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The new approach to the diffusion-limited reaction rate theory, recently proposed by the author, is further
developed on the base of a similar approach to Brownian coagulation. The traditional diffusion approach to
calculation of the reaction rate is critically analyzed. In particular, it is shown that the traditional approach is
applicable only in the special case of reactions with a large reaction radius, 74 < Rap < Tp (where 74 and
Tp are the mean inter-particle distances), and becomes inappropriate in calculating the reaction rate in the case
of a relatively small reaction radius, Rap < Ta,Tp. In the latter case, most important for chemical reactions,
particle collisions occur not in the diffusion regime but mainly in the kinetic regime characterized by homoge-
neous (random) spatial distribution of particles on the length scale of the mean inter-particle distance. The
calculated reaction rate for a small reaction radius in three dimensions formally (and fortuitously) coincides with
the expression derived in the traditional approach for reactions with a large reaction radius, but notably deviates
at large times from the traditional result in the planar two-dimensional geometry. In application to reactions on
discrete lattice sites, new relations for the reaction rate constants are derived for both three-dimensional and
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two-dimensional lattices.

1. INTRODUCTION

We refine and further develop the new approach to
the diffusion-limited reaction rate theory proposed in
our paper [1].

For many chemical processes, the reaction proceeds
from a reaction complex formed by collision of two or
more reactants. Each reaction rate coefficient K has
a temperature dependence, which is usually given by
the Arrhenius equation K = Ky exp(—FE,/kT), where
the pre-exponential factor Ko determines the collision
frequency of reacting species and the exponential fac-
tor determines the number of collisions with the energy
greater than the activation energy E, of the complex
(i.e., corresponds to the sticking probability of colli-
sions).

Diffusion-limited (or diffusion-controlled) reactions
are reactions in which collisions of the reactants (deter-
mining the pre-exponential factor Ky) are controlled by
their diffusion migration in suspending solvent (rather
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than by free-molecule collisions typical for molecular
reactions in gas mixtures). Diffusion-limited reactions
between two different species A and B (A + B — C,
where C does not affect the reaction) show up in a
vast number of applications including not only chemi-
cal (see, e.g., [2]) but also biological (e.g., [3-5]) and
ecological (e.g., [6]) processes that have been studied
over many decades. This may also apply to the reaction
of vacancies and interstitials (V + 1 — 0), and annihi-
lation in crystals [7] produced by means of high-energy
particles or electrons.

A method for calculating the reaction rate of re-
action partners migrating via three-dimensional diffu-
sion was developed in [8,9] by generalizing the Smolu-
chowski theory for coagulation of colloids [10]. In this
method, the radius of the activated complex (or the
“reaction radius”) corresponds to the “influence-sphere
radius” in the Smoluchowski theory (roughly equal to
the sum of the radii of two colliding Brownian parti-
cles, Ri2 &~ Ry + R»), which in the continuum approach
is assumed to be large in comparison with elementary
drift (or jump) distances a; » of particles migrating via
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random walks, Ri» > aj,as. In the opposite limit
case, Ri» < ay,as, the continuum diffusion approach
is not anymore valid, and therefore the so-called “free-
molecule” (or “ballistic”) approximation can be used for
colliding Brownian particles [11]. This approach is a
generalization of the classical consideration of bimolec-
ular collisions in gas mixtures within the Boltzmann
gas-kinetic theory.

In formulating a reaction—diffusion model, a d-di-
mensional Euclidean space on which A and B particles
at initial mean concentrations (number of particles per
unit volume) n4 and np diffuse freely is usually con-
sidered in the continuum approach (see, e.g., [12-14]).
In this approach, the reactant particles are represented
as points or spheres undergoing spatially continuous
Brownian motion, with chemical reactions A + B — C
occurring instantly when the particles pass within a
specified reaction radius R4p between their centres.

The continuum approach was further applied to
diffusion-limited reactions in one and two dimensions
(see, e.g., [15,16]); the latter case also has wide
applications in the membrane biology (see a review
in [17]). The diffusion-limited bimolecular reactions
between mobile vacancies and interstitials in strongly
anisotropic crystals in the case where the mobile species
is constrained to migrate in one plane only may also be
well approximated over a wide range of the reaction by
a two-dimensional second-order rate equation [18].

In this approach, the same shortcomings of the
Brownian coagulation theory that were recently crit-
ically analyzed in our papers [19-21] are generally
inherited by the diffusion-limited reaction rate mod-
els. Namely, it was shown that the diffusion approach
[10,22] to the calculation of the collision rate function,
based on the assumption that the local collision rate is
equal to the diffusive current of particles, is applicable
only in the special case of coalescence between large
and small Brownian particles, Ry < 7 < R (where
7~ n /% is the mean interparticle distance), and be-
comes inapplicable to the calculation of the coalescence
rate for particles of comparable sizes, Ry, Ry < T.

In the latter, more general case of comparable-
size particles, coalescences occur mainly in the kinetic
regime (rather than in the diffusion one) character-
ized by a homogeneous (random) spatial distribution
of particles (rather than by their concentration profiles)
[19-21]. This kinetic regime is realized in virtually the
entire range of particle concentrations obeying the ba-
sic (“dilution”) assumption of the theory, R/T < 1, and
can be subdivided into different modes (continuum, free
molecular, and transient).

In the continuum mode of the kinetic regime,

Ri5> > ay,as, the formal expression for the collision
frequency of particles (of comparable sizes) coincides
(in fact, fortuitously) with that derived in [10,22] for
the diffusion regime (being relevant only in the par-
ticular case of coalescence of large particles with small
ones). This formal coincidence apparently explains why
the traditional approach correctly describes numerous
experimental measurements of the coagulation rate of
Brownian particles.

The new approach developed in [19-21] is also appli-
cable in the case of diffusion-limited reaction kinetics
in continuum media [1], if the characteristic reaction
distance Rap for the A + B complex formation (i.e.,
the reaction radius) is small in comparison with the
mean interparticles distances, Rap < T4,Tp, where
AR n21/3 andTp ~ n;/g (see Sec. 2), which particu-
larly corresponds to reactions between comparable-size
particles (i.e., the most important case). This range
can be subdivided into two intervals of the model pa-
rameters, Rap > aa,ap and Rap < aa,ap, corre-
sponding to different modes (continuum and free molec-
ular) of the kinetic regime. For the continuum mode,
Rap > aa,ap, the reaction rate calculated in the new
approach in the three-dimensional case (see Sec. 3.1)
formally (and, again, fortuitously) coincides with the
traditional result, valid only for reactions with a large
reaction radius, T4 <€ Rap < Tp. But in the two-
dimensional case, the traditional approach leads to con-
siderable deviations of the reaction decay na p(t) at
large times ¢ from that calculated in the new approach
in the base case as,ap € Rap < Ta,Tp (see Sec. 4).

In the case Rap < aa,ap, the free molecular (or
ballistic) regime is realized. This case can be considered
similarly to the Brownian particles coagulation problem
in the corresponding regime, as well as the case of the
transition regime, Rap &~ aa,ap (Sec. 3.2).

The new approach can be further generalized to
consideration of reaction kinetics for particles migra-
ting via random walks on discrete lattice sites (with a
lattice spacing a). Because the case of a large reaction
radius R4p > a is properly reduced to the continuum
medium limit, the opposite case Rap < a, with reac-
tions occurring when two particles occupy the same site
(see, e.g., [23]), is of most concern. We show in Sec. 5
that the traditional approach [16,23] to consideration
of this important case preserves the main deficiencies of
the continuum medium approach and therefore results
in erroneous predictions for the reaction kinetics (even
in three dimensions). For this reason, new relations
for the reaction rate constants are derived for three-
dimensional (Sec. 5.1) and two-dimensional (Sec. 5.2)
lattices. The discrepancy between the new and tra-
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ditional approach predictions increases further when a
more complicated case of catalytically activated reac-
tions is considered (Sec. 5.3). The main results are
summarized in Sec. 6.

2. RATE EQUATIONS

In the approximation R/7 <« 1, only pairwise col-
lisions of particles during their diffusion migration can
be taken into consideration, and collisions that occur
among any combinations consisting of more than two
particles can be ignored.

In the rate theory for a continuous distribution of
particles N(r)dR, the number of particles of a radius
R to R + dR per unit volume, under the assump-
tion that collided particles of radii R; and R, imme-
diately coalesce to form a new particle of the radius
(R} + R3)'/3, the Smoluchowski coagulation equation
takes the form [10]

ON(Rt) 1 [ [
——//NR1 N(Ra,t) x
ot 2
0 0
3 3\ 1/3
xé[R (R + R3) ]3uﬁ,3gcuhd32—

o0

/Nm, B(R,R)dRi, (1)
0

where [(R;, Rs) is the collision frequency function,
which, being defined as the collision frequency between
two particles randomly located in the unit volume, does
not depend on time explicitly. Therefore, ON (R, t)/0t
should be calculated from the analysis of pairwise col-
lisions during a time step dt relatively short for the
variation in the concentration densities N(Ry,?) and
N(R2,t) to be neglected, on the one hand, and long
enough for B(R1, R>) to attain the steady state value,
on the other hand.

For the kinetics of an irreversible reaction A + B —
— C (where C does not affect the reaction) in the mean-
field approximation, Eq. (1) applied to the two-size (R 4
and Rp) particle distribution function reduces to

dna
dt

dnB
=2 @
where ny and npg are the mean concentrations of the
reacting A and B particles and

= —Kapna (t)nB

I(AB = ﬁ(Rl,Rz)(S(Rl — RA)(S(RQ — RB)

is the rate function (or reaction constant) directly cor-
responding to the collision frequency function 3 for two
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particles of different types (A and B). In accordance
with the Smoluchowski rate theory, K 45 is defined as
the collision frequency of two particles randomly lo-
cated in the unit volume, and it should therefore be
regarded as a quantity explicitly independent of time.
In a self-consistent approach, the reaction rate dn 4 /dt
should be calculated with the time step dt chosen short
enough to neglect variation of the mean concentrations
na and np in the interval d¢, and long enough for a
steady state value of K 4p(dt) & const = K 45 to set in.
This is an important difference from the traditional mo-
dels of diffusion-limited reaction kinetics (even though
they are often called the Smoluchowski-type models),
where, under the assumption that the local reaction
rate is equal to the diffusive current of particles, the “ef-
fective” reaction rate is calculated as an explicit time-
dependent function Kap(t) (rather than K4p(dt) in
the Smoluchowski theory).

Similarly to the analyses of the coagulation prob-
lem in [19-21], we show below that this difference
is connected to unjustified application of the dif-
fusion approach to the calculation of the effective
reaction rate (as the diffusive current of particles)
for particles with a relatively small reaction radius,
Rap < Ta,Tp, which becomes especially critical in
the two-dimensional case. Such an approach is valid in
the case of small particles A diffusing into large circu-
lar traps B (so-called agglomeration), 74 <« Rap < Tp
(with a time-dependent K (t) properly entering the ag-
glomeration rate equation), but it fails in the base
case Rap < T4,Tp (corresponding, in particular, to
comparable-size particles, R4 ~ Rg < T4,TRB).

2.1. Applicability of the diffusion approach to
particle collisions

The diffusion equation for an ensemble of parti-
cles is derived (similarly to the consideration of other
relaxation processes in weakly inhomogeneous fluids,
such as the heat transfer or viscous flow) in the quasi-
equilibrium approximation. In this approximation, the
particle distribution function is assumed to be in lo-
cal thermodynamic equilibrium, smoothly varying in
space and in time following smooth variations of the
fluid macroscopic parameters (e.g., the temperature,
pressure, concentration, and velocity). In the case of
the mass transfer problem (i. e., the diffusion equation),
the varying macroscopic parameter is the number con-
centration of particles, n(r,t).

Regarding n(r,t) as a macroscopic value (i.e., as-
suming its thermodynamic fluctuations to be small in
comparison with its value, /{(dn)?) < n) is valid
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only if the size of the elementary volume 6V = L3
with respect to which n(r) is defined is large enough
in comparison with the local interparticle distance,
L > n~Y3(r), which in turn must exceed the mini-
mum interparticle distance equal to the particle size,
n~'/3(r) > 2R. For this reason, only heterogeneities
of the particle spatial distribution on the length scale
of I > L > n~'/3 > R can be adequately considered
in the continuous diffusion approach, under the addi-
tional condition a < [ for the elementary drift distance
(see, e.g., [19-21]).

In the case where identical particles (e. g., of type A
with a radius R4) are randomly distributed through-
out a medium of infinite extent with the mean bulk
concentration n4 that obeys the dilution condition
naR% < 1, the particles can be considered as point
objects (Ra < T4, where T4 & n;1/3 is the mean in-
terparticles distance), which, in accordance with the
diffusion equation for an ensemble of point-like parti-
cles, tend to relax with time to a homogeneous spatial
distribution.

The situation changes critically in the case where a
group of B-type traps with a relatively large “influence-
sphere”, or the reaction radius Rap > R4 (with A-par-
ticles) and the concentration np (obeying ng R 5 < 1)
appears in the ensemble of A-particles. B-type traps
cannot be treated as point-like objects if naR3 5 > 1.
In this case, traps should be considered macroscopic
with respect to A-particles, because the reaction ra-
dius R4p is much larger than the mean interparticle
distance T4 ~ nZI/S, and just for this reason addi-
tional (absorbing) boundary conditions for diffusion of
A-particles emerges on traps surfaces. The hetero-
geneities in the spatial distribution of A-particles in-
duced by these boundary conditions do not tend to dis-
appear with time, as they do in the previous case (with-
out traps), and the steady-state concentration profiles
of A-particles around macroscopic trap centers

are attained at t > R% /mD4 [22]. The diffusion flux
of A-particles in this concentration profile calculated at
the reaction radius is

Rag
”

na(r) =na(Rag) + (Ma —na(Rap)) <1 -

Jdif =4nDAsRAB (ﬁA — nA(RAB)) ~4rDARABN A

if na(RaB) < Ma ~ na; it determines the accumula-
tion rate of A-particles in a B-trap, and, in accordance
with [10,22], the collision frequency function between
A and B particles, taking migration of traps with the
diffusivity Dpg into consideration, eventually takes the
form
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(3)

KW — 47D 4pRap,

where Dyp = Dy + Dp.

To establish the applicability range of this result, we
note that the characteristic size [ of the zone around a
large trap in which the A-particle concentration varies
from a value na(Rap) < na near the reaction sur-
face to the value of the same order of magnitude as the
mean value n4 attained at large distances from the cen-
ter is comparable with R4p, i.e., I ~ Rap. This size [
must naturally exceed the mean distance nzl/g (RaB)
between small A-particles in the vicinity of a B-trap
surface,

Rap~1> n;l/S(RAB) > n;l/S
(in order to maintain the concentration profile of small
particles around the trap), or n4R3 z > 1. This condi-
tion logically coincides with the general requirement, for
the applicability of the diffusion approximation men-
tioned above, [ > ngl/S.

This condition can be confirmed more rigorously
taking into consideration that the diffusion flux at the

reaction surface

_ na(Rap + Ar) —na(Rap)
- Ar

or

Jdif X
r=Rap
can be properly calculated only under the assumption
that Ar < Ryp. In the vicinity of the surface,

na(Rap + Ar) K na(2Rap) ®Tia/2,

and therefore the mean interparticle distance in this
zone can be evaluated as

Fang*(Rap +Ar) >0 *(2Rag) = a/2)”"/°.

On the other hand, it should be small enough to
maintain the concentration profile in this spatial range
(where the diffusion flux is calculated), 7 € Ar <
& Rap, or n{®Rap > 1.

The same conclusion can also be derived in the
Fokker—Planck approach based on the analysis of the
probability density of migrating Brownian particles
(see the Appendix).

Therefore, the traditional diffusion approach, which
stipulates that the local reaction rate is equal to the
diffusive current of A-particles into the traps (see,
e.g., [16]), is valid only for reactions with the large
reaction radius Rap > T4 ~ nzl/g.

It follows from this analysis that the intrinsic rea-
son for steady-state heterogeneities in the spatial dis-
tribution of small particles is connected to the addi-
tional boundary conditions (for the diffusion equation
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for these particles) induced by macroscopic (i.e., large
scale, Rap > T 4) traps. These macroscopic boundary
conditions vanish as soon as the reaction radius be-
comes small in comparison with the mean interparticle
distance (Rap ~ R4 < Ta), eliminating the driving
force for the emergence of steady-state spatial hetero-
geneities.

Indeed, in the opposite case Rap < T4,7B, the
limit of point-like particles is restored, which is char-
acterized by the tendency of the system of two-type
particles toward a homogeneous spatial distribution (or
mixing) owing to their diffusion migration (in the ab-
sence of macroscopic boundaries).

2.2. Diffusion mixing condition

Reactions between point-like particles induce local
heterogeneities in the particle spatial distribution on
the length scale of their mean interparticle distance,
which is evaluated as T ~ n Y3 if ny = ng = n.
But such small-scale heterogeneities quickly disappear
owing to rapid diffusion relaxation of particles on the
length scale of their mean interparticle distance 7 with
the characteristic time 74 ~ 72/6D (under the sim-
plifying assumption that D4 ~ Dp = D), which is
generally much shorter than the characteristic time
7. ~ (Kapn)™! of the mean concentration varia-
tion, 74 < 7., as we explicitly show below in both
three-dimensional and two-dimensional cases (in Sec. 3
and 5). This allows considering a random distribution
of particles attained in the time step 74 <€ 0t < 7.
chosen for calculation of the reaction rate in Eq. (2).

In this case (corresponding to the kinetic regime),
the spatial distributions of the particle centers
na,p(r,t) can be considered homogeneous functions
characterized by their mean concentrations nap(t),
i.e.,, nap(r,t) = nap(t), slowly varying with time
owing to particle collisions (reactions). Accordingly,
the collision probability is also a spatially uniform
function.

In the case n4a > np, which at large times (¢ >
> [Kap(na(0) — np(0))]7!) inevitably turns into
na(t) > np(t), or T4(t) € Tp(t), each particle B can
be surrounded by a sphere (or a circle in two dimen-
sions) of a radius 7 obeying T4(t) < 7 < Tp(t), where
a collision of this particle B with one of the surrounding
particles A (with a given concentration n4(t)) occurs.
Because 7 < Tpg(t), no other particles B can be con-
sidered in this sphere, and therefore homogenization of
the reaction system in 0t (after reactions in the previous
time step) is determined by the relaxation (or diffusion
mixing) of particles A (inside this sphere) on the length

. . . . _ —1/3
scale of their mean interparticle distance 74 ~ n, / ,

i.e., by the diffusion time 74 ~ 7% /6D.

Apparently, this conclusion is not violated in the
case Dy > Dp, but it becomes invalid in the opposite
case Dy < Dp. In this last case, mixing of particles
A is incomplete and hence the accuracy of the model
predictions decreases. But because of the stochastic
character of particle movement and collisions, local het-
erogeneities (“missing particles”) induced by reactions
between particles A and B are randomly distributed
in space, and therefore the mean collision frequency
can still be considered a spatially uniform function,
but averaged over a larger scale. This implies that at
least in the mean-field approximation (i. e., in the large-
scale limit), the current approach can be applied with
reasonable accuracy. In what follows, the condition
Dy ~ Dp = D is nevertheless assumed for simplicity
and for a possible generalization of the theory to the
case of concentration fluctuations (see Sec. 2.3).

The characteristic times of particle concentration
variation are different for particles A and B, TC(A’B) e~
~ (Kapna )~ ', and hence the smaller one must be
chosen in evaluating the time step,
0t € T, &~ min I:TC(A),T(EB)] ~ Kipny' (if na>np).
Therefore, assuming that n4 > np for definiteness (and
also that D4 ~ Dp = D) in what follows, we can gen-
erally represent the mixing condition in the form

T4 R TY/6D K 5t < 1o~ K pn )t

2.3. Applicability of the reaction rate equation

As explained above, the reaction constant K sp is
defined as the collision frequency of two point-like par-
ticles (Rap < Ta,7p) of different types (A and B)
randomly located in the unit volume. This implies
that the size of the unit volume 6V = L3 with respect
to which K p is defined is large in comparison with
the minimum distance between particles of different
types, L > Rap. In this case, if there are ny par-
ticles of type A and np particles of type B randomly
distributed through a sample of the unit volume, the
number of collisions between A and B particles per unit
time (the number that defines the reaction rate) is given
by KABnAnB.

This definition of the reaction rate can be appar-
ently extended to the case of spatial heterogeneities (of
size 1) in the distribution of A and B particles if these
heterogeneities are smooth on the length scale of the
(appropriately defined) unit volume, I > L > Rap.
In this case, the number of collisions in dt between A
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and B particles located in the unit volume is calculated
as Kapna(r,t)ng(r,t) dt, resulting in the local balance
equations for the particle numbers:

(4)

where K 4p is calculated in the kinetic regime, i.e., un-
der the assumption of a (locally) homogeneous spatial
distribution of particles. For instance, in the contin-
uum limit in three dimensions, the reaction constant in
Eq. (4) is calculated as Kap = 4nDapRap (or Ky =
= 47D spRapPap if the sticking probability P4p is
smaller than unity; see Eqs. (6) and (6a) below).
Relaxation of spatial fluctuations in the particle dis-
tribution can be taken into consideration by the addi-
tional diffusion term in the right-hand side of Eq. (4),

na(r,t) =np(r,t) = —Kapna(r,t)npg(r,t),

ni(r,t) = DiAn;(r,t) — Kapna(r,t)ng(r,t),

5
i=A,B, (5)

under the condition I > n~'/% > R; correspond-

ing to the diffusion term definition (as explained
above) consistent with the local collision rate definition
I> Rap > R;.

This allows extending the applicability of the re-
action rate theory beyond the mean-field approxima-
tion, Eq. (2), but only for fluctuations with long wave-
lengths, [ > Rap and [ > n=13_ The results of
the analysis of Eq. (5) available in the literature [12—-
14], where an independent “intrinsic” (or “microscopic”)
rate constant & (entering the radiative boundary con-
dition for the diffusion flux Jéf}’B) = kna,Blr=R,p In
the traditional approach [8,9]) is used instead of K 4p,
demonstrate that the effect of the renormalization of &
by concentration fluctuations, resulting in the effective
rate constant

47TDABRABk

Kepp = ——F—7—
1 A4rDsapRag + k

(which reduces to K.y = 4rDapRap in the limit of
high-rate boundary kinetics, k& — oo, corresponding to
complete trapping, 174 Blr=r., — 0), occurs on the
length scale of the reaction radius, [ & Rap, i.e., be-
yond the cut-off limit of Eq. (5) for comparable-size
(or point-like) particles, [ > n~'/3 > Rp. This ad-
ditionally confirms the above conclusion that the re-
sults of the traditional approach are grounded only
in the case of reactions with a large reaction radius,
4o < Rap < Tp, when short-wavelength fluctua-
tions with 74 < [ < Rap in the spatial distribution
of A particles around B particles can be adequately
described by Eq. (5). However, in the opposite case
Ta4,TB > Rap, such short-wavelength fluctuations are
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beyond the cut-off limit of the theory, and therefore
predictions of the diffusion approach [12-14] fail.

Therefore, the mean-field approach based on Eq. (2)
(with the reaction constant K 4p calculated in the ki-
netic approach) can be generally used as a first-order
approximation. In the next-order approximation, ta-
king long-wavelength fluctuations I > n~='/% > R,p
into consideration in Eq. (5), predictions of the
mean-field approach may be violated at large times
in the particular case of equal initial concentrations,
n4(0) = np(0). In that case, the asymptotic (t — o)
decay nap o (Dt)~%* (where d < 4 is the dimension
of space) [24,25] becomes slower compared with pre-
dictions of the mean-field theory, valid for intermedi-
ate times (n4 p o< (drRDt)! in the three-dimensional
case and n4 g o< In(4Dt/R?) /47Dt in the two-dimen-
sional case; see below).

The “crossover” time from the mean field behavior
to the fluctuation-induced asymptotic regimes can be
estimated from comparison of decay laws in these two
approximations as t* oc R?/De?, e = na p(0)R? < 1,
i.e., it is inversely proportional to the square of the ini-
tial volume fraction ¢ of reactants, and can therefore be
very large in diluted systems [26]. At this time, the con-
centration becomes very small, ng g(t*)/n4,5(0) x &,
i.e., the mean-field approach correctly describes the re-
action kinetics during a large time domain and only
a very small number of active particles decay via the
fluctuation-induced law. In two-dimensional systems,
the crossover time is shorter and the number of parti-
cles surviving until this time is greater than in three
dimensions. For this reason, the crossover from the de-
pendences predicted by the mean-field approximation
to the fluctuation-induced asymptotic regimes has been
observed in two-dimensional numerical simulations [25]
and in experiment [27].

Therefore, the reaction kinetics in this case can
be calculated by additional consideration of long-
wavelength fluctuations in Eq. (5), e.g., by mapping
to a field theory [28,29] and using the renormalization
group methods [30,31]. But the reaction rate con-
stant in the master equation of field theory can be
correctly calculated only in the kinetic regime (e.g.,
Kaip = 47D apRapPap in the continuum mode in
three dimensions or by more sophisticated expressions
in other cases; see Secs. 3-5), rather than taken as a
microscopic (intrinsic) rate constant k (cf. [30]). This
might be especially important in the case of complete
trapping, when the microscopic rate constant k& tends
to 0o, whereas Kap = 4rDspRap calculated in the
current approach is finite.
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3. REACTION RATE IN THE
THREE-DIMENSIONAL CASE

As explained in Sec. 2.2, in order to calculate
the reaction constant in the kinetic regime, a time
step dt relatively large in comparison with the dif-
fusion relaxation (or mixing) time should be chosen,
6t > 14 ~ n~2/3/6D, in order to satisfy the main
condition of the kinetic regime for a random (homo-
geneous) distribution of reacting particles (where it is
assumed that n = ng > np and Dy Dp = D; cf.
Sec. 2.2). On the other hand, the time step should
be small in comparison with 7. ~ (Kapn)~!, i.e.,
0t < 1., which allows neglecting variation of the mean
concentrations n4 and ng in dt. Besides, some ad-
ditional condition for the time step should be valid,
0t > T, in order to attain a steady-state value of
K,p(dt) ~ const = K 4p, where 7 is to be evaluated
below.

~
~

~
~

~
~

We consider two particles of types A and B located
at random in a sample of unit volume. The first (“par-
ent”) particle of type A can be surrounded by a sphere
with the reaction radius Rap. If the second particle
center is located in this exclusion zone, the reaction
occurs.

As shown in [10, 22], the relative displacements be-
tween two particles describing diffusion motions inde-
pendently of each other and with the diffusion coeffi-
cients D4 and Dpg also follow the law of diffusion mo-
tion with the diffusion coefficient D 4 + Dg. Therefore,
to calculate the probability of collisions between the
two particles, we can equivalently consider the second
particle immobile and the first one migrating with the
effective diffusion coefficient Dgagp = D4 + Dp ~ 2D.

In this approximation, it is assumed that the effec-
tive (mobile) particle jumps over an elementary dis-
tance a4p in random directions with the frequency
VAB =Ty ! obeying the relations for particle diffusivity
from the random walk theory, Dsp = a% 5/670.

As a result of a jump, the exclusion zone also re-
locates to the distance a4p; this opens the possibility
that the second (immobile) particle with its center lo-
cated in a zone of the volume §Vy = mR% zaap may
be swept out by the mobile particle, as is shown in the
Figure (cf. [19-21]).

Depending on the ratio between Ryp and a4p, par-
ticle migration can be considered in the continuum
mode if Rap > aap or in the free molecular mode
if Rap < aap, with different results for the collision
rate (cf. [19-21]).
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oVo = FR%BLIAB

A

aAB

Schematic representation of the swept zone

3.1. Continuum mode, ag,ap K Rap < TA,TB

During the time step 6t > 7y, the mobile particle
makes many jumps, k = 6t/79 > 1, in random direc-
tions, but the total swept zone volume 6V, which deter-
mines the probability of a two-particle collision in §t,
is smaller than kéVy = 6Vydt /79, owing to a significant
overlap of the swept zone segments for aap < Rap.
This limit corresponds to the continuum mode of the ki-
netic regime, characterized by a random spatial distri-
bution of particles (quickly reinstated during the time
step). Under this basic condition, the probability to
sweep a B particle in the unit time is (6V/dt)np if there
are np randomly distributed B particles per unit vol-
ume. Therefore, if there are n4 A particles randomly
distributed per unit volume, then the number of colli-
sions (0V/dt)nanp between A and B particles in the
unit time is smaller than §Vonang /.

To calculate the volume 0V swept in time 0t, we
uniformly (randomly) fill the space with auxiliary (fic-
titious) point-like immobile particles (“markers”) of ra-
dius R, — 0 with a relatively high concentration n, >
> R,%. To facilitate adequate resolution of a fine
structure of the swept zone (with the characteristic
length asp <« Rap), the marker concentration n, must
additionally obey the condition that the number 6N£0)
of markers swept during one jump is large, 5N,£0)
= WR%BaABn* > 1, or n, K (WRiBaAB)_l. In this
case, the swept volume can be calculated as the to-
tal number J N, of the swept markers divided by their
concentration, §V = 0N, /n..

For the same reasons concerning relative displace-
ments of diffusing particles, the calculation of the
sweeping rate of randomly distributed immobile mark-
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ers by a large particle of a radius R4p migrating with
the diffusivity D 4p is equivalent to the calculation of
the condensation rate of mobile markers migrating with
the diffusivity D 4p in an immobile trap of the radius
Rap (see the Appendix).

Because n, Rz > 1, this problem of condensa-
tion of point-like markers in a large (macroscopic) trap
can be adequately solved in the continuum approach
in [10,22], as explained in Sec. 2.1. In this approach,
the total number of markers swept in time §t is equal

to [11]
4Rup
VotrDap ) '

and the volume swept in unit time is

oV 16N,

ot ot
if the time step is sufficiently large, 6t > 7
~ 16R% z/mDap. The spatial variation of the marker
concentration occurs on the length scale [ that is com-
parable with Rap (see Sec. 2.1), i.e., [ ® Rap. In
accordance with the additional condition of the dif-
fusion equation applicability, aap < [, this result is
valid only in the case a4p <« Rap considered here.
In this case, the number of collisions (§V/§t)nanp be-
tween A and B particles in unit time becomes equal to
4m(D4s + Dp)Rapnang, which yields

ON, = 47D spRABN+ Ot (1 +

=4rDapRaB,

~

I(AB = 47TDABRAB.

(6)

It is straightforward to see that the first restriction on
the time step, 7. > 0t > 74 ~ n_2/3/6D, can be ap-
plied if the mixing condition 7, > 74, or

3 D 3

—_— RJ/_’
47

nl/gRAB < 21 Dy
B

is valid, which is in agreement with n'/*R,p < 1.

The second restriction 6t > 7 &~ 16R% /7D ap can
be applied because 7. > 7, or n'/*R,p < 1/4, which
is practically indistinguishable from the basic condition
n'/3Rsp < 1, within the accuracy of the characteristic
time evaluation.

Therefore, the correct expression for the reaction
rate in Eq. (6), derived in the kinetic regime (by con-
sidering uniform (random) spatial distribution of react-
ing particles) in the case of a relatively small reaction
radius Rap < T4,7p, coincides with the traditional
expression derived in the diffusion regime (by consider-
ing concentration profiles and diffusive currents of par-
ticles), which is valid in the case of a large reaction
radius, T4 <€ Rap < Tp. But this coincidence is ac-
cidental and probably reflects some internal symmetry
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in the considered system of migrating particles in three
dimensions.

This coincidence is violated in the more general case
where the sticking probability for A and B particle
collisions is smaller than unity, Pap < 1; in calculat-
ing the reaction rate constant, the collision frequency
Kap = 4rDspRap is then multiplied by the proba-
bility P4p of the reaction complex formation

I(,IAB =47FDABPABRAB. (6&)
Again, this result is formally similar to predictions of
the traditional approach (which is relevant only in the
particular case of reactions with a large reaction ra-
dius, 74 <€ Rap < Tp) using the radiative boundary
condition for the diffusion flux,

I3 = knili—pup, = A,B,

in the case of incomplete trapping [8,9], with & being
the “intrinsic” (or “microscopic”) rate constant at the
boundary, which, by the definition of the boundary ki-
netics, is independent of the bulk diffusivity D 4p and is
proportional to the boundary area R? 5. Consequently,
the reaction rate constant is calculated as [8, 9]

drDapRaBk
drDapRap + k ’

A1
AB —

(6b)
which, however, coincides with Eq. (6a) only under the
additional assumption that

b drDapRaPaB
B 1—PuB

which is inconsistent with the above definition of the
boundary intrinsic rate constant.

3.2. Free molecular mode, Rap < aas,ap

In the opposite case a4,a4 > Rap, we can ne-
glect the mean relative volume of the overlaps of swept
zone segments (cf. [19-21]). In this approximation,
the volume swept per unit time 6V/dt is a constant
equal to the ratio of the volume swept per one jump
to the jump period, §Vp /79, which can be calculated
in the free molecular approach. Accordingly, the total
swept volume 0V (after k = 0t/79 > 1 jumps) is equal
to koVy = 0Vyot/70, and the number of coalescences
(0V/dt)nanp between A and B particles (of masses m 4
and mp) in unit time is equal to

1%
RARBOT0 nAnBRiB\/SﬂkT(mzl +mp').
To
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Therefore, the kernel Kgfén) in Eq. (1) is equal to
0Vo /70, which coincides with the free molecular expres-
sion

. oVe

K =20 = B [SedT(n7 +m5'). (1)
This case is applicable for the reaction particles sus-
pended in a fluid, when the parameter R p is small
(Rap < aa,ap) but not negligible in comparison with
the mean intermolecular distance of the suspending

fluid (Rap > Tm '3 where ny, is the fluid

~

Nm /
molecule concentration). The last value determines the
minimum distance dr > nfnl/ * between two possible
positions of the particle center, r and r + dr, and thus
allows defining the swept volume (or area) for migrat-
ing particles.

In the intermediate range aap =~ Rap for reac-
tion particles suspended in a fluid, the so-called tran-
sition regime is realized that can be described by an
interpolation expression derived within the new ana-
lytic approach with fitting parameters specified numer-
ically [20, 21].

4. REACTION RATE IN THE
TWO-DIMENSIONAL CASE

Similarly to the three-dimensional case, the prob-
lem of calculating the area sweeping rate 6S/dt by an
effective particle of radius R4p migrating with the dif-
fusivity Dap = Da+ Dy ~ 2D (Where D=Djs~ Dgp
is assumed; cf. Sec. 2.2) in a plane can be prop-
erly reduced to the problem of point markers ran-
domly distributed in the plane with a concentration
n. > (TRap)~2, migrating with the diffusivity Dap
into an immobile trap of the radius Rap [1]. The
marker condensation rate can be calculated using the
well-known analogy with the heat conduction problem
in the cylindrical geometry [32]. As a result, the total
number of markers swept in time ¢ is equal to

47D «Ot
ON, ~ TZABn 5
In(4Dspdt/R% )
if
RZ
—AB St LT K § min [nzl,ngl] ~ Kpn,t
4D ap

(where ng > np is assumed) and dt obeys the dif-
fusion mixing condition 74 < dt. In contrast to the
three-dimensional case, the sweeping rate §5/0t
= n,'(IN./8t) is in this case a function of the time
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step even for very large dt, although this dependence is
weak and can be neglected with logarithmic accuracy.
Indeed, an expression In(2X) can be approximated
as
In(zX)=InX +Inz~InX

if X > 2 >1 (and hence In X > Inz > 0). Therefore,
choosing the time step as R%5/4Dsp < 7 < 6t < 1,
which under the additional condition

7
R% /4D g

Te
>

7

> (8)

can also be represented in the form

ot - 4D sBT
0<ln7<<lnT7<<ln ';BT,
we obtain
4D 4ot 4D ABT ot 4D AT
In 5 =In 5 +In—~1In 5
Rip Rip T Ryp

In this approximation, the sweeping rate can be calcu-
lated as

oS 1 6N, drDyp

6t~ n. Ot  In(4Dap7/R%p)"

The number of collisions (65/6t)nanp between A and
B particles in unit time becomes

()....

which corresponds to

as
ot

N drDspnang
~ In(4DAp7/R%p)’

47TDAB
In(4Dap7/R% )

Kap =~

and hence

1 ln(4DAB7~'/R2AB)
A drDana

e~ K pn

(if na > np is specified).
Substituting this expression for 7. in Eq. (8), we

obtain 1/2
. 4D spT ) RaBTa
7> | In ,
< RQAB 4D s
where 74 ~ (mn4)~'/2; this allows specifying 7 ~

~ 7% /4D ap (owing to (Fa/Rap)®> > In(Ta/Rap)?* if
7a/Rap > 1), which apparently obeys the necessary
condition R 5/4Dsp < 7 < 7.. Eventually, we ob-
tain the reaction rate in the mean-field approximation
as

47TDAB

Kip R ———F—5—,
ln(ri/RiB)

(9)
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~
~

which depends on time implicitly (via T4
(mna(t))~'/?), rather than explicitly as in the
traditional approach.

In the particular case where ng =ng =n (or 74 =
=Tpg =T), 7 practically coincides with 74 ~ 7%/4D sp,
and hence Jt self-consistently obeys the necessary con-

~

dition 74 ~ 7 < 6t. In this case, the reaction rate
reduces to
K, N 47TDAB 47TDAB
PR ) T (R p)

(rather than K p = 47D ap/In(4Dspt/R%g) in the
traditional approach) and eventually results in the so-
lution of the reaction rate equation

1+In(nRk%p)
n

~ 47D apt, (10)
which at large times ¢t > R%z/47Dap (before
crossover to the asymptotic behavior as ¢ — oo, dis-
cussed in Sec. 2.3), is close to the traditional solution

"~ ln(4DABt/R1243)
T 4xDupt

But in the case n4 > np, the situation changes cri-
tically. In this case, the initial relation n.4(0) > ng(0)
unavoidably becomes n4(t) > np(t), or F4(t) € Fp(t)
at large times, and the solution of the reaction rate
equation (at t > [Kap(na(0) — np(0))]~") results in
an exponential decrease in the concentration,

np(t) < exp(—Ct), (11)

where
21D ap (n4(0) — np(0))

ln(f’A/RAB)

and 74 is the final value of T(t), whose variation
AT A(t) = 74—T4(r) at large times, when AT 4(t) < 74,
is neglected in the expression for C'in Eq. (11) with the
chosen logarithmic accuracy,

C =~

InTa=In(Fa + AT4) & InFa +
+In(1+AF4/74) = Iniy.

The obtained solution in Eq. (11) is much steeper
in comparison with that in the traditional approach
np(t) < exp(—Cit/Int) (see, e.g., [33-35]), and hence
the concentration decay rate np is strongly underesti-
mated at large times in the traditional approach.

This additionally confirms the importance of the
new approach to the calculation of the reaction rate in
two dimensions.

732

5. REACTIONS ON A DISCRETE LATTICE

Particle migrations via random walk over discrete
cubic lattice sites can be considered in two limits,
Rap > a and Ryp < a. In the case of a large reac-
tion radius R4p > a, the problem is properly reduced
to the continuum medium limit considered in Sec. 3.1.
In the opposite case, the reaction radius Rap is as-
sumed to be small in comparison with the lattice spac-
ing (corresponding to the elementary jump distance,
a=ay = ap), and reactions occur when two particles
occupy the same site (see, e. g., [23]). In this case, Rap
is the minimum length scale in the problem and can be
excluded from consideration. This situation is quali-
tatively different from the free molecular regime (for
reaction particles suspended in a fluid) considered in
Sec. 3.2, where Rap was also a small (Rap < aa,ap)
but nonnegligible parameter (Rap > Ty nfnl/ 3,
where n,, is the fluid molecule concentration), which
allowed calculating the swept volume for migrating par-
ticles.

We start at ¢ = 0 with randomly distributed A and
B particles on discrete cubic lattice sites, with mean
concentrations n4 and ng; na, pa® < 1. Each particle
moves by jumps to nearest-neighbor sites with the jump
frequencies TZl and 75 ! thus all particles perform in-
dependent random walks, with the associated diffusion
coefficients D4 p = a®/674 5. Again, we assume that
n=ny >npgand Dy ~ Dg =D (cf. Sec. 2.2).

Similarly to the continuum limit considered above,
reactions between A and B particles induce local
heterogeneities in the particle spatial distribution on
the length scale of the mean interparticle distance
Fa ~ n Y3 > a. But such heterogeneities quickly
disappear owing to rapid diffusion mixing of particles
on the length scale of their mean interparticle distance
T4 with the characteristic time 74 ~ 7%/6D, which
is generally much shorter than the characteristic time
Te (KABn)_1 of the particle concentration varia-
tion, 74 < 7.. With a time step 7y < 0t < 7. cho-
sen for the calculation of the reaction rate, this allows
considering a random distribution of particles attained
in 0t (owing to 74 < dt) and neglecting variation of
the mean concentrations n4 and npg in 6t (owing to
0t € 70 = min[Tc(A), TC(B)]).

In this case (corresponding to the kinetic regime),
the spatial distributions of the particle centers
na,p(r,t) can be considered homogeneous functions
characterized by their mean concentrations na g(t),

~

~

i.e.,, nap(r,t) = na p(t), slowly varying with time
owing to particle collisions (reactions). Accordingly,
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the collision probability is also a spatially uniform
function.

This problem can be readily reduced to the calcu-
lation of the collision probability between two parti-
cles randomly located in the unit volume, one of which
is immobile (say, particle B) and the other (particle
A) is mobile, migrating with the effective diffusivity
Dap=Da+ Dp.

This approach can be further extended to include
spatial heterogeneities in the ensemble of A and B
particles if these heterogeneities are smooth on the
length scale of the diffusion equation applicability,
[ > nZ}éS > Rup, with the reaction constant calcu-
lated in the kinetic regime, similarly to the continuum
medium consideration.

But there is also an important difference from the
continuum limit. Indeed, in that limit, the probabil-
ity of the two-particle collision in §t was calculated as
the mean volume swept by the mobile particle (of the
radius Rap and diffusivity D4p). Instead, in the dis-
crete lattice limit, the collision probability in 6t is de-
termined by the mean number of distinct sites visited
by a k-step random walk of the mobile particle (the
so-called random walk range Sy), where

6D 4B
a2

_ Oty
TAB

k = dty,

> 1.

5.1. Reaction rate on a three-dimensional
discrete lattice

In the case of a simple three-dimensional cubic lat-
tice, the mean value of Sy, can be calculated as [36—38]

Sp ~ 0.718 |k + 0.729k/2 + 0(1)] ; (12)

which for the chosen time step
2 =2

a T
6Dap

6Dap <

N T L Oty K Te,

which corresponds to k£ > 1, can be reduced to
Sy~ 0.718k, (12a)
and results in

Kap = a*Sy/0t), ~ 4.3D spa. (13)

In the case of incomplete sticking of reactant particles,

Pap <1, the reaction constant reduces to
K’AB = K’ABPAB ~ 4.3DABCLPAB. (13&)

A result formally similar to Eq. (13) was obtained
in [16] (following [23]). In that approach, the problem

was also reduced to the analysis of collisions between
two particles A and B on discrete lattice sites, but was
based on additional (unjustified) assumptions. Namely,
instead of consideration of the rapid diffusion mixing of
particles (as proposed in the current approach), which
allows rigorous reduction of the multiparticle problem
to two-particle collisions and direct calculation of the
reaction rate constant, an additional ansatz for the re-
action rate constant in the multiparticle system was
used in [16], which eventually resulted in a different
(apparently erroneous) numerical factor in Eq. (13).
Therefore, we can conclude that the currently de-
veloped approach can be generalized to the reaction
kinetics on a three-dimensional lattice, resulting in the
new relation for the reaction rate constant, Eq. (13).

5.2. Reaction rate on a two-dimensional
discrete lattice

The reaction rate for particles A and B migra-
ting via random walks over discrete square lattice sites
(a2 > n = ny > np), when the reaction radius is
small in comparison with the lattice spacing, Rap < a,
can be calculated in a way similar to the three-dimen-
sional approach in Sec. 5.1 using the logarithmic ap-
proximation described in Sec. 4. As a result, an equa-
tion (corresponding to Eq. (13) in the three-dimensio-
nal case) for the reaction rate constant takes the form

Kap = a2§k/5tk, (14)

o)
log k log” k

is the mean number of distinct square lattice sites vis-
ited by a k-step random walk [36-38], k = 0ty /7ap =
= §tx4D ap/a® and, to provide diffusion mixing in time
0ty., the calculation time step is chosen as

where

2 —2

a <« n
4D B

4D B

L Oty L 1o K pn™".

With logarithmic accuracy, we obtain

N 47TDAB
AB log(1/na?)’

(15)

which depends on time implicitly (via n(t)).

At large times in the case ny > npg, this time de-
pendence is weak and can be neglected with the chosen
logarithmic accuracy

47TDAB

Kap v —D0AB_
AB log(1/na?)’

(16)
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where 7 is the final value of n(t), whose variation is
small, An(t) = n(t) — n < 71, and hence

1 1
logn(t)a? ~ log(i + An)a? ~

~— 1
™ log fia? &

N 1
~ log fa?

1+Tn

)

because
log(ia®)™" > 1> log(1 + An/i).

Similarly to the continuum limit in two dimensions
(considered in Sec. 4), the reaction rate constant de-
pends on time implicitly and differs from that calcu-
lated in the traditional approach (with log(Dapt/a?)
instead of log(1/ft/a?) in the denominator of Eq. (16))
and therefore predicts a much higher decay rate 14 p
at large times in comparison with the traditional ap-
proach [16, 23].

5.3. Catalytically activated reactions

The new approach can be extended to the kinetics
of bimolecular, catalytically activated reactions in two
or three dimensions. The elementary reaction act be-
tween reactants takes place only when these meet on
a catalytic site (CS); such sites are assumed to be im-
mobile and randomly distributed in space with a mean
concentration nc.

We start at ¢t = 0 with randomly distributed reac-
tant particles A and B with mean concentrations n 4
and np. Each A (B) particle migrates by jumps to
nearest-neighbor sites with the associated diffusivity
D4 (Dp). Whenever an A particle lands on a catalytic
site that is already occupied by a particle B, the two
particles react with a sticking probability Pap < 1.
Reacting particles are immediately removed from the
system, whereas the corresponding CS remains unaf-
fected. On the other hand, particles never react at
noncatalytic sites.

In this case, the effective reaction constant reduces
to

Kapc = Kygne = KapPapnc, (17)

where K/, is derived in Eq. (13a) and n¢ is the pro-
bability that a collision occurs on a CS (owing to the
random distribution of CSs in space).

This expression is obtained in the kinetic ap-
proach and essentially differs from the one obtained
in [39] in the traditional diffusion approach, where (fol-
lowing [12-14]) short-wavelength fluctuations (on the
length scale of the reaction radius, I & Rap), which
are beyond the cut-off limit of the theory (Eq. (5)),
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1> n 13> Rup (cf. Sec. 2.3), are erroneously taken
into account.

6. CONCLUSIONS

The new approach to the diffusion-limited reaction
rate theory [1], based on a similar approach to Brow-
nian coagulation proposed in our papers [19-21], is
refined and developed further. The traditional diffu-
sion approach to irreversible reactions A+B — C that
stipulates that the local reaction rate should be equal
to the diffusive current of particles is critically ana-
lyzed. In particular, it is shown that the diffusion ap-
proach is applicable only in the special case of reactions
with a large reaction radius, 74 < Rap < Tp (where
173 and Tp & n;/g are the mean interparti-
cle distances), corresponding to small A particles and
large B traps, and becomes inapplicable in calculat-
ing the reaction rate in the case Ryp < T4,Tp most
important for reaction kinetics and particularly corre-
sponding to comparable-size (or point-like) particles A
and B. Indeed, point-like particles tend to a homoge-
neous (random) spatial distribution owing to their mi-
gration and mixing on the scale of the mean interpar-
ticle distance, [ ~ T, with the characteristic diffusion

FANRZ

time that is small in comparison with the characteris-
tic reaction time, 7y < 7T.. This implies that particle
collisions occur in the kinetic regime with the reaction
rate calculated as the collision frequency of two parti-
cles (A and B) randomly located in the unit volume.

This approach can be further extended to the
analysis of spatial heterogeneities in the ensemble of
comparable-size A and B particles if these hetero-
geneities are smooth on the length scale of the diffu-
sion equation applicability (for the ensemble of point-
like particles) [ > nz’ll? > Rap, but with the reaction
constant calculated in the kinetic regime.

In the continuum mode of the kinetic regime cor-
responding to a4,ap < Rap, where ay, ap are the
elementary drift distances of particles migrating via
random walks, the calculated reaction rate in three di-
mensions formally (and, in fact, accidentally) coincides
with the expression derived in the traditional approach
(which is relevant only in the particular case of reac-
tions with a large reaction radius, 74 < Rap < Tp).
This formal coincidence apparently explains a reason-
able agreement of the predictions of the kinetic equa-
tion derived in the traditional approach with exper-
imental measurements for three-dimensional reaction
systems.

But in the two-dimensional geometry correspond-
ing to the reactant particle migration constrained to
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a plane, the reaction rate calculated in the traditional
approach as the diffusive current of A particles into
B traps naturally predicts an explicit time dependence
of the reaction rate. On the contrary, in the new ap-
proach, the original multiparticle problem is reduced
(under the mixing condition) to calculation of the area
sweeping rate by migrating particles (of the radius R4 p
and diffusivity D 4p), which depends on time implicitly,
via na(t) (in the base case Rap < T4,T7gB). As aresult,
in the case ny # np, the traditional approach notably
underestimates the concentration decay rate n4,p at
large times in comparison with predictions of the new
approach.

In the opposite case ax,ap > Rap (for reacting
particles suspended in a fluid), the reaction rate can be
calculated in the free molecular approach, also in direct
analogy with the Brownian particle coagulation.

The new approach is further generalized to reac-
tion kinetics for particles migrating via random walks
over discrete lattice sites (with the lattice spacing a).
Because the case of a large reaction radius Rap > a
properly reduces to the continuum-medium limit, the
opposite case R4p < a, with reactions occurring when
two particles occupy the same site, was additionally
studied. In the new approach, the original multiparticle
problem is reduced (under the mixing condition) to the
calculation of the mean number of distinct sites visited
by a k-step random walk of the mobile particle, which
for simple three-dimensional and two-dimensional lat-
tices was evaluated in the literature. As a result, new
relations for bimolecular reaction rate constants are de-
rived for three-dimensional or two-dimensional lattices,
whereas the traditional approach preserves the main
deficiencies of the continuum-medium approach (also
in application to catalytically activated reactions).

APPENDIX

We show here that calculating the sweeping rate
of randomly distributed immobile point-like particles
(markers) by a large particle of radius R4p migrating
with a diffusivity D ap is equivalent to calculating the
condensation rate of the mobile markers migrating with
the diffusivity D 4p in the immobile trap of the radius
R 4p. This assertion is important for the derivation of
the collision frequency function in the continuum mode
of the kinetic regime (Sec. 3). Simultaneously, the ap-
plicability limit of the diffusion approach to the cal-
culation of the reaction rate in Sec. 2.1 is additionally
confirmed.

We consider an ensemble of N — oo point-like
particles randomly distributed in a sample of volume
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V' — oo with the mean number concentration n = N/V/
and migrating with the diffusivity D into an immobile
trap particle of radius R. The probability for a point
particle from this ensemble located at ¢t = 0 at a dis-
tance r from the trap particle to reach the trap in time
t is denoted by w(r,t). The integral of this probability
over all point-like particles determines the total num-
ber of point-like particles trapped in the time interval
between 0 to t,

o0

/nw(r,t) d*r = 47m/w(r, t)yr2dr, (A.1)

R

D,,(t)

in accordance with the Fokker—Planck approach to par-
ticle migration ([40], see also [11]).

Correspondingly, the number of point particles
trapped in the time interval between t and t + dt is
equal to

oo

/

R

don ot = 4mnodt % r2dr,

dt

which determines the condensation rate of point parti-
cles in the trap

d®,,
Uy = ——

oo
I ot = 47m5t/ % r2dr. (A.2)
R

It is important that Eq. (A.1) was derived under an
implicit assumption that the number of particles in the
volume 4mr2dr is large, i.e., N, = n - 47r2dr > 1, or
n - 4xr3(dr/r) > 1; only in this case we can neglect
fluctuations of the number of particles in this volume,
V{(0N,)?) < N,., which allows the subsequent calcu-
lation of the total number of trapped particles [11]. In
particular, this inequality should be valid at r = R,
which gives n - 47R3*(dr/R) > 1, whereas dr/R <
< 1 (in order to correctly perform the integration),
or 4rdr/R < 1. Therefore, the necessary condition
for the correct calculation of the particle condensation
rate is nR® > 1, which coincides with the condition of
the diffusion approach applicability derived in Sec. 2.1.
This implies that these calculations, being applicable
to the condensation of small particles in a large trap,
become invalid in the case of a small trap (comparable
with the size of the particles).

If there is only one point-like particle randomly lo-
cated in the sample (of volume V' — 0), it can be
found with the probability V~'d3r in the elementary
volume d3r at each point r, and therefore the probabil-
ity for this particle to reach the trap in time ¢ can be
calculated as
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o(t) = [ V rw(r, t)dmr?dr. (A.3)
[

The probability to reach the trap in 6t is therefore equal
to

d®

dt

9
ot

/ w(r,t)ridr,

R

47
= __ A4
ot v ot (A.4)

or, from comparison of Eq. (A.4) with Eq. (A.2),

%
dt

1 dd,
ot = - P gy

- nV dt (A.5)

On the other hand, this last probability is equal to
the probability for a sole immobile point particle ran-
domly located in the sample to be swept in time §t by
the trap particle migrating with the diffusivity D. In-
deed, as explained in Sec. 3, the relative displacements
between two particles describing diffusion motions in-
dependently of each other and with the diffusion co-
efficients D; and D5y also follow the law of diffusion
motion with the diffusion coefficient Dy + D> [10, 22].
In this approximation, the probability of sweeping the
sole point particle in time ¢ by the trap particle mi-
grating with the diffusivity D is equal to V16V, where
0V is the volume swept in 6t. Equating this probability
to Eq. (A.5), we obtain

§V/5t = n~td®,/dt. (A.6)
If there are N = nV immobile point-like particles ran-
domly distributed in the sample, then the total number
of particles swept in 0t is

noV/ot = d®, /dt = vy, (A7)

with v, from Eq. (A.2).

Therefore, the condensation rate v, of point-like
particles migrating with a diffusivity D in the immo-
bile trap particle of radius R is equal to the rate of
sweeping of immobile point-like particles by the trap
particle migrating with the diffusivity D.

The author thanks V. V. Lebedev (Landau Institute
for Theoretical Physics, Moscow) for the valuable dis-
cussion of the obtained results. L. A. Bolshov (IBRAE)
is acknowledged for his interest in and support of this
work.
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