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We present a generalization of Borisov's construction of the chiral de Rham complex in the case of the line-
bundle-twisted chiral de Rham complex on a Calabi-Yau hypersurface in a projective space. We generalize
the differential associated with a polytope A of the projective space P4~! by allowing nonzero modes for the
screening currents forming this differential. It is shown that the numbers of screening current modes define the
support function of the toric divisor of a line bundle on P?~! that twists the chiral de Rham complex on the

Calabi-Yau hypersurface.

1. INTRODUCTION

The Calabi—Yau manifolds with bundles appear in
various types of compactifications of string theory. The
first example is the heterotic string compactification on
Calabi-Yau (CY) manifolds. This is currently the most
successful approach to the problem of string model
construction relevant to 4-dimensional particle physics.
The main ingredients of the heterotic models is a CY
three-fold and two holomorphic vector bundles on it.
In the simplest case of the “standard embedding”, one
of the bundles is taken to be trivial and the other co-
incides with the tangent bundle of the CY manifold.
But explicit constructions of the bundles are difficult
to obtain in general. Nevertheless, in the series of pa-
pers [1], the monad bundles approach has been devel-
oped for the systematic construction of a large class of
vector bundles over the CY manifolds defined as com-
plete intersections in products of projective spaces.

Although the monad construction in [1] is quite gen-
eral, it is purely classical, and the Gepner models [2]
are the only known models of the quantum string com-
pactification. This leads to the question: what is the
quantum version of the monad bundle construction?

The second example is the type-IIA compactifica-
tion with D-branes wrapping the CY manifold. In this
case, the Chan—Paton vector bundle appears [3], and
hence a similar question make sense: what object de-
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scribes the quantum strings on a CY manifold with
Chan-Paton bundles?

In this paper, we analyze the simplest version of
these questions when we have only a line bundle on the
CY manifold, and present the construction of a vertex
operator algebra starting from a CY hypersurace in a
projective space and a line bundle defined on this space.

Our approach is based essentially on the work of
Borisov [4], where a certain sheaf of vertex operator
algebras endowed with the N = 2 Virasoro superalgeb-
ra action has been constructed for each pair of dual
reflexive polytopes A and A* defining a CY hypersur-
face in the toric manifold Pa. Borisov thus directly
constructed the holomorphic sector of the CFT from
toric data of a CY manifold. The main object of his
construction is a set of fermionic screening currents as-
sociated with the points of that pair of polytopes. Zero
modes of these currents are used to construct a differ-
ential DA + Da+ whose cohomology calculated in some
lattice vertex algebra gives the global sections of a sheaf
known as the chiral de Rham complex due to [6]. On
the local sections of the chiral de Rham complex, the
N = 2 Virasoro superalgebra acts [6]. In the CY case,
this algebra survives the cohomology, and hence global
sections of the chiral de Rham complex can be consid-
ered a holomorphic sector of the space of states of an
N = 2 superconformal sigma-model on the CY mani-
fold. The question how the costruction in [4] is related
to the Gepner models has been clarified to some extent
in [7] and [8].
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Borisov’s construction can also be generalized by
allowing nonzero modes of the screening currents for-
ming the differential. We consider a CY hypersurface in
the projective space P4~! and generalize Borisov’s dif-
ferential by allowing nonzero modes only for screening
currents associated with the points of the PZ~! poly-
tope A. We thus generalize the differential Da, leaving
the differential D« defining the CY hypersurface un-
changed. We show that the numbers of screening cur-
rent modes from Da define the support function of the
toric divisor [9,10] of a line bundle on P41, By this
means, the chiral de Rham complex on P4~! appears
to be twisted by the line bundle.

The paper is organized as follows. In Sec. 2, we
briefly review the construction in [4] for a CY hyper-
surface in P4~'. In Sec. 3, we first calculate the co-
homology with respect to the generalized differential
D and relate the result to sections of the chiral de
Rham complex twisted by the sheaf O(N). To do that,
we find a generalized befy system of fields generating
the cohomology. The generalization appears only for
the modes of vector fields operators. They are replaced
by the covariant derivative operators with a U(1) con-
nection. Then we define the trivialization maps of the
modules generated by these generalized bcfy fields to
the modules of sections of the usual chiral de Rham
complex over the affine space and find the transition
functions for different trivializations. These turn out
to be the transition functions of an O(N) bundle on
P91, where N is determined by the number of modes
of the screening currents composing the differential Da .
Moreover, we establish the relation between the num-
ber of screening current modes and the toric divisor
support function for the line bundle O(N) on P!,
The support function and trivialization maps are con-
sistent with the localization maps determined by the
fan structure, which allows calculating the cohomology
of the twisted chiral de Rham complex by a Cech com-
plex of the covering. In complete analogy with [4], the
second differential D+ is used to restrict the sheaf to
the CY hypersurface.

In Sec. 4, we calculate the elliptic genus of the
twisted chiral de Rham complex and represent it in
terms of theta functions. For a torus in P? and K3 in
P3, we find the limit as ¢ — 0 and relate the results
to the Hodge numbers of the sheaf O(N) on the torus
and K3. Section 5 contains concluding remarks.

2. CHIRAL DE RHAM COMPLEX ON A CY
HYPERSURFACE IN P4-1

In this section, we review the construction in [4] of
the chiral de Rham complex and its cohomology for a
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CY hypersurface in the projective space P4~1,
Let {e1,...,eq} be the standard basis in R? and
A C R? be the lattice generated by the vectors ey =

:%(el+...+ed),el,...,ed:

A=Zey®DZer ® ... & Zeg. (1)

We then consider the fan ¥ C A [9,10] encoding the
toric data of the total space E of an O(d)-bundle over
P?=!'. The maximal-dimension cones of the fan are
d-dimensional cones C;7 C A, I = 1,2,....d, spanned
by the vectors eg,...,€r,...,eq, where the vector e
is omitted. The intersection of the maximal-dimension
cones is also a cone in X:

cinCyn...NnCg =Cry. kK €.

(2)

All faces of the cone from ¥ are the cones from X
(see [9,10] for a more detailed definition of a fan.)

Let {e},...,e5} be the dual basis to the standard
one {ey,...,eq} and let A* be the dual lattice to A. For
every cone C' € 3, we consider the dual cone C* € A*
defined by

C* ={p" € A*|p*(C) > 0} (3)

and the affine variety Ac = Spec(C[C*]). If C* is a
face of C'*, then C[C*] is a localization of C[C'*] by the
monomials a?” € C[C*], where p* € C* and p*(C) = 0.
This allows gluing A¢ to form the space E.

The polytope A of P~ is given by the points from
Y satisfying the equation

deg*(¥) =1, (4)

where
deg" =el + ...+ €.

(5)
Let X;(2), Xf(2), i = 1,2,...,d, be free bosonic
fields and ¥;(2), ¥F(2),4 = 1,2,... ,d, be free fermionic
fields with the OPEs given by
X (21)X;(22) =1In(212)d; ; + reg,
Ui (21)(22) = 275 65 + reg,
where z15 = 21 — 29.
The fields are expanded into the integer modes

0X;(2) =y Xiln]z "1,
ne”Z
OXi(2) = 3 Xilnle 1,

neZ ) (7)
Ui(z) =Y win]amz,

neZ

Yi(z) = Z Piln]z "2,

neZ

(6)
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We therefore consider the Ramond sector.
To the lattice I' = A & A*, we associate the direct
sum of Fock spaces

br =5 (8)

-y is the Fock module generated by X;[n],
p*) defined by

(p,p*)GFF(np*)7

where F{, ,
XF[n], ¥in], ¥f[n] from the vacuum |p,

X7 [nlp, p") = Xi[n]p,
p*) = ¥in]lp, p*) = ¥i[n — 1]|p,
Py =0, n>0, (9)
X7 [0]lp, p*) = pilp,P*),
Xi[0]|p, p*) = pilp,p")-

For each vectore;, i = 0,1,... ,d, generating a 1-di-
mensional cone from ¥, we define the fermionic scree-
ning current and the screening charge

Si(z) =e; - exp(e; - X¥)(2),

Qr %sz

We form the BRST operators for each maximal-dimen-
sion cone C7:

(10)

=Qi+... +Q +...+Q5 (11)
where ()7 is omitted. We then consider the space
Scronr = BppyecronFipp)- (12)

The space of sections M; of the chiral de Rham com-
plex over the A¢, is given by the cohomology of ® ¢, oA~
with respect to the operator Dj. It is generated by the
fields [4]

aru(2) = exp fwy, - X](2)

aru(z) = wy, - Pexplwy, - X](2),

a7, (2) = (ep - OX™ —wy, - tiey - ¥f) X
x exp [-wr, - X](2),

ar,(2) = ey - " exp[-wy, - X](2),

(13)

where wy, are the dual vectors to the basis of vectors

{eu,,uzo,...,l,

.. d} generating the cone Cfy:

<w;uaeu> = 6#1/‘ (14)

The singular operator product expansions of these
fields are

aj,(z1)ar,(22) = 253" 6 + ..

. 1 (15)
aIu(zl)aIV(Z2) = 299 5;ul +...

4 JKOT®, Beim. 1
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An important property is the behavior of the
befy system under the local change of coordinates on
Ac, [6]. For each new set of coordinates

bru = gular,... arq), (16)
ary = fulbn,... ,bra),
the isomorphic b~y system of fields is given by
b1u(2) = gular(2),... ,ara(2)),
0
Bru() = 52 (an =), .. cara(=)ar(2),
ary
. dfv "
5iu2) = @), ara(2)at (),
m
* afl/ * (17)
blu(z) = 6b—ju(a11(2)7 s ,a[d(Z))a]V(Z) +
82f/\ a.gu
4+ — Dbr, b7y 8a1p( 11(2),. .. ,arq(2)) x

x agy(2)ary(2).

Here, the normal ordering of operators is implied. It is
also understood whenever necessary in what follows.

On the space M¢,, the N = 2 Virasoro superalge-
bra acts by the currents

- *
— 5 alual;m
"

* * *
- g ar0ar,, J=arpap + E QLT
n#0,1 n#0,1

*
= —arodajy —

) (18)
T = 5(a708a10 — dajpar) — apodajy +
* 1 * *
+ Z (amﬁam + 5(6a1uoqu - a,uaam)> .
p#0,1

This algebra defines the mode expansion of the fields
in the Ramond sector

aro(z Zalo[n]z =%,
ajo(z Z ajoln]z "7,
aro(z Z ap[n]z™",
azo(z Z aro[n]z™",
(19)
alu Z [am TL]Z )

_ —n—1

am z) = E am [n]z ,
E aru[n]z” *E,
o1
a]p, Zalﬂ TL]Z 27

O%[H

p#EI



S. E. Parkhomenko

MKITD, Tom 141, Bhm. 1, 2012

Then Mc, is generated by the creation operators ac-
ting on the Ramond vacuum state |0) defined by the
conditions

ar[n]|0) = aj,[n —1]10) = aru[n]|0) =

=aj,[n—1]|0)=0, n>0. (20)

If the cone Ck s is a face of the cones C'x and C}y,
it is spanned by the vectors
7éJ7~~~ 7ed)'

(€0 €1, s €K, .-

We then consider the BRST operator

Dis=Q5+Q +.. . +Q x+...
e H Q4+ Qn (21)

acting on ®c, ,oa+. The space of sections M¢, , of
the chiral de Rham complex over A¢, , is given by the
cohomology of ®¢, 4+ with respect to the operator
D3 ;. It is a localization of M¢, (Mc,) with respect
to the multiplicative system generated by

[T @xculo)™ (] (@suloh™),

w w

with

> muwic, (Crr) =0 (Z muwy, (Cy) = 0) .

Analogously, the localization maps can be defined for
the cones that are intersections of an arbitrary number
of maximal-dimension cones [4].

The localization maps defined above allow calcu-
lating the cohomology of the chiral de Rham complex
on E as the Cech cohomology of the covering by Acy,
I=1,...,d, [4]:

0—= ®c, Mc, — ®CKJMCKJ -

- ... Mo, ,—0. (22)

This finishes the calculation of Da-cohomology.

The next step is to restrict the chiral de Rham com-
plex on E to a CY manifold CY C P?~!'. We define
the function W on FE, linear on the fibers of E, such
that in the coordinates ar, on Ac,,

W=amp |1+ Z (a[u)d
u#0,I

(23)

We next introduce the corresponding screening currents
and screening charges

50

Sro(z) = ar(z) | 1+ Y (an)(2) | ,

u#0,1

Siu(2) = arpann(an) (), uA01, Y
Qu=fdz500). u#l
and the BRST operator
Dw =Y Qu (25)

p#El

(It is the D~ differential in the notation in [4].) The
cohomology of M¢, with respect to Dy gives the
space of sections M, |w of chiral de Rham complex
on Ac, NCY determined by the system of equations

aro = 07
1+ Z (alu)d =0. (26)
p#0,1

The cohomology of the chiral de Rham complex on
CY is calculated by the Cech complex of the cover-

ing [4]:

0— ®CIMCI|W —

— ®CKJMCKJ|W — ... M012___d|w — 0. (27)
This yields the Da + Da~ cohomology.

A more general function W and BRST operator (25)
can be considered by adding the monomial that corre-
sponds to the internal point from the dual polytope
A* [4,7].

This completes the review of the chiral de Rham
complex and its cohomology construction on a CY hy-
persurface in P41,

3. LINE BUNDLE TWISTED CHIRAL DE
RHAM COMPLEX

In this section, the generalization of Borisov’s con-
struction producing the O(N)-twisted chiral de Rham
complex on a CY hypersurface is proposed.

We twist the fermionic screening charges @) as

QF = SI[N)| = %dz Nigr(z), NieZ. (28

Then the old charges Q)7 can be considered zero modes
of the screening currents

i) =Y Stz
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and BRST operator (11) can be considered a particular
case of the more general one

D; = S:[Nol+ ...+ S*1[Nf] + ...+ S5[Ng.  (29)

Now the question is: what is the cohomology of space
(12) with respect to this new BRST operator?

It follows by direct calculation that the fields a7, (2),
aru(2), a7, (2) in (13) still commute with the new dif-
ferential D7, but instead of a7, (2) we have to take

Viu(z) = a}u(z) + Nuz_lal_ul(z). (30)

The last term in this expression can be regarded as
coming from a U(1) gauge potential on Ac,. We see
in what follows that this is indeed so and the modes of
the fields V,(z) can be regarded as a string version of
covariant, derivatives.

In terms of this new bcS+ fields, the N = 2 Virasoro
superalgebra currents are given by

3

G, = Za,uvm = ZG;[n]z‘”_ﬁ,
m n

+ —
G = —arp0agy — g a’}uaam =
n#0,1

=2 Gre

Jr =arVio + Z a}uoqu = Z Ji[n]z_”_l, (31)
n#0,1 n

| =

Tr = =(Viodarg — OV roare) — argdajy +

1
+ Z vluaalu"‘5(66“;”6“1#_&;”6&1#)) =

p#0,i
= ZL;[n]z‘”_Q.
n

To calculate the cohomology, we consider the vertex
operator

Vo) (2) = exp [p*X](2),
where p* € A*. We find
* Nu * _
SuINL (1) Vi pe) (22) = 2195, (21) Vo pr) (22) =
_ Zli\;ﬁp*(eu)eu b x (32)

xexple, - X*+p* - X|(z2)+ ..., p#lL

Hence, the state |(0,p*)) corresponding to the vertex
Wo’p*)(O) is in

Ker(S;[Ny]) if p*(en) > —N.

The (Ramond-sector) state saturating the inequality is
‘ (0, - ZWH Nuwfu)> and has the properties

VK| 0, =) Nywj, > =0, k>0,
p#L
ar k][ 0,= Y Ny, > =
p#l
(33)
— an k]| [ 0,— 3 Nuwi, > -
p#I
=aj,[k—1]||0,— Z Nywj, > =0,
p#L
k> 0.
Proposition. The cohomology Mg, of ®¢ g«

with respect to differential (29) is generated from the
vacuum state

Q) =

07 - Z Nﬂw;u > (34)

p#l

by the creation operators of fields (13) and (30).

The proof is similar to the proof of Proposition 6.5.
in [4].

The vacuum |) defines the trivializing isomor-
phism of modules (over the chiral de Rham complex
on Ac,)

qgr . M[ — M[ (35)
by the rule
g1€tr) = |0,
91(Viulk)gr ' = a7, [K],
gr(arulk))g; " = ar[k], (36)
gI(oqu[k])gfl = alﬂ[kL
gr(a, kg7 = a,[k].

We therefore call the vacuum [Q) the trivializing va-
cuum.

We consider the subspace MY, generated from [Q)
by the operators ar,[0] and az,[0]. The operator G [0]
acts on this subspace by

0r="_ aru[0V,[0].
p#I

It is natural to think that M? is holomorphic de Rham
complex over Ac, with coefficients in a holomorphic
line bundle.

4*
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On the intersections Ac, N Ac,, the relations bet-
ween the coordinates

d —1
Gro = aJo(aJI) y  Qrp = aguQgr,

w#EL . (37

arj = a;[la
can be used to find the relations between the triviali-
zing vacua

g1n) = [] (aralOD™ |2r) = |0),

p#L
97 9510 = g1190) = |Qr),

gry _( J)I[O] N1+N2+ +Ng— dNo

as well as between the sections
MY — MY,

The functions grs in (38) are the transition functions
of the line bundle on E that is induced from the
O(N)-bundle on P4~! by the canonical projection map
7 : E — P41 where

gry: (39)

N =N +...4 Ng—dNp. (40)

Thus the set of modules M%I with the differentials ;
and the transition functions (38) define the holomor-
phic de Rham complex on E with coefficients in the
line bundle 7*O(N).

One can extend this finite dimensional discussion to
the infinite dimensional case. To do that we consider
the relation between the currents G (2) and G7 (z) on
the intersection Ag, N A, . Because of (37) and (17),
we find

G7(2) =G5(2)+ Nz~
& Gr k]

104J1(z)aj[1(z) &

=G K]+ N asrmlazi[k—m]. (41)
m
In the finite-dimensional case, the differentials d;
are consistent on the intersections Ac, N A¢,: the dif-
ference 67 — 7 coming from the different trivializations
is canceled by gauge transformation of the gauge po-
tential
190915
915 aaju'
A similar event should occur in the infinite-dimensional
situation. Because the first Chern class on F is zero,
the second term in expression (41) is due to different
trivializations defined on Ac, NA¢, and has to be can-
celed by a gauge transformation of the gauge potential:

GrIM =Gy M +NY_ ayrmlask—m] -

=3 (sdon S =67 (2

v#J

AIu = AJu -

52

Hence, the current G~ = G} as well as the N = 2
Virasoro superalgebra are defined globally if we take
transformations of the gauge potential into account and
extend the map (39) to the map

(a(J)I(Z))N

If the cone Cry is a face of the cone C7 (Cy) and
spanned by the vectors

g[J(Z) = : MJ — M[. (43)

(60,... ,é],... ,éJ,... ,ed),
we can consider the BRST operator
D5y = Si[Nol+ ...+ S*[Ni] +...
S [N+ .+ SE[Ng] (44)

acting on ®c,;oAx.

The cohomology Mc,, of ®¢,,sA+ With respect to
differential (44) is the localization of M, (M, ) with
respect to the multiplicative system generated by

H(am[O])m“ (H(aJu[O])m”> )
with

Zmuw;“(CU) =0 (Z muw}u(CU) = 0) .

The module M, , is generated from the vacuum vector

Q) =110,— > Nawj, > (45)
w#lLLJT
by the creation operators of the fields ar,(2), Vi, (2),

p#ILJ, ars(2), aIJ(Z) a7y (2), aru(2), alu( z), p# 1.
M, can also be generated from the vacuum

>:

= (ar [ODN NN Q)

Q) =]0,— > Nuw3,

p#LJ
(46)

by the creation operators of the fields as,(2), Vs, (2),
po#F LJ, a(z), a;Il(Z)v ayr(2), asu(2), au*lu(z)v
w#J

Analogously, the modules M¢,, . and localization

maps can be defined for the cones
Cri.xk=0CrnCyn...NnCk.

Relation (46) is a particular case of compatibility
conditions to be satisfied for localization maps. They
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are as follows. For each maximal-dimension cone Cf,
the trivializing vacuum |Q27) defines a linear function
w} € A* on this cone:

-N "

[T ey (0) = expl—w; X)(0),

p#L

wi = dNowj, + Z Nywy,,.
p#0,1

(47)

It is easy to see that the collection of wj satisfies the
obvious compatibility condition. Namely, on the cone
Cry = CrnCy, the functions wj and w? coincide and
are given by the function wj; € A* of the trivializing
vacuum | 7):

—N, «
H A1y (0) = exp[-w7;X](0),
n#lLJ
wiy = dNow7y + Z Nywy,-
n#0,1,J

(48)

It can be verified that similar compatibility conditions
are also satisfied for the functions wj; , on the cones

Crr.xk=0CrnCyn...NnCk.

Then the numbers Ny,...,Ng of screening current
modes define the support function w* on ¥ [9,10] of
the toric divisor of the bundle 7*O(N) on E.

Hence, similarly to (22), we have the Cech complex
of the covering by A¢,, I =1,...,d,

0—= ®c,Mc, = Bcp, Moy, =+ ... Mg, , =0 (49)

which gives the cohomology of the chiral de Rham com-
plex on E twisted by 7*O(N).

The restriction of the twisted chiral de Rham com-
plex to a CY hypersurface is straightforward because
BRST operator (25) commutes with operators (29) and
acts within each of the modules M¢,, ,. Therefore,
the complex

0— EBC’IMCI |W — @CKJMCKJ |W -

= ...Mc,, ,lw—0 (50)

gives the cohomology of the O(N)-twisted chiral de
Rham complex on a CY hypersurface. This completes
the construction.

4. ELLIPTIC GENUS CALCULATION

In this section, we calculate the elliptic genus of the
twisted chiral de Rham complex, closely following [5].
The ¢° coefficient of the elliptic genus is related to the
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Hodge numbers of the sheaf O(N) on a CY manifold.
To justify the construction in Sec. 3, we calculate it for
the torus 72 C P? and K3 C P3.

The discussion in Sec. 3 and the arguments in [5]
allow extending Definition 6.1 in [5] to the case under
discussion: the elliptic genus is given by the supertrace
over the Cech cohomology space of the twisted chiral
de Rham complex.

The calculation is greatly simplified using the torus
(C*)? that acts on E [5]. We compute the function

d
pN(CY7 tlv' .- 7td7y7q) = Z(_l)k_l X

X

Cryy---,Cr

k
d

« (H tZKiyJ[O]qL[O]—ﬁ> ’ (51)
i=1

where t; are the formal variables grading the torus ac-
tion with the help of generators K; (whose explicit form
is obvious) and then take the limit ¢; — 1,i=1,... ,d,
to obtain the elliptic genus Elly (CY,y,q). It is guite
helpful for the subseguent computations to write the
N = 2 Virasoro superalgebra acting on M¢,, , in co-
ordinates (6):

—z7 Wiy ko — deg® - O+
+- X",
Gy = —deg” - 9¢* +4* - 0X,
Jry.x =—2 'deg-wiy g +deg- 0X* —

Gl k=

—deg™ - 0X + 9" - ¢, (52)
1
Try.k = 5(81/1* ) =T - O +
+8X N (8X* - Z_lw;J___K) -
-2 pox - s, ) - KB o
2 2
where
1
degzeoza(el—}—...—l—ed). (53)

The supertraces over the modules Mc, , can be cal-
culated as the supertraces over the spaces ®¢,, . oax,
which are the complexes with respect to the differen-
tials

D;J...K ZSS[N0]+...+§*][N]]+...

o+ S JINA+ ...+ S*k[Ng] + ...+ S3[Ng.

Because of (52), we obtain
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N(OY,tl,--- 7td7y7q) =
d
y—%‘i‘d—l Z Ht§w*’8i> Z(_l)codimo %
w*eA* i—1 ccs
% Z y—<deg*7k>+<w*—w*7deg> %
keC
x ¢RI G(y T g), (54)
where
(1-yg* " -y~'¢"
Gy, q) = H (1—qF)2 (55)

k>1

and the factor y?~! is caused by the Ramond vacuum.
This is a generalization of the elliptic genus expression
obtained in [5]. It can be rewritten in terms of the theta
functions. For that, we need to use the trick in [5]
to eliminate the contribution of positive-codimension
cones. Then we apply the “truly remarkable identity”

(1—tyd*") A -ty '¢") _
kl;[l (1—tg"1) (1 —t-1q")
=Y t"(L—yq") "Gy, q) (56)
nez

to write the maximal-dimension cones contribution as
an infinite product. Thus, we obtain

N(CY7 t17 “e e 7td7y7 q) e} y_%+d—1 %
d d p
—(wr,ei) @1,1(t],q)
X t. 2uln 4
IZ:‘I (1;[1 ’ ) O1.1(ty.q)
« H O11(t; Yty Lq) (57)
JZ£I Oty 'tr,q)
where
6171(U,q) =
= B T (1 = u™'g"™ ) (1 — ug")(1 — g™*) =
= q1/8 Z(—l)nquﬁ_n)/?u—n. (58)

nez
In the limit as ¢ — 0 and ¢; — 1, the elliptic genus
is related to the Hodge numbers of the sheaf O(N) on
the CY hypersurface
—424d
Elly(CY,y)=y = X
XZ 1PHRP(CY, O(N))ye.

We use this fact as a check of the construction in two
simplest examples, the torus 72 in P? and K3 in P3.

(59)

54

Taking the #; — 1 limit by I'Hopital’s rule, we find

Elly(T2,y) = 3N (1 —y)y 2,
Elly(K3,y) = 2((N? +1) + (10 — 2N?)y +
+(N?+ 1)y’

(60)

We see that these expressions correctly reproduce the
corresponding Hodge numbers.

5. CONCLUDING REMARKS

In this note, we presented a generalization of Bo-
risov’s construction of the chiral de Rham complex
on toric CY manifolds to include the CY hypersur-
faces with line bundles. It is shown that including the
nonzero modes of the screening currents associated to
the points of the polytope A of P! into Borisov’s
differential, we obtain O(N)-twisted chiral de Rham
complex on the CY hypersurface. Moreover, we es-
tablished a relation between the number of screening
current modes and the toric divisor support function
for the line bundle O(N) on P4~1.

We hope that the construction discussed above can
be applied for the quantization of monad bundles in
heterotic string models. Another possible application
appears if we consider the twisting line bundle as a
Chan-Paton bundle of a bound state of (2d —4, 2d — 6)
D-branes on a CY manifold. In this context, it would
be interesting to generalize the construction to also
include Chan-Paton sheafs describing more general
bound states of the D-branes on CY manifolds [3].

There are two more questions to be mentioned. The
first question, which is obvious, is to extend the discus-
sion to CY hypersurfaces in general toric manifolds.
The second one is a possible mirror-symmetry gener-
alization. In the construction of Borisov, the differen-
tials associated to the pair of reflexive polytopes A and
A* come into play on equal footing, which makes the
mirror symmetry explicit [4,5]. For the generalization
considered in this paper, this democracy seems to be
broken. Indeed, if we first take the cohomology with
respect to the differential D+, which is unchanged, we
obtain the usual (untwisted) chiral de Rham complex
on the toric manifold Pa«. It is difficult to believe that
taking then the cohomology with respect to the gene-
ralized differential DA as a second step, we restrict the
chiral de Rham complex to a mirror CY hypersurface
in Pa«. Therefore, the question is how to extend the
mirror symmetry to this case. The more general setup
is the simultaneous generalization of differentials Da
and Da« by nonzero screening current modes.



KITD, Tom 141, Bhm. 1, 2012

Fermionic screenings . ..

Recently, paper [11] has appeared where a different
construction of the chiral de Rham complex twisted by
a vector bundle is presented. It would be interesting
to understand the relation with our approach.
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