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SOME ASPECTS OF VIRTUAL BLACK HOLESM. Faizal *Department of Mathematis, University of DurhamDH1 3LE, Durham, United KingdomReeived September 25, 2011We �rst onsistently third-quantize modi�ed gravity. We then analyze ertain aspets of virtual blak holes inthis third-quantized modi�ed gravity. We see how a statistial mehanial origin for the Bekenstein�Hawkingentropy naturally arises in this model. Furthermore, the area and hene the entropy of a real marosopi blakhole is quantized in this model. Virtual blak holes ause a loss of quantum oherene, whih gives an intrinsientropy to all physial systems that an be used to de�ne a diretion of time and hene provide a solution tothe problem of time.1. INTRODUCTIONIt is expeted that quantum �utuations of spae-time an ause the topology of spaetime to hange atthe Plank sale, giving it a foam-like struture alledthe spaetime foam [1, 2℄. Spaetime form has largelybeen disussed via the formation of baby universes thatrender the spaetime multiply onneted [3�5℄. In thismodel, the spaetime manifold therefore has a largevalue of the �rst Betti number B1 and the seond Bettinumber vanishes, B2 = 0. The problem with thismodel is that it predits a wrong value of the QCD�-parameter [6℄ and the osmologial onstant [7, 8℄.However, there is an alternative model of spae-time foam that seems to predit a orret value ofthe QCD �-parameter [9℄. In this model, the topo-logy of spaetime hanges by the formation of virtualblak holes and thus the spaetime remains single on-neted [10, 11℄. In this model, the spaetime manifoldhas a large value of the seond Betti number B2 and the�rst and third Betti numbers vanish, B1 = B3 = 0. Inthis piture, there is also an elegant way to desribeblak hole evaporation without the appearane of anaked singularity. Marosopi real blak holes evapo-rate to the Plank size by emitting Hawking radiation.At this stage, they are left with no energy or harge.They then disappear in a sea of virtual blak holes. Be-ause this piture of spaetime foam seems to be morerealisti, we analyze ertain aspets of it in this paper.To study the physial e�ets of virtual blak holes,we should analyze the ollision of partiles with ener-*E-mail: faizal.mir�durham.a.uk

gy less than the Plank energy in a small region on-taining a virtual blak hole. For this, we would needto �nd a Eulidean solution for this proess. But itis very di�ult to �nd suh a solution, and we there-fore analyze virtual blak holes via third quantization.The third quantization has been disussed impliitly inRefs. [12, 13℄ and expliitly in Refs. [14, 15℄. The mo-di�ation of the Wheeler�De Witt equation by the ad-dition of nonlinear terms and the third quantization ofthe resultant theory was formally analyzed in Ref. [18℄.Third quantization of Brans�Dike theories [19℄ andKaluza�Klein theories [20℄ has also been done. Ho-wever, all this work has been done in the baby universemodel of spaetime foam. We therefore apply thirdquantization to the virtual blak hole model in this pa-per. It may be noted that the idea of anonial quan-tization of gravity has progressed into loop quantumgravity [21, 22℄. Furthermore, the idea of third quan-tization now appears as a group �eld theory [23, 24℄in loop quantum gravity. Hense, this present workshould be translated into the language of group �eldtheory. However, it is not lear how to deal with vir-tual blak holes in group �eld theory. To understandthat, it might be useful to �rst analyze virtual blakholes in two dimensions via matrix models [25, 26℄.This is beause group �eld theory an be viewed asa higher-dimensional generalization of matrix models.2. WHEELER�DE WITT EQUATIONIt is hoped that a orreted gravitational potentialould �t galaxy rotation urves without the need of456



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Some aspets of virtual blak holesdark matter [27, 28℄. This is why f(R) gravity theo-ries have beome very important [29, 30℄. We thereforestudy the virtual blak holes in f(R) gravity theories.The Lagrangian density desribing a generi f(R) the-ory of gravity is given byL = p�g (f (R)� 2�) ;f 00 6= 0; (1)where f (R) is an arbitrary funtion of the salar urva-ture and the primes denote di�erentiation with respetto the salar urvature. The Hamiltonian onstraintfor the f(R) gravity is given by [31℄H = 12� �P6 �(3)R� 2� � 3KijKij +K2� ++ V (P)� 13gijPjij � 2pijKij� ; (2)where V (P) = ph [Rf 0 (R)� f (R)℄ (3)and Gijkl = 12ph (hikhjl + hilhjk � hijhkl): (4)Here, Kij is the seond fundamental form, K = hijKijis its trae, and (3)R is the three-dimensional salarurvature. We also haveP = �6phf 0 (R) ; (5)and heneH = 12� h�phf 0 (R)�(3)R�2��3KijKij+K2� ++ V (P) + 2gij �phf 0 (R)� jij � 2pijKiji : (6)This an be expressed asH = f 0 (R)"2�Gijkl�ij�kl � ph2� �(3)R� 2��#++ 12� �pgf 0 (R) �2KijKij�+ V (P) ++ 2gij �phf 0 (R)����ij � 2pijKij� : (7)Using pij = phKij (8)

and passing to anonial momenta, we write the Hamil-tonian onstraint for the f(R) gravity asH = f 0 (R)"2�Gijkl�ij�kl � ph2� �(3)R � 2��#++ 4� �Gijkl�ij�kl + �4 2� (f 0 (R)� 1) ++ 12� �V (P) + 2gij �phf 0 (R)����ij� : (9)The Wheeler�De Witt equation is the quantum me-hanial version of this Hamiltonian onstraintH�(h) = 0; (10)where we use �ij = �i ÆÆhij : (11)We note that when f (R) = R;then V (P) = 0and the Wheeler�De Witt equation for the f(R)gravity redues to the usual Wheeler�De Witt equa-tion. In most interpretations of quantum gravity (e. g.,naive [32℄, onditional probability [33℄, and WKB ap-proximation [34℄), the Wheeler�De Witt equation isanalogous to the Shrödinger wave equation, in thesense that it represents the quantum state of a sin-gle universe. But in the third-quantized formalism, itis seen as a lassial �eld equation that has to be thirdquantized [14, 15℄.The third-quantized formalism desribes the quan-tum state of an ensemble of geometries. It is there-fore the natural formalism for analyzing any model ofspaetime foam. Muh work on third quantization isdone in analogy with quantum �eld theory in �at spae-time [12, 13, 18℄. However, there is no timelike Killingvetor for the Wheeler�De Witt equation [16, 17℄, andhene onsistent third quantization should be done inanalogy with quantum �eld theory in urved spaetime,and this is done in the next setion.3. THIRD QUANTIZATIONIn this setion, we third-quantize the Whe-eler�De Witt equation for the f(R) gravity. We�rst interpret Eq. (10) as a lassial �eld equation457



M. Faizal ÆÝÒÔ, òîì 141, âûï. 3, 2012and then quantize it. For this, we assume thatf�(P; h)g and f��(P; h)g form a omplete set ofsolutions of this Wheeler�De Witt equation and satisfya Klein�Gordon-type sympleti produt with thepropertiesZ DhJ (�(P; h); �(Q; h)) =M(P;Q); (12)Z DhJ (�(P; h); ��(Q; h)) = 0; (13)Z DhJ (��(P; h); ��(Q; h)) = �M(P;Q): (14)In quantum �eld theory, the ondition given in Eq. (13)does not hold in general, and it is therefore a require-ment on the omplete set of solutions of the Whe-eler�De Witt equation [35℄. We also hose M(P;Q)to have positive eigenvalues only. This again is notalways true and hene this is again a requirement onthe omplete set of solutions of the Wheeler�De Wittequation.In the third-quantized formalism, �(h) is promotedto a Hermitian operator and is expressed as [18℄�̂(h) = Z DP [a(P )�(P; h) + ay(P )��(P; h)℄; (15)where a(P ) and ay(P ) satisfy the relations�a(P ); ay(Q)� = Æ(P;Q);�ay(P ); ay(Q)� = 0;[a(P ); a(Q)℄ = 0; (16)where Æ(P;Q) is de�ned byZ DPÆ(P;Q)�(P; h) = �(Q; h): (17)For this hoie of the omplete set of solutions of theWheeler�De Witt equation, we de�ne the vauum statej0i as the state that is annihilated by a(P ):a(P )j0i = 0: (18)Now ay(P ) and a(P ) an be respetively alledthe reation and annihilation operators in analogywith those for the simple quantum harmoni osil-lator. They reate and annihilate geometries in thethird-quantized formalism.We note that the division between f�(P; h)g andf��(P; h)g is not unique even after imposing the on-ditions given by Eqs. (12)�(14) [35℄. Due to this

nonuniqueness, the vauum state is also de�ned notuniquely. This an be seen by onsidering f�0(P; h)gand f�0�(P; h)g as another omplete set of solutions ofEq. (10), satisfying onditions given by Eqs. (12)�(14).We then have�̂(h) = Z DP [a0(P )�0(P; h) + a0y(P )�0�(P; h)℄; (19)where the vauum state j00i is the state annihilated bya0(P ), a0(P )j00i = 0: (20)Many geometry states an be built by repeated a-tion of a0y(P ) on j00i. Beause �(P; h) and ��(P; h)form a omplete set of solutions of the �eld equation,Eq. (10), we an express �0(P; h) as a linear ombina-tion of �(P; h) and ��(P; h):�0(P; h) == Z DQ[�(P;Q)�(Q; h) + �(P;Q)��(Q; h)℄: (21)Substituting Eq. (21) in Eq. (19) and omparing theresulting expression with Eq. (15), we �nda(P ) = Z DQ[�(P;Q)a0(Q)+��(P;Q)a0y(Q)℄; (22)ay(P ) = Z DQ[��(P;Q)a0y(Q) + �(P;Q)a0(Q)℄: (23)The two Fok spaes based on these hoies of a om-plete set of solutions of the �eld equation, Eq. (10), aredi�erent as long as �(P;Q) 6= 0. In partiular, a(P )j00idoes not vanish beausea(P )j00i = Z DQ[�(P;Q)a0(Q) ++ ��(P;Q)a0y(Q)℄j00i == Z DQ��(P;Q)a0y(Q)j00i 6= 0; (24)but a(P )j0i = 0: (25)Hene, a(P )j00i is a one-geometry state. In fat, wehaveh00ja(P )ya(P )j00i == Z DUDQ�(P;U)��(P;Q)M(U;Q): (26)The Wightman two-point funtion is then given byG(h; h0) = h0j�̂(h)�̂(h0)j0i: (27)458



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Some aspets of virtual blak holesThis an be written asG(h; h0) = Z DPDQh0j(a(P )�(P; h) ++ a(P )y��(P; h))�� (a(Q)�(Q; h0) + ay(Q)�(Q; h0)j0i == Z DPDQ�(P; h)��(Q; h0)C(P;Q); (28)where C(P;Q) = h0j[a(P ); ay(Q)℄j0i (29)is the ommutator. Next, beause �̂ is Hermitian, wehave [35℄ [(�(P ); �̂); (�̂; �(Q))℄ =M(P;Q); (30)and therefore(�(P ); �̂) = Z DUa(U)M(P;U); (31)(�̂; �(Q)) = [(�(Q); �̂)℄y == Z DWay(W )M(W;Q): (32)It then follows from Eqs. (30)�(32) thatZ DUDWM(P;U)[a(U); ay(W )℄M(W;Q) ==M(P;Q): (33)Using Eqs. (29) and (33), we obtainZ DUDWM(P;U)C(U;W )M(W;Q) ==M(P;Q): (34)This equation in matrix notation is written asMCM =M: (35)Assuming that M(P;Q) has only positive eigenvalues,i.e., that it is invertible, we obtainC =M�1: (36)Therefore, the two-point funtion is given byG(h; h0) == Z DPDQ�(P; h)��(Q; h0)M�1(P;Q): (37)In this setion, we developed a third quantizationof the Wheeler�De Witt equation for the f(R) gravity.In the next setion, we use it to analyze the formationof virtual blak holes.

4. VIRTUAL BLACK HOLESThe Wheeler�De Witt equation in the third-quan-tized formalism represents the quantum state of an en-semble of noninterating geometries. However, this isstill not enough to aount for topology hange. Toobtain a theory onsistent with topology hange, weneed to inlude interation terms. We therefore mo-dify the original Wheeler�De Witt equation by addinginteration terms,�H�� ÆV [�℄Æ�(h)� = 0; (38)where V [�℄ is a potential summarizing all the inter-ations. We an now apply this third-quantized for-malism of quantum gravity to virtual blak holes. Ithas been argued that virtual blak holes an form inloops like other virtual partiles form in the onven-tional quantum �eld theory [9℄. But this disussion onvirtual blak hole loops so far has not been made pre-ise. This an be very easily done in the third-quanti-zed formalism. We an thus write the amplitude for theformation of a virtual blak hole loop in the third-quan-tized formalism asA = Z DhDh0G(h; h0)G(h0; h): (39)From Eqs. (37) and (39), we then obtainA = Z DhDh0DPDQDUDW �� �(P; h)��(Q; h0)M�1(P;Q)�� �(U; h0)��(W;h)M�1(U;W ): (40)It follows that these virtual blak holes form as o�-shellontributions in the third-quantized formalism of quan-tum gravity.Virtual blak holes exist in dynami equilibriumwith �at spaetime at the Plank sale. However, ifthe probability of formation of virtual blak holes, i. e.,A2, inreases due to any proess, then a phase transi-tion an our at a ertain ritial value of A2. Thisan hange the large-sale struture of spaetime andreate a real blak hole. Thus the formation of a realblak hole an be seen as a phase transition induedby virtual blak holes in analogy to how a ferromagnetis magnetised. This implies that spaetime foam angenerate the mirosates of a real blak hole.We therefore assume that the marosopi state ofa blak hole is made up of mirostates of spaetimefoam. The area of a real marosopi blak hole A isthen overed by mirostates of foam like the struture459



M. Faizal ÆÝÒÔ, òîì 141, âûï. 3, 2012of spaetime at the Plank sale. If N is the numberof mirostates that ompletely over the area of thismarosopi blak hole at the Plank sale, then thetotal statistial mehanial entropy assoiated with thereal blak hole beause of these miro-states is propor-tional to N [37℄. This suggest that the entropy of a realblak hole an have a statistial mehanial origin andthe foam-like struture of spaetime may give rise tothe mirostates for the Bekenstein�Hawking entropy.In fat, beause A is ompletely overed by thesemirostates of spaetime foam, we haveA = N ~A = 4N�; (41)where ~A = 4� is the unit Plankian area in the Plankunits. Beause the marosopi blak hole area is repre-sented by N mirosopi areas of the Plankian size, itis naturally quantized. Then the Bekenstein�Hawkingentropy along with the quantum orretions to it for amarosopi blak hole is given by [36℄S = A4 + �0 logA+ �1A + �2A2 + : : : == N� + �0 log(4N�) + �14N� + �216N2�2 + : : : ; (42)where �0; �1; �2; : : : are onstants. BeauseN is a verylarge number, we an neglet the higher-order orre-tions to this Bekenstein�Hawking entropy. In the lead-ing order, this entropy is therefore given byS � N�: (43)In the leading order, the Bekenstein�Hawking entropyis therefore proportional to N . This means that the en-tropy of a real blak hole is quantized by the strutureof spaetime foam.5. QUANTUM COHERENCE AND THEPROBLEM OF TIMEThere is always some probability of the formationof virtual blak holes in �at spaetime, and hene thepartiles found in nature naturally interat with vir-tual blak holes even in �at spaetime. If Hphy is theHilbert spae of the partiles found in nature and Hvbis the Hilbert spae of these virtual blak holes, thenthe total Hilbert spae H for this physial theory isH = Hphy 
Hvb: (44)The density operator � an be expressed as j	ih	j,where j	i is a vetor or a total wave funtion in H. Itis a pure state.

If �� and �+ are the respetive density matries forthe total Hilbert spae at past and future in�nities and$ is the supersattering operator, then we an write [38℄�+ = $��: (45)Beause the set of reation operators for the totalHilbert spae H is a omplete set of bases at both pastand future in�nities, we an write $ as$ = SSy; (46)where Sy is the adjoint of the S-matrix. To see howthe density matrix evolves, we have to take the traeof the future density matrix, whih is given byTr(�2+) = Tr(($��)($��)): (47)Beause the suppersattering matrix fatorizes, we anwrite Tr(($��)($��)) = Tr(S��SyS��Sy); (48)wheneTr(S��SyS��Sy) = Tr(S�2�Sy) = Tr(�2�): (49)This is the trae of the past density matrix.However, the states of virtual blak holes are notmeasurable, and in reality we therefore have to takethe partial trae over Hvb. If Ivb is the identity oper-ator on Hvb and Aphy is an observable in Hphy, thenphysially meaningful measurements are given byTr(�Ivb 
Aphy): (50)Beause the states in Hphy do not form a omplete setby themselves and hene the supersattering operatordoes not fatorize into the S-matrix and its adjoint, theevolution for Hphy is nonunitary. This auses a loss ofquantum oherene.The total wave funtion j	i an be written as asuperposition, with the oe�ients n suh thatXn jnj2 = 1; (51)of single tensor produtsj	i = Xn njvbni 
 jphyni; (52)where the jvbni and jphyni are orthonormal sets of ba-sis vetors in Hvb and Hphy respetively. Hene,�vb =Xn jnj2jvbnihvbnj;�phy =Xn jnj2jphynihphynj: (53)460



ÆÝÒÔ, òîì 141, âûï. 3, 2012 Some aspets of virtual blak holesThe von Neumann entropy for the physial system isgiven by Sphy = �Tr(�phy log �phy): (54)We an then writeSphy = �Xn jnj2 log jnj2: (55)This is the entropy assoiated with the physial sys-tems.This entropy an be used to de�ne a diretion oftime. To de�ne time-like anything along the traditionallines, one needs a notion of a �ow of time, representedby a one-parameter family of unitary operators, whihwe all a �ow t 7! U(t) on H with t ranging over thenonnegative real numbers, mapping any initial densitymatrix �0 = j	0ih	0jat some initial instant t = 0 into the density matrix�t = j	tih	tjat a later instant t aording to the transformation�t = U(t)�0U(t)�1: (56)A single mirostate at one instant therefore evolves toa single mirostate at a later instant. For any initialstate, the entanglement between Hvb and Hphy is lessthan at a later stage. Beause the states keep beomingmore and more entangled with the passage of time, thisentanglement an also be used to identify the diretionof time. The value of entropy then also inreases uni-formly as a state evolves to the future. We an equatethe diretion of the inrease in this von Neumann en-tropy S(t)phy with time. This an give a solution tothe problem of time in quantum gravity.6. CONCLUSIONIn this paper, modi�ed gravity is onsistently thirdquantized in analogy with the quantization of salar�eld theory in urved spaetime. Then the virtual blakhole model of spaetime foam, whih urrently seemsto be the orret model of spaetime foam, is analyzedin this third-quantized modi�ed gravity. This model isused to give a statistial origin of the Bekenstein�Haw-king entropy. It is also shown that the area and henethe entropy of a real blak hole is quantized in thismodel. Furthermore, the loss of quantum ohereneours beause virtual blak hole states are not mea-surable. This in turn auses all physial systems to
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