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The phonon dispersion of graphene is derived by using a simple mass spring model and considering up to the first,
second, third, and fourth nearest-neighbor interactions. The results obtained from different nearest-neighbor
interactions are compared and it is shown that the k> dependence for the out-of-plane transverse acoustic
mode obtained in other sophisticated methods as well as experiment occurs only after considering the fourth

nearest-neighbor interaction.
1. INTRODUCTION

Graphene, a two-dimensional sheet of graphite and
the basis to obtain carbon nanotubes (CNTs), which
is of great interest for the current researchers [1-5], is
becoming a crucial area of research now. The ongo-
ing research on the vibrational spectrum of CNTs has
reopened the research for the vibrational spectrum of
graphite as well as graphene. Although the phonon dis-
persion of graphene has been derived by using several
sophisticated methods, the main objective of this paper
is to reproduce the same result via a simpler method.
We calculate the phonon dispersion of a graphene sheet
by using the simple mass spring model of lattice vibra-
tions and considering the interactions up to the first,
second, third, and fourth nearest neighbors.

The paper is organized as follows. Section 2 dis-
cusses the phonon dispersion relation for a graphene
sheet, derived by considering a simple mass spring
model. The paper is concluded in Sec. 3.

2. PHONON DISPERSION OF GRAPHENE

Phonon dispersion of graphene has been revisited
by researchers in the field because CNTs hold enor-
mous promise in device applications. Several models
have been proposed [6-8] to calculate phonon disper-
sion of graphite as well as graphene. Here, we use the
mass spring model [9,10], in which carbon atoms are
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Fig.1. Unit cell and basis vectors of a graphene sheet
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considered to be connected by massless springs with
empirically determined spring constants. We system-
atically do the calculations, including interactions up
to the fourth nearest neighbor, and study how the dis-
persion is affected as more and more neighbors are in-
cluded in the interaction. We go as far as the fourth
nearest-neighbor interaction, because the quadratic de-
pendence of w on the wave vector k near the origin,
for the out-of-plane transverse acoustic mode, which is
present in experimental results as well as other more
sophisticated theoretical calculations, turns out to ap-
pear only when the fourth nearest-neighbor interaction
is included. We also compare the phonon spectra ob-
tained from different nearest-neighbor interactions with
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Fig. 2. Different nearest neighbors for atoms A (a) and B (b)

Fig. 3. Directions of vibrations

ab-initio calculations available in the literature [6], and
draw certain conclusions regarding the viability of the
simpler spring mass model.

Figure 1 shows a graphene sheet with basis vectors
a; and ay. The atoms A and B (shown inside the rect-
angle) form the basis set for graphene. In graphene,
each atom in the unit cell is surrounded by three first
nearest neighbors of the opposite type, six second near-
est, neighbors of the same type, three third nearest
neighbors of the opposite type, and six fourth nearest
neighbors of the opposite type. In Fig. 2, these nea-
rest-neighbor atoms are shown by connecting through
circles 1 to 4 respectively.

Considering only the first nearest-neighbor interac-
tion, the dynamical matrix for both atoms has been
derived from the corresponding equations of motion.
Displacements of atoms A and B due to lattice vibra-
tion are denoted by u and v, respectively. The position
vectors are given in terms of the basis vectors. We con-
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sider a lattice site at (r,s) i.e., at ra; + sag, where r
and s are integers. The separation between A and B
atoms at same lattice site is (a; + as)/3. Referring to
Fig. 2 and considering only the first nearest-neighbor
interaction, we write the equations of motion for both

atoms as
du
dt;s =0 (’U,-s — Urs) + 02('07',5—1 - uTS) +
+ CS(Urfl,s - U»,-s), (]‘)
d*v
dt;s = C1(urs = vps) + O2(Up 541 — Vrs) +

(2)

where M is the mass of a carbon atom, Cy, Cs, and C3
are force constant tensors, and the displacements are

+Cs (ur+17s - 'Urs)v

urs = wexp [ik - (ra; + sas)] exp(—iwt),

vps = vexp[ik - (ra; + sas)] x

x exp [tk - (a1 + a2)/3] exp(—iwt).

Using these in Egs. (1) and (2), we obtain the dynam-
ical matrix for graphene:
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Fig.4. Phonon dispersion of graphene considering the first (a), second (b), third (c), and fourth (d) nearest-neighbor
interactions

D= o 00
‘ ' C, = (1) , 4
—Mw?+ Ci+ —exp k- (ar+aq)| x ' 0 ti 01 )
3 0 0 ¢
+ 02 + 03 X [01 +C2 eXp(—ik . a2)+

+ Csexp(—ik - a1)] where ¢£1), S), and ¢§i) are the respective force con-
ik Mw? 4 C stants due to the nearest neighbor interactions in the
P 3 (a1+az)| x —Mwt+ radial, in-plane tangential, and out-of-plane transverse

x [C1+C exp(ik - as)+ +Cy + O directions. Their values [5] are

+ Csexp(ik - a1)]
(3) oY =365-10" dyn/em, o} =24.5-10" dyn/cm,

The matrix C is given by El) =9.82-10* dyn/cm.
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Fig.5. Phonon dispersion of graphene obtained from our calculation with the fourth nearest-neighbor interaction (a), and
taken from Refs. [8] (), [6] (¢), and [7] (d)

The superscript “1” indicates the first nearest-neighbor
interaction. These three directions of vibrations are
shown in Fig. 3.

The vibration along the line joining A and B atoms
in the graphene plane is the radial vibration, which is
along the x-direction. Vibrations along y and z direc-
tions are respectively called transverse (tangential) in-
plane, and transverse out-of-plane vibrations. Among
these three vibrations, there is bond stretching in the
radial vibrations and bond bending in the other two
vibrations. The other two matrices C; (j = 2, 3) are
obtained from C by using the formula C; = U].—lcl Uj,
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where Uj is the rotation matrix around the z-direction,
which takes atom B; to atom B;. They are given by

1
02 = Z X
ook V(o) 0
(1) (1) (1), (1) , (5)
\/3( ti —Or ) 30r ' +¢y; 0
0 0 16},
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Table.

points

Comparison of our results with other theoretical model and experimental results at different high-symmetry

Method used to

btain th Fr t th
obbam the eauency & | ¢ Frequency at the M point [cm™!] Frequency at the K point [cm ™"
phonon T point [cm™ 7]
dispersion

LO | ITO | OTO | LO |ITO |OTO |LA |ITA|OTA| LO |[ITO |OTO| LA |ITA | OTA
Ab initio [6] 1690 | 1690 | 860 | 1580 | 1475 | 1280 | 610 | 580 | 460 | 1520 | 1260 | 1260 | 890 | 520 | 520

1°t nearest

neighbor

1623 | 1623 | 920 | 1389|1259 | 1025

840 | 752 | 532 | 1256 | 1147 | 1149 | 1029 | 650 | 650

2"% nearest

neighbor

1623 | 1623 | 981 |1542 | 1334 | 1287

860 | 720 | 487 | 1392 | 1295 | 1295 | 1190 | 610 | 610

374 nearest

neighbor

1593 | 1593 | 928 | 1542 | 1333 | 1250

803 | 720 | 500 | 1438|1277 | 1277 | 1092 | 615 | 615

4" nearest

neighbor

1603 | 1603 | 872 | 1546 | 1345 | 1252

810 | 673 | 465 | 1480 | 1283 | 1283 | 1033 | 573 | 573

4" nearest

neighbor

set of force

with a second 1605 | 1605 | 874 | 1475|1313 | 1202

733 | 703 | 432 | 1305|1222 | 1222 | 1133 | 580 | 580

constant
Experi-

et 1580 | 1580 | 868 | 1390 1323 | 1200 [ 630 | 670 | 471 | 1313|1184 | 1184 | — | — | —
mental [8]

Oy = 1 « originating from zero at the I' point are the three
4 acoustic phonon modes, corresponding to the out-
¢5«1)+3¢S) V3 (¢5«1)— S)) 0 of-plane mode known as the out-of-plane transverse

acoustic branch (OTA/ZA), the in-plane tangential
V3 (¢£1) —¢§§)) 3¢£1)+¢£;) 0 - (6) (bond-bending) mode known as the in-plane transverse
0 0 4¢£1) acoustic branch (ITA), and the in-plane radial (bond-

Substituting these matrices in Eq. (3), we obtain a 6 X 6
dynamical matrix, and setting the determinant of the
dynamical matrix equal to zero, we obtain the phonon
dispersion relation (w ~ k) for graphene, which is plot-
ted in Fig. 4a. Because the matrix is 6 x 6, we obtain
six branches for the phonon dispersion. The number
six also follows from the fact that there are two atoms
per primitive cell, and each atom has three modes of
vibration.

Finally solving the eigenvalue equations for the dy-
namical matrix, we obtain the phonon dispersion rela-
tion of graphene [11]. The same procedure is repeated
for different nearest-neighbor interactions. The phonon
branches for graphene obtained by this method are
shown in Fig. 4, which shows that there are three opti-
cal and three acoustic branches. The three branches

stretching) mode known as the longitudinal acoustic
branch (LA), listed in order of increasing energy. The
remaining three branches correspond to the optical
modes: one the nondegenerate out-of-plane mode and
two the in-plane modes that remain doubly degenerate
as we move away from the I' point. The three opti-
cal branches are called the longitudinal optical (LO),
the in-plane transverse optical (ITO), and the out-of-
plane transverse optical (OTO/ZO), in the decreasing
order of frequency. It is clear from the Fig. 4 that al-
though there are similarities between all the phonon
spectra obtained for different nearest-neighbor inter-
actions, with only small quantitative differences, the
k? dependence for the out-of-plane transverse acous-
tic branch, obtained in experimental results and other
calculations, appears only after including interactions
up to the fourth nearest neighbor. Therefore the inter-
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actions at least up to fourth nearest neighbors are to
be considered for calculating the phonon dispersion of
graphene.

The comparison of our results with the results ob-
tained in ab-initio calculations [6], density functional
theory calculations [7], and experimental data [8], is
shown in Fig. 5. In this figure, plots shown in (a)-(d)
are respectively the phonon dispersions obtained in
the present calculation, considering up to the fourth
nearest-neighbor interaction, experimental data [§],
ab-initio calculation [6], and density functional calcu-
lation [7].

The open squares and closed circles in Fig. 5d rep-
resent experimental data for the phonon dispersion
of graphene obtained by different methods described
in [7]. In this figure, the authors have mentioned the in-
plane transverse acoustic (ITA) branch as Shear hori-
zontal (SH) branch and the in-plane transverse optical
as SH*. In Fig. 5b, solid circles and solid curves respec-
tively represent the phonon energy dispersion curves of
graphene sheets determined experimentally and theo-
retically, whereas phonons in the bulk graphite surfaces
are shown with open circles for comparison [8]. In
Table, to compare the results quantitatively, we have
listed the values at high-symmetry points obtained
from different nearest-neighbor interaction considera-
tion, those obtained by the ab-initio method, and from
experiment [8,12].

3. CONCLUSION

We have obtained the phonon dispersion relation
of graphene by using a simple mass spring model and
considering up to the fourth nearest-neighbor interac-
tion. We have then compared our results obtained for
different nearest-neighbor interactions with experimen-
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tal data and with the results obtained by the ab-initio
method. The comparison shows that the accuracy is
greater as we include more nearest-neighbor interac-
tions and the k% dependence, because the out-of-plane
transverse mode appears only after considering the
fourth nearest-neighbor interaction.
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