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DEVELOPMENT OF THE NEW APPROACH TO THEDIFFUSION-LIMITED REACTION RATE THEORYM. S. Vesh
hunov *Nu
lear Safety Institute (IBRAE), Russian A
ademy of S
ien
es115191, Mos
ow, RussiaMos
ow Institute of Physi
s and Te
hnology (State University)141700, Dolgoprudny, Mos
ow Region, RussiaRe
eived July 20, 2011The new approa
h to the di�usion-limited rea
tion rate theory, re
ently proposed by the author, is furtherdeveloped on the base of a similar approa
h to Brownian 
oagulation. The traditional di�usion approa
h to
al
ulation of the rea
tion rate is 
riti
ally analyzed. In parti
ular, it is shown that the traditional approa
h isappli
able only in the spe
ial 
ase of rea
tions with a large rea
tion radius, rA � RAB � rB (where rA andrB are the mean inter-parti
le distan
es), and be
omes inappropriate in 
al
ulating the rea
tion rate in the 
aseof a relatively small rea
tion radius, RAB � rA; rB . In the latter 
ase, most important for 
hemi
al rea
tions,parti
le 
ollisions o

ur not in the di�usion regime but mainly in the kineti
 regime 
hara
terized by homoge-neous (random) spatial distribution of parti
les on the length s
ale of the mean inter-parti
le distan
e. The
al
ulated rea
tion rate for a small rea
tion radius in three dimensions formally (and fortuitously) 
oin
ides withthe expression derived in the traditional approa
h for rea
tions with a large rea
tion radius, but notably deviatesat large times from the traditional result in the planar two-dimensional geometry. In appli
ation to rea
tions ondis
rete latti
e sites, new relations for the rea
tion rate 
onstants are derived for both three-dimensional andtwo-dimensional latti
es.1. INTRODUCTIONWe re�ne and further develop the new approa
h tothe di�usion-limited rea
tion rate theory proposed inour paper [1℄.For many 
hemi
al pro
esses, the rea
tion pro
eedsfrom a rea
tion 
omplex formed by 
ollision of two ormore rea
tants. Ea
h rea
tion rate 
oe�
ient K hasa temperature dependen
e, whi
h is usually given bythe Arrhenius equation K = K0 exp(�Ea=kT ), wherethe pre-exponential fa
tor K0 determines the 
ollisionfrequen
y of rea
ting spe
ies and the exponential fa
-tor determines the number of 
ollisions with the energygreater than the a
tivation energy Ea of the 
omplex(i. e., 
orresponds to the sti
king probability of 
olli-sions).Di�usion-limited (or di�usion-
ontrolled) rea
tionsare rea
tions in whi
h 
ollisions of the rea
tants (deter-mining the pre-exponential fa
torK0) are 
ontrolled bytheir di�usion migration in suspending solvent (rather*E-mail: vms�ibrae.a
.ru

than by free-mole
ule 
ollisions typi
al for mole
ularrea
tions in gas mixtures). Di�usion-limited rea
tionsbetween two di�erent spe
ies A and B (A + B ! C,where C does not a�e
t the rea
tion) show up in avast number of appli
ations in
luding not only 
hemi-
al (see, e. g., [2℄) but also biologi
al (e. g., [3�5℄) ande
ologi
al (e. g., [6℄) pro
esses that have been studiedover many de
ades. This may also apply to the rea
tionof va
an
ies and interstitials (V + I ! 0), and annihi-lation in 
rystals [7℄ produ
ed by means of high-energyparti
les or ele
trons.A method for 
al
ulating the rea
tion rate of re-a
tion partners migrating via three-dimensional di�u-sion was developed in [8; 9℄ by generalizing the Smolu-
howski theory for 
oagulation of 
olloids [10℄. In thismethod, the radius of the a
tivated 
omplex (or the�rea
tion radius�) 
orresponds to the �in�uen
e-sphereradius� in the Smolu
howski theory (roughly equal tothe sum of the radii of two 
olliding Brownian parti-
les, R12 � R1+R2), whi
h in the 
ontinuum approa
his assumed to be large in 
omparison with elementarydrift (or jump) distan
es a1;2 of parti
les migrating via723 7*
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hunov ÆÝÒÔ, òîì 141, âûï. 4, 2012random walks, R12 � a1; a2. In the opposite limit
ase, R12 � a1; a2, the 
ontinuum di�usion approa
his not anymore valid, and therefore the so-
alled �free-mole
ule� (or �ballisti
�) approximation 
an be used for
olliding Brownian parti
les [11℄. This approa
h is ageneralization of the 
lassi
al 
onsideration of bimole
-ular 
ollisions in gas mixtures within the Boltzmanngas-kineti
 theory.In formulating a rea
tion�di�usion model, a d-di-mensional Eu
lidean spa
e on whi
h A and B parti
lesat initial mean 
on
entrations (number of parti
les perunit volume) nA and nB di�use freely is usually 
on-sidered in the 
ontinuum approa
h (see, e. g., [12�14℄).In this approa
h, the rea
tant parti
les are representedas points or spheres undergoing spatially 
ontinuousBrownian motion, with 
hemi
al rea
tions A+ B! Co

urring instantly when the parti
les pass within aspe
i�ed rea
tion radius RAB between their 
entres.The 
ontinuum approa
h was further applied todi�usion-limited rea
tions in one and two dimensions(see, e. g., [15; 16℄); the latter 
ase also has wideappli
ations in the membrane biology (see a reviewin [17℄). The di�usion-limited bimole
ular rea
tionsbetween mobile va
an
ies and interstitials in stronglyanisotropi
 
rystals in the 
ase where the mobile spe
iesis 
onstrained to migrate in one plane only may also bewell approximated over a wide range of the rea
tion bya two-dimensional se
ond-order rate equation [18℄.In this approa
h, the same short
omings of theBrownian 
oagulation theory that were re
ently 
rit-i
ally analyzed in our papers [19�21℄ are generallyinherited by the di�usion-limited rea
tion rate mod-els. Namely, it was shown that the di�usion approa
h[10; 22℄ to the 
al
ulation of the 
ollision rate fun
tion,based on the assumption that the lo
al 
ollision rate isequal to the di�usive 
urrent of parti
les, is appli
ableonly in the spe
ial 
ase of 
oales
en
e between largeand small Brownian parti
les, R1 � r � R2 (wherer � n�1=3 is the mean interparti
le distan
e), and be-
omes inappli
able to the 
al
ulation of the 
oales
en
erate for parti
les of 
omparable sizes, R1; R2 � r.In the latter, more general 
ase of 
omparable-size parti
les, 
oales
en
es o

ur mainly in the kineti
regime (rather than in the di�usion one) 
hara
ter-ized by a homogeneous (random) spatial distributionof parti
les (rather than by their 
on
entration pro�les)[19�21℄. This kineti
 regime is realized in virtually theentire range of parti
le 
on
entrations obeying the ba-si
 (�dilution�) assumption of the theory, R=r � 1, and
an be subdivided into di�erent modes (
ontinuum, freemole
ular, and transient).In the 
ontinuum mode of the kineti
 regime,

R12 � a1; a2, the formal expression for the 
ollisionfrequen
y of parti
les (of 
omparable sizes) 
oin
ides(in fa
t, fortuitously) with that derived in [10; 22℄ forthe di�usion regime (being relevant only in the par-ti
ular 
ase of 
oales
en
e of large parti
les with smallones). This formal 
oin
iden
e apparently explains whythe traditional approa
h 
orre
tly des
ribes numerousexperimental measurements of the 
oagulation rate ofBrownian parti
les.The new approa
h developed in [19�21℄ is also appli-
able in the 
ase of di�usion-limited rea
tion kineti
sin 
ontinuum media [1℄, if the 
hara
teristi
 rea
tiondistan
e RAB for the A $ B 
omplex formation (i. e.,the rea
tion radius) is small in 
omparison with themean interparti
les distan
es, RAB � rA; rB , whererA � n�1=3A and rB � n�1=3B (see Se
. 2), whi
h parti
u-larly 
orresponds to rea
tions between 
omparable-sizeparti
les (i. e., the most important 
ase). This range
an be subdivided into two intervals of the model pa-rameters, RAB � aA; aB and RAB � aA; aB , 
orre-sponding to di�erent modes (
ontinuum and free mole
-ular) of the kineti
 regime. For the 
ontinuum mode,RAB � aA; aB , the rea
tion rate 
al
ulated in the newapproa
h in the three-dimensional 
ase (see Se
. 3.1)formally (and, again, fortuitously) 
oin
ides with thetraditional result, valid only for rea
tions with a largerea
tion radius, rA � RAB � rB . But in the two-dimensional 
ase, the traditional approa
h leads to 
on-siderable deviations of the rea
tion de
ay nA;B(t) atlarge times t from that 
al
ulated in the new approa
hin the base 
ase aA; aB � RAB � rA; rB (see Se
. 4).In the 
ase RAB � aA; aB , the free mole
ular (orballisti
) regime is realized. This 
ase 
an be 
onsideredsimilarly to the Brownian parti
les 
oagulation problemin the 
orresponding regime, as well as the 
ase of thetransition regime, RAB � aA; aB (Se
. 3.2).The new approa
h 
an be further generalized to
onsideration of rea
tion kineti
s for parti
les migra-ting via random walks on dis
rete latti
e sites (with alatti
e spa
ing a). Be
ause the 
ase of a large rea
tionradius RAB � a is properly redu
ed to the 
ontinuummedium limit, the opposite 
ase RAB < a, with rea
-tions o

urring when two parti
les o

upy the same site(see, e. g., [23℄), is of most 
on
ern. We show in Se
. 5that the traditional approa
h [16; 23℄ to 
onsiderationof this important 
ase preserves the main de�
ien
ies ofthe 
ontinuum medium approa
h and therefore resultsin erroneous predi
tions for the rea
tion kineti
s (evenin three dimensions). For this reason, new relationsfor the rea
tion rate 
onstants are derived for three-dimensional (Se
. 5.1) and two-dimensional (Se
. 5.2)latti
es. The dis
repan
y between the new and tra-724
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h : : :ditional approa
h predi
tions in
reases further when amore 
ompli
ated 
ase of 
atalyti
ally a
tivated rea
-tions is 
onsidered (Se
. 5.3). The main results aresummarized in Se
. 6.2. RATE EQUATIONSIn the approximation R=r � 1, only pairwise 
ol-lisions of parti
les during their di�usion migration 
anbe taken into 
onsideration, and 
ollisions that o

uramong any 
ombinations 
onsisting of more than twoparti
les 
an be ignored.In the rate theory for a 
ontinuous distribution ofparti
les N(r) dR, the number of parti
les of a radiusR to R + dR per unit volume, under the assump-tion that 
ollided parti
les of radii R1 and R2 imme-diately 
oales
e to form a new parti
le of the radius(R31 + R32)1=3, the Smolu
howski 
oagulation equationtakes the form [10℄�N (R; t)�t = 12 1Z0 1Z0 N(R1; t)N(R2; t)�� Æ hR� �R31 +R32�1=3i�(R1; R2) dR1dR2 ��N(R; t) 1Z0 N(R1; t)�(R;R1) dR1; (1)where �(R1; R2) is the 
ollision frequen
y fun
tion,whi
h, being de�ned as the 
ollision frequen
y betweentwo parti
les randomly lo
ated in the unit volume, doesnot depend on time expli
itly. Therefore, �N(R; t)=�tshould be 
al
ulated from the analysis of pairwise 
ol-lisions during a time step Æt relatively short for thevariation in the 
on
entration densities N(R1; t) andN(R2; t) to be negle
ted, on the one hand, and longenough for �(R1; R2) to attain the steady state value,on the other hand.For the kineti
s of an irreversible rea
tion A+B!! C (where C does not a�e
t the rea
tion) in the mean-�eld approximation, Eq. (1) applied to the two-size (RAand RB) parti
le distribution fun
tion redu
es todnAdt = dnBdt = �KABnA(t)nB(t); (2)where nA and nB are the mean 
on
entrations of therea
ting A and B parti
les andKAB = �(R1; R2)Æ(R1 �RA)Æ(R2 �RB)is the rate fun
tion (or rea
tion 
onstant) dire
tly 
or-responding to the 
ollision frequen
y fun
tion � for two

parti
les of di�erent types (A and B). In a

ordan
ewith the Smolu
howski rate theory, KAB is de�ned asthe 
ollision frequen
y of two parti
les randomly lo-
ated in the unit volume, and it should therefore beregarded as a quantity expli
itly independent of time.In a self-
onsistent approa
h, the rea
tion rate dnA=dtshould be 
al
ulated with the time step dt 
hosen shortenough to negle
t variation of the mean 
on
entrationsnA and nB in the interval dt, and long enough for asteady state value ofKAB(dt) � 
onst = KAB to set in.This is an important di�eren
e from the traditional mo-dels of di�usion-limited rea
tion kineti
s (even thoughthey are often 
alled the Smolu
howski-type models),where, under the assumption that the lo
al rea
tionrate is equal to the di�usive 
urrent of parti
les, the �ef-fe
tive� rea
tion rate is 
al
ulated as an expli
it time-dependent fun
tion KAB(t) (rather than KAB(dt) inthe Smolu
howski theory).Similarly to the analyses of the 
oagulation prob-lem in [19�21℄, we show below that this di�eren
eis 
onne
ted to unjusti�ed appli
ation of the dif-fusion approa
h to the 
al
ulation of the e�e
tiverea
tion rate (as the di�usive 
urrent of parti
les)for parti
les with a relatively small rea
tion radius,RAB � rA; rB , whi
h be
omes espe
ially 
riti
al inthe two-dimensional 
ase. Su
h an approa
h is valid inthe 
ase of small parti
les A di�using into large 
ir
u-lar traps B (so-
alled agglomeration), rA � RAB � rB(with a time-dependent K(t) properly entering the ag-glomeration rate equation), but it fails in the base
ase RAB � rA; rB (
orresponding, in parti
ular, to
omparable-size parti
les, RA � RB � rA; rB).2.1. Appli
ability of the di�usion approa
h toparti
le 
ollisionsThe di�usion equation for an ensemble of parti-
les is derived (similarly to the 
onsideration of otherrelaxation pro
esses in weakly inhomogeneous �uids,su
h as the heat transfer or vis
ous �ow) in the quasi-equilibrium approximation. In this approximation, theparti
le distribution fun
tion is assumed to be in lo-
al thermodynami
 equilibrium, smoothly varying inspa
e and in time following smooth variations of the�uid ma
ros
opi
 parameters (e. g., the temperature,pressure, 
on
entration, and velo
ity). In the 
ase ofthe mass transfer problem (i. e., the di�usion equation),the varying ma
ros
opi
 parameter is the number 
on-
entration of parti
les, n(r; t).Regarding n(r; t) as a ma
ros
opi
 value (i. e., as-suming its thermodynami
 �u
tuations to be small in
omparison with its value, ph(Æn)2i � n) is valid725
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hunov ÆÝÒÔ, òîì 141, âûï. 4, 2012only if the size of the elementary volume Æ ~V = L3with respe
t to whi
h n(r) is de�ned is large enoughin 
omparison with the lo
al interparti
le distan
e,L � n�1=3(r), whi
h in turn must ex
eed the mini-mum interparti
le distan
e equal to the parti
le size,n�1=3(r) � 2R. For this reason, only heterogeneitiesof the parti
le spatial distribution on the length s
aleof l � L � n�1=3 � R 
an be adequately 
onsideredin the 
ontinuous di�usion approa
h, under the addi-tional 
ondition a� l for the elementary drift distan
e(see, e. g., [19�21℄).In the 
ase where identi
al parti
les (e. g., of type Awith a radius RA) are randomly distributed through-out a medium of in�nite extent with the mean bulk
on
entration nA that obeys the dilution 
onditionnAR3A � 1, the parti
les 
an be 
onsidered as pointobje
ts (RA � rA, where rA � n�1=3A is the mean in-terparti
les distan
e), whi
h, in a

ordan
e with thedi�usion equation for an ensemble of point-like parti-
les, tend to relax with time to a homogeneous spatialdistribution.The situation 
hanges 
riti
ally in the 
ase where agroup of B-type traps with a relatively large �in�uen
e-sphere�, or the rea
tion radius RAB � RA (with A-par-ti
les) and the 
on
entration nB (obeying nBR3AB � 1)appears in the ensemble of A-parti
les. B-type traps
annot be treated as point-like obje
ts if nAR3AB � 1.In this 
ase, traps should be 
onsidered ma
ros
opi
with respe
t to A-parti
les, be
ause the rea
tion ra-dius RAB is mu
h larger than the mean interparti
ledistan
e rA � n�1=3A , and just for this reason addi-tional (absorbing) boundary 
onditions for di�usion ofA-parti
les emerges on traps surfa
es. The hetero-geneities in the spatial distribution of A-parti
les in-du
ed by these boundary 
onditions do not tend to dis-appear with time, as they do in the previous 
ase (with-out traps), and the steady-state 
on
entration pro�lesof A-parti
les around ma
ros
opi
 trap 
entersnA(r) = nA(RAB) + (nA � nA(RAB))�1� RABr �are attained at t� R2AB=�DA [22℄. The di�usion �uxof A-parti
les in this 
on
entration pro�le 
al
ulated atthe rea
tion radius isJdif = 4�DARAB (nA � nA(RAB)) � 4�DARABnAif nA(RAB) � nA � nA; it determines the a

umula-tion rate of A-parti
les in a B-trap, and, in a

ordan
ewith [10; 22℄, the 
ollision frequen
y fun
tion betweenA and B parti
les, taking migration of traps with thedi�usivity DB into 
onsideration, eventually takes theform

K(dif)AB = 4�DABRAB ; (3)where DAB = DA +DB .To establish the appli
ability range of this result, wenote that the 
hara
teristi
 size l of the zone around alarge trap in whi
h the A-parti
le 
on
entration variesfrom a value nA(RAB) � nA near the rea
tion sur-fa
e to the value of the same order of magnitude as themean value nA attained at large distan
es from the 
en-ter is 
omparable with RAB , i. e., l � RAB . This size lmust naturally ex
eed the mean distan
e n�1=3A (RAB)between small A-parti
les in the vi
inity of a B-trapsurfa
e, RAB � l � n�1=3A (RAB)� n�1=3A(in order to maintain the 
on
entration pro�le of smallparti
les around the trap), or nAR3AB � 1. This 
ondi-tion logi
ally 
oin
ides with the general requirement forthe appli
ability of the di�usion approximation men-tioned above, l� n�1=3A .This 
ondition 
an be 
on�rmed more rigorouslytaking into 
onsideration that the di�usion �ux at therea
tion surfa
eJdif / �nA�r ����r=RAB � nA(RAB +�r) � nA(RAB)�r
an be properly 
al
ulated only under the assumptionthat �r � RAB . In the vi
inity of the surfa
e,nA(RAB +�r)� nA(2RAB) � nA=2;and therefore the mean interparti
le distan
e in thiszone 
an be evaluated asr � n�1=3A (RAB +�r)� n�1=3A (2RAB) = (nA=2)�1=3 :On the other hand, it should be small enough tomaintain the 
on
entration pro�le in this spatial range(where the di�usion �ux is 
al
ulated), r � �r �� RAB , or n1=3A RAB � 1.The same 
on
lusion 
an also be derived in theFokker�Plan
k approa
h based on the analysis of theprobability density of migrating Brownian parti
les(see the Appendix).Therefore, the traditional di�usion approa
h, whi
hstipulates that the lo
al rea
tion rate is equal to thedi�usive 
urrent of A-parti
les into the traps (see,e. g., [16℄), is valid only for rea
tions with the largerea
tion radius RAB � rA � n�1=3A .It follows from this analysis that the intrinsi
 rea-son for steady-state heterogeneities in the spatial dis-tribution of small parti
les is 
onne
ted to the addi-tional boundary 
onditions (for the di�usion equation726
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h : : :for these parti
les) indu
ed by ma
ros
opi
 (i. e., larges
ale, RAB � rA) traps. These ma
ros
opi
 boundary
onditions vanish as soon as the rea
tion radius be-
omes small in 
omparison with the mean interparti
ledistan
e (RAB � RA � rA), eliminating the drivingfor
e for the emergen
e of steady-state spatial hetero-geneities.Indeed, in the opposite 
ase RAB � rA; rB , thelimit of point-like parti
les is restored, whi
h is 
har-a
terized by the tenden
y of the system of two-typeparti
les toward a homogeneous spatial distribution (ormixing) owing to their di�usion migration (in the ab-sen
e of ma
ros
opi
 boundaries).2.2. Di�usion mixing 
onditionRea
tions between point-like parti
les indu
e lo
alheterogeneities in the parti
le spatial distribution onthe length s
ale of their mean interparti
le distan
e,whi
h is evaluated as r � n�1=3 if nA = nB = n.But su
h small-s
ale heterogeneities qui
kly disappearowing to rapid di�usion relaxation of parti
les on thelength s
ale of their mean interparti
le distan
e r withthe 
hara
teristi
 time �d � r2=6D (under the sim-plifying assumption that DA � DB = D), whi
h isgenerally mu
h shorter than the 
hara
teristi
 time�
 � (KABn)�1 of the mean 
on
entration varia-tion, �d � �
, as we expli
itly show below in boththree-dimensional and two-dimensional 
ases (in Se
. 3and 5). This allows 
onsidering a random distributionof parti
les attained in the time step �d � Æt � �

hosen for 
al
ulation of the rea
tion rate in Eq. (2).In this 
ase (
orresponding to the kineti
 regime),the spatial distributions of the parti
le 
entersnA;B(r; t) 
an be 
onsidered homogeneous fun
tions
hara
terized by their mean 
on
entrations nAB(t),i. e., nA;B(r; t) = nA;B(t), slowly varying with timeowing to parti
le 
ollisions (rea
tions). A

ordingly,the 
ollision probability is also a spatially uniformfun
tion.In the 
ase nA > nB, whi
h at large times (t �� [KAB(nA(0) � nB(0))℄�1) inevitably turns intonA(t) � nB(t), or rA(t) � rB(t), ea
h parti
le B 
anbe surrounded by a sphere (or a 
ir
le in two dimen-sions) of a radius ~r obeying rA(t) � ~r � rB(t), wherea 
ollision of this parti
le B with one of the surroundingparti
les A (with a given 
on
entration nA(t)) o

urs.Be
ause ~r � rB(t), no other parti
les B 
an be 
on-sidered in this sphere, and therefore homogenization ofthe rea
tion system in Æt (after rea
tions in the previoustime step) is determined by the relaxation (or di�usionmixing) of parti
les A (inside this sphere) on the length

s
ale of their mean interparti
le distan
e rA � n�1=3A ,i. e., by the di�usion time �d � r2A=6D.Apparently, this 
on
lusion is not violated in the
ase DA � DB , but it be
omes invalid in the opposite
ase DA � DB . In this last 
ase, mixing of parti
lesA is in
omplete and hen
e the a

ura
y of the modelpredi
tions de
reases. But be
ause of the sto
hasti

hara
ter of parti
le movement and 
ollisions, lo
al het-erogeneities (�missing parti
les�) indu
ed by rea
tionsbetween parti
les A and B are randomly distributedin spa
e, and therefore the mean 
ollision frequen
y
an still be 
onsidered a spatially uniform fun
tion,but averaged over a larger s
ale. This implies that atleast in the mean-�eld approximation (i. e., in the large-s
ale limit), the 
urrent approa
h 
an be applied withreasonable a

ura
y. In what follows, the 
onditionDA � DB = D is nevertheless assumed for simpli
ityand for a possible generalization of the theory to the
ase of 
on
entration �u
tuations (see Se
. 2.3).The 
hara
teristi
 times of parti
le 
on
entrationvariation are di�erent for parti
les A and B, � (A;B)
 �� (KABnA;B)�1, and hen
e the smaller one must be
hosen in evaluating the time step,Æt� �
 � min h� (A)
 ; � (B)
 i � K�1ABn�1A (if nA > nB):Therefore, assuming that nA � nB for de�niteness (andalso that DA � DB = D) in what follows, we 
an gen-erally represent the mixing 
ondition in the form�d � r2A=6D� Æt� �
 � K�1ABn�1A :2.3. Appli
ability of the rea
tion rate equationAs explained above, the rea
tion 
onstant KAB isde�ned as the 
ollision frequen
y of two point-like par-ti
les (RAB � rA; rB) of di�erent types (A and B)randomly lo
ated in the unit volume. This impliesthat the size of the unit volume Æ ~V = L3 with respe
tto whi
h KAB is de�ned is large in 
omparison withthe minimum distan
e between parti
les of di�erenttypes, L � RAB . In this 
ase, if there are nA par-ti
les of type A and nB parti
les of type B randomlydistributed through a sample of the unit volume, thenumber of 
ollisions between A and B parti
les per unittime (the number that de�nes the rea
tion rate) is givenby KABnAnB .This de�nition of the rea
tion rate 
an be appar-ently extended to the 
ase of spatial heterogeneities (ofsize l) in the distribution of A and B parti
les if theseheterogeneities are smooth on the length s
ale of the(appropriately de�ned) unit volume, l � L � RAB .In this 
ase, the number of 
ollisions in dt between A727
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hunov ÆÝÒÔ, òîì 141, âûï. 4, 2012and B parti
les lo
ated in the unit volume is 
al
ulatedasKABnA(r; t)nB(r; t) dt, resulting in the lo
al balan
eequations for the parti
le numbers:_nA(r; t) = _nB(r; t) = �KABnA(r; t)nB(r; t); (4)where KAB is 
al
ulated in the kineti
 regime, i. e., un-der the assumption of a (lo
ally) homogeneous spatialdistribution of parti
les. For instan
e, in the 
ontin-uum limit in three dimensions, the rea
tion 
onstant inEq. (4) is 
al
ulated asKAB = 4�DABRAB (or K 0AB == 4�DABRABPAB if the sti
king probability PAB issmaller than unity; see Eqs. (6) and (6a) below).Relaxation of spatial �u
tuations in the parti
le dis-tribution 
an be taken into 
onsideration by the addi-tional di�usion term in the right-hand side of Eq. (4),_ni(r; t) = Di�ni(r; t)�KABnA(r; t)nB(r; t);i = A;B; (5)under the 
ondition l � n�1=3 � Ri 
orrespond-ing to the di�usion term de�nition (as explainedabove) 
onsistent with the lo
al 
ollision rate de�nitionl � RAB � Ri.This allows extending the appli
ability of the re-a
tion rate theory beyond the mean-�eld approxima-tion, Eq. (2), but only for �u
tuations with long wave-lengths, l � RAB and l � n�1=3. The results ofthe analysis of Eq. (5) available in the literature [12�14℄, where an independent �intrinsi
� (or �mi
ros
opi
�)rate 
onstant k (entering the radiative boundary 
on-dition for the di�usion �ux J (A;B)dif = knA;Bjr=RAB inthe traditional approa
h [8; 9℄) is used instead of KAB ,demonstrate that the e�e
t of the renormalization of kby 
on
entration �u
tuations, resulting in the e�e
tiverate 
onstant Keff = 4�DABRABk4�DABRAB + k(whi
h redu
es to Keff = 4�DABRAB in the limit ofhigh-rate boundary kineti
s, k !1, 
orresponding to
omplete trapping, nA;B jr=RAB ! 0), o

urs on thelength s
ale of the rea
tion radius, l � RAB , i. e., be-yond the 
ut-o� limit of Eq. (5) for 
omparable-size(or point-like) parti
les, l � n�1=3 � RAB . This ad-ditionally 
on�rms the above 
on
lusion that the re-sults of the traditional approa
h are grounded onlyin the 
ase of rea
tions with a large rea
tion radius,rA � RAB � rB , when short-wavelength �u
tua-tions with rA � l � RAB in the spatial distributionof A parti
les around B parti
les 
an be adequatelydes
ribed by Eq. (5). However, in the opposite 
aserA; rB � RAB , su
h short-wavelength �u
tuations are

beyond the 
ut-o� limit of the theory, and thereforepredi
tions of the di�usion approa
h [12�14℄ fail.Therefore, the mean-�eld approa
h based on Eq. (2)(with the rea
tion 
onstant KAB 
al
ulated in the ki-neti
 approa
h) 
an be generally used as a �rst-orderapproximation. In the next-order approximation, ta-king long-wavelength �u
tuations l � n�1=3 � RABinto 
onsideration in Eq. (5), predi
tions of themean-�eld approa
h may be violated at large timesin the parti
ular 
ase of equal initial 
on
entrations,nA(0) = nB(0). In that 
ase, the asymptoti
 (t ! 1)de
ay nA;B / (Dt)�d=4 (where d < 4 is the dimensionof spa
e) [24; 25℄ be
omes slower 
ompared with pre-di
tions of the mean-�eld theory, valid for intermedi-ate times (nA;B / (4�RDt)�1 in the three-dimensional
ase and nA;B / ln(4Dt=R2)=4�Dt in the two-dimen-sional 
ase; see below).The �
rossover� time from the mean �eld behaviorto the �u
tuation-indu
ed asymptoti
 regimes 
an beestimated from 
omparison of de
ay laws in these twoapproximations as t� / R2=D"2, " = nA;B(0)R3 � 1,i. e., it is inversely proportional to the square of the ini-tial volume fra
tion " of rea
tants, and 
an therefore bevery large in diluted systems [26℄. At this time, the 
on-
entration be
omes very small, nA;B(t�)=nA;B(0) / ",i. e., the mean-�eld approa
h 
orre
tly des
ribes the re-a
tion kineti
s during a large time domain and onlya very small number of a
tive parti
les de
ay via the�u
tuation-indu
ed law. In two-dimensional systems,the 
rossover time is shorter and the number of parti-
les surviving until this time is greater than in threedimensions. For this reason, the 
rossover from the de-penden
es predi
ted by the mean-�eld approximationto the �u
tuation-indu
ed asymptoti
 regimes has beenobserved in two-dimensional numeri
al simulations [25℄and in experiment [27℄.Therefore, the rea
tion kineti
s in this 
ase 
anbe 
al
ulated by additional 
onsideration of long-wavelength �u
tuations in Eq. (5), e. g., by mappingto a �eld theory [28; 29℄ and using the renormalizationgroup methods [30; 31℄. But the rea
tion rate 
on-stant in the master equation of �eld theory 
an be
orre
tly 
al
ulated only in the kineti
 regime (e. g.,KAB = 4�DABRABPAB in the 
ontinuum mode inthree dimensions or by more sophisti
ated expressionsin other 
ases; see Se
s. 3�5), rather than taken as ami
ros
opi
 (intrinsi
) rate 
onstant k (
f. [30℄). Thismight be espe
ially important in the 
ase of 
ompletetrapping, when the mi
ros
opi
 rate 
onstant k tendsto 1, whereas KAB = 4�DABRAB 
al
ulated in the
urrent approa
h is �nite.728



ÆÝÒÔ, òîì 141, âûï. 4, 2012 Development of the new approa
h : : :3. REACTION RATE IN THETHREE-DIMENSIONAL CASEAs explained in Se
. 2.2, in order to 
al
ulatethe rea
tion 
onstant in the kineti
 regime, a timestep Æt relatively large in 
omparison with the dif-fusion relaxation (or mixing) time should be 
hosen,Æt � �d � n�2=3=6D, in order to satisfy the main
ondition of the kineti
 regime for a random (homo-geneous) distribution of rea
ting parti
les (where it isassumed that n = nA � nB and DA � DB = D; 
f.Se
. 2.2). On the other hand, the time step shouldbe small in 
omparison with �
 � (KABn)�1, i. e.,Æt� �
, whi
h allows negle
ting variation of the mean
on
entrations nA and nB in Æt. Besides, some ad-ditional 
ondition for the time step should be valid,Æt � ~� , in order to attain a steady-state value ofKAB(Æt) � 
onst = KAB , where ~� is to be evaluatedbelow.We 
onsider two parti
les of types A and B lo
atedat random in a sample of unit volume. The �rst (�par-ent�) parti
le of type A 
an be surrounded by a spherewith the rea
tion radius RAB . If the se
ond parti
le
enter is lo
ated in this ex
lusion zone, the rea
tiono

urs.As shown in [10, 22℄, the relative displa
ements be-tween two parti
les des
ribing di�usion motions inde-pendently of ea
h other and with the di�usion 
oe�-
ients DA and DB also follow the law of di�usion mo-tion with the di�usion 
oe�
ient DA+DB. Therefore,to 
al
ulate the probability of 
ollisions between thetwo parti
les, we 
an equivalently 
onsider the se
ondparti
le immobile and the �rst one migrating with thee�e
tive di�usion 
oe�
ient DAB = DA +DB � 2D.In this approximation, it is assumed that the e�e
-tive (mobile) parti
le jumps over an elementary dis-tan
e aAB in random dire
tions with the frequen
y�AB = ��10 , obeying the relations for parti
le di�usivityfrom the random walk theory, DAB = a2AB=6�0.As a result of a jump, the ex
lusion zone also re-lo
ates to the distan
e aAB ; this opens the possibilitythat the se
ond (immobile) parti
le with its 
enter lo-
ated in a zone of the volume ÆV0 = �R2ABaAB maybe swept out by the mobile parti
le, as is shown in theFigure (
f. [19�21℄).Depending on the ratio between RAB and aAB , par-ti
le migration 
an be 
onsidered in the 
ontinuummode if RAB � aAB or in the free mole
ular modeif RAB � aAB , with di�erent results for the 
ollisionrate (
f. [19�21℄).

RAB

aAB

δV0 = πR
2

ABaAB

S
hemati
 representation of the swept zone3.1. Continuum mode, aA; aB � RAB � rA; rBDuring the time step Æt � �0, the mobile parti
lemakes many jumps, k = Æt=�0 � 1, in random dire
-tions, but the total swept zone volume ÆV , whi
h deter-mines the probability of a two-parti
le 
ollision in Æt,is smaller than kÆV0 = ÆV0Æt=�0, owing to a signi�
antoverlap of the swept zone segments for aAB � RAB .This limit 
orresponds to the 
ontinuum mode of the ki-neti
 regime, 
hara
terized by a random spatial distri-bution of parti
les (qui
kly reinstated during the timestep). Under this basi
 
ondition, the probability tosweep a B parti
le in the unit time is (ÆV=Æt)nB if thereare nB randomly distributed B parti
les per unit vol-ume. Therefore, if there are nA A parti
les randomlydistributed per unit volume, then the number of 
olli-sions (ÆV=Æt)nAnB between A and B parti
les in theunit time is smaller than ÆV0nAnB=�0.To 
al
ulate the volume ÆV swept in time Æt, weuniformly (randomly) �ll the spa
e with auxiliary (�
-titious) point-like immobile parti
les (�markers�) of ra-dius R� ! 0 with a relatively high 
on
entration n� �� R�3AB . To fa
ilitate adequate resolution of a �nestru
ture of the swept zone (with the 
hara
teristi
length aAB � RAB), the marker 
on
entration n� mustadditionally obey the 
ondition that the number ÆN (0)�of markers swept during one jump is large, ÆN (0)� == �R2ABaABn� � 1, or n� � (�R2ABaAB)�1. In this
ase, the swept volume 
an be 
al
ulated as the to-tal number ÆN� of the swept markers divided by their
on
entration, ÆV = ÆN�=n�.For the same reasons 
on
erning relative displa
e-ments of di�using parti
les, the 
al
ulation of thesweeping rate of randomly distributed immobile mark-729



M. S. Vesh
hunov ÆÝÒÔ, òîì 141, âûï. 4, 2012ers by a large parti
le of a radius RAB migrating withthe di�usivity DAB is equivalent to the 
al
ulation ofthe 
ondensation rate of mobile markers migrating withthe di�usivity DAB in an immobile trap of the radiusRAB (see the Appendix).Be
ause n�R3AB � 1, this problem of 
ondensa-tion of point-like markers in a large (ma
ros
opi
) trap
an be adequately solved in the 
ontinuum approa
hin [10; 22℄, as explained in Se
. 2.1. In this approa
h,the total number of markers swept in time Æt is equalto [11℄ÆN� = 4�DABRABn�Æt�1 + 4RABpÆt�DAB � ;and the volume swept in unit time isÆVÆt = n�1� ÆN�Æt = 4�DABRAB ;if the time step is su�
iently large, Æt � ~� �� 16R2AB=�DAB. The spatial variation of the marker
on
entration o

urs on the length s
ale l that is 
om-parable with RAB (see Se
. 2.1), i. e., l � RAB . Ina

ordan
e with the additional 
ondition of the dif-fusion equation appli
ability, aAB � l, this result isvalid only in the 
ase aAB � RAB 
onsidered here.In this 
ase, the number of 
ollisions (ÆV=Æt)nAnB be-tween A and B parti
les in unit time be
omes equal to4�(DA +DB)RABnAnB , whi
h yieldsKAB = 4�DABRAB : (6)It is straightforward to see that the �rst restri
tion onthe time step, �
 � Æt � �d � n�2=3=6D, 
an be ap-plied if the mixing 
ondition �
 � �d, orn1=3RAB � 32� DDAB � 34� ;is valid, whi
h is in agreement with n1=3RAB � 1.The se
ond restri
tion Æt� ~� � 16R2AB=�DAB 
anbe applied be
ause �
 � ~� , or n1=3RAB � 1=4, whi
his pra
ti
ally indistinguishable from the basi
 
onditionn1=3RAB � 1, within the a

ura
y of the 
hara
teristi
time evaluation.Therefore, the 
orre
t expression for the rea
tionrate in Eq. (6), derived in the kineti
 regime (by 
on-sidering uniform (random) spatial distribution of rea
t-ing parti
les) in the 
ase of a relatively small rea
tionradius RAB � rA; rB , 
oin
ides with the traditionalexpression derived in the di�usion regime (by 
onsider-ing 
on
entration pro�les and di�usive 
urrents of par-ti
les), whi
h is valid in the 
ase of a large rea
tionradius, rA � RAB � rB . But this 
oin
iden
e is a
-
idental and probably re�e
ts some internal symmetry

in the 
onsidered system of migrating parti
les in threedimensions.This 
oin
iden
e is violated in the more general 
asewhere the sti
king probability for A and B parti
le
ollisions is smaller than unity, PAB � 1; in 
al
ulat-ing the rea
tion rate 
onstant, the 
ollision frequen
yKAB = 4�DABRAB is then multiplied by the proba-bility PAB of the rea
tion 
omplex formationK 0AB = 4�DABPABRAB : (6a)Again, this result is formally similar to predi
tions ofthe traditional approa
h (whi
h is relevant only in theparti
ular 
ase of rea
tions with a large rea
tion ra-dius, rA � RAB � rB) using the radiative boundary
ondition for the di�usion �ux,J (i)dif = knijr=RAB ; i = A;B;in the 
ase of in
omplete trapping [8; 9℄, with k beingthe �intrinsi
� (or �mi
ros
opi
�) rate 
onstant at theboundary, whi
h, by the de�nition of the boundary ki-neti
s, is independent of the bulk di�usivityDAB and isproportional to the boundary area R2AB . Consequently,the rea
tion rate 
onstant is 
al
ulated as [8; 9℄K 00AB = 4�DABRABk4�DABRAB + k ; (6b)whi
h, however, 
oin
ides with Eq. (6a) only under theadditional assumption thatk = 4�DABRABPAB1� PAB ;whi
h is in
onsistent with the above de�nition of theboundary intrinsi
 rate 
onstant.3.2. Free mole
ular mode, RAB � aA; aBIn the opposite 
ase aA; aA � RAB , we 
an ne-gle
t the mean relative volume of the overlaps of sweptzone segments (
f. [19�21℄). In this approximation,the volume swept per unit time ÆV=Æt is a 
onstantequal to the ratio of the volume swept per one jumpto the jump period, ÆV0=�0, whi
h 
an be 
al
ulatedin the free mole
ular approa
h. A

ordingly, the totalswept volume ÆV (after k = Æt=�0 � 1 jumps) is equalto kÆV0 = ÆV0Æt=�0, and the number of 
oales
en
es(ÆV=Æt)nAnB between A and B parti
les (of massesmAand mB) in unit time is equal tonAnBÆV0�0 = nAnBR2ABq8�kT (m�1A +m�1B ) :730
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h : : :Therefore, the kernel K(fm)AB in Eq. (1) is equal toÆV0=�0, whi
h 
oin
ides with the free mole
ular expres-sionK(fm)AB = ÆV0�0 = R2ABq8�kT (m�1A +m�1B ) : (7)This 
ase is appli
able for the rea
tion parti
les sus-pended in a �uid, when the parameter RAB is small(RAB � aA; aB) but not negligible in 
omparison withthe mean intermole
ular distan
e of the suspending�uid (RAB � rm � n�1=3m , where nm is the �uidmole
ule 
on
entration). The last value determines theminimum distan
e dr � n�1=3m between two possiblepositions of the parti
le 
enter, r and r+ dr, and thusallows de�ning the swept volume (or area) for migrat-ing parti
les.In the intermediate range aAB � RAB for rea
-tion parti
les suspended in a �uid, the so-
alled tran-sition regime is realized that 
an be des
ribed by aninterpolation expression derived within the new ana-lyti
 approa
h with �tting parameters spe
i�ed numer-i
ally [20; 21℄.4. REACTION RATE IN THETWO-DIMENSIONAL CASESimilarly to the three-dimensional 
ase, the prob-lem of 
al
ulating the area sweeping rate ÆS=Æt by ane�e
tive parti
le of radius RAB migrating with the dif-fusivity DAB = DA+DA � 2D (where D = DA � DBis assumed; 
f. Se
. 2.2) in a plane 
an be prop-erly redu
ed to the problem of point markers ran-domly distributed in the plane with a 
on
entrationn� � (�RAB)�2, migrating with the di�usivity DABinto an immobile trap of the radius RAB [1℄. Themarker 
ondensation rate 
an be 
al
ulated using thewell-known analogy with the heat 
ondu
tion problemin the 
ylindri
al geometry [32℄. As a result, the totalnumber of markers swept in time Æt is equal toÆN� � 4�DABn�Ætln(4DABÆt=R2AB)if R2AB4DAB � Æt� �
 � K�1AB min �n�1A ; n�1B � � K�1ABn�1A(where nA � nB is assumed) and Æt obeys the dif-fusion mixing 
ondition �d � Æt. In 
ontrast to thethree-dimensional 
ase, the sweeping rate ÆS=Æt == n�1� (ÆN�=Æt) is in this 
ase a fun
tion of the time

step even for very large Æt, although this dependen
e isweak and 
an be negle
ted with logarithmi
 a

ura
y.Indeed, an expression ln(xX) 
an be approximatedas ln(xX) = lnX + lnx � lnXif X � x � 1 (and hen
e lnX � lnx � 0). Therefore,
hoosing the time step as R2AB=4DAB � ~� � Æt� �
,whi
h under the additional 
ondition~�R2AB=4DAB � �
~� ; (8)
an also be represented in the form0 < ln Æt~� � ln �
~� � ln 4DAB~�R2AB ;we obtainln 4DABÆtR2AB = ln 4DAB~�R2AB + ln Æt~� � ln 4DAB~�R2AB :In this approximation, the sweeping rate 
an be 
al
u-lated as ÆSÆt = 1n� ÆN�Æt � 4�DABln(4DAB~�=R2AB) :The number of 
ollisions (ÆS=Æt)nAnB between A andB parti
les in unit time be
omes��S�t �nAnB � 4�DABnAnBln(4DAB~�=R2AB) ;whi
h 
orresponds toKAB � 4�DABln(4DAB~�=R2AB)and hen
e�
 � K�1ABn�1A � ln(4DAB~�=R2AB)4�DABnA(if nA � nB is spe
i�ed).Substituting this expression for �
 in Eq. (8), weobtain ~� � �ln 4DAB~�R2AB �1=2 RABrA4DAB ;where rA � (�nA)�1=2; this allows spe
ifying ~� �� r2A=4DAB (owing to (rA=RAB)2 � ln(rA=RAB)2 ifrA=RAB � 1), whi
h apparently obeys the ne
essary
ondition R2AB=4DAB � ~� � �
. Eventually, we ob-tain the rea
tion rate in the mean-�eld approximationas KAB � 4�DABln(r2A=R2AB) ; (9)731



M. S. Vesh
hunov ÆÝÒÔ, òîì 141, âûï. 4, 2012whi
h depends on time impli
itly (via rA �� (�nA(t))�1=2), rather than expli
itly as in thetraditional approa
h.In the parti
ular 
ase where nA = nB = n (or rA == rB = r), ~� pra
ti
ally 
oin
ides with �d � r2=4DAB,and hen
e Æt self-
onsistently obeys the ne
essary 
on-dition �d � ~� � Æt. In this 
ase, the rea
tion rateredu
es toKAB � 4�DABln(r2=R2AB) � � 4�DABln(nR2AB)(rather than KAB = 4�DAB= ln(4DABt=R2AB) in thetraditional approa
h) and eventually results in the so-lution of the rea
tion rate equation1 + ln(nR2AB)n � 4�DABt; (10)whi
h at large times t � R2AB=4�DAB (before
rossover to the asymptoti
 behavior as t ! 1, dis-
ussed in Se
. 2.3), is 
lose to the traditional solutionn � ln(4DABt=R2AB)4�DABt :But in the 
ase nA > nB , the situation 
hanges 
ri-ti
ally. In this 
ase, the initial relation nA(0) > nB(0)unavoidably be
omes nA(t)� nB(t), or rA(t)� rB(t)at large times, and the solution of the rea
tion rateequation (at t � [KAB(nA(0) � nB(0))℄�1) results inan exponential de
rease in the 
on
entration,nB(t) / exp(�Ct); (11)where C � 2�DAB (nA(0)� nB(0))ln(~rA=RAB)and ~rA is the �nal value of rA(t), whose variation�rA(t) = ~rA�rA(r) at large times, when�rA(t)� ~rA,is negle
ted in the expression for C in Eq. (11) with the
hosen logarithmi
 a

ura
y,ln rA = ln (~rA +�rA) � ln ~rA ++ ln (1 +�rA=~rA) � ln ~rA:The obtained solution in Eq. (11) is mu
h steeperin 
omparison with that in the traditional approa
hnB(t) / exp(�C1t= ln t) (see, e. g., [33�35℄), and hen
ethe 
on
entration de
ay rate _nB is strongly underesti-mated at large times in the traditional approa
h.This additionally 
on�rms the importan
e of thenew approa
h to the 
al
ulation of the rea
tion rate intwo dimensions.

5. REACTIONS ON A DISCRETE LATTICEParti
le migrations via random walk over dis
rete
ubi
 latti
e sites 
an be 
onsidered in two limits,RAB � a and RAB < a. In the 
ase of a large rea
-tion radius RAB � a, the problem is properly redu
edto the 
ontinuum medium limit 
onsidered in Se
. 3.1.In the opposite 
ase, the rea
tion radius RAB is as-sumed to be small in 
omparison with the latti
e spa
-ing (
orresponding to the elementary jump distan
e,a = aA = aB), and rea
tions o

ur when two parti
leso

upy the same site (see, e. g., [23℄). In this 
ase, RABis the minimum length s
ale in the problem and 
an beex
luded from 
onsideration. This situation is quali-tatively di�erent from the free mole
ular regime (forrea
tion parti
les suspended in a �uid) 
onsidered inSe
. 3.2, where RAB was also a small (RAB � aA; aB)but nonnegligible parameter (RAB � rm � n�1=3m ,where nm is the �uid mole
ule 
on
entration), whi
hallowed 
al
ulating the swept volume for migrating par-ti
les.We start at t = 0 with randomly distributed A andB parti
les on dis
rete 
ubi
 latti
e sites, with mean
on
entrations nA and nB ; nA;Ba3 � 1. Ea
h parti
lemoves by jumps to nearest-neighbor sites with the jumpfrequen
ies ��1A and ��1B ; thus all parti
les perform in-dependent random walks, with the asso
iated di�usion
oe�
ients DA;B = a2=6�A;B. Again, we assume thatn = nA � nB and DA � DB = D (
f. Se
. 2.2).Similarly to the 
ontinuum limit 
onsidered above,rea
tions between A and B parti
les indu
e lo
alheterogeneities in the parti
le spatial distribution onthe length s
ale of the mean interparti
le distan
erA � n�1=3 � a. But su
h heterogeneities qui
klydisappear owing to rapid di�usion mixing of parti
leson the length s
ale of their mean interparti
le distan
erA with the 
hara
teristi
 time �d � r2A=6D, whi
his generally mu
h shorter than the 
hara
teristi
 time�
 � (KABn)�1 of the parti
le 
on
entration varia-tion, �d � �
. With a time step �d � Æt � �
 
ho-sen for the 
al
ulation of the rea
tion rate, this allows
onsidering a random distribution of parti
les attainedin Æt (owing to �d � Æt) and negle
ting variation ofthe mean 
on
entrations nA and nB in Æt (owing toÆt� �
 = min[� (A)
 ; � (B)
 ℄).In this 
ase (
orresponding to the kineti
 regime),the spatial distributions of the parti
le 
entersnA;B(r; t) 
an be 
onsidered homogeneous fun
tions
hara
terized by their mean 
on
entrations nA;B(t),i. e., nA;B(r; t) = nA;B(t), slowly varying with timeowing to parti
le 
ollisions (rea
tions). A

ordingly,732
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h : : :the 
ollision probability is also a spatially uniformfun
tion.This problem 
an be readily redu
ed to the 
al
u-lation of the 
ollision probability between two parti-
les randomly lo
ated in the unit volume, one of whi
his immobile (say, parti
le B) and the other (parti
leA) is mobile, migrating with the e�e
tive di�usivityDAB = DA +DB .This approa
h 
an be further extended to in
ludespatial heterogeneities in the ensemble of A and Bparti
les if these heterogeneities are smooth on thelength s
ale of the di�usion equation appli
ability,l � n�1=3A;B � RAB , with the rea
tion 
onstant 
al
u-lated in the kineti
 regime, similarly to the 
ontinuummedium 
onsideration.But there is also an important di�eren
e from the
ontinuum limit. Indeed, in that limit, the probabil-ity of the two-parti
le 
ollision in Æt was 
al
ulated asthe mean volume swept by the mobile parti
le (of theradius RAB and di�usivity DAB). Instead, in the dis-
rete latti
e limit, the 
ollision probability in Ætk is de-termined by the mean number of distin
t sites visitedby a k-step random walk of the mobile parti
le (theso-
alled random walk range Sk), wherek = Ætk�AB = Ætk 6DABa2 � 1:5.1. Rea
tion rate on a three-dimensionaldis
rete latti
eIn the 
ase of a simple three-dimensional 
ubi
 lat-ti
e, the mean value of Sk 
an be 
al
ulated as [36�38℄Sk � 0:718 hk + 0:729k1=2 +O(1)i ; (12)whi
h for the 
hosen time stepa26DAB � r26DAB � �d � Ætk � �
;whi
h 
orresponds to k � 1, 
an be redu
ed toSk � 0:718k; (12a)and results inKAB = a3Sk=Ætk � 4:3DABa: (13)In the 
ase of in
omplete sti
king of rea
tant parti
les,PAB � 1, the rea
tion 
onstant redu
es toK 0AB = KABPAB � 4:3DABaPAB : (13a)A result formally similar to Eq. (13) was obtainedin [16℄ (following [23℄). In that approa
h, the problem

was also redu
ed to the analysis of 
ollisions betweentwo parti
les A and B on dis
rete latti
e sites, but wasbased on additional (unjusti�ed) assumptions. Namely,instead of 
onsideration of the rapid di�usion mixing ofparti
les (as proposed in the 
urrent approa
h), whi
hallows rigorous redu
tion of the multiparti
le problemto two-parti
le 
ollisions and dire
t 
al
ulation of therea
tion rate 
onstant, an additional ansatz for the re-a
tion rate 
onstant in the multiparti
le system wasused in [16℄, whi
h eventually resulted in a di�erent(apparently erroneous) numeri
al fa
tor in Eq. (13).Therefore, we 
an 
on
lude that the 
urrently de-veloped approa
h 
an be generalized to the rea
tionkineti
s on a three-dimensional latti
e, resulting in thenew relation for the rea
tion rate 
onstant, Eq. (13).5.2. Rea
tion rate on a two-dimensionaldis
rete latti
eThe rea
tion rate for parti
les A and B migra-ting via random walks over dis
rete square latti
e sites(a�2 � n = nA � nB), when the rea
tion radius issmall in 
omparison with the latti
e spa
ing, RAB < a,
an be 
al
ulated in a way similar to the three-dimen-sional approa
h in Se
. 5.1 using the logarithmi
 ap-proximation des
ribed in Se
. 4. As a result, an equa-tion (
orresponding to Eq. (13) in the three-dimensio-nal 
ase) for the rea
tion rate 
onstant takes the formKAB = a2Sk=Ætk; (14)where Sk = �klog k +O� klog2 k �is the mean number of distin
t square latti
e sites vis-ited by a k-step random walk [36�38℄, k = Ætk=�AB == Ætk4DAB=a2 and, to provide di�usion mixing in timeÆtk, the 
al
ulation time step is 
hosen asa24DAB � n�24DAB � Ætk � �
 � K�1ABn�1:With logarithmi
 a

ura
y, we obtainKAB � 4�DABlog(1=na2) ; (15)whi
h depends on time impli
itly (via n(t)).At large times in the 
ase nA > nB , this time de-penden
e is weak and 
an be negle
ted with the 
hosenlogarithmi
 a

ura
yKAB � 4�DABlog(1=~na2) ; (16)733
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hunov ÆÝÒÔ, òîì 141, âûï. 4, 2012where ~n is the �nal value of n(t), whose variation issmall, �n(t) = n(t)� ~n� ~n, and hen
e1logn(t)a2 = 1log(~n+�n)a2 �� 1log ~na2 � log�1 + �n~n � � 1log ~na2be
ause log(~na2)�1 � 1� log(1 +�n=~n):Similarly to the 
ontinuum limit in two dimensions(
onsidered in Se
. 4), the rea
tion rate 
onstant de-pends on time impli
itly and di�ers from that 
al
u-lated in the traditional approa
h (with log(DABt=a2)instead of log(1=~nt=a2) in the denominator of Eq. (16))and therefore predi
ts a mu
h higher de
ay rate _nA;Bat large times in 
omparison with the traditional ap-proa
h [16; 23℄.5.3. Catalyti
ally a
tivated rea
tionsThe new approa
h 
an be extended to the kineti
sof bimole
ular, 
atalyti
ally a
tivated rea
tions in twoor three dimensions. The elementary rea
tion a
t be-tween rea
tants takes pla
e only when these meet ona 
atalyti
 site (CS); su
h sites are assumed to be im-mobile and randomly distributed in spa
e with a mean
on
entration nC .We start at t = 0 with randomly distributed rea
-tant parti
les A and B with mean 
on
entrations nAand nB . Ea
h A (B) parti
le migrates by jumps tonearest-neighbor sites with the asso
iated di�usivityDA (DB). Whenever an A parti
le lands on a 
atalyti
site that is already o

upied by a parti
le B, the twoparti
les rea
t with a sti
king probability PAB � 1.Rea
ting parti
les are immediately removed from thesystem, whereas the 
orresponding CS remains unaf-fe
ted. On the other hand, parti
les never rea
t atnon
atalyti
 sites.In this 
ase, the e�e
tive rea
tion 
onstant redu
esto KABC = K 0ABnC = KABPABnC ; (17)where K 0AB is derived in Eq. (13a) and nC is the pro-bability that a 
ollision o

urs on a CS (owing to therandom distribution of CSs in spa
e).This expression is obtained in the kineti
 ap-proa
h and essentially di�ers from the one obtainedin [39℄ in the traditional di�usion approa
h, where (fol-lowing [12�14℄) short-wavelength �u
tuations (on thelength s
ale of the rea
tion radius, l � RAB), whi
hare beyond the 
ut-o� limit of the theory (Eq. (5)),

l � n�1=3 � RAB (
f. Se
. 2.3), are erroneously takeninto a

ount. 6. CONCLUSIONSThe new approa
h to the di�usion-limited rea
tionrate theory [1℄, based on a similar approa
h to Brow-nian 
oagulation proposed in our papers [19�21℄, isre�ned and developed further. The traditional di�u-sion approa
h to irreversible rea
tions A+B ! C thatstipulates that the lo
al rea
tion rate should be equalto the di�usive 
urrent of parti
les is 
riti
ally ana-lyzed. In parti
ular, it is shown that the di�usion ap-proa
h is appli
able only in the spe
ial 
ase of rea
tionswith a large rea
tion radius, rA � RAB � rB (whererA � n�1=3A and rB � n�1=3B are the mean interparti-
le distan
es), 
orresponding to small A parti
les andlarge B traps, and be
omes inappli
able in 
al
ulat-ing the rea
tion rate in the 
ase RAB � rA; rB mostimportant for rea
tion kineti
s and parti
ularly 
orre-sponding to 
omparable-size (or point-like) parti
les Aand B. Indeed, point-like parti
les tend to a homoge-neous (random) spatial distribution owing to their mi-gration and mixing on the s
ale of the mean interpar-ti
le distan
e, l � r, with the 
hara
teristi
 di�usiontime that is small in 
omparison with the 
hara
teris-ti
 rea
tion time, �d � �
. This implies that parti
le
ollisions o

ur in the kineti
 regime with the rea
tionrate 
al
ulated as the 
ollision frequen
y of two parti-
les (A and B) randomly lo
ated in the unit volume.This approa
h 
an be further extended to theanalysis of spatial heterogeneities in the ensemble of
omparable-size A and B parti
les if these hetero-geneities are smooth on the length s
ale of the di�u-sion equation appli
ability (for the ensemble of point-like parti
les) l � n�1=3A;B � RAB , but with the rea
tion
onstant 
al
ulated in the kineti
 regime.In the 
ontinuum mode of the kineti
 regime 
or-responding to aA; aB � RAB , where aA, aB are theelementary drift distan
es of parti
les migrating viarandom walks, the 
al
ulated rea
tion rate in three di-mensions formally (and, in fa
t, a

identally) 
oin
ideswith the expression derived in the traditional approa
h(whi
h is relevant only in the parti
ular 
ase of rea
-tions with a large rea
tion radius, rA � RAB � rB).This formal 
oin
iden
e apparently explains a reason-able agreement of the predi
tions of the kineti
 equa-tion derived in the traditional approa
h with exper-imental measurements for three-dimensional rea
tionsystems.But in the two-dimensional geometry 
orrespond-ing to the rea
tant parti
le migration 
onstrained to734
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h : : :a plane, the rea
tion rate 
al
ulated in the traditionalapproa
h as the di�usive 
urrent of A parti
les intoB traps naturally predi
ts an expli
it time dependen
eof the rea
tion rate. On the 
ontrary, in the new ap-proa
h, the original multiparti
le problem is redu
ed(under the mixing 
ondition) to 
al
ulation of the areasweeping rate by migrating parti
les (of the radius RABand di�usivityDAB), whi
h depends on time impli
itly,via nA(t) (in the base 
ase RAB � rA; rB). As a result,in the 
ase nA 6= nB , the traditional approa
h notablyunderestimates the 
on
entration de
ay rate _nA;B atlarge times in 
omparison with predi
tions of the newapproa
h.In the opposite 
ase aA; aB � RAB (for rea
tingparti
les suspended in a �uid), the rea
tion rate 
an be
al
ulated in the free mole
ular approa
h, also in dire
tanalogy with the Brownian parti
le 
oagulation.The new approa
h is further generalized to rea
-tion kineti
s for parti
les migrating via random walksover dis
rete latti
e sites (with the latti
e spa
ing a).Be
ause the 
ase of a large rea
tion radius RAB � aproperly redu
es to the 
ontinuum-medium limit, theopposite 
ase RAB < a, with rea
tions o

urring whentwo parti
les o

upy the same site, was additionallystudied. In the new approa
h, the original multiparti
leproblem is redu
ed (under the mixing 
ondition) to the
al
ulation of the mean number of distin
t sites visitedby a k-step random walk of the mobile parti
le, whi
hfor simple three-dimensional and two-dimensional lat-ti
es was evaluated in the literature. As a result, newrelations for bimole
ular rea
tion rate 
onstants are de-rived for three-dimensional or two-dimensional latti
es,whereas the traditional approa
h preserves the mainde�
ien
ies of the 
ontinuum-medium approa
h (alsoin appli
ation to 
atalyti
ally a
tivated rea
tions).APPENDIXWe show here that 
al
ulating the sweeping rateof randomly distributed immobile point-like parti
les(markers) by a large parti
le of radius RAB migratingwith a di�usivity DAB is equivalent to 
al
ulating the
ondensation rate of the mobile markers migrating withthe di�usivity DAB in the immobile trap of the radiusRAB . This assertion is important for the derivation ofthe 
ollision frequen
y fun
tion in the 
ontinuum modeof the kineti
 regime (Se
. 3). Simultaneously, the ap-pli
ability limit of the di�usion approa
h to the 
al-
ulation of the rea
tion rate in Se
. 2.1 is additionally
on�rmed.We 
onsider an ensemble of N ! 1 point-likeparti
les randomly distributed in a sample of volume

V !1 with the mean number 
on
entration n = N=Vand migrating with the di�usivity D into an immobiletrap parti
le of radius R. The probability for a pointparti
le from this ensemble lo
ated at t = 0 at a dis-tan
e r from the trap parti
le to rea
h the trap in timet is denoted by w(r; t). The integral of this probabilityover all point-like parti
les determines the total num-ber of point-like parti
les trapped in the time intervalbetween 0 to t,�n(t) = Z nw(r; t) d3r = 4�n 1ZR w(r; t) r2dr; (A.1)in a

ordan
e with the Fokker�Plan
k approa
h to par-ti
le migration ([40℄, see also [11℄).Correspondingly, the number of point parti
lestrapped in the time interval between t and t + Æt isequal to d�ndt Æt = 4�nÆt 1ZR �w(r; t)�t r2dr;whi
h determines the 
ondensation rate of point parti-
les in the trap�n = d�ndt Æt = 4�nÆt 1ZR �w(r; t)�t r2dr: (A.2)It is important that Eq. (A.1) was derived under animpli
it assumption that the number of parti
les in thevolume 4�r2dr is large, i. e., Nr = n � 4�r2dr � 1, orn � 4�r3(dr=r) � 1; only in this 
ase we 
an negle
t�u
tuations of the number of parti
les in this volume,ph(ÆNr)2i � Nr, whi
h allows the subsequent 
al
u-lation of the total number of trapped parti
les [11℄. Inparti
ular, this inequality should be valid at r = R,whi
h gives n � 4�R3(dr=R) � 1, whereas dr=R �� 1 (in order to 
orre
tly perform the integration),or 4�dr=R � 1. Therefore, the ne
essary 
onditionfor the 
orre
t 
al
ulation of the parti
le 
ondensationrate is nR3 � 1, whi
h 
oin
ides with the 
ondition ofthe di�usion approa
h appli
ability derived in Se
. 2.1.This implies that these 
al
ulations, being appli
ableto the 
ondensation of small parti
les in a large trap,be
ome invalid in the 
ase of a small trap (
omparablewith the size of the parti
les).If there is only one point-like parti
le randomly lo-
ated in the sample (of volume V ! 1), it 
an befound with the probability V �1d3r in the elementaryvolume d3r at ea
h point r, and therefore the probabil-ity for this parti
le to rea
h the trap in time t 
an be
al
ulated as735
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hunov ÆÝÒÔ, òîì 141, âûï. 4, 2012�0(t) = 1ZR V �1w(r; t)4�r2dr: (A.3)The probability to rea
h the trap in Æt is therefore equalto d�0dt Æt = 4�V Æt ��t 1ZR w(r; t) r2dr; (A.4)or, from 
omparison of Eq. (A.4) with Eq. (A.2),d�0dt Æt = 1nV d�ndt Æt: (A.5)On the other hand, this last probability is equal tothe probability for a sole immobile point parti
le ran-domly lo
ated in the sample to be swept in time Æt bythe trap parti
le migrating with the di�usivity D. In-deed, as explained in Se
. 3, the relative displa
ementsbetween two parti
les des
ribing di�usion motions in-dependently of ea
h other and with the di�usion 
o-e�
ients D1 and D2 also follow the law of di�usionmotion with the di�usion 
oe�
ient D1 +D2 [10; 22℄.In this approximation, the probability of sweeping thesole point parti
le in time Æt by the trap parti
le mi-grating with the di�usivity D is equal to V �1ÆV , whereÆV is the volume swept in Æt. Equating this probabilityto Eq. (A.5), we obtainÆV=Æt = n�1d�n=dt: (A.6)If there are N = nV immobile point-like parti
les ran-domly distributed in the sample, then the total numberof parti
les swept in Æt isnÆV=Æt = d�n=dt = �n; (A.7)with �n from Eq. (A.2).Therefore, the 
ondensation rate �n of point-likeparti
les migrating with a di�usivity D in the immo-bile trap parti
le of radius R is equal to the rate ofsweeping of immobile point-like parti
les by the trapparti
le migrating with the di�usivity D.The author thanks V. V. Lebedev (Landau Institutefor Theoreti
al Physi
s, Mos
ow) for the valuable dis-
ussion of the obtained results. L. A. Bolshov (IBRAE)is a
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