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SOME ASPECTS OF VIRTUAL BLACK HOLESM. Faizal *Department of Mathemati
s, University of DurhamDH1 3LE, Durham, United KingdomRe
eived September 25, 2011We �rst 
onsistently third-quantize modi�ed gravity. We then analyze 
ertain aspe
ts of virtual bla
k holes inthis third-quantized modi�ed gravity. We see how a statisti
al me
hani
al origin for the Bekenstein�Hawkingentropy naturally arises in this model. Furthermore, the area and hen
e the entropy of a real ma
ros
opi
 bla
khole is quantized in this model. Virtual bla
k holes 
ause a loss of quantum 
oheren
e, whi
h gives an intrinsi
entropy to all physi
al systems that 
an be used to de�ne a dire
tion of time and hen
e provide a solution tothe problem of time.1. INTRODUCTIONIt is expe
ted that quantum �u
tuations of spa
e-time 
an 
ause the topology of spa
etime to 
hange atthe Plan
k s
ale, giving it a foam-like stru
ture 
alledthe spa
etime foam [1, 2℄. Spa
etime form has largelybeen dis
ussed via the formation of baby universes thatrender the spa
etime multiply 
onne
ted [3�5℄. In thismodel, the spa
etime manifold therefore has a largevalue of the �rst Betti number B1 and the se
ond Bettinumber vanishes, B2 = 0. The problem with thismodel is that it predi
ts a wrong value of the QCD�-parameter [6℄ and the 
osmologi
al 
onstant [7, 8℄.However, there is an alternative model of spa
e-time foam that seems to predi
t a 
orre
t value ofthe QCD �-parameter [9℄. In this model, the topo-logy of spa
etime 
hanges by the formation of virtualbla
k holes and thus the spa
etime remains single 
on-ne
ted [10, 11℄. In this model, the spa
etime manifoldhas a large value of the se
ond Betti number B2 and the�rst and third Betti numbers vanish, B1 = B3 = 0. Inthis pi
ture, there is also an elegant way to des
ribebla
k hole evaporation without the appearan
e of anaked singularity. Ma
ros
opi
 real bla
k holes evapo-rate to the Plan
k size by emitting Hawking radiation.At this stage, they are left with no energy or 
harge.They then disappear in a sea of virtual bla
k holes. Be-
ause this pi
ture of spa
etime foam seems to be morerealisti
, we analyze 
ertain aspe
ts of it in this paper.To study the physi
al e�e
ts of virtual bla
k holes,we should analyze the 
ollision of parti
les with ener-*E-mail: faizal.mir�durham.a
.uk

gy less than the Plan
k energy in a small region 
on-taining a virtual bla
k hole. For this, we would needto �nd a Eu
lidean solution for this pro
ess. But itis very di�
ult to �nd su
h a solution, and we there-fore analyze virtual bla
k holes via third quantization.The third quantization has been dis
ussed impli
itly inRefs. [12, 13℄ and expli
itly in Refs. [14, 15℄. The mo-di�
ation of the Wheeler�De Witt equation by the ad-dition of nonlinear terms and the third quantization ofthe resultant theory was formally analyzed in Ref. [18℄.Third quantization of Brans�Di
ke theories [19℄ andKaluza�Klein theories [20℄ has also been done. Ho-wever, all this work has been done in the baby universemodel of spa
etime foam. We therefore apply thirdquantization to the virtual bla
k hole model in this pa-per. It may be noted that the idea of 
anoni
al quan-tization of gravity has progressed into loop quantumgravity [21, 22℄. Furthermore, the idea of third quan-tization now appears as a group �eld theory [23, 24℄in loop quantum gravity. Hense, this present workshould be translated into the language of group �eldtheory. However, it is not 
lear how to deal with vir-tual bla
k holes in group �eld theory. To understandthat, it might be useful to �rst analyze virtual bla
kholes in two dimensions via matrix models [25, 26℄.This is be
ause group �eld theory 
an be viewed asa higher-dimensional generalization of matrix models.2. WHEELER�DE WITT EQUATIONIt is hoped that a 
orre
ted gravitational potential
ould �t galaxy rotation 
urves without the need of456
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ts of virtual bla
k holesdark matter [27, 28℄. This is why f(R) gravity theo-ries have be
ome very important [29, 30℄. We thereforestudy the virtual bla
k holes in f(R) gravity theories.The Lagrangian density des
ribing a generi
 f(R) the-ory of gravity is given byL = p�g (f (R)� 2�
) ;f 00 6= 0; (1)where f (R) is an arbitrary fun
tion of the s
alar 
urva-ture and the primes denote di�erentiation with respe
tto the s
alar 
urvature. The Hamiltonian 
onstraintfor the f(R) gravity is given by [31℄H = 12� �P6 �(3)R� 2�
 � 3KijKij +K2� ++ V (P)� 13gijPjij � 2pijKij� ; (2)where V (P) = ph [Rf 0 (R)� f (R)℄ (3)and Gijkl = 12ph (hikhjl + hilhjk � hijhkl): (4)Here, Kij is the se
ond fundamental form, K = hijKijis its tra
e, and (3)R is the three-dimensional s
alar
urvature. We also haveP = �6phf 0 (R) ; (5)and hen
eH = 12� h�phf 0 (R)�(3)R�2�
�3KijKij+K2� ++ V (P) + 2gij �phf 0 (R)� jij � 2pijKiji : (6)This 
an be expressed asH = f 0 (R)"2�Gijkl�ij�kl � ph2� �(3)R� 2�
�#++ 12� �pgf 0 (R) �2KijKij�+ V (P) ++ 2gij �phf 0 (R)����ij � 2pijKij� : (7)Using pij = phKij (8)

and passing to 
anoni
al momenta, we write the Hamil-tonian 
onstraint for the f(R) gravity asH = f 0 (R)"2�Gijkl�ij�kl � ph2� �(3)R � 2�
�#++ 4� �Gijkl�ij�kl + �4 2� (f 0 (R)� 1) ++ 12� �V (P) + 2gij �phf 0 (R)����ij� : (9)The Wheeler�De Witt equation is the quantum me-
hani
al version of this Hamiltonian 
onstraintH�(h) = 0; (10)where we use �ij = �i ÆÆhij : (11)We note that when f (R) = R;then V (P) = 0and the Wheeler�De Witt equation for the f(R)gravity redu
es to the usual Wheeler�De Witt equa-tion. In most interpretations of quantum gravity (e. g.,naive [32℄, 
onditional probability [33℄, and WKB ap-proximation [34℄), the Wheeler�De Witt equation isanalogous to the S
hrödinger wave equation, in thesense that it represents the quantum state of a sin-gle universe. But in the third-quantized formalism, itis seen as a 
lassi
al �eld equation that has to be thirdquantized [14, 15℄.The third-quantized formalism des
ribes the quan-tum state of an ensemble of geometries. It is there-fore the natural formalism for analyzing any model ofspa
etime foam. Mu
h work on third quantization isdone in analogy with quantum �eld theory in �at spa
e-time [12, 13, 18℄. However, there is no timelike Killingve
tor for the Wheeler�De Witt equation [16, 17℄, andhen
e 
onsistent third quantization should be done inanalogy with quantum �eld theory in 
urved spa
etime,and this is done in the next se
tion.3. THIRD QUANTIZATIONIn this se
tion, we third-quantize the Whe-eler�De Witt equation for the f(R) gravity. We�rst interpret Eq. (10) as a 
lassi
al �eld equation457



M. Faizal ÆÝÒÔ, òîì 141, âûï. 3, 2012and then quantize it. For this, we assume thatf�(P; h)g and f��(P; h)g form a 
omplete set ofsolutions of this Wheeler�De Witt equation and satisfya Klein�Gordon-type symple
ti
 produ
t with thepropertiesZ DhJ (�(P; h); �(Q; h)) =M(P;Q); (12)Z DhJ (�(P; h); ��(Q; h)) = 0; (13)Z DhJ (��(P; h); ��(Q; h)) = �M(P;Q): (14)In quantum �eld theory, the 
ondition given in Eq. (13)does not hold in general, and it is therefore a require-ment on the 
omplete set of solutions of the Whe-eler�De Witt equation [35℄. We also 
hose M(P;Q)to have positive eigenvalues only. This again is notalways true and hen
e this is again a requirement onthe 
omplete set of solutions of the Wheeler�De Wittequation.In the third-quantized formalism, �(h) is promotedto a Hermitian operator and is expressed as [18℄�̂(h) = Z DP [a(P )�(P; h) + ay(P )��(P; h)℄; (15)where a(P ) and ay(P ) satisfy the relations�a(P ); ay(Q)� = Æ(P;Q);�ay(P ); ay(Q)� = 0;[a(P ); a(Q)℄ = 0; (16)where Æ(P;Q) is de�ned byZ DPÆ(P;Q)�(P; h) = �(Q; h): (17)For this 
hoi
e of the 
omplete set of solutions of theWheeler�De Witt equation, we de�ne the va
uum statej0i as the state that is annihilated by a(P ):a(P )j0i = 0: (18)Now ay(P ) and a(P ) 
an be respe
tively 
alledthe 
reation and annihilation operators in analogywith those for the simple quantum harmoni
 os
il-lator. They 
reate and annihilate geometries in thethird-quantized formalism.We note that the division between f�(P; h)g andf��(P; h)g is not unique even after imposing the 
on-ditions given by Eqs. (12)�(14) [35℄. Due to this

nonuniqueness, the va
uum state is also de�ned notuniquely. This 
an be seen by 
onsidering f�0(P; h)gand f�0�(P; h)g as another 
omplete set of solutions ofEq. (10), satisfying 
onditions given by Eqs. (12)�(14).We then have�̂(h) = Z DP [a0(P )�0(P; h) + a0y(P )�0�(P; h)℄; (19)where the va
uum state j00i is the state annihilated bya0(P ), a0(P )j00i = 0: (20)Many geometry states 
an be built by repeated a
-tion of a0y(P ) on j00i. Be
ause �(P; h) and ��(P; h)form a 
omplete set of solutions of the �eld equation,Eq. (10), we 
an express �0(P; h) as a linear 
ombina-tion of �(P; h) and ��(P; h):�0(P; h) == Z DQ[�(P;Q)�(Q; h) + �(P;Q)��(Q; h)℄: (21)Substituting Eq. (21) in Eq. (19) and 
omparing theresulting expression with Eq. (15), we �nda(P ) = Z DQ[�(P;Q)a0(Q)+��(P;Q)a0y(Q)℄; (22)ay(P ) = Z DQ[��(P;Q)a0y(Q) + �(P;Q)a0(Q)℄: (23)The two Fo
k spa
es based on these 
hoi
es of a 
om-plete set of solutions of the �eld equation, Eq. (10), aredi�erent as long as �(P;Q) 6= 0. In parti
ular, a(P )j00idoes not vanish be
ausea(P )j00i = Z DQ[�(P;Q)a0(Q) ++ ��(P;Q)a0y(Q)℄j00i == Z DQ��(P;Q)a0y(Q)j00i 6= 0; (24)but a(P )j0i = 0: (25)Hen
e, a(P )j00i is a one-geometry state. In fa
t, wehaveh00ja(P )ya(P )j00i == Z DUDQ�(P;U)��(P;Q)M(U;Q): (26)The Wightman two-point fun
tion is then given byG(h; h0) = h0j�̂(h)�̂(h0)j0i: (27)458
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ts of virtual bla
k holesThis 
an be written asG(h; h0) = Z DPDQh0j(a(P )�(P; h) ++ a(P )y��(P; h))�� (a(Q)�(Q; h0) + ay(Q)�(Q; h0)j0i == Z DPDQ�(P; h)��(Q; h0)C(P;Q); (28)where C(P;Q) = h0j[a(P ); ay(Q)℄j0i (29)is the 
ommutator. Next, be
ause �̂ is Hermitian, wehave [35℄ [(�(P ); �̂); (�̂; �(Q))℄ =M(P;Q); (30)and therefore(�(P ); �̂) = Z DUa(U)M(P;U); (31)(�̂; �(Q)) = [(�(Q); �̂)℄y == Z DWay(W )M(W;Q): (32)It then follows from Eqs. (30)�(32) thatZ DUDWM(P;U)[a(U); ay(W )℄M(W;Q) ==M(P;Q): (33)Using Eqs. (29) and (33), we obtainZ DUDWM(P;U)C(U;W )M(W;Q) ==M(P;Q): (34)This equation in matrix notation is written asMCM =M: (35)Assuming that M(P;Q) has only positive eigenvalues,i.e., that it is invertible, we obtainC =M�1: (36)Therefore, the two-point fun
tion is given byG(h; h0) == Z DPDQ�(P; h)��(Q; h0)M�1(P;Q): (37)In this se
tion, we developed a third quantizationof the Wheeler�De Witt equation for the f(R) gravity.In the next se
tion, we use it to analyze the formationof virtual bla
k holes.

4. VIRTUAL BLACK HOLESThe Wheeler�De Witt equation in the third-quan-tized formalism represents the quantum state of an en-semble of nonintera
ting geometries. However, this isstill not enough to a

ount for topology 
hange. Toobtain a theory 
onsistent with topology 
hange, weneed to in
lude intera
tion terms. We therefore mo-dify the original Wheeler�De Witt equation by addingintera
tion terms,�H�� ÆV [�℄Æ�(h)� = 0; (38)where V [�℄ is a potential summarizing all the inter-a
tions. We 
an now apply this third-quantized for-malism of quantum gravity to virtual bla
k holes. Ithas been argued that virtual bla
k holes 
an form inloops like other virtual parti
les form in the 
onven-tional quantum �eld theory [9℄. But this dis
ussion onvirtual bla
k hole loops so far has not been made pre-
ise. This 
an be very easily done in the third-quanti-zed formalism. We 
an thus write the amplitude for theformation of a virtual bla
k hole loop in the third-quan-tized formalism asA = Z DhDh0G(h; h0)G(h0; h): (39)From Eqs. (37) and (39), we then obtainA = Z DhDh0DPDQDUDW �� �(P; h)��(Q; h0)M�1(P;Q)�� �(U; h0)��(W;h)M�1(U;W ): (40)It follows that these virtual bla
k holes form as o�-shell
ontributions in the third-quantized formalism of quan-tum gravity.Virtual bla
k holes exist in dynami
 equilibriumwith �at spa
etime at the Plan
k s
ale. However, ifthe probability of formation of virtual bla
k holes, i. e.,A2, in
reases due to any pro
ess, then a phase transi-tion 
an o

ur at a 
ertain 
riti
al value of A2. This
an 
hange the large-s
ale stru
ture of spa
etime and
reate a real bla
k hole. Thus the formation of a realbla
k hole 
an be seen as a phase transition indu
edby virtual bla
k holes in analogy to how a ferromagnetis magnetised. This implies that spa
etime foam 
angenerate the mi
rosates of a real bla
k hole.We therefore assume that the ma
ros
opi
 state ofa bla
k hole is made up of mi
rostates of spa
etimefoam. The area of a real ma
ros
opi
 bla
k hole A isthen 
overed by mi
rostates of foam like the stru
ture459
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etime at the Plan
k s
ale. If N is the numberof mi
rostates that 
ompletely 
over the area of thisma
ros
opi
 bla
k hole at the Plan
k s
ale, then thetotal statisti
al me
hani
al entropy asso
iated with thereal bla
k hole be
ause of these mi
ro-states is propor-tional to N [37℄. This suggest that the entropy of a realbla
k hole 
an have a statisti
al me
hani
al origin andthe foam-like stru
ture of spa
etime may give rise tothe mi
rostates for the Bekenstein�Hawking entropy.In fa
t, be
ause A is 
ompletely 
overed by thesemi
rostates of spa
etime foam, we haveA = N ~A = 4N�; (41)where ~A = 4� is the unit Plan
kian area in the Plan
kunits. Be
ause the ma
ros
opi
 bla
k hole area is repre-sented by N mi
ros
opi
 areas of the Plan
kian size, itis naturally quantized. Then the Bekenstein�Hawkingentropy along with the quantum 
orre
tions to it for ama
ros
opi
 bla
k hole is given by [36℄S = A4 + �0 logA+ �1A + �2A2 + : : : == N� + �0 log(4N�) + �14N� + �216N2�2 + : : : ; (42)where �0; �1; �2; : : : are 
onstants. Be
auseN is a verylarge number, we 
an negle
t the higher-order 
orre
-tions to this Bekenstein�Hawking entropy. In the lead-ing order, this entropy is therefore given byS � N�: (43)In the leading order, the Bekenstein�Hawking entropyis therefore proportional to N . This means that the en-tropy of a real bla
k hole is quantized by the stru
tureof spa
etime foam.5. QUANTUM COHERENCE AND THEPROBLEM OF TIMEThere is always some probability of the formationof virtual bla
k holes in �at spa
etime, and hen
e theparti
les found in nature naturally intera
t with vir-tual bla
k holes even in �at spa
etime. If Hphy is theHilbert spa
e of the parti
les found in nature and Hvbis the Hilbert spa
e of these virtual bla
k holes, thenthe total Hilbert spa
e H for this physi
al theory isH = Hphy 
Hvb: (44)The density operator � 
an be expressed as j	ih	j,where j	i is a ve
tor or a total wave fun
tion in H. Itis a pure state.

If �� and �+ are the respe
tive density matri
es forthe total Hilbert spa
e at past and future in�nities and$ is the supers
attering operator, then we 
an write [38℄�+ = $��: (45)Be
ause the set of 
reation operators for the totalHilbert spa
e H is a 
omplete set of bases at both pastand future in�nities, we 
an write $ as$ = SSy; (46)where Sy is the adjoint of the S-matrix. To see howthe density matrix evolves, we have to take the tra
eof the future density matrix, whi
h is given byTr(�2+) = Tr(($��)($��)): (47)Be
ause the suppers
attering matrix fa
torizes, we 
anwrite Tr(($��)($��)) = Tr(S��SyS��Sy); (48)when
eTr(S��SyS��Sy) = Tr(S�2�Sy) = Tr(�2�): (49)This is the tra
e of the past density matrix.However, the states of virtual bla
k holes are notmeasurable, and in reality we therefore have to takethe partial tra
e over Hvb. If Ivb is the identity oper-ator on Hvb and Aphy is an observable in Hphy, thenphysi
ally meaningful measurements are given byTr(�Ivb 
Aphy): (50)Be
ause the states in Hphy do not form a 
omplete setby themselves and hen
e the supers
attering operatordoes not fa
torize into the S-matrix and its adjoint, theevolution for Hphy is nonunitary. This 
auses a loss ofquantum 
oheren
e.The total wave fun
tion j	i 
an be written as asuperposition, with the 
oe�
ients 
n su
h thatXn j
nj2 = 1; (51)of single tensor produ
tsj	i = Xn 
njvbni 
 jphyni; (52)where the jvbni and jphyni are orthonormal sets of ba-sis ve
tors in Hvb and Hphy respe
tively. Hen
e,�vb =Xn j
nj2jvbnihvbnj;�phy =Xn j
nj2jphynihphynj: (53)460
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ts of virtual bla
k holesThe von Neumann entropy for the physi
al system isgiven by Sphy = �Tr(�phy log �phy): (54)We 
an then writeSphy = �Xn j
nj2 log j
nj2: (55)This is the entropy asso
iated with the physi
al sys-tems.This entropy 
an be used to de�ne a dire
tion oftime. To de�ne time-like anything along the traditionallines, one needs a notion of a �ow of time, representedby a one-parameter family of unitary operators, whi
hwe 
all a �ow t 7! U(t) on H with t ranging over thenonnegative real numbers, mapping any initial densitymatrix �0 = j	0ih	0jat some initial instant t = 0 into the density matrix�t = j	tih	tjat a later instant t a

ording to the transformation�t = U(t)�0U(t)�1: (56)A single mi
rostate at one instant therefore evolves toa single mi
rostate at a later instant. For any initialstate, the entanglement between Hvb and Hphy is lessthan at a later stage. Be
ause the states keep be
omingmore and more entangled with the passage of time, thisentanglement 
an also be used to identify the dire
tionof time. The value of entropy then also in
reases uni-formly as a state evolves to the future. We 
an equatethe dire
tion of the in
rease in this von Neumann en-tropy S(t)phy with time. This 
an give a solution tothe problem of time in quantum gravity.6. CONCLUSIONIn this paper, modi�ed gravity is 
onsistently thirdquantized in analogy with the quantization of s
alar�eld theory in 
urved spa
etime. Then the virtual bla
khole model of spa
etime foam, whi
h 
urrently seemsto be the 
orre
t model of spa
etime foam, is analyzedin this third-quantized modi�ed gravity. This model isused to give a statisti
al origin of the Bekenstein�Haw-king entropy. It is also shown that the area and hen
ethe entropy of a real bla
k hole is quantized in thismodel. Furthermore, the loss of quantum 
oheren
eo

urs be
ause virtual bla
k hole states are not mea-surable. This in turn 
auses all physi
al systems to

a
quire an intrinsi
 entropy. This entropy is used togive a de�nition of time in quantum gravity.It would be interesting to analyze many other re-sults that have been dis
ussed for baby universes inthe third-quantized formalism in terms of spa
etimefoam formed by virtual bla
k holes. It might be possi-ble to obtain a di�erent value of the 
osmologi
al 
on-stant than the one obtained in the model of spa
etimefoam 
ontaining baby universes. In higher dimensions,spa
etime is known to possess more exoti
 topologieslike the bla
k rings. It would also be interesting toanalyze a model of spa
etime 
ontaining virtual bla
krings. The results of this paper 
an easily be generali-zed to virtual bla
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