = 2\frac{g_J - 1}{g_J}$ | $H_{fd}^{isotr} = 2 \frac{g_J - 1}{g_J} H_{fd}^{\mathrm{Gd}},  \kappa \Im^*$ | $ H_{fd}^{exp} ,$ кЭ<br>из магн. и опт. эксп. | <i>H</i> <sup><i>exp</i></sup> <sub><i>fd</i></sub>  , кЭ<br>из магнито-<br>электр. эксп. |
|----|-------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|
| Ce | 6/7   | -1/3                                                                           | -23                                                                          | -                                             | _                                                                                         |
| Pr | 4/5   | -1/2                                                                           | -35                                                                          | 115 [23]**                                    | _                                                                                         |
| Nd | 8/11  | -3/4                                                                           | -53                                                                          | 79  [24]                                      | 55 [3]                                                                                    |
| Pm | 3/5   | -4/3                                                                           | -93                                                                          | _                                             | _                                                                                         |
| Sm | 2/7   | -5                                                                             | -350                                                                         | _                                             | _                                                                                         |
| Gd | 2     | 1                                                                              | 70                                                                           | 70  [21, 25]                                  | _                                                                                         |
| Tb | 3/2   | 2/3                                                                            | 47                                                                           | 35-38 [18, 24]                                | _                                                                                         |
| Dy | 4/3   | 1/2                                                                            | 35                                                                           | $25 \ [24]$                                   | _                                                                                         |
| Ho | 5/4   | 2/5                                                                            | 28                                                                           | $25 \ [26]$                                   | 20                                                                                        |
| Er | 6/5   | 1/3                                                                            | 23                                                                           | 16.5 [24]                                     | _                                                                                         |
| Tm | 7/6   | 2/7                                                                            | 20                                                                           | _                                             |                                                                                           |
| Yb | 8/7   | 1/4                                                                            | 18                                                                           | _                                             | _                                                                                         |
|    |       |                                                                                |                                                                              |                                               |                                                                                           |

Значения обменных *f*-*d*-полей в ферроборатах в зависимости от типа R-иона Таблица 2.

*Примечание.* \*Теоретические значения полей  $H_{fd}^{isotr}$  (изотропная часть) рассчитаны при  $H_{fd}^{Gd} \approx 70$  кЭ [21]. \*\*Сильное отличие реального обменного поля, действующего на ион Pr<sup>3+</sup>, от его изотропной части, указанной в четвертом столбце, связано с большим анизотропным вкладом f-d-обмена, установленным для  $\Pr Fe_3(BO_3)_4$ на основе оптических данных [22].

Рассмотрим поведение поляризации более подробно в легкоплоскостном состоянии, когда поле направлено вдоль оси a, а вектор **L** — вдоль оси b. Минимизируя полный термодинамический потенциал

$$\Phi = \frac{P_x^2 + P_y^2}{2\chi_\perp^E} + \Phi_{ME}^{\text{R-Fi}}$$

по поляризации ( $\chi^E_{\perp}$  — электрическая восприимчивость в базисной плоскости), имеем

$$P_x = \chi^E_{\perp} (c_{1M} m_x H^M_x - c_{1L} l_y H^L_y) \approx \\ \approx \chi^E_{\perp} c_{1M} \frac{m_{\rm R} (H_{eff}, T)}{H_{eff}} \left( H^2_x - \frac{c_{1L}}{c_{1M}} H^2_{fd} \right), \quad (3)$$

где

$$m_{\rm R}(H_{eff}, T) = -\frac{\partial \Phi_{\rm R}}{\partial H_{eff}} \equiv \\ \equiv Nk_B T \frac{\partial}{\partial H_{eff}} \ln \sum_{i=1}^{2J+1} \exp\left(-\frac{E_i}{k_B T}\right)$$

- намагниченность R-подсистемы в эффективном поле  $\mathbf{H}_{eff} \approx (H_x, H_y^L, 0) \ (H_y^L = H_{fd}, H_x^M \approx H_x)$ , а ее однородная и знакопеременная (staggered) компоненты соответственно равны  $m_x = m_{
m R} H_x / H_{eff}$ и  $m_y = m_{\rm R} H_y^L / H_{eff}, E_i$  — энергетические уровни R-иона в кристаллическом и эффективном полях. На основе выражений (1) и (3) можно объяснить характерные особенности температурных и полевых зависимостей, приведенных на рис. 2 и 3:

1) исчезновение электрической поляризации при спонтанном ориентационном переходе от плоскости ab к оси c, наблюдающееся при температуре 5 К;

2) возникновение поляризации при индуцированном полем порядка 10 кЭ возвратном переходе в плоскость *ab*;

3) изменение знака электрической поляризации в поле около 20 кЭ, приблизительно равном полю f-d-обмена при  $c_{1L} \approx c_{1M}$  в связи с изменением знака разности  $c_{1M}m_xH_x - c_{1L}l_yH_y^L \sim H_x^2 -H_{fd}^2(c_{1L}/c_{1M})$  в выражении (3); некоторым различием величин констант  $c_{1L}$  и  $c_{1M}$  можно объяснить

также различие обменных полей, найденных по точке смены знака поляризации из магнитных и оптических измерений (см. табл. 2);

4) изменение знака электрической поляризации при изменении направления магнитного поля от оси a к оси b кристалла (по тем же причинам, что и в п. 3).

Для количественного описания поляризации на основе выражения (3) нужно знать поведение функции  $m_{\rm R}(H_{eff},T)$ , определяемой спектром R-иона. В простейшем двухуровневом приближении имеем

$$m_{\rm R}(H_{eff},T) \propto {
m th}(\mu_{\perp}H_{eff}/k_BT),$$

где  $\mu_{\perp}$  — магнитный момент R-иона в базисной плоскости. Полагая в (3) поле f-d-обмена равным 20 кЭ (точка смены знака магнитоэлектрической поляризации на полевой зависимости, см. рис. 3), а величину внешнего магнитного поля H = 8.5 кЭ, что соответствует условиям эксперимента (см. рис. 2a), получаем для температурной зависимости магнитоэлектрической поляризации теоретическую кривую (рис. 2a, сплошная линия), которая при значении параметра  $\mu_{\perp} = 2.1 \mu_B$  довольно точно описывает экспериментальную зависимость.

По аналогии с выражением (3) для продольных компонент магнитострикции, обусловленной R-подсистемой, получаем

$$u_{xx} - u_{yy} = (b_{3M}m_x H_x^M - b_{3L}l_y H_y^L) \approx \\ \approx b_{3M} \frac{m_{\rm R}(H_{eff}, T)}{H_{eff}} \left( H_x^2 - \frac{b_{3L}}{b_{3M}} H_{fd}^2 \right). \quad (4)$$

Сходство зависимостей (3) и (4) объясняет корреляцию магнитоэлектрических и магнитоупругих свойств, а различие полей обращения в нуль поляризации и магнитострикции может быть связано с различием коэффициентов  $c_{1L}/c_{1M}$  и  $b_{3L}/b_{3M}$  (см. рис. 3 и 5).

#### 5. ЗАКЛЮЧЕНИЕ

Таким образом, показано, что для легкоплоскостных ферроборатов характерным свойством являются противоположные знаки магнитоиндуцированных поляризаций вдоль оси a при направлениях магнитного поля вдоль осей a ( $H_a$ ) и b ( $H_b$ ). Эта особенность, наряду со сменой знака магнитоиндуцированной поляризации в поле, большем поля обмена между ионами редкой земли и ионами железа, находит свое объяснение в рамках симметрийного подхода.

На магнитных, магнитоэлектрических и магнитоупругих зависимостях для ферробората гольмия прослеживаются аномалии, связанные как со спонтанным спин-переориентационным переходом, так и с индуцированными магнитным полем фазовыми переходами (спин-флоп и возвратным). Результаты измерений полевых зависимостей магнитоэлектрической поляризации в ферроборате гольмия находятся в хорошем согласии с результатами измерения аналогичных зависимостей в работе [14], а также существенно дополняют их данными о магнитоэлектрической поляризации в сильных магнитных полях. Индуцированный в сильных магнитных полях рост электрической поляризации оказался в ферроборате гольмия заметно меньше, чем в ферроборате неодима в тех же условиях, что указывает на существенную зависимость магнитоэлектрических эффектов от электронной структуры редкоземельных ионов. Квантово-феноменологическое рассмотрение указывает на то, что поле *f*-*d*-обмена, так же как электронная структура и магнитный момент иона, является важным фактором, определяющим магнитоэлектрическую поляризацию редкоземельных ферроборатов при индуцированном слабыми магнитными полями (менее 10 кЭ) развороте спиновой структуры в базисной плоскости в направлении, перпендикулярном внешнему полю.

Работа выполнена при поддержке РФФИ (гранты №№ 10-02-00846а, 09-02-01355, 12-02-01261).

# ЛИТЕРАТУРА

- А. К. Звездин, С. С. Кротов, А. М. Кадомцева и др., Письма в ЖЭТФ 81, 335 (2005).
- F. Yen, B. Lorenz, Y. Y. Sun et al., Phys. Rev. B 73, 054435 (2006).
- А. К. Звездин, Г. П. Воробьев, А. М. Кадомцева и др., Письма в ЖЭТФ 83, 600 (2006).
- 4. А. Н. Васильев, Е. А. Попова, ФНТ  ${\bf 32},\,968$  (2006).
- 5. M. N. Popova, E. P. Chukalina, T. N. Stanislavchuk et al., Phys. Rev. B 75, 224435 (2007).
- E. A. Popova, D. V. Volkov, A. N. Vasiliev et al., Phys. Rev. B 75, 224413 (2007).
- H. Mo, Ch. S. Nelson, L. N. Bezmaternykh, and V. T. Temerov, Phys. Rev. B 78, 214407 (2008).
- Ch. Lee, J. Kang, K. H. Lee, and M.-H. Whangbo, Chem. Mater. 21, 2534 (2009).

- 9. M. N. Popova, J. Magn. Magn. Mater. 321, 716 (2009).
- **10**. А. М. Кадомцева, Ю. Ф. Попов, Г. П. Воробьев и др., ФНТ **36**, 640 (2010).
- **11**. Ю. Ф. Попов, А. М. Кадомцева, Г. П. Воробьев и др., Письма в ЖЭТФ **89**, 405 (2009).
- **12**. Ю. Ф. Попов, А. П. Пятаков, А. М. Кадомцева и др., ЖЭТФ **138**, 226 (2010).
- V. L. Temerov, A. E. Sokolov, A. L. Sukhachev et al., Crystallogr. Rep. 53, 1157 (2008).
- 14. R. P. Chaudhury, F. Yen, B. Lorenz et al., Phys. Rev. B 80, 104424 (2009).
- 15. T. N. Stanislavchuk, E. P. Chukalina, M. N. Popova et al., Phys. Lett. A 368, 408 (2007).
- C. Ritter, A. Vorotynov, A. Pankrats et al., J. Phys.: Condens. Matter 20, 365209 (2008).
- A. Pankrats, G. Petrakovskii, A. Kartashev et al., J. Phys.: Condens. Matter 21, 436001 (2009).

- А. К. Звездин, А. М. Кадомцева, Ю. Ф. Попов и др., ЖЭТФ 136, 80 (2009).
- E. A. Popova, N. Tristan, A. N. Vasiliev et al., Eur. Phys. J. B 62, 123 (2008).
- 20. А. К. Звездин, В. М. Матвеев, А. А. Мухин, А. И. Попов, Редкоземельные ионы в магнитоупорядоченных кристаллах, Наука, Москва (1985).
- 21. А. М. Кадомцева, А. К. Звездин, А. П. Пятаков и др., ЖЭТФ 132, 134 (2007).
- 22. M. N. Popova, T. N. Stanislavchuk, B. Z. Malkin, and L. N. Bezmaternykh, Phys. Rev. B 80, 195101 (2009).
- 23. А. М. Кадомцева, Ю. Ф. Попов, Г. П. Воробьев и др., Письма в ЖЭТФ 87, 45 (2008).
- 24. M. N. Popova, J. Rare Earths 27, 607 (2009).
- 25. А. М. Кузьменко, А. А. Мухин, В. Ю. Иванов и др., Письма в ЖЭТФ 94, 318 (2011).
- **26**. А. А. Демидов, Д. В. Волков, ФТТ **53**, 926 (2011).