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FERMIONIC SCREENINGS AND LINE BUNDLE TWISTEDCHIRAL DE RHAM COMPLEX ON CY MANIFOLDSS. E. Parkhomenko *Landau Institute for Theoretial Physis142432, Chernogolovka, Mosow Region, RussiaReeived June 1, 2011We present a generalization of Borisov's onstrution of the hiral de Rham omplex in the ase of the line-bundle-twisted hiral de Rham omplex on a Calabi�Yau hypersurfae in a projetive spae. We generalizethe di�erential assoiated with a polytope � of the projetive spae Pd�1 by allowing nonzero modes for thesreening urrents forming this di�erential. It is shown that the numbers of sreening urrent modes de�ne thesupport funtion of the tori divisor of a line bundle on Pd�1 that twists the hiral de Rham omplex on theCalabi�Yau hypersurfae.1. INTRODUCTIONThe Calabi�Yau manifolds with bundles appear invarious types of ompati�ations of string theory. The�rst example is the heteroti string ompati�ation onCalabi�Yau (CY) manifolds. This is urrently the mostsuessful approah to the problem of string modelonstrution relevant to 4-dimensional partile physis.The main ingredients of the heteroti models is a CYthree-fold and two holomorphi vetor bundles on it.In the simplest ase of the �standard embedding�, oneof the bundles is taken to be trivial and the other o-inides with the tangent bundle of the CY manifold.But expliit onstrutions of the bundles are di�ultto obtain in general. Nevertheless, in the series of pa-pers [1℄, the monad bundles approah has been devel-oped for the systemati onstrution of a large lass ofvetor bundles over the CY manifolds de�ned as om-plete intersetions in produts of projetive spaes.Although the monad onstrution in [1℄ is quite gen-eral, it is purely lassial, and the Gepner models [2℄are the only known models of the quantum string om-pati�ation. This leads to the question: what is thequantum version of the monad bundle onstrution?The seond example is the type-IIA ompati�a-tion with D-branes wrapping the CY manifold. In thisase, the Chan�Paton vetor bundle appears [3℄, andhene a similar question make sense: what objet de-*E-mail: spark�itp.a.ru

sribes the quantum strings on a CY manifold withChan�Paton bundles?In this paper, we analyze the simplest version ofthese questions when we have only a line bundle on theCY manifold, and present the onstrution of a vertexoperator algebra starting from a CY hypersurae in aprojetive spae and a line bundle de�ned on this spae.Our approah is based essentially on the work ofBorisov [4℄, where a ertain sheaf of vertex operatoralgebras endowed with the N = 2 Virasoro superalgeb-ra ation has been onstruted for eah pair of dualre�exive polytopes � and �� de�ning a CY hypersur-fae in the tori manifold P�. Borisov thus diretlyonstruted the holomorphi setor of the CFT fromtori data of a CY manifold. The main objet of hisonstrution is a set of fermioni sreening urrents as-soiated with the points of that pair of polytopes. Zeromodes of these urrents are used to onstrut a di�er-ential D�+D�� whose ohomology alulated in somelattie vertex algebra gives the global setions of a sheafknown as the hiral de Rham omplex due to [6℄. Onthe loal setions of the hiral de Rham omplex, theN = 2 Virasoro superalgebra ats [6℄. In the CY ase,this algebra survives the ohomology, and hene globalsetions of the hiral de Rham omplex an be onsid-ered a holomorphi setor of the spae of states of anN = 2 superonformal sigma-model on the CY mani-fold. The question how the ostrution in [4℄ is relatedto the Gepner models has been lari�ed to some extentin [7℄ and [8℄.47



S. E. Parkhomenko ÆÝÒÔ, òîì 141, âûï. 1, 2012Borisov's onstrution an also be generalized byallowing nonzero modes of the sreening urrents for-ming the di�erential. We onsider a CY hypersurfae inthe projetive spae Pd�1 and generalize Borisov's dif-ferential by allowing nonzero modes only for sreeningurrents assoiated with the points of the Pd�1 poly-tope �. We thus generalize the di�erential D�, leavingthe di�erential D�� de�ning the CY hypersurfae un-hanged. We show that the numbers of sreening ur-rent modes from D� de�ne the support funtion of thetori divisor [9; 10℄ of a line bundle on Pd�1. By thismeans, the hiral de Rham omplex on Pd�1 appearsto be twisted by the line bundle.The paper is organized as follows. In Se. 2, webrie�y review the onstrution in [4℄ for a CY hyper-surfae in Pd�1. In Se. 3, we �rst alulate the o-homology with respet to the generalized di�erentialD� and relate the result to setions of the hiral deRham omplex twisted by the sheaf O(N). To do that,we �nd a generalized b� system of �elds generatingthe ohomology. The generalization appears only forthe modes of vetor �elds operators. They are replaedby the ovariant derivative operators with a U(1) on-netion. Then we de�ne the trivialization maps of themodules generated by these generalized b� �elds tothe modules of setions of the usual hiral de Rhamomplex over the a�ne spae and �nd the transitionfuntions for di�erent trivializations. These turn outto be the transition funtions of an O(N) bundle onPd�1, where N is determined by the number of modesof the sreening urrents omposing the di�erentialD�.Moreover, we establish the relation between the num-ber of sreening urrent modes and the tori divisorsupport funtion for the line bundle O(N) on Pd�1.The support funtion and trivialization maps are on-sistent with the loalization maps determined by thefan struture, whih allows alulating the ohomologyof the twisted hiral de Rham omplex by a �Ceh om-plex of the overing. In omplete analogy with [4℄, theseond di�erential D�� is used to restrit the sheaf tothe CY hypersurfae.In Se. 4, we alulate the ellipti genus of thetwisted hiral de Rham omplex and represent it interms of theta funtions. For a torus in P2 and K3 inP3, we �nd the limit as q ! 0 and relate the resultsto the Hodge numbers of the sheaf O(N) on the torusand K3. Setion 5 ontains onluding remarks.2. CHIRAL DE RHAM COMPLEX ON A CYHYPERSURFACE IN Pd�1In this setion, we review the onstrution in [4℄ ofthe hiral de Rham omplex and its ohomology for a

CY hypersurfae in the projetive spae Pd�1.Let fe1; : : : ; edg be the standard basis in Rd and� � Rd be the lattie generated by the vetors e0 == 1d(e1 + : : :+ ed), e1; : : : ; ed:� = Ze0�Ze1� : : :�Zed: (1)We then onsider the fan � � � [9; 10℄ enoding thetori data of the total spae E of an O(d)-bundle overPd�1. The maximal-dimension ones of the fan ared-dimensional ones CI � �, I = 1; 2; : : : ; d, spannedby the vetors e0; : : : ; êI ; : : : ; ed, where the vetor eIis omitted. The intersetion of the maximal-dimensionones is also a one in �:CI \ CJ \ : : : \ CK = CIJ:::K 2 �: (2)All faes of the one from � are the ones from �(see [9; 10℄ for a more detailed de�nition of a fan.)Let fe�1; : : : ; e�dg be the dual basis to the standardone fe1; : : : ; edg and let �� be the dual lattie to �. Forevery one C 2 �, we onsider the dual one C� 2 ��de�ned by C� = fp� 2 ��jp�(C) � 0g (3)and the a�ne variety AC = Spe(C [C� ℄). If C� is afae of ~C�, then C [C� ℄ is a loalization of C [ ~C� ℄ by themonomials ap� 2 C [C� ℄, where p� 2 ~C� and p�(C) = 0.This allows gluing AC to form the spae E.The polytope � of Pd�1 is given by the points from� satisfying the equationdeg�(�) = 1; (4)where deg� = e�1 + : : :+ e�d: (5)Let Xi(z), X�i (z), i = 1; 2; : : : ; d, be free bosoni�elds and  i(z),  �i (z), i = 1; 2; : : : ; d, be free fermioni�elds with the OPEs given byX�i (z1)Xj(z2) = ln(z12)Æi;j + reg; �i (z1) j(z2) = z�112 Æi;j + reg; (6)where z12 = z1 � z2.The �elds are expanded into the integer modes�X�i (z) =Xn2ZX�i [n℄z�n�1;�Xi(z) =Xn2ZXi[n℄z�n�1; �i (z) =Xn2Z �i [n℄z�n� 12 ; i(z) =Xn2Z i[n℄z�n� 12 : (7)
48



ÆÝÒÔ, òîì 141, âûï. 1, 2012 Fermioni sreenings : : :We therefore onsider the Ramond setor.To the lattie � = � � ��, we assoiate the diretsum of Fok spaes�� = �(p;p�)2�F(p;p�); (8)where F(p;p�) is the Fok module generated by Xi[n℄,X�i [n℄,  i[n℄,  �i [n℄ from the vauum jp; p�i de�ned byX�i [n℄jp; p�i = Xi[n℄jp;p�i =  i[n℄jp; p�i =  �i [n� 1℄jp;p�i = 0; n > 0;X�i [0℄jp; p�i = p�i jp; p�i;Xi[0℄jp; p�i = pijp; p�i: (9)For eah vetor ei, i = 0; 1; : : : ; d, generating a 1-di-mensional one from �, we de�ne the fermioni sree-ning urrent and the sreening hargeS�i (z) = ei �  � exp(ei �X�)(z);Q�i = I dz S�i (z): (10)We form the BRST operators for eah maximal-dimen-sion one CI :D�I = Q�0 + : : :+ Q̂�I + : : :+Q�d; (11)where Q�I is omitted. We then onsider the spae�CI
�� = �(p;p�)2CI
��F(p;p�): (12)The spae of setions MI of the hiral de Rham om-plex over the ACI is given by the ohomology of �CI
��with respet to the operator D�I . It is generated by the�elds [4℄aI�(z) = exp [w�I� �X ℄(z);�I�(z) = w�I� �  exp [w�I� �X ℄(z);a�I�(z) = (e� � �X� � w�I� �  ie� �  �i )�� exp [�w�I� �X ℄(z);��I�(z) = e� �  � exp [�w�I� �X ℄(z); (13)where w�I� are the dual vetors to the basis of vetorsne�; � = 0; : : : ; Î ; : : : do generating the one CI :hw�I�; e�i = Æ�� : (14)The singular operator produt expansions of these�elds are a�I�(z1)aI�(z2) = z�112 Æ�� + : : : ;��I�(z1)�I�(z2) = z�112 Æ�� + : : : (15)

An important property is the behavior of theb� system under the loal hange of oordinates onACI [6℄. For eah new set of oordinatesbI� = g�(aI1; : : : ; aId);aI� = f�(bI1; : : : ; bId); (16)the isomorphi b� system of �elds is given bybI�(z) = g�(aI1(z); : : : ; aId(z));�I�(z) = �g��aI� (aI1(z); : : : ; aId(z))�I�(z);��I�(z) = �f��bI� (aI1(z); : : : ; aId(z))��I�(z);b�I�(z) = �f��bI� (aI1(z); : : : ; aId(z))a�I�(z) ++ �2f��bI��bI� �g��aI� (aI1(z); : : : ; aId(z))�� ��I�(z)�I�(z):
(17)

Here, the normal ordering of operators is implied. It isalso understood whenever neessary in what follows.On the spae MCI , the N = 2 Virasoro superalge-bra ats by the urrentsG� =X� �I�a�I�; G+ = �aI0���I0 �� X�6=0;I ��I��aI�; J = aI0a�I0 + X�6=0;I ��I��I�;T = 12(a�I0�aI0 � �a�I0aI0)� �I0���I0 ++ X�6=0;I�a�I��aI� + 12(���I��I� � ��I���I�)� : (18)
This algebra de�nes the mode expansion of the �eldsin the Ramond setoraI0(z) =Xn aI0[n℄z�n� 12 ;a�I0(z) =Xn a�I0[n℄z�n� 12 ;�I0(z) =Xn �I0[n℄z�n�1;��I0(z) =Xn �I0[n℄z�n;aI�(z) =Xn aI�[n℄z�n;a�I�(z) =Xn a�I�[n℄z�n�1;�I�(z) =Xn �I�[n℄z�n� 12 ;��I�(z) =Xn �I�[n℄z�n� 12 ; � 6= I:

(19)
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S. E. Parkhomenko ÆÝÒÔ, òîì 141, âûï. 1, 2012Then MCI is generated by the reation operators a-ting on the Ramond vauum state j0i de�ned by theonditionsaI�[n℄j0i = a�I�[n� 1℄j0i = �I�[n℄j0i == ��I�[n� 1℄j0i = 0; n > 0: (20)If the one CKJ is a fae of the ones CK and CJ ,it is spanned by the vetors(e0; e1; : : : ; êK ; : : : ; êJ ; : : : ; ed):We then onsider the BRST operatorD�KJ = Q�0 +Q�1 + : : :+ Q̂�K + : : :: : :+ Q̂�J + : : :+Q�d (21)ating on �CKJ��� . The spae of setions MCKJ ofthe hiral de Rham omplex over ACKJ is given by theohomology of �CKJ��� with respet to the operatorD�KJ . It is a loalization of MCK (MCJ ) with respetto the multipliative system generated byY� (aK�[0℄)m�(Y� (aJ�[0℄)m�);withX� m�w�K�(CKJ ) = 0  X� m�w�J�(CKJ) = 0! :Analogously, the loalization maps an be de�ned forthe ones that are intersetions of an arbitrary numberof maximal-dimension ones [4℄.The loalization maps de�ned above allow alu-lating the ohomology of the hiral de Rham omplexon E as the �Ceh ohomology of the overing by ACI ,I = 1; : : : ; d; [4℄:0! �CIMCI ! �CKJMCKJ !! : : :MC12:::d ! 0: (22)This �nishes the alulation of D�-ohomology.The next step is to restrit the hiral de Rham om-plex on E to a CY manifold CY � Pd�1. We de�nethe funtion W on E, linear on the �bers of E, suhthat in the oordinates aI� on ACI ,W = aI00�1 + X�6=0;I(aI�)d1A : (23)We next introdue the orresponding sreening urrentsand sreening harges

SI0(z) = �I0(z)0�1 + X�6=0;I(aI�)d(z)1A ;SI�(z) = �I�aI0(z)(aI�)d�1(z); � 6= 0; I;Q� = I dz SI�(z); � 6= I; (24)and the BRST operatorDW =X�6=IQ�: (25)(It is the D�� di�erential in the notation in [4℄.) Theohomology of MCI with respet to DW gives thespae of setions MCI jW of hiral de Rham omplexon ACI \ CY determined by the system of equationsaI0 = 0;1 + X�6=0;I(aI�)d = 0: (26)The ohomology of the hiral de Rham omplex onCY is alulated by the �Ceh omplex of the over-ing [4℄:0! �CIMCI jW !! �CKJMCKJ jW ! : : :MC12:::d jW ! 0: (27)This yields the D� +D�� ohomology.A more general funtionW and BRST operator (25)an be onsidered by adding the monomial that orre-sponds to the internal point from the dual polytope�� [4; 7℄.This ompletes the review of the hiral de Rhamomplex and its ohomology onstrution on a CY hy-persurfae in Pd�1.3. LINE BUNDLE TWISTED CHIRAL DERHAM COMPLEXIn this setion, the generalization of Borisov's on-strution produing the O(N)-twisted hiral de Rhamomplex on a CY hypersurfae is proposed.We twist the fermioni sreening harges Q�i asQ�i ! S�i [Ni℄ = I dz zNiS�i (z); Ni 2 Z: (28)Then the old harges Q�i an be onsidered zero modesof the sreening urrentsS�i (z) =Xn S�i [n℄z�n�150



ÆÝÒÔ, òîì 141, âûï. 1, 2012 Fermioni sreenings : : :and BRST operator (11) an be onsidered a partiularase of the more general oneD�I = S�0 [N0℄ + : : :+ Ŝ�I [NI ℄ + : : :+ S�d [Nd℄: (29)Now the question is: what is the ohomology of spae(12) with respet to this new BRST operator?It follows by diret alulation that the �elds aI�(z),�I�(z), ��I�(z) in (13) still ommute with the new dif-ferential D�I , but instead of a�I�(z) we have to takerI�(z) = a�I�(z) +N�z�1a�1I� (z): (30)The last term in this expression an be regarded asoming from a U(1) gauge potential on ACI . We seein what follows that this is indeed so and the modes ofthe �elds rI�(z) an be regarded as a string version ofovariant derivatives.In terms of this new b� �elds, the N = 2 Virasorosuperalgebra urrents are given byG�I =X� �I�rI� =Xn G�I [n℄z�n� 32 ;G+I = �aI0���I0 � X�6=0;I ��I��aI� ==Xn G+I [n℄z�n� 32 ;JI = aI0rI0 + X�6=0;I ��I��I� =Xn Ji[n℄z�n�1;TI = 12(rI0�aI0 � �rI0aI0)� �I0���I0 ++ X�6=0;i�rI��aI�+12(���I��I����I���I�)� ==Xn LI [n℄z�n�2:
(31)

To alulate the ohomology, we onsider the vertexoperator V(0;p�)(z) = exp [p�X ℄(z);where p� 2 ��. We �ndS��[N�℄(z1)V(0;p�)(z2) = zN�12 S��(z1)V(0;p�)(z2) == zN�+p�(e�)12 e� �  � �� exp[e� �X� + p� �X ℄(z2) + : : : ; � 6= I: (32)Hene, the state j(0; p�)i orresponding to the vertexV(0;p�)(0) is inKer(S��[N�℄) if p�(e�) � �N�:

The (Ramond-setor) state saturating the inequality is����0;�P�6=I N�w�I��E and has the propertiesrI�[k℄ ������0�0;�X�6=IN�w�I�1A+ = 0; k � 0;aI�[k℄ ������0�0;�X�6=IN�w�I�1A+ == �I�[k℄ ������0�0;�X�6=IN�w�I�1A+ == ��I�[k � 1℄ ������0�0;�X�6=IN�w�I�1A+ = 0;k > 0:
(33)

Proposition. The ohomology M CI of �CI���with respet to di�erential (29) is generated from thevauum statej
Ii = ������0�0;�X�6=IN�w�I�1A+ (34)by the reation operators of �elds (13) and (30).The proof is similar to the proof of Proposition 6.5.in [4℄.The vauum j
Ii de�nes the trivializing isomor-phism of modules (over the hiral de Rham omplexon ACI ) gI : M I !MI (35)by the rule gI j
Ii = j0i;gI(rI�[k℄)g�1I = a�I�[k℄;gI(aI�[k℄)g�1I = aI�[k℄;gI(�I�[k℄)g�1I = �I�[k℄;gI(��I�[k℄)g�1I = ��I�[k℄: (36)We therefore all the vauum j
Ii the trivializing va-uum.We onsider the subspae M 0CI generated from j
I iby the operators aI�[0℄ and �I�[0℄. The operator G�I [0℄ats on this subspae byÆI =X�6=I �I�[0℄rI�[0℄:It is natural to think that M 0I is holomorphi de Rhamomplex over ACI with oe�ients in a holomorphiline bundle.51 4*



S. E. Parkhomenko ÆÝÒÔ, òîì 141, âûï. 1, 2012On the intersetions ACI \ ACJ , the relations bet-ween the oordinatesaI0 = aJ0(aJI )d; aI� = aJ�a�1JI ;� 6= I; J; aIJ = a�1JI ; (37)an be used to �nd the relations between the triviali-zing vauagI j
Ii = Y�6=I(aI�[0℄)N� j
Ii = j0i;g�1I gJ j
Ji � gIJ j
Ji = j
Ii;gIJ = (a(J)I [0℄)N1+N2+:::+Nd�dN0 ; (38)as well as between the setionsgIJ : M 0J ! M 0I : (39)The funtions gIJ in (38) are the transition funtionsof the line bundle on E that is indued from theO(N)-bundle on Pd�1 by the anonial projetion map� : E ! Pd�1, whereN = N1 + : : :+Nd � dN0: (40)Thus the set of modules M 0CI with the di�erentials ÆIand the transition funtions (38) de�ne the holomor-phi de Rham omplex on E with oe�ients in theline bundle ��O(N).One an extend this �nite dimensional disussion tothe in�nite dimensional ase. To do that we onsiderthe relation between the urrents G�I (z) and G�J (z) onthe intersetion ACI \ ACJ . Beause of (37) and (17),we �ndG�I (z) = G�J (z) +Nz�1�JI(z)a�1JI (z),, G�I [k℄ = G�J [k℄ +NXm �JI [m℄a�1JI [k �m℄: (41)In the �nite-dimensional ase, the di�erentials ÆIare onsistent on the intersetions ACI \ACJ : the dif-ferene ÆI�ÆJ oming from the di�erent trivializationsis aneled by gauge transformation of the gauge po-tential AI� = AJ� � g�1IJ �gIJ�aJ� :A similar event should our in the in�nite-dimensionalsituation. Beause the �rst Chern lass on E is zero,the seond term in expression (41) is due to di�erenttrivializations de�ned on ACI \ACJ and has to be an-eled by a gauge transformation of the gauge potential:G�I [k℄ = G�J [k℄ +NXm �JI [m℄a�1JI [k �m℄��X� 6=J �g�1IJ �J� �gIJ�aJ�� [k℄ = G�J [k℄: (42)

Hene, the urrent G� � G�I as well as the N = 2Virasoro superalgebra are de�ned globally if we taketransformations of the gauge potential into aount andextend the map (39) to the mapgIJ(z) = (a(J)I(z))N : M J ! M I : (43)If the one CIJ is a fae of the one CI (CJ ) andspanned by the vetors(e0; : : : ; êI ; : : : ; êJ ; : : : ; ed);we an onsider the BRST operatorD�IJ = S�0 [N0℄ + : : :+ Ŝ�I [NI ℄ + : : :: : :+ Ŝ�J [NJ ℄ + : : :+ S�d [Nd℄ (44)ating on �CIJ
�� .The ohomology M CIJ of �CIJ
�� with respet todi�erential (44) is the loalization of M CI (M CJ ) withrespet to the multipliative system generated byY� (aI�[0℄)m�  Y� (aJ�[0℄)m�! ;withX� m�w�I�(CIJ ) = 0  X� m�w�J�(CIJ ) = 0! :The module M CIJ is generated from the vauum vetorj
IJi = ������0�0;� X�6=I;JN�w�I�1A+ (45)by the reation operators of the �elds aI�(z), rI�(z),� 6= I; J , aIJ(z), a�1IJ (z), a�IJ(z), �I�(z), ��I�(z), � 6= I .M CIJ an also be generated from the vauumj~
IJ i = ������0�0;� X�6=I;JN�w�J�1A+ == (aIJ [0℄)N�NI�NJ j
IJi (46)by the reation operators of the �elds aJ�(z), rJ�(z),� 6= I; J , aJI(z), a�1JI (z), a�JI(z), �J�(z), ��J�(z),� 6= J .Analogously, the modules M CIJ:::K and loalizationmaps an be de�ned for the onesCIJ:::K = CI \ CJ \ : : : \ CK :Relation (46) is a partiular ase of ompatibilityonditions to be satis�ed for loalization maps. They52



ÆÝÒÔ, òîì 141, âûï. 1, 2012 Fermioni sreenings : : :are as follows. For eah maximal-dimension one CI ,the trivializing vauum j
I i de�nes a linear funtion!�I 2 �� on this one:Y�6=I a�N�(I)� (0) = exp[�!�IX ℄(0);!�I = dN0w�I0 + X�6=0;IN�w�I�: (47)It is easy to see that the olletion of !�I satis�es theobvious ompatibility ondition. Namely, on the oneCIJ = CI \ CJ , the funtions !�I and !�J oinide andare given by the funtion !�IJ 2 �� of the trivializingvauum j
IJi:Y�6=I;J a�N�(I)� (0) = exp[�!�IJX ℄(0);!�IJ = dN0w�I0 + X�6=0;I;JN�w�I�: (48)It an be veri�ed that similar ompatibility onditionsare also satis�ed for the funtions !�IJ:::K on the onesCIJ:::K = CI \ CJ \ : : : \ CK :Then the numbers N0; : : : ; Nd of sreening urrentmodes de�ne the support funtion !� on � [9; 10℄ ofthe tori divisor of the bundle ��O(N) on E.Hene, similarly to (22), we have the �Ceh omplexof the overing by ACI , I = 1; : : : ; d,0! �CIM CI ! �CKJM CKJ ! : : :M C12:::d ! 0 (49)whih gives the ohomology of the hiral de Rham om-plex on E twisted by ��O(N).The restrition of the twisted hiral de Rham om-plex to a CY hypersurfae is straightforward beauseBRST operator (25) ommutes with operators (29) andats within eah of the modules M CIJ:::K . Therefore,the omplex0! �CIM CI jW ! �CKJM CKJ jW !! : : :M C12:::d jW ! 0 (50)gives the ohomology of the O(N)-twisted hiral deRham omplex on a CY hypersurfae. This ompletesthe onstrution.4. ELLIPTIC GENUS CALCULATIONIn this setion, we alulate the ellipti genus of thetwisted hiral de Rham omplex, losely following [5℄.The q0 oe�ient of the ellipti genus is related to the

Hodge numbers of the sheaf O(N) on a CY manifold.To justify the onstrution in Se. 3, we alulate it forthe torus T 2 � P2 and K3 � P3.The disussion in Se. 3 and the arguments in [5℄allow extending De�nition 6.1 in [5℄ to the ase underdisussion: the ellipti genus is given by the supertraeover the �Ceh ohomology spae of the twisted hiralde Rham omplex.The alulation is greatly simpli�ed using the torus(C � )d that ats on E [5℄. We ompute the funtion�N (CY; t1; : : : ; td; y; q) = dXk=1(�1)k�1 �� XCI1 ;::: ;CIk superTrMCI1 :::Ik �� dYi=1 tKii yJ[0℄qL[0℄� 24! ; (51)where ti are the formal variables grading the torus a-tion with the help of generatorsKi (whose expliit formis obvious) and then take the limit ti ! 1, i = 1; : : : ; d,to obtain the ellipti genus EllN (CY; y; q). It is guitehelpful for the subseguent omputations to write theN = 2 Virasoro superalgebra ating on M CIJ:::K in o-ordinates (6):G�IJ:::K = �z�1!�IJ:::K �  � deg� � � ++ � �X�;G+IJ:::K = �deg� � � � +  � � �X;JIJ:::K = �z�1deg � !�IJ:::K + deg � �X� �� deg� � �X +  � �  ;TIJ:::K = 12(� � �  �  � � � ) ++ �X � (�X� � z�1!�IJ:::K)�� deg2 � �(�X� � z�1!�IJ:::K)� deg�2 � �2X;
(52)

where deg = e0 = 1d (e1 + : : :+ ed): (53)The supertraes over the modules M CI1 :::Ik an be al-ulated as the supertraes over the spaes �CIJ:::K
�� ,whih are the omplexes with respet to the di�eren-tialsD�IJ:::K = S�0 [N0℄ + : : :+ Ŝ�I [NI ℄ + : : :: : :+ Ŝ�J [NJ ℄ + : : :+ Ŝ�K [NK ℄ + : : :+ S�d [Nd℄:Beause of (52), we obtain53



S. E. Parkhomenko ÆÝÒÔ, òîì 141, âûï. 1, 2012�N (CY; t1; : : : ; td; y; q) =y� d�22 +d�1 Xw�2�� dYi=1 thw�;eiii XC��(�1)odimC ��Xk2C y�hdeg�;ki+hw��!�;degi �� qhw��!�;kiG(y�1; q)d; (54)where G(y; q) = Yk�1 (1� yqk�1)(1� y�1qk)(1� qk)2 (55)and the fator yd�1 is aused by the Ramond vauum.This is a generalization of the ellipti genus expressionobtained in [5℄. It an be rewritten in terms of the thetafuntions. For that, we need to use the trik in [5℄to eliminate the ontribution of positive-odimensionones. Then we apply the �truly remarkable identity�Yk�1 (1� tyqk�1)(1� tqk�1) (1� t�1y�1qk)(1� t�1qk) ==Xn2Ztn(1� yqn)�1G(y; q) (56)to write the maximal-dimension ones ontribution asan in�nite produt. Thus, we obtain�N (CY; t1; : : : ; td; y; q) = y� d�22 +d�1 �� dXI=1 dYi=1 t�h!�I ;eiii ! �1;1(tdI ; q)�1;1(tdIy; q) ��YJ 6=I �1;1(t�1I tJy�1; q)�1;1(t�1I tJ ; q) ; (57)where�1;1(u; q) == q1=8 Yn=0(1� u�1qn+1)(1� uqn)(1� qn+1) == q1=8 Xn2Z(�1)nq(n2�n)=2u�n: (58)In the limit as q ! 0 and ti ! 1, the ellipti genusis related to the Hodge numbers of the sheaf O(N) onthe CY hypersurfaeEllN (CY; y) = y�d�22 +d�1 ��Xp;q (�1)p+qhp;q(CY;O(N))yq : (59)We use this fat as a hek of the onstrution in twosimplest examples, the torus T 2 in P2 and K3 in P3.

Taking the ti ! 1 limit by l'Hopital's rule, we �ndEllN (T 2; y) = 3N(1� y)y� 12 ;EllN (K3; y) = 2((N2 + 1) + (10� 2N2)y ++(N2 + 1)y2)y�1: (60)We see that these expressions orretly reprodue theorresponding Hodge numbers.5. CONCLUDING REMARKSIn this note, we presented a generalization of Bo-risov's onstrution of the hiral de Rham omplexon tori CY manifolds to inlude the CY hypersur-faes with line bundles. It is shown that inluding thenonzero modes of the sreening urrents assoiated tothe points of the polytope � of Pd�1 into Borisov'sdi�erential, we obtain O(N)-twisted hiral de Rhamomplex on the CY hypersurfae. Moreover, we es-tablished a relation between the number of sreeningurrent modes and the tori divisor support funtionfor the line bundle O(N) on Pd�1.We hope that the onstrution disussed above anbe applied for the quantization of monad bundles inheteroti string models. Another possible appliationappears if we onsider the twisting line bundle as aChan�Paton bundle of a bound state of (2d�4; 2d�6)D-branes on a CY manifold. In this ontext, it wouldbe interesting to generalize the onstrution to alsoinlude Chan�Paton sheafs desribing more generalbound states of the D-branes on CY manifolds [3℄.There are two more questions to be mentioned. The�rst question, whih is obvious, is to extend the disus-sion to CY hypersurfaes in general tori manifolds.The seond one is a possible mirror-symmetry gener-alization. In the onstrution of Borisov, the di�eren-tials assoiated to the pair of re�exive polytopes � and�� ome into play on equal footing, whih makes themirror symmetry expliit [4; 5℄. For the generalizationonsidered in this paper, this demoray seems to bebroken. Indeed, if we �rst take the ohomology withrespet to the di�erential D�� , whih is unhanged, weobtain the usual (untwisted) hiral de Rham omplexon the tori manifold P��. It is di�ult to believe thattaking then the ohomology with respet to the gene-ralized di�erential D� as a seond step, we restrit thehiral de Rham omplex to a mirror CY hypersurfaein P��. Therefore, the question is how to extend themirror symmetry to this ase. The more general setupis the simultaneous generalization of di�erentials D�and D�� by nonzero sreening urrent modes.54
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