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DEVELOPMENT OF THE NEW APPROACH TO THEDIFFUSION-LIMITED REACTION RATE THEORYM. S. Veshhunov *Nulear Safety Institute (IBRAE), Russian Aademy of Sienes115191, Mosow, RussiaMosow Institute of Physis and Tehnology (State University)141700, Dolgoprudny, Mosow Region, RussiaReeived July 20, 2011The new approah to the di�usion-limited reation rate theory, reently proposed by the author, is furtherdeveloped on the base of a similar approah to Brownian oagulation. The traditional di�usion approah toalulation of the reation rate is ritially analyzed. In partiular, it is shown that the traditional approah isappliable only in the speial ase of reations with a large reation radius, rA � RAB � rB (where rA andrB are the mean inter-partile distanes), and beomes inappropriate in alulating the reation rate in the aseof a relatively small reation radius, RAB � rA; rB . In the latter ase, most important for hemial reations,partile ollisions our not in the di�usion regime but mainly in the kineti regime haraterized by homoge-neous (random) spatial distribution of partiles on the length sale of the mean inter-partile distane. Thealulated reation rate for a small reation radius in three dimensions formally (and fortuitously) oinides withthe expression derived in the traditional approah for reations with a large reation radius, but notably deviatesat large times from the traditional result in the planar two-dimensional geometry. In appliation to reations ondisrete lattie sites, new relations for the reation rate onstants are derived for both three-dimensional andtwo-dimensional latties.1. INTRODUCTIONWe re�ne and further develop the new approah tothe di�usion-limited reation rate theory proposed inour paper [1℄.For many hemial proesses, the reation proeedsfrom a reation omplex formed by ollision of two ormore reatants. Eah reation rate oe�ient K hasa temperature dependene, whih is usually given bythe Arrhenius equation K = K0 exp(�Ea=kT ), wherethe pre-exponential fator K0 determines the ollisionfrequeny of reating speies and the exponential fa-tor determines the number of ollisions with the energygreater than the ativation energy Ea of the omplex(i. e., orresponds to the stiking probability of olli-sions).Di�usion-limited (or di�usion-ontrolled) reationsare reations in whih ollisions of the reatants (deter-mining the pre-exponential fatorK0) are ontrolled bytheir di�usion migration in suspending solvent (rather*E-mail: vms�ibrae.a.ru

than by free-moleule ollisions typial for moleularreations in gas mixtures). Di�usion-limited reationsbetween two di�erent speies A and B (A + B ! C,where C does not a�et the reation) show up in avast number of appliations inluding not only hemi-al (see, e. g., [2℄) but also biologial (e. g., [3�5℄) andeologial (e. g., [6℄) proesses that have been studiedover many deades. This may also apply to the reationof vaanies and interstitials (V + I ! 0), and annihi-lation in rystals [7℄ produed by means of high-energypartiles or eletrons.A method for alulating the reation rate of re-ation partners migrating via three-dimensional di�u-sion was developed in [8; 9℄ by generalizing the Smolu-howski theory for oagulation of olloids [10℄. In thismethod, the radius of the ativated omplex (or the�reation radius�) orresponds to the �in�uene-sphereradius� in the Smoluhowski theory (roughly equal tothe sum of the radii of two olliding Brownian parti-les, R12 � R1+R2), whih in the ontinuum approahis assumed to be large in omparison with elementarydrift (or jump) distanes a1;2 of partiles migrating via723 7*



M. S. Veshhunov ÆÝÒÔ, òîì 141, âûï. 4, 2012random walks, R12 � a1; a2. In the opposite limitase, R12 � a1; a2, the ontinuum di�usion approahis not anymore valid, and therefore the so-alled �free-moleule� (or �ballisti�) approximation an be used forolliding Brownian partiles [11℄. This approah is ageneralization of the lassial onsideration of bimole-ular ollisions in gas mixtures within the Boltzmanngas-kineti theory.In formulating a reation�di�usion model, a d-di-mensional Eulidean spae on whih A and B partilesat initial mean onentrations (number of partiles perunit volume) nA and nB di�use freely is usually on-sidered in the ontinuum approah (see, e. g., [12�14℄).In this approah, the reatant partiles are representedas points or spheres undergoing spatially ontinuousBrownian motion, with hemial reations A+ B! Courring instantly when the partiles pass within aspei�ed reation radius RAB between their entres.The ontinuum approah was further applied todi�usion-limited reations in one and two dimensions(see, e. g., [15; 16℄); the latter ase also has wideappliations in the membrane biology (see a reviewin [17℄). The di�usion-limited bimoleular reationsbetween mobile vaanies and interstitials in stronglyanisotropi rystals in the ase where the mobile speiesis onstrained to migrate in one plane only may also bewell approximated over a wide range of the reation bya two-dimensional seond-order rate equation [18℄.In this approah, the same shortomings of theBrownian oagulation theory that were reently rit-ially analyzed in our papers [19�21℄ are generallyinherited by the di�usion-limited reation rate mod-els. Namely, it was shown that the di�usion approah[10; 22℄ to the alulation of the ollision rate funtion,based on the assumption that the loal ollision rate isequal to the di�usive urrent of partiles, is appliableonly in the speial ase of oalesene between largeand small Brownian partiles, R1 � r � R2 (wherer � n�1=3 is the mean interpartile distane), and be-omes inappliable to the alulation of the oalesenerate for partiles of omparable sizes, R1; R2 � r.In the latter, more general ase of omparable-size partiles, oalesenes our mainly in the kinetiregime (rather than in the di�usion one) harater-ized by a homogeneous (random) spatial distributionof partiles (rather than by their onentration pro�les)[19�21℄. This kineti regime is realized in virtually theentire range of partile onentrations obeying the ba-si (�dilution�) assumption of the theory, R=r � 1, andan be subdivided into di�erent modes (ontinuum, freemoleular, and transient).In the ontinuum mode of the kineti regime,

R12 � a1; a2, the formal expression for the ollisionfrequeny of partiles (of omparable sizes) oinides(in fat, fortuitously) with that derived in [10; 22℄ forthe di�usion regime (being relevant only in the par-tiular ase of oalesene of large partiles with smallones). This formal oinidene apparently explains whythe traditional approah orretly desribes numerousexperimental measurements of the oagulation rate ofBrownian partiles.The new approah developed in [19�21℄ is also appli-able in the ase of di�usion-limited reation kinetisin ontinuum media [1℄, if the harateristi reationdistane RAB for the A $ B omplex formation (i. e.,the reation radius) is small in omparison with themean interpartiles distanes, RAB � rA; rB , whererA � n�1=3A and rB � n�1=3B (see Se. 2), whih partiu-larly orresponds to reations between omparable-sizepartiles (i. e., the most important ase). This rangean be subdivided into two intervals of the model pa-rameters, RAB � aA; aB and RAB � aA; aB , orre-sponding to di�erent modes (ontinuum and free mole-ular) of the kineti regime. For the ontinuum mode,RAB � aA; aB , the reation rate alulated in the newapproah in the three-dimensional ase (see Se. 3.1)formally (and, again, fortuitously) oinides with thetraditional result, valid only for reations with a largereation radius, rA � RAB � rB . But in the two-dimensional ase, the traditional approah leads to on-siderable deviations of the reation deay nA;B(t) atlarge times t from that alulated in the new approahin the base ase aA; aB � RAB � rA; rB (see Se. 4).In the ase RAB � aA; aB , the free moleular (orballisti) regime is realized. This ase an be onsideredsimilarly to the Brownian partiles oagulation problemin the orresponding regime, as well as the ase of thetransition regime, RAB � aA; aB (Se. 3.2).The new approah an be further generalized toonsideration of reation kinetis for partiles migra-ting via random walks on disrete lattie sites (with alattie spaing a). Beause the ase of a large reationradius RAB � a is properly redued to the ontinuummedium limit, the opposite ase RAB < a, with rea-tions ourring when two partiles oupy the same site(see, e. g., [23℄), is of most onern. We show in Se. 5that the traditional approah [16; 23℄ to onsiderationof this important ase preserves the main de�ienies ofthe ontinuum medium approah and therefore resultsin erroneous preditions for the reation kinetis (evenin three dimensions). For this reason, new relationsfor the reation rate onstants are derived for three-dimensional (Se. 5.1) and two-dimensional (Se. 5.2)latties. The disrepany between the new and tra-724



ÆÝÒÔ, òîì 141, âûï. 4, 2012 Development of the new approah : : :ditional approah preditions inreases further when amore ompliated ase of atalytially ativated rea-tions is onsidered (Se. 5.3). The main results aresummarized in Se. 6.2. RATE EQUATIONSIn the approximation R=r � 1, only pairwise ol-lisions of partiles during their di�usion migration anbe taken into onsideration, and ollisions that ouramong any ombinations onsisting of more than twopartiles an be ignored.In the rate theory for a ontinuous distribution ofpartiles N(r) dR, the number of partiles of a radiusR to R + dR per unit volume, under the assump-tion that ollided partiles of radii R1 and R2 imme-diately oalese to form a new partile of the radius(R31 + R32)1=3, the Smoluhowski oagulation equationtakes the form [10℄�N (R; t)�t = 12 1Z0 1Z0 N(R1; t)N(R2; t)�� Æ hR� �R31 +R32�1=3i�(R1; R2) dR1dR2 ��N(R; t) 1Z0 N(R1; t)�(R;R1) dR1; (1)where �(R1; R2) is the ollision frequeny funtion,whih, being de�ned as the ollision frequeny betweentwo partiles randomly loated in the unit volume, doesnot depend on time expliitly. Therefore, �N(R; t)=�tshould be alulated from the analysis of pairwise ol-lisions during a time step Æt relatively short for thevariation in the onentration densities N(R1; t) andN(R2; t) to be negleted, on the one hand, and longenough for �(R1; R2) to attain the steady state value,on the other hand.For the kinetis of an irreversible reation A+B!! C (where C does not a�et the reation) in the mean-�eld approximation, Eq. (1) applied to the two-size (RAand RB) partile distribution funtion redues todnAdt = dnBdt = �KABnA(t)nB(t); (2)where nA and nB are the mean onentrations of thereating A and B partiles andKAB = �(R1; R2)Æ(R1 �RA)Æ(R2 �RB)is the rate funtion (or reation onstant) diretly or-responding to the ollision frequeny funtion � for two

partiles of di�erent types (A and B). In aordanewith the Smoluhowski rate theory, KAB is de�ned asthe ollision frequeny of two partiles randomly lo-ated in the unit volume, and it should therefore beregarded as a quantity expliitly independent of time.In a self-onsistent approah, the reation rate dnA=dtshould be alulated with the time step dt hosen shortenough to neglet variation of the mean onentrationsnA and nB in the interval dt, and long enough for asteady state value ofKAB(dt) � onst = KAB to set in.This is an important di�erene from the traditional mo-dels of di�usion-limited reation kinetis (even thoughthey are often alled the Smoluhowski-type models),where, under the assumption that the loal reationrate is equal to the di�usive urrent of partiles, the �ef-fetive� reation rate is alulated as an expliit time-dependent funtion KAB(t) (rather than KAB(dt) inthe Smoluhowski theory).Similarly to the analyses of the oagulation prob-lem in [19�21℄, we show below that this di�ereneis onneted to unjusti�ed appliation of the dif-fusion approah to the alulation of the e�etivereation rate (as the di�usive urrent of partiles)for partiles with a relatively small reation radius,RAB � rA; rB , whih beomes espeially ritial inthe two-dimensional ase. Suh an approah is valid inthe ase of small partiles A di�using into large iru-lar traps B (so-alled agglomeration), rA � RAB � rB(with a time-dependent K(t) properly entering the ag-glomeration rate equation), but it fails in the basease RAB � rA; rB (orresponding, in partiular, toomparable-size partiles, RA � RB � rA; rB).2.1. Appliability of the di�usion approah topartile ollisionsThe di�usion equation for an ensemble of parti-les is derived (similarly to the onsideration of otherrelaxation proesses in weakly inhomogeneous �uids,suh as the heat transfer or visous �ow) in the quasi-equilibrium approximation. In this approximation, thepartile distribution funtion is assumed to be in lo-al thermodynami equilibrium, smoothly varying inspae and in time following smooth variations of the�uid marosopi parameters (e. g., the temperature,pressure, onentration, and veloity). In the ase ofthe mass transfer problem (i. e., the di�usion equation),the varying marosopi parameter is the number on-entration of partiles, n(r; t).Regarding n(r; t) as a marosopi value (i. e., as-suming its thermodynami �utuations to be small inomparison with its value, ph(Æn)2i � n) is valid725



M. S. Veshhunov ÆÝÒÔ, òîì 141, âûï. 4, 2012only if the size of the elementary volume Æ ~V = L3with respet to whih n(r) is de�ned is large enoughin omparison with the loal interpartile distane,L � n�1=3(r), whih in turn must exeed the mini-mum interpartile distane equal to the partile size,n�1=3(r) � 2R. For this reason, only heterogeneitiesof the partile spatial distribution on the length saleof l � L � n�1=3 � R an be adequately onsideredin the ontinuous di�usion approah, under the addi-tional ondition a� l for the elementary drift distane(see, e. g., [19�21℄).In the ase where idential partiles (e. g., of type Awith a radius RA) are randomly distributed through-out a medium of in�nite extent with the mean bulkonentration nA that obeys the dilution onditionnAR3A � 1, the partiles an be onsidered as pointobjets (RA � rA, where rA � n�1=3A is the mean in-terpartiles distane), whih, in aordane with thedi�usion equation for an ensemble of point-like parti-les, tend to relax with time to a homogeneous spatialdistribution.The situation hanges ritially in the ase where agroup of B-type traps with a relatively large �in�uene-sphere�, or the reation radius RAB � RA (with A-par-tiles) and the onentration nB (obeying nBR3AB � 1)appears in the ensemble of A-partiles. B-type trapsannot be treated as point-like objets if nAR3AB � 1.In this ase, traps should be onsidered marosopiwith respet to A-partiles, beause the reation ra-dius RAB is muh larger than the mean interpartiledistane rA � n�1=3A , and just for this reason addi-tional (absorbing) boundary onditions for di�usion ofA-partiles emerges on traps surfaes. The hetero-geneities in the spatial distribution of A-partiles in-dued by these boundary onditions do not tend to dis-appear with time, as they do in the previous ase (with-out traps), and the steady-state onentration pro�lesof A-partiles around marosopi trap entersnA(r) = nA(RAB) + (nA � nA(RAB))�1� RABr �are attained at t� R2AB=�DA [22℄. The di�usion �uxof A-partiles in this onentration pro�le alulated atthe reation radius isJdif = 4�DARAB (nA � nA(RAB)) � 4�DARABnAif nA(RAB) � nA � nA; it determines the aumula-tion rate of A-partiles in a B-trap, and, in aordanewith [10; 22℄, the ollision frequeny funtion betweenA and B partiles, taking migration of traps with thedi�usivity DB into onsideration, eventually takes theform

K(dif)AB = 4�DABRAB ; (3)where DAB = DA +DB .To establish the appliability range of this result, wenote that the harateristi size l of the zone around alarge trap in whih the A-partile onentration variesfrom a value nA(RAB) � nA near the reation sur-fae to the value of the same order of magnitude as themean value nA attained at large distanes from the en-ter is omparable with RAB , i. e., l � RAB . This size lmust naturally exeed the mean distane n�1=3A (RAB)between small A-partiles in the viinity of a B-trapsurfae, RAB � l � n�1=3A (RAB)� n�1=3A(in order to maintain the onentration pro�le of smallpartiles around the trap), or nAR3AB � 1. This ondi-tion logially oinides with the general requirement forthe appliability of the di�usion approximation men-tioned above, l� n�1=3A .This ondition an be on�rmed more rigorouslytaking into onsideration that the di�usion �ux at thereation surfaeJdif / �nA�r ����r=RAB � nA(RAB +�r) � nA(RAB)�ran be properly alulated only under the assumptionthat �r � RAB . In the viinity of the surfae,nA(RAB +�r)� nA(2RAB) � nA=2;and therefore the mean interpartile distane in thiszone an be evaluated asr � n�1=3A (RAB +�r)� n�1=3A (2RAB) = (nA=2)�1=3 :On the other hand, it should be small enough tomaintain the onentration pro�le in this spatial range(where the di�usion �ux is alulated), r � �r �� RAB , or n1=3A RAB � 1.The same onlusion an also be derived in theFokker�Plank approah based on the analysis of theprobability density of migrating Brownian partiles(see the Appendix).Therefore, the traditional di�usion approah, whihstipulates that the loal reation rate is equal to thedi�usive urrent of A-partiles into the traps (see,e. g., [16℄), is valid only for reations with the largereation radius RAB � rA � n�1=3A .It follows from this analysis that the intrinsi rea-son for steady-state heterogeneities in the spatial dis-tribution of small partiles is onneted to the addi-tional boundary onditions (for the di�usion equation726



ÆÝÒÔ, òîì 141, âûï. 4, 2012 Development of the new approah : : :for these partiles) indued by marosopi (i. e., largesale, RAB � rA) traps. These marosopi boundaryonditions vanish as soon as the reation radius be-omes small in omparison with the mean interpartiledistane (RAB � RA � rA), eliminating the drivingfore for the emergene of steady-state spatial hetero-geneities.Indeed, in the opposite ase RAB � rA; rB , thelimit of point-like partiles is restored, whih is har-aterized by the tendeny of the system of two-typepartiles toward a homogeneous spatial distribution (ormixing) owing to their di�usion migration (in the ab-sene of marosopi boundaries).2.2. Di�usion mixing onditionReations between point-like partiles indue loalheterogeneities in the partile spatial distribution onthe length sale of their mean interpartile distane,whih is evaluated as r � n�1=3 if nA = nB = n.But suh small-sale heterogeneities quikly disappearowing to rapid di�usion relaxation of partiles on thelength sale of their mean interpartile distane r withthe harateristi time �d � r2=6D (under the sim-plifying assumption that DA � DB = D), whih isgenerally muh shorter than the harateristi time� � (KABn)�1 of the mean onentration varia-tion, �d � �, as we expliitly show below in boththree-dimensional and two-dimensional ases (in Se. 3and 5). This allows onsidering a random distributionof partiles attained in the time step �d � Æt � �hosen for alulation of the reation rate in Eq. (2).In this ase (orresponding to the kineti regime),the spatial distributions of the partile entersnA;B(r; t) an be onsidered homogeneous funtionsharaterized by their mean onentrations nAB(t),i. e., nA;B(r; t) = nA;B(t), slowly varying with timeowing to partile ollisions (reations). Aordingly,the ollision probability is also a spatially uniformfuntion.In the ase nA > nB, whih at large times (t �� [KAB(nA(0) � nB(0))℄�1) inevitably turns intonA(t) � nB(t), or rA(t) � rB(t), eah partile B anbe surrounded by a sphere (or a irle in two dimen-sions) of a radius ~r obeying rA(t) � ~r � rB(t), wherea ollision of this partile B with one of the surroundingpartiles A (with a given onentration nA(t)) ours.Beause ~r � rB(t), no other partiles B an be on-sidered in this sphere, and therefore homogenization ofthe reation system in Æt (after reations in the previoustime step) is determined by the relaxation (or di�usionmixing) of partiles A (inside this sphere) on the length

sale of their mean interpartile distane rA � n�1=3A ,i. e., by the di�usion time �d � r2A=6D.Apparently, this onlusion is not violated in thease DA � DB , but it beomes invalid in the oppositease DA � DB . In this last ase, mixing of partilesA is inomplete and hene the auray of the modelpreditions dereases. But beause of the stohastiharater of partile movement and ollisions, loal het-erogeneities (�missing partiles�) indued by reationsbetween partiles A and B are randomly distributedin spae, and therefore the mean ollision frequenyan still be onsidered a spatially uniform funtion,but averaged over a larger sale. This implies that atleast in the mean-�eld approximation (i. e., in the large-sale limit), the urrent approah an be applied withreasonable auray. In what follows, the onditionDA � DB = D is nevertheless assumed for simpliityand for a possible generalization of the theory to thease of onentration �utuations (see Se. 2.3).The harateristi times of partile onentrationvariation are di�erent for partiles A and B, � (A;B) �� (KABnA;B)�1, and hene the smaller one must behosen in evaluating the time step,Æt� � � min h� (A) ; � (B) i � K�1ABn�1A (if nA > nB):Therefore, assuming that nA � nB for de�niteness (andalso that DA � DB = D) in what follows, we an gen-erally represent the mixing ondition in the form�d � r2A=6D� Æt� � � K�1ABn�1A :2.3. Appliability of the reation rate equationAs explained above, the reation onstant KAB isde�ned as the ollision frequeny of two point-like par-tiles (RAB � rA; rB) of di�erent types (A and B)randomly loated in the unit volume. This impliesthat the size of the unit volume Æ ~V = L3 with respetto whih KAB is de�ned is large in omparison withthe minimum distane between partiles of di�erenttypes, L � RAB . In this ase, if there are nA par-tiles of type A and nB partiles of type B randomlydistributed through a sample of the unit volume, thenumber of ollisions between A and B partiles per unittime (the number that de�nes the reation rate) is givenby KABnAnB .This de�nition of the reation rate an be appar-ently extended to the ase of spatial heterogeneities (ofsize l) in the distribution of A and B partiles if theseheterogeneities are smooth on the length sale of the(appropriately de�ned) unit volume, l � L � RAB .In this ase, the number of ollisions in dt between A727



M. S. Veshhunov ÆÝÒÔ, òîì 141, âûï. 4, 2012and B partiles loated in the unit volume is alulatedasKABnA(r; t)nB(r; t) dt, resulting in the loal balaneequations for the partile numbers:_nA(r; t) = _nB(r; t) = �KABnA(r; t)nB(r; t); (4)where KAB is alulated in the kineti regime, i. e., un-der the assumption of a (loally) homogeneous spatialdistribution of partiles. For instane, in the ontin-uum limit in three dimensions, the reation onstant inEq. (4) is alulated asKAB = 4�DABRAB (or K 0AB == 4�DABRABPAB if the stiking probability PAB issmaller than unity; see Eqs. (6) and (6a) below).Relaxation of spatial �utuations in the partile dis-tribution an be taken into onsideration by the addi-tional di�usion term in the right-hand side of Eq. (4),_ni(r; t) = Di�ni(r; t)�KABnA(r; t)nB(r; t);i = A;B; (5)under the ondition l � n�1=3 � Ri orrespond-ing to the di�usion term de�nition (as explainedabove) onsistent with the loal ollision rate de�nitionl � RAB � Ri.This allows extending the appliability of the re-ation rate theory beyond the mean-�eld approxima-tion, Eq. (2), but only for �utuations with long wave-lengths, l � RAB and l � n�1=3. The results ofthe analysis of Eq. (5) available in the literature [12�14℄, where an independent �intrinsi� (or �mirosopi�)rate onstant k (entering the radiative boundary on-dition for the di�usion �ux J (A;B)dif = knA;Bjr=RAB inthe traditional approah [8; 9℄) is used instead of KAB ,demonstrate that the e�et of the renormalization of kby onentration �utuations, resulting in the e�etiverate onstant Keff = 4�DABRABk4�DABRAB + k(whih redues to Keff = 4�DABRAB in the limit ofhigh-rate boundary kinetis, k !1, orresponding toomplete trapping, nA;B jr=RAB ! 0), ours on thelength sale of the reation radius, l � RAB , i. e., be-yond the ut-o� limit of Eq. (5) for omparable-size(or point-like) partiles, l � n�1=3 � RAB . This ad-ditionally on�rms the above onlusion that the re-sults of the traditional approah are grounded onlyin the ase of reations with a large reation radius,rA � RAB � rB , when short-wavelength �utua-tions with rA � l � RAB in the spatial distributionof A partiles around B partiles an be adequatelydesribed by Eq. (5). However, in the opposite aserA; rB � RAB , suh short-wavelength �utuations are

beyond the ut-o� limit of the theory, and thereforepreditions of the di�usion approah [12�14℄ fail.Therefore, the mean-�eld approah based on Eq. (2)(with the reation onstant KAB alulated in the ki-neti approah) an be generally used as a �rst-orderapproximation. In the next-order approximation, ta-king long-wavelength �utuations l � n�1=3 � RABinto onsideration in Eq. (5), preditions of themean-�eld approah may be violated at large timesin the partiular ase of equal initial onentrations,nA(0) = nB(0). In that ase, the asymptoti (t ! 1)deay nA;B / (Dt)�d=4 (where d < 4 is the dimensionof spae) [24; 25℄ beomes slower ompared with pre-ditions of the mean-�eld theory, valid for intermedi-ate times (nA;B / (4�RDt)�1 in the three-dimensionalase and nA;B / ln(4Dt=R2)=4�Dt in the two-dimen-sional ase; see below).The �rossover� time from the mean �eld behaviorto the �utuation-indued asymptoti regimes an beestimated from omparison of deay laws in these twoapproximations as t� / R2=D"2, " = nA;B(0)R3 � 1,i. e., it is inversely proportional to the square of the ini-tial volume fration " of reatants, and an therefore bevery large in diluted systems [26℄. At this time, the on-entration beomes very small, nA;B(t�)=nA;B(0) / ",i. e., the mean-�eld approah orretly desribes the re-ation kinetis during a large time domain and onlya very small number of ative partiles deay via the�utuation-indued law. In two-dimensional systems,the rossover time is shorter and the number of parti-les surviving until this time is greater than in threedimensions. For this reason, the rossover from the de-pendenes predited by the mean-�eld approximationto the �utuation-indued asymptoti regimes has beenobserved in two-dimensional numerial simulations [25℄and in experiment [27℄.Therefore, the reation kinetis in this ase anbe alulated by additional onsideration of long-wavelength �utuations in Eq. (5), e. g., by mappingto a �eld theory [28; 29℄ and using the renormalizationgroup methods [30; 31℄. But the reation rate on-stant in the master equation of �eld theory an beorretly alulated only in the kineti regime (e. g.,KAB = 4�DABRABPAB in the ontinuum mode inthree dimensions or by more sophistiated expressionsin other ases; see Ses. 3�5), rather than taken as amirosopi (intrinsi) rate onstant k (f. [30℄). Thismight be espeially important in the ase of ompletetrapping, when the mirosopi rate onstant k tendsto 1, whereas KAB = 4�DABRAB alulated in theurrent approah is �nite.728



ÆÝÒÔ, òîì 141, âûï. 4, 2012 Development of the new approah : : :3. REACTION RATE IN THETHREE-DIMENSIONAL CASEAs explained in Se. 2.2, in order to alulatethe reation onstant in the kineti regime, a timestep Æt relatively large in omparison with the dif-fusion relaxation (or mixing) time should be hosen,Æt � �d � n�2=3=6D, in order to satisfy the mainondition of the kineti regime for a random (homo-geneous) distribution of reating partiles (where it isassumed that n = nA � nB and DA � DB = D; f.Se. 2.2). On the other hand, the time step shouldbe small in omparison with � � (KABn)�1, i. e.,Æt� �, whih allows negleting variation of the meanonentrations nA and nB in Æt. Besides, some ad-ditional ondition for the time step should be valid,Æt � ~� , in order to attain a steady-state value ofKAB(Æt) � onst = KAB , where ~� is to be evaluatedbelow.We onsider two partiles of types A and B loatedat random in a sample of unit volume. The �rst (�par-ent�) partile of type A an be surrounded by a spherewith the reation radius RAB . If the seond partileenter is loated in this exlusion zone, the reationours.As shown in [10, 22℄, the relative displaements be-tween two partiles desribing di�usion motions inde-pendently of eah other and with the di�usion oe�-ients DA and DB also follow the law of di�usion mo-tion with the di�usion oe�ient DA+DB. Therefore,to alulate the probability of ollisions between thetwo partiles, we an equivalently onsider the seondpartile immobile and the �rst one migrating with thee�etive di�usion oe�ient DAB = DA +DB � 2D.In this approximation, it is assumed that the e�e-tive (mobile) partile jumps over an elementary dis-tane aAB in random diretions with the frequeny�AB = ��10 , obeying the relations for partile di�usivityfrom the random walk theory, DAB = a2AB=6�0.As a result of a jump, the exlusion zone also re-loates to the distane aAB ; this opens the possibilitythat the seond (immobile) partile with its enter lo-ated in a zone of the volume ÆV0 = �R2ABaAB maybe swept out by the mobile partile, as is shown in theFigure (f. [19�21℄).Depending on the ratio between RAB and aAB , par-tile migration an be onsidered in the ontinuummode if RAB � aAB or in the free moleular modeif RAB � aAB , with di�erent results for the ollisionrate (f. [19�21℄).
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Shemati representation of the swept zone3.1. Continuum mode, aA; aB � RAB � rA; rBDuring the time step Æt � �0, the mobile partilemakes many jumps, k = Æt=�0 � 1, in random dire-tions, but the total swept zone volume ÆV , whih deter-mines the probability of a two-partile ollision in Æt,is smaller than kÆV0 = ÆV0Æt=�0, owing to a signi�antoverlap of the swept zone segments for aAB � RAB .This limit orresponds to the ontinuum mode of the ki-neti regime, haraterized by a random spatial distri-bution of partiles (quikly reinstated during the timestep). Under this basi ondition, the probability tosweep a B partile in the unit time is (ÆV=Æt)nB if thereare nB randomly distributed B partiles per unit vol-ume. Therefore, if there are nA A partiles randomlydistributed per unit volume, then the number of olli-sions (ÆV=Æt)nAnB between A and B partiles in theunit time is smaller than ÆV0nAnB=�0.To alulate the volume ÆV swept in time Æt, weuniformly (randomly) �ll the spae with auxiliary (�-titious) point-like immobile partiles (�markers�) of ra-dius R� ! 0 with a relatively high onentration n� �� R�3AB . To failitate adequate resolution of a �nestruture of the swept zone (with the harateristilength aAB � RAB), the marker onentration n� mustadditionally obey the ondition that the number ÆN (0)�of markers swept during one jump is large, ÆN (0)� == �R2ABaABn� � 1, or n� � (�R2ABaAB)�1. In thisase, the swept volume an be alulated as the to-tal number ÆN� of the swept markers divided by theironentration, ÆV = ÆN�=n�.For the same reasons onerning relative displae-ments of di�using partiles, the alulation of thesweeping rate of randomly distributed immobile mark-729



M. S. Veshhunov ÆÝÒÔ, òîì 141, âûï. 4, 2012ers by a large partile of a radius RAB migrating withthe di�usivity DAB is equivalent to the alulation ofthe ondensation rate of mobile markers migrating withthe di�usivity DAB in an immobile trap of the radiusRAB (see the Appendix).Beause n�R3AB � 1, this problem of ondensa-tion of point-like markers in a large (marosopi) trapan be adequately solved in the ontinuum approahin [10; 22℄, as explained in Se. 2.1. In this approah,the total number of markers swept in time Æt is equalto [11℄ÆN� = 4�DABRABn�Æt�1 + 4RABpÆt�DAB � ;and the volume swept in unit time isÆVÆt = n�1� ÆN�Æt = 4�DABRAB ;if the time step is su�iently large, Æt � ~� �� 16R2AB=�DAB. The spatial variation of the markeronentration ours on the length sale l that is om-parable with RAB (see Se. 2.1), i. e., l � RAB . Inaordane with the additional ondition of the dif-fusion equation appliability, aAB � l, this result isvalid only in the ase aAB � RAB onsidered here.In this ase, the number of ollisions (ÆV=Æt)nAnB be-tween A and B partiles in unit time beomes equal to4�(DA +DB)RABnAnB , whih yieldsKAB = 4�DABRAB : (6)It is straightforward to see that the �rst restrition onthe time step, � � Æt � �d � n�2=3=6D, an be ap-plied if the mixing ondition � � �d, orn1=3RAB � 32� DDAB � 34� ;is valid, whih is in agreement with n1=3RAB � 1.The seond restrition Æt� ~� � 16R2AB=�DAB anbe applied beause � � ~� , or n1=3RAB � 1=4, whihis pratially indistinguishable from the basi onditionn1=3RAB � 1, within the auray of the harateristitime evaluation.Therefore, the orret expression for the reationrate in Eq. (6), derived in the kineti regime (by on-sidering uniform (random) spatial distribution of reat-ing partiles) in the ase of a relatively small reationradius RAB � rA; rB , oinides with the traditionalexpression derived in the di�usion regime (by onsider-ing onentration pro�les and di�usive urrents of par-tiles), whih is valid in the ase of a large reationradius, rA � RAB � rB . But this oinidene is a-idental and probably re�ets some internal symmetry

in the onsidered system of migrating partiles in threedimensions.This oinidene is violated in the more general asewhere the stiking probability for A and B partileollisions is smaller than unity, PAB � 1; in alulat-ing the reation rate onstant, the ollision frequenyKAB = 4�DABRAB is then multiplied by the proba-bility PAB of the reation omplex formationK 0AB = 4�DABPABRAB : (6a)Again, this result is formally similar to preditions ofthe traditional approah (whih is relevant only in thepartiular ase of reations with a large reation ra-dius, rA � RAB � rB) using the radiative boundaryondition for the di�usion �ux,J (i)dif = knijr=RAB ; i = A;B;in the ase of inomplete trapping [8; 9℄, with k beingthe �intrinsi� (or �mirosopi�) rate onstant at theboundary, whih, by the de�nition of the boundary ki-netis, is independent of the bulk di�usivityDAB and isproportional to the boundary area R2AB . Consequently,the reation rate onstant is alulated as [8; 9℄K 00AB = 4�DABRABk4�DABRAB + k ; (6b)whih, however, oinides with Eq. (6a) only under theadditional assumption thatk = 4�DABRABPAB1� PAB ;whih is inonsistent with the above de�nition of theboundary intrinsi rate onstant.3.2. Free moleular mode, RAB � aA; aBIn the opposite ase aA; aA � RAB , we an ne-glet the mean relative volume of the overlaps of sweptzone segments (f. [19�21℄). In this approximation,the volume swept per unit time ÆV=Æt is a onstantequal to the ratio of the volume swept per one jumpto the jump period, ÆV0=�0, whih an be alulatedin the free moleular approah. Aordingly, the totalswept volume ÆV (after k = Æt=�0 � 1 jumps) is equalto kÆV0 = ÆV0Æt=�0, and the number of oalesenes(ÆV=Æt)nAnB between A and B partiles (of massesmAand mB) in unit time is equal tonAnBÆV0�0 = nAnBR2ABq8�kT (m�1A +m�1B ) :730



ÆÝÒÔ, òîì 141, âûï. 4, 2012 Development of the new approah : : :Therefore, the kernel K(fm)AB in Eq. (1) is equal toÆV0=�0, whih oinides with the free moleular expres-sionK(fm)AB = ÆV0�0 = R2ABq8�kT (m�1A +m�1B ) : (7)This ase is appliable for the reation partiles sus-pended in a �uid, when the parameter RAB is small(RAB � aA; aB) but not negligible in omparison withthe mean intermoleular distane of the suspending�uid (RAB � rm � n�1=3m , where nm is the �uidmoleule onentration). The last value determines theminimum distane dr � n�1=3m between two possiblepositions of the partile enter, r and r+ dr, and thusallows de�ning the swept volume (or area) for migrat-ing partiles.In the intermediate range aAB � RAB for rea-tion partiles suspended in a �uid, the so-alled tran-sition regime is realized that an be desribed by aninterpolation expression derived within the new ana-lyti approah with �tting parameters spei�ed numer-ially [20; 21℄.4. REACTION RATE IN THETWO-DIMENSIONAL CASESimilarly to the three-dimensional ase, the prob-lem of alulating the area sweeping rate ÆS=Æt by ane�etive partile of radius RAB migrating with the dif-fusivity DAB = DA+DA � 2D (where D = DA � DBis assumed; f. Se. 2.2) in a plane an be prop-erly redued to the problem of point markers ran-domly distributed in the plane with a onentrationn� � (�RAB)�2, migrating with the di�usivity DABinto an immobile trap of the radius RAB [1℄. Themarker ondensation rate an be alulated using thewell-known analogy with the heat ondution problemin the ylindrial geometry [32℄. As a result, the totalnumber of markers swept in time Æt is equal toÆN� � 4�DABn�Ætln(4DABÆt=R2AB)if R2AB4DAB � Æt� � � K�1AB min �n�1A ; n�1B � � K�1ABn�1A(where nA � nB is assumed) and Æt obeys the dif-fusion mixing ondition �d � Æt. In ontrast to thethree-dimensional ase, the sweeping rate ÆS=Æt == n�1� (ÆN�=Æt) is in this ase a funtion of the time

step even for very large Æt, although this dependene isweak and an be negleted with logarithmi auray.Indeed, an expression ln(xX) an be approximatedas ln(xX) = lnX + lnx � lnXif X � x � 1 (and hene lnX � lnx � 0). Therefore,hoosing the time step as R2AB=4DAB � ~� � Æt� �,whih under the additional ondition~�R2AB=4DAB � �~� ; (8)an also be represented in the form0 < ln Æt~� � ln �~� � ln 4DAB~�R2AB ;we obtainln 4DABÆtR2AB = ln 4DAB~�R2AB + ln Æt~� � ln 4DAB~�R2AB :In this approximation, the sweeping rate an be alu-lated as ÆSÆt = 1n� ÆN�Æt � 4�DABln(4DAB~�=R2AB) :The number of ollisions (ÆS=Æt)nAnB between A andB partiles in unit time beomes��S�t �nAnB � 4�DABnAnBln(4DAB~�=R2AB) ;whih orresponds toKAB � 4�DABln(4DAB~�=R2AB)and hene� � K�1ABn�1A � ln(4DAB~�=R2AB)4�DABnA(if nA � nB is spei�ed).Substituting this expression for � in Eq. (8), weobtain ~� � �ln 4DAB~�R2AB �1=2 RABrA4DAB ;where rA � (�nA)�1=2; this allows speifying ~� �� r2A=4DAB (owing to (rA=RAB)2 � ln(rA=RAB)2 ifrA=RAB � 1), whih apparently obeys the neessaryondition R2AB=4DAB � ~� � �. Eventually, we ob-tain the reation rate in the mean-�eld approximationas KAB � 4�DABln(r2A=R2AB) ; (9)731



M. S. Veshhunov ÆÝÒÔ, òîì 141, âûï. 4, 2012whih depends on time impliitly (via rA �� (�nA(t))�1=2), rather than expliitly as in thetraditional approah.In the partiular ase where nA = nB = n (or rA == rB = r), ~� pratially oinides with �d � r2=4DAB,and hene Æt self-onsistently obeys the neessary on-dition �d � ~� � Æt. In this ase, the reation rateredues toKAB � 4�DABln(r2=R2AB) � � 4�DABln(nR2AB)(rather than KAB = 4�DAB= ln(4DABt=R2AB) in thetraditional approah) and eventually results in the so-lution of the reation rate equation1 + ln(nR2AB)n � 4�DABt; (10)whih at large times t � R2AB=4�DAB (beforerossover to the asymptoti behavior as t ! 1, dis-ussed in Se. 2.3), is lose to the traditional solutionn � ln(4DABt=R2AB)4�DABt :But in the ase nA > nB , the situation hanges ri-tially. In this ase, the initial relation nA(0) > nB(0)unavoidably beomes nA(t)� nB(t), or rA(t)� rB(t)at large times, and the solution of the reation rateequation (at t � [KAB(nA(0) � nB(0))℄�1) results inan exponential derease in the onentration,nB(t) / exp(�Ct); (11)where C � 2�DAB (nA(0)� nB(0))ln(~rA=RAB)and ~rA is the �nal value of rA(t), whose variation�rA(t) = ~rA�rA(r) at large times, when�rA(t)� ~rA,is negleted in the expression for C in Eq. (11) with thehosen logarithmi auray,ln rA = ln (~rA +�rA) � ln ~rA ++ ln (1 +�rA=~rA) � ln ~rA:The obtained solution in Eq. (11) is muh steeperin omparison with that in the traditional approahnB(t) / exp(�C1t= ln t) (see, e. g., [33�35℄), and henethe onentration deay rate _nB is strongly underesti-mated at large times in the traditional approah.This additionally on�rms the importane of thenew approah to the alulation of the reation rate intwo dimensions.

5. REACTIONS ON A DISCRETE LATTICEPartile migrations via random walk over disreteubi lattie sites an be onsidered in two limits,RAB � a and RAB < a. In the ase of a large rea-tion radius RAB � a, the problem is properly reduedto the ontinuum medium limit onsidered in Se. 3.1.In the opposite ase, the reation radius RAB is as-sumed to be small in omparison with the lattie spa-ing (orresponding to the elementary jump distane,a = aA = aB), and reations our when two partilesoupy the same site (see, e. g., [23℄). In this ase, RABis the minimum length sale in the problem and an beexluded from onsideration. This situation is quali-tatively di�erent from the free moleular regime (forreation partiles suspended in a �uid) onsidered inSe. 3.2, where RAB was also a small (RAB � aA; aB)but nonnegligible parameter (RAB � rm � n�1=3m ,where nm is the �uid moleule onentration), whihallowed alulating the swept volume for migrating par-tiles.We start at t = 0 with randomly distributed A andB partiles on disrete ubi lattie sites, with meanonentrations nA and nB ; nA;Ba3 � 1. Eah partilemoves by jumps to nearest-neighbor sites with the jumpfrequenies ��1A and ��1B ; thus all partiles perform in-dependent random walks, with the assoiated di�usionoe�ients DA;B = a2=6�A;B. Again, we assume thatn = nA � nB and DA � DB = D (f. Se. 2.2).Similarly to the ontinuum limit onsidered above,reations between A and B partiles indue loalheterogeneities in the partile spatial distribution onthe length sale of the mean interpartile distanerA � n�1=3 � a. But suh heterogeneities quiklydisappear owing to rapid di�usion mixing of partileson the length sale of their mean interpartile distanerA with the harateristi time �d � r2A=6D, whihis generally muh shorter than the harateristi time� � (KABn)�1 of the partile onentration varia-tion, �d � �. With a time step �d � Æt � � ho-sen for the alulation of the reation rate, this allowsonsidering a random distribution of partiles attainedin Æt (owing to �d � Æt) and negleting variation ofthe mean onentrations nA and nB in Æt (owing toÆt� � = min[� (A) ; � (B) ℄).In this ase (orresponding to the kineti regime),the spatial distributions of the partile entersnA;B(r; t) an be onsidered homogeneous funtionsharaterized by their mean onentrations nA;B(t),i. e., nA;B(r; t) = nA;B(t), slowly varying with timeowing to partile ollisions (reations). Aordingly,732



ÆÝÒÔ, òîì 141, âûï. 4, 2012 Development of the new approah : : :the ollision probability is also a spatially uniformfuntion.This problem an be readily redued to the alu-lation of the ollision probability between two parti-les randomly loated in the unit volume, one of whihis immobile (say, partile B) and the other (partileA) is mobile, migrating with the e�etive di�usivityDAB = DA +DB .This approah an be further extended to inludespatial heterogeneities in the ensemble of A and Bpartiles if these heterogeneities are smooth on thelength sale of the di�usion equation appliability,l � n�1=3A;B � RAB , with the reation onstant alu-lated in the kineti regime, similarly to the ontinuummedium onsideration.But there is also an important di�erene from theontinuum limit. Indeed, in that limit, the probabil-ity of the two-partile ollision in Æt was alulated asthe mean volume swept by the mobile partile (of theradius RAB and di�usivity DAB). Instead, in the dis-rete lattie limit, the ollision probability in Ætk is de-termined by the mean number of distint sites visitedby a k-step random walk of the mobile partile (theso-alled random walk range Sk), wherek = Ætk�AB = Ætk 6DABa2 � 1:5.1. Reation rate on a three-dimensionaldisrete lattieIn the ase of a simple three-dimensional ubi lat-tie, the mean value of Sk an be alulated as [36�38℄Sk � 0:718 hk + 0:729k1=2 +O(1)i ; (12)whih for the hosen time stepa26DAB � r26DAB � �d � Ætk � �;whih orresponds to k � 1, an be redued toSk � 0:718k; (12a)and results inKAB = a3Sk=Ætk � 4:3DABa: (13)In the ase of inomplete stiking of reatant partiles,PAB � 1, the reation onstant redues toK 0AB = KABPAB � 4:3DABaPAB : (13a)A result formally similar to Eq. (13) was obtainedin [16℄ (following [23℄). In that approah, the problem

was also redued to the analysis of ollisions betweentwo partiles A and B on disrete lattie sites, but wasbased on additional (unjusti�ed) assumptions. Namely,instead of onsideration of the rapid di�usion mixing ofpartiles (as proposed in the urrent approah), whihallows rigorous redution of the multipartile problemto two-partile ollisions and diret alulation of thereation rate onstant, an additional ansatz for the re-ation rate onstant in the multipartile system wasused in [16℄, whih eventually resulted in a di�erent(apparently erroneous) numerial fator in Eq. (13).Therefore, we an onlude that the urrently de-veloped approah an be generalized to the reationkinetis on a three-dimensional lattie, resulting in thenew relation for the reation rate onstant, Eq. (13).5.2. Reation rate on a two-dimensionaldisrete lattieThe reation rate for partiles A and B migra-ting via random walks over disrete square lattie sites(a�2 � n = nA � nB), when the reation radius issmall in omparison with the lattie spaing, RAB < a,an be alulated in a way similar to the three-dimen-sional approah in Se. 5.1 using the logarithmi ap-proximation desribed in Se. 4. As a result, an equa-tion (orresponding to Eq. (13) in the three-dimensio-nal ase) for the reation rate onstant takes the formKAB = a2Sk=Ætk; (14)where Sk = �klog k +O� klog2 k �is the mean number of distint square lattie sites vis-ited by a k-step random walk [36�38℄, k = Ætk=�AB == Ætk4DAB=a2 and, to provide di�usion mixing in timeÆtk, the alulation time step is hosen asa24DAB � n�24DAB � Ætk � � � K�1ABn�1:With logarithmi auray, we obtainKAB � 4�DABlog(1=na2) ; (15)whih depends on time impliitly (via n(t)).At large times in the ase nA > nB , this time de-pendene is weak and an be negleted with the hosenlogarithmi aurayKAB � 4�DABlog(1=~na2) ; (16)733



M. S. Veshhunov ÆÝÒÔ, òîì 141, âûï. 4, 2012where ~n is the �nal value of n(t), whose variation issmall, �n(t) = n(t)� ~n� ~n, and hene1logn(t)a2 = 1log(~n+�n)a2 �� 1log ~na2 � log�1 + �n~n � � 1log ~na2beause log(~na2)�1 � 1� log(1 +�n=~n):Similarly to the ontinuum limit in two dimensions(onsidered in Se. 4), the reation rate onstant de-pends on time impliitly and di�ers from that alu-lated in the traditional approah (with log(DABt=a2)instead of log(1=~nt=a2) in the denominator of Eq. (16))and therefore predits a muh higher deay rate _nA;Bat large times in omparison with the traditional ap-proah [16; 23℄.5.3. Catalytially ativated reationsThe new approah an be extended to the kinetisof bimoleular, atalytially ativated reations in twoor three dimensions. The elementary reation at be-tween reatants takes plae only when these meet ona atalyti site (CS); suh sites are assumed to be im-mobile and randomly distributed in spae with a meanonentration nC .We start at t = 0 with randomly distributed rea-tant partiles A and B with mean onentrations nAand nB . Eah A (B) partile migrates by jumps tonearest-neighbor sites with the assoiated di�usivityDA (DB). Whenever an A partile lands on a atalytisite that is already oupied by a partile B, the twopartiles reat with a stiking probability PAB � 1.Reating partiles are immediately removed from thesystem, whereas the orresponding CS remains unaf-feted. On the other hand, partiles never reat atnonatalyti sites.In this ase, the e�etive reation onstant reduesto KABC = K 0ABnC = KABPABnC ; (17)where K 0AB is derived in Eq. (13a) and nC is the pro-bability that a ollision ours on a CS (owing to therandom distribution of CSs in spae).This expression is obtained in the kineti ap-proah and essentially di�ers from the one obtainedin [39℄ in the traditional di�usion approah, where (fol-lowing [12�14℄) short-wavelength �utuations (on thelength sale of the reation radius, l � RAB), whihare beyond the ut-o� limit of the theory (Eq. (5)),

l � n�1=3 � RAB (f. Se. 2.3), are erroneously takeninto aount. 6. CONCLUSIONSThe new approah to the di�usion-limited reationrate theory [1℄, based on a similar approah to Brow-nian oagulation proposed in our papers [19�21℄, isre�ned and developed further. The traditional di�u-sion approah to irreversible reations A+B ! C thatstipulates that the loal reation rate should be equalto the di�usive urrent of partiles is ritially ana-lyzed. In partiular, it is shown that the di�usion ap-proah is appliable only in the speial ase of reationswith a large reation radius, rA � RAB � rB (whererA � n�1=3A and rB � n�1=3B are the mean interparti-le distanes), orresponding to small A partiles andlarge B traps, and beomes inappliable in alulat-ing the reation rate in the ase RAB � rA; rB mostimportant for reation kinetis and partiularly orre-sponding to omparable-size (or point-like) partiles Aand B. Indeed, point-like partiles tend to a homoge-neous (random) spatial distribution owing to their mi-gration and mixing on the sale of the mean interpar-tile distane, l � r, with the harateristi di�usiontime that is small in omparison with the harateris-ti reation time, �d � �. This implies that partileollisions our in the kineti regime with the reationrate alulated as the ollision frequeny of two parti-les (A and B) randomly loated in the unit volume.This approah an be further extended to theanalysis of spatial heterogeneities in the ensemble ofomparable-size A and B partiles if these hetero-geneities are smooth on the length sale of the di�u-sion equation appliability (for the ensemble of point-like partiles) l � n�1=3A;B � RAB , but with the reationonstant alulated in the kineti regime.In the ontinuum mode of the kineti regime or-responding to aA; aB � RAB , where aA, aB are theelementary drift distanes of partiles migrating viarandom walks, the alulated reation rate in three di-mensions formally (and, in fat, aidentally) oinideswith the expression derived in the traditional approah(whih is relevant only in the partiular ase of rea-tions with a large reation radius, rA � RAB � rB).This formal oinidene apparently explains a reason-able agreement of the preditions of the kineti equa-tion derived in the traditional approah with exper-imental measurements for three-dimensional reationsystems.But in the two-dimensional geometry orrespond-ing to the reatant partile migration onstrained to734



ÆÝÒÔ, òîì 141, âûï. 4, 2012 Development of the new approah : : :a plane, the reation rate alulated in the traditionalapproah as the di�usive urrent of A partiles intoB traps naturally predits an expliit time dependeneof the reation rate. On the ontrary, in the new ap-proah, the original multipartile problem is redued(under the mixing ondition) to alulation of the areasweeping rate by migrating partiles (of the radius RABand di�usivityDAB), whih depends on time impliitly,via nA(t) (in the base ase RAB � rA; rB). As a result,in the ase nA 6= nB , the traditional approah notablyunderestimates the onentration deay rate _nA;B atlarge times in omparison with preditions of the newapproah.In the opposite ase aA; aB � RAB (for reatingpartiles suspended in a �uid), the reation rate an bealulated in the free moleular approah, also in diretanalogy with the Brownian partile oagulation.The new approah is further generalized to rea-tion kinetis for partiles migrating via random walksover disrete lattie sites (with the lattie spaing a).Beause the ase of a large reation radius RAB � aproperly redues to the ontinuum-medium limit, theopposite ase RAB < a, with reations ourring whentwo partiles oupy the same site, was additionallystudied. In the new approah, the original multipartileproblem is redued (under the mixing ondition) to thealulation of the mean number of distint sites visitedby a k-step random walk of the mobile partile, whihfor simple three-dimensional and two-dimensional lat-ties was evaluated in the literature. As a result, newrelations for bimoleular reation rate onstants are de-rived for three-dimensional or two-dimensional latties,whereas the traditional approah preserves the mainde�ienies of the ontinuum-medium approah (alsoin appliation to atalytially ativated reations).APPENDIXWe show here that alulating the sweeping rateof randomly distributed immobile point-like partiles(markers) by a large partile of radius RAB migratingwith a di�usivity DAB is equivalent to alulating theondensation rate of the mobile markers migrating withthe di�usivity DAB in the immobile trap of the radiusRAB . This assertion is important for the derivation ofthe ollision frequeny funtion in the ontinuum modeof the kineti regime (Se. 3). Simultaneously, the ap-pliability limit of the di�usion approah to the al-ulation of the reation rate in Se. 2.1 is additionallyon�rmed.We onsider an ensemble of N ! 1 point-likepartiles randomly distributed in a sample of volume

V !1 with the mean number onentration n = N=Vand migrating with the di�usivity D into an immobiletrap partile of radius R. The probability for a pointpartile from this ensemble loated at t = 0 at a dis-tane r from the trap partile to reah the trap in timet is denoted by w(r; t). The integral of this probabilityover all point-like partiles determines the total num-ber of point-like partiles trapped in the time intervalbetween 0 to t,�n(t) = Z nw(r; t) d3r = 4�n 1ZR w(r; t) r2dr; (A.1)in aordane with the Fokker�Plank approah to par-tile migration ([40℄, see also [11℄).Correspondingly, the number of point partilestrapped in the time interval between t and t + Æt isequal to d�ndt Æt = 4�nÆt 1ZR �w(r; t)�t r2dr;whih determines the ondensation rate of point parti-les in the trap�n = d�ndt Æt = 4�nÆt 1ZR �w(r; t)�t r2dr: (A.2)It is important that Eq. (A.1) was derived under animpliit assumption that the number of partiles in thevolume 4�r2dr is large, i. e., Nr = n � 4�r2dr � 1, orn � 4�r3(dr=r) � 1; only in this ase we an neglet�utuations of the number of partiles in this volume,ph(ÆNr)2i � Nr, whih allows the subsequent alu-lation of the total number of trapped partiles [11℄. Inpartiular, this inequality should be valid at r = R,whih gives n � 4�R3(dr=R) � 1, whereas dr=R �� 1 (in order to orretly perform the integration),or 4�dr=R � 1. Therefore, the neessary onditionfor the orret alulation of the partile ondensationrate is nR3 � 1, whih oinides with the ondition ofthe di�usion approah appliability derived in Se. 2.1.This implies that these alulations, being appliableto the ondensation of small partiles in a large trap,beome invalid in the ase of a small trap (omparablewith the size of the partiles).If there is only one point-like partile randomly lo-ated in the sample (of volume V ! 1), it an befound with the probability V �1d3r in the elementaryvolume d3r at eah point r, and therefore the probabil-ity for this partile to reah the trap in time t an bealulated as735



M. S. Veshhunov ÆÝÒÔ, òîì 141, âûï. 4, 2012�0(t) = 1ZR V �1w(r; t)4�r2dr: (A.3)The probability to reah the trap in Æt is therefore equalto d�0dt Æt = 4�V Æt ��t 1ZR w(r; t) r2dr; (A.4)or, from omparison of Eq. (A.4) with Eq. (A.2),d�0dt Æt = 1nV d�ndt Æt: (A.5)On the other hand, this last probability is equal tothe probability for a sole immobile point partile ran-domly loated in the sample to be swept in time Æt bythe trap partile migrating with the di�usivity D. In-deed, as explained in Se. 3, the relative displaementsbetween two partiles desribing di�usion motions in-dependently of eah other and with the di�usion o-e�ients D1 and D2 also follow the law of di�usionmotion with the di�usion oe�ient D1 +D2 [10; 22℄.In this approximation, the probability of sweeping thesole point partile in time Æt by the trap partile mi-grating with the di�usivity D is equal to V �1ÆV , whereÆV is the volume swept in Æt. Equating this probabilityto Eq. (A.5), we obtainÆV=Æt = n�1d�n=dt: (A.6)If there are N = nV immobile point-like partiles ran-domly distributed in the sample, then the total numberof partiles swept in Æt isnÆV=Æt = d�n=dt = �n; (A.7)with �n from Eq. (A.2).Therefore, the ondensation rate �n of point-likepartiles migrating with a di�usivity D in the immo-bile trap partile of radius R is equal to the rate ofsweeping of immobile point-like partiles by the trappartile migrating with the di�usivity D.The author thanks V. V. Lebedev (Landau Institutefor Theoretial Physis, Mosow) for the valuable dis-ussion of the obtained results. L. A. Bolshov (IBRAE)is aknowledged for his interest in and support of thiswork. REFERENCES1. M. S. Veshhunov, J. Eng. Thermophys. 20(3), 1(2011).
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