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We first consistently third-quantize modified gravity. We then analyze certain aspects of virtual black holes in
this third-quantized modified gravity. We see how a statistical mechanical origin for the Bekenstein—Hawking
entropy naturally arises in this model. Furthermore, the area and hence the entropy of a real macroscopic black
hole is quantized in this model. Virtual black holes cause a loss of quantum coherence, which gives an intrinsic
entropy to all physical systems that can be used to define a direction of time and hence provide a solution to

the problem of time.

1. INTRODUCTION

It is expected that quantum fluctuations of space-
time can cause the topology of spacetime to change at
the Planck scale, giving it a foam-like structure called
the spacetime foam [1, 2]. Spacetime form has largely
been discussed via the formation of baby universes that
render the spacetime multiply connected [3-5]. In this
model, the spacetime manifold therefore has a large
value of the first Betti number B; and the second Betti
number vanishes, Bs 0. The problem with this
model is that it predicts a wrong value of the QCD
f-parameter [6] and the cosmological constant [7, 8].

However, there is an alternative model of space-
time foam that seems to predict a correct value of
the QCD #-parameter [9]. In this model, the topo-
logy of spacetime changes by the formation of virtual
black holes and thus the spacetime remains single con-
nected [10, 11]. In this model, the spacetime manifold
has a large value of the second Betti number By and the
first and third Betti numbers vanish, By = B3 = 0. In
this picture, there is also an elegant way to describe
black hole evaporation without the appearance of a
naked singularity. Macroscopic real black holes evapo-
rate to the Planck size by emitting Hawking radiation.
At this stage, they are left with no energy or charge.
They then disappear in a sea of virtual black holes. Be-
cause this picture of spacetime foam seems to be more
realistic, we analyze certain aspects of it in this paper.

To study the physical effects of virtual black holes,
we should analyze the collision of particles with ener-

*E-mail: faizal.mir@durham.ac.uk

456

gy less than the Planck energy in a small region con-
taining a virtual black hole. For this, we would need
to find a Euclidean solution for this process. But it
is very difficult to find such a solution, and we there-
fore analyze virtual black holes via third quantization.
The third quantization has been discussed implicitly in
Refs. [12, 13] and explicitly in Refs. [14, 15]. The mo-
dification of the Wheeler—-De Witt equation by the ad-
dition of nonlinear terms and the third quantization of
the resultant theory was formally analyzed in Ref. [18].
Third quantization of Brans—Dicke theories [19] and
Kaluza-Klein theories [20] has also been done. Ho-
wever, all this work has been done in the baby universe
model of spacetime foam. We therefore apply third
quantization to the virtual black hole model in this pa-
per. It may be noted that the idea of canonical quan-
tization of gravity has progressed into loop quantum
gravity [21, 22]. Furthermore, the idea of third quan-
tization now appears as a group field theory [23, 24|
in loop quantum gravity. Hense, this present work
should be translated into the language of group field
theory. However, it is not clear how to deal with vir-
tual black holes in group field theory. To understand
that, it might be useful to first analyze virtual black
holes in two dimensions via matrix models [25, 26].
This is because group field theory can be viewed as
a higher-dimensional generalization of matrix models.

2. WHEELER-DE WITT EQUATION

It is hoped that a corrected gravitational potential
could fit galaxy rotation curves without the need of
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dark matter [27, 28]. This is why f(R) gravity theo-
ries have become very important [29, 30]. We therefore
study the virtual black holes in f(R) gravity theories.
The Lagrangian density describing a generic f(R) the-
ory of gravity is given by

L=v=g(f(R)-2A),

o 20 1)

where f (R) is an arbitrary function of the scalar curva-
ture and the primes denote differentiation with respect
to the scalar curvature. The Hamiltonian constraint
for the f(R) gravity is given by [31]

T2k

! {% (<3>R —2A, — 3K, KU + KQ) +

+ V(P) - %gifmj - 2pif'1(ij] . (2)
where
V(P) = Vh[Rf' (R) - f (R)] (3)
and

1
Gijrl = m(hikhﬂ + hihjr — hijhr). (4)

Here, K;; is the second fundamental form, K = h" K;;
is its trace, and ® R is the three-dimensional scalar
curvature. We also have

P = _6\/Efl (R) ) (5)
and hence
H= i [_\/Efl (R) <(3)R—2Ac—3Kinij+K2) +
+V(P)+ 29 (VA (R)) i — 207 K] . (6)

This can be expressed as

M =f"(R) QHGijkmijﬂ'kl — ? <(3)R — 2Ac) +

KR

+5- {\/gf' (R) (2K;KY) + V(P) +

+ 29" (Vif' (R))

o QPUKM] - (7

vy

Using

P = VhEY 8)

and passing to canonical momenta, we write the Hamil-
tonian constraint for the f(R) gravity as

H = f"(R) QHGijklﬂ'ijﬂ'kl — % ((3)R — 2Ac) +
+4r {Gmm%“ + }2] (f'(R)—1) +
+ % {V(P) +2¢" (VRS (R)) j] )

The Wheeler-De Witt equation is the quantum me-
chanical version of this Hamiltonian constraint

He(h) =0, (10)
where we use
i = —i(s;ij (11)
We note that when
f(R)=R,
then
V(P)=0

and the Wheeler-De Witt equation for the f(R)
gravity reduces to the usual Wheeler-De Witt equa-
tion. In most interpretations of quantum gravity (e. g.,
naive [32], conditional probability [33], and WKB ap-
proximation [34]), the Wheeler-De Witt equation is
analogous to the Schrodinger wave equation, in the
sense that it represents the quantum state of a sin-
gle universe. But in the third-quantized formalism, it
is seen as a classical field equation that has to be third
quantized [14, 15].

The third-quantized formalism describes the quan-
tum state of an ensemble of geometries. It is there-
fore the natural formalism for analyzing any model of
spacetime foam. Much work on third quantization is
done in analogy with quantum field theory in flat space-
time [12, 13, 18]. However, there is no timelike Killing
vector for the Wheeler-De Witt equation [16, 17], and
hence consistent third quantization should be done in
analogy with quantum field theory in curved spacetime,
and this is done in the next section.

3. THIRD QUANTIZATION

In this section, we third-quantize the Whe-
eler-De Witt equation for the f(R) gravity. We
first interpret Eq. (10) as a classical field equation
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and then quantize it. For this, we assume that
{6(P,h)} and {¢*(P,h)} form a complete set of
solutions of this Wheeler—-De Witt equation and satisfy
a Klein—Gordon-type symplectic product with the
properties

/ DhJ($(P,h), (Q,h)) = M(P,Q),  (12)
/ DhT(6(P,h),6*(Q. 1)) = (13)
/ DRI (6" (P.h), 6°(Q.1) = —M(P,Q).  (14)

In quantum field theory, the condition given in Eq. (13)
does not hold in general, and it is therefore a require-
ment on the complete set of solutions of the Whe-
eler-De Witt equation [35]. We also chose M(P,Q)
to have positive eigenvalues only. This again is not
always true and hence this is again a requirement on
the complete set of solutions of the Wheeler-De Witt
equation.

In the third-quantized formalism, ¢(h) is promoted
to a Hermitian operator and is expressed as [18]

/DP

where a(P) and aT(P) satisfy the relations

o(P,h) +a (P)¢*(P,h)], (15)

where §(P, Q) is defined by

| pPsr.@orm = o 1)
For this choice of the complete set of solutions of the
Wheeler—De Witt equation, we define the vacuum state
|0) as the state that is annihilated by a(P):

a(P

Now af(P) and a(P) can be respectively called
the creation and annihilation operators in analogy
with those for the simple quantum harmonic oscil-
lator. They create and annihilate geometries in the
third-quantized formalism.

We note that the division between {¢(P,h)} and
{¢*(P,h)} is not unique even after imposing the con-
ditions given by Eqs. (12)-(14) [35]. Due to this

)|0) = 0. (18)

458

nonuniqueness, the vacuum state is also defined not
uniquely. This can be seen by considering {¢'(P, h)}
and {¢'*(P,h)} as another complete set of solutions of
Eq. (10), satisfying conditions given by Eqs. (12)—(14).
We then have

/DP

where the vacuum state |0") is the state annihilated by
a'(P),

"(P,h) +a'T(P)¢'*(P,h)], (19)

a'(P

Many geometry states can be built by repeated ac-
tion of a'f(P) on [0). Because ¢(P,h) and ¢*(P,h)
form a complete set of solutions of the field equation,
Eq. (10), we can express ¢'(P, h) as a linear combina-
tion of ¢(P, h) and ¢*(P, h):

)|0") =0 (20)

¢'(Ph) =
- / DQIa(P,Q)6(Q.h) + BP.Q)o* (Q.h)]. (21)

Substituting Eq. (21) in Eq. (19) and comparing the
resulting expression with Eq. (15), we find

- / DQa(P,Q)d (Q)+5*(P.Q)a' Q). (22)
- / DQ[a*(P.Q)a" (Q) + B(P,Q)a' (Q)]. (23)

The two Fock spaces based on these choices of a com-
plete set of solutions of the field equation, Eq. (10), are
different as long as (P, Q) # 0. In particular, a(P)|0")
does not vanish because

(P)[0) = / DQla(P,Q)d(Q) +
+ B*(P,Q)d T (Q))|0") =
- / DQB*(P.Q) Q) £0, (24)

but
a(P)|0) = 0. (25)
Hence, a(P)|0") is a one-geometry state. In fact, we
have
(O'[a(P) a(P)|0') =

- [ DUDQs(P.L)F (P.QMT.Q). (26)
The Wightman two-point function is then given by

G(h, 1) = (0lg(h)$(")]0). (27)
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This can be written as

G(h,h') = /DPDQ<0|(a(P)¢(P, h) +
+ a(P)f¢* (P, h)) x
x (a(Q)4(Q, ') + a' (Q)5(Q, h')|0) =
= [ DPDQuP.E @ WIC(PQ), (29
where
C(P,Q) = (0l[a(P),a’ (Q)]|0)

is the commutator. Next, because qAS is Hermitian, we
have [35]

(29)

[(6(P), ), (6, 6(Q)] = M(P,Q), (30)
and therefore
0P = [ DUa@MPL). G
(6,6(Q)) = 1(6(Q). 9" =
= /DWaT(W)M(W, Q). (32)
It then follows from Eqgs. (30)—(32) that
/DUDWM(P, U)[a(U), at(W)MW,Q) =
= M(P,Q). (33)
Using Eqs. (29) and (33), we obtain
/ DUDW M(P,U)C(U, W)M(W,Q) =
= M(P,Q). (34)
This equation in matrix notation is written as
MCM = M. (35)

Assuming that M(P, Q) has only positive eigenvalues,
i.e., that it is invertible, we obtain

C=M" (36)
Therefore, the two-point function is given by
G(h,h'") =
= [ DPDQuP. W (@ W)M(P.Q). (3T)

In this section, we developed a third quantization
of the Wheeler-De Witt equation for the f(R) gravity.
In the next section, we use it to analyze the formation
of virtual black holes.

459

4. VIRTUAL BLACK HOLES

The Wheeler-De Witt equation in the third-quan-
tized formalism represents the quantum state of an en-
semble of noninteracting geometries. However, this is
still not enough to account for topology change. To
obtain a theory consistent with topology change, we
need to include interaction terms. We therefore mo-
dify the original Wheeler—-De Witt equation by adding
interaction terms,

_] o,

[H " 5o(h)

where V[¢] is a potential summarizing all the inter-
actions. We can now apply this third-quantized for-
malism of quantum gravity to virtual black holes. Tt
has been argued that virtual black holes can form in
loops like other virtual particles form in the conven-
tional quantum field theory [9]. But this discussion on
virtual black hole loops so far has not been made pre-
cise. This can be very easily done in the third-quanti-
zed formalism. We can thus write the amplitude for the
formation of a virtual black hole loop in the third-quan-
tized formalism as

A= /DhDh’G(h,h’)G(h’,h). (39)
From Egs. (37) and (39), we then obtain
A= /DhDh'DPDQDUDW X
x ¢(P,h)o" (Q,h" )M~ (P, Q) x
x ¢(U, W )¢* (W, )M~ (U, W).  (40)

It follows that these virtual black holes form as off-shell
contributions in the third-quantized formalism of quan-
tum gravity.

Virtual black holes exist in dynamic equilibrium
with flat spacetime at the Planck scale. However, if
the probability of formation of virtual black holes, i.e.,
A2, increases due to any process, then a phase transi-
tion can occur at a certain critical value of A%. This
can change the large-scale structure of spacetime and
create a real black hole. Thus the formation of a real
black hole can be seen as a phase transition induced
by virtual black holes in analogy to how a ferromagnet
is magnetised. This implies that spacetime foam can
generate the microsates of a real black hole.

We therefore assume that the macroscopic state of
a black hole is made up of microstates of spacetime
foam. The area of a real macroscopic black hole A is
then covered by microstates of foam like the structure
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of spacetime at the Planck scale. If N is the number
of microstates that completely cover the area of this
macroscopic black hole at the Planck scale, then the
total statistical mechanical entropy associated with the
real black hole because of these micro-states is propor-
tional to N [37]. This suggest that the entropy of a real
black hole can have a statistical mechanical origin and
the foam-like structure of spacetime may give rise to
the microstates for the Bekenstein—Hawking entropy.

In fact, because A is completely covered by these
microstates of spacetime foam, we have

A=NA=4Nr, (41)
where A = 47 is the unit Planckian area in the Planck
units. Because the macroscopic black hole area is repre-
sented by N microscopic areas of the Planckian size, it
is naturally quantized. Then the Bekenstein-Hawking
entropy along with the quantum corrections to it for a
macroscopic black hole is given by [36]

A ap |
(&3] (65}
:Nﬁ+a010g(4Nﬂ)+m+m+..., (42)

where ag, ay, as, ... are constants. Because N is a very
large number, we can neglect the higher-order correc-
tions to this Bekenstein—Hawking entropy. In the lead-
ing order, this entropy is therefore given by

S~ Nm. (43)
In the leading order, the Bekenstein—Hawking entropy
is therefore proportional to N. This means that the en-
tropy of a real black hole is quantized by the structure
of spacetime foam.

5. QUANTUM COHERENCE AND THE
PROBLEM OF TIME

There is always some probability of the formation
of virtual black holes in flat spacetime, and hence the
particles found in nature naturally interact with vir-
tual black holes even in flat spacetime. If H,, is the
Hilbert space of the particles found in nature and H,
is the Hilbert space of these virtual black holes, then
the total Hilbert space H for this physical theory is

H = Hpny @ Hop. (44)

The density operator p can be expressed as |[¥)(T],
where |T) is a vector or a total wave function in H. It
is a pure state.
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If p_ and py are the respective density matrices for
the total Hilbert space at past and future infinities and
$ is the superscattering operator, then we can write [38]

p+ =S$p—. (45)

Because the set of creation operators for the total
Hilbert space H is a complete set of bases at both past
and future infinities, we can write $ as

§ =88, (46)

where ST is the adjoint of the S-matrix. To see how
the density matrix evolves, we have to take the trace
of the future density matrix, which is given by

Tr(p}) = Tr(($p-)($p-)).-

Because the supperscattering matrix factorizes, we can

(47)

write
Tr(($p-)($p-)) = Te(Sp-S'Sp-8T),  (48)
whence
Tr(Sp_STSp ST = Te(Sp2 St =Tr(p?).  (49)

This is the trace of the past density matrix.

However, the states of virtual black holes are not
measurable, and in reality we therefore have to take
the partial trace over H,,. If I, is the identity oper-
ator on H,p, and App, is an observable in #,p,, then
physically meaningful measurements are given by

TI'(vab ® Aphy). (50)

Because the states in Hpn, do not form a complete set
by themselves and hence the superscattering operator
does not factorize into the S-matrix and its adjoint, the
evolution for Hpp, is nonunitary. This causes a loss of
quantum coherence.

The total wave function |¥) can be written as a
superposition, with the coefficients ¢,, such that

D len? =1,
n
of single tensor products

|¥) = ch|vbn> @ |phyn),

(51)

(52)

where the |vb,,) and |phy,) are orthonormal sets of ba-
sis vectors in H,p and Hpp, respectively. Hence,

Pvb = Z e [0by) (vba],
n

pohy = 3 lenl* IPhyn) (Phyn|.

n
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The von Neumann entropy for the physical system is
given by
(54)

Sphy = — Tr(Pphy log Pphy)-

We can then write

Sphy = = Y _ leal” log|eal®. (55)

This is the entropy associated with the physical sys-
tems.

This entropy can be used to define a direction of
time. To define time-like anything along the traditional
lines, one needs a notion of a flow of time, represented
by a one-parameter family of unitary operators, which
we call a flow ¢ — U(t) on H with ¢ ranging over the
nonnegative real numbers, mapping any initial density
matrix

po = [Po)(Po|

at some initial instant ¢ = 0 into the density matrix
pr = |W4) (¥4

at a later instant ¢ according to the transformation

pe =U(t)poU(t) " (56)

A single microstate at one instant therefore evolves to
a single microstate at a later instant. For any initial
state, the entanglement between H,, and Hpp, is less
than at a later stage. Because the states keep becoming
more and more entangled with the passage of time, this
entanglement can also be used to identify the direction
of time. The value of entropy then also increases uni-
formly as a state evolves to the future. We can equate
the direction of the increase in this von Neumann en-
tropy S(t)pny with time. This can give a solution to
the problem of time in quantum gravity.

6. CONCLUSION

In this paper, modified gravity is consistently third
quantized in analogy with the quantization of scalar
field theory in curved spacetime. Then the virtual black
hole model of spacetime foam, which currently seems
to be the correct model of spacetime foam, is analyzed
in this third-quantized modified gravity. This model is
used to give a statistical origin of the Bekenstein—Haw-
king entropy. It is also shown that the area and hence
the entropy of a real black hole is quantized in this
model. Furthermore, the loss of quantum coherence
occurs because virtual black hole states are not mea-
surable. This in turn causes all physical systems to

461

acquire an intrinsic entropy. This entropy is used to
give a definition of time in quantum gravity.

It would be interesting to analyze many other re-
sults that have been discussed for baby universes in
the third-quantized formalism in terms of spacetime
foam formed by virtual black holes. It might be possi-
ble to obtain a different value of the cosmological con-
stant than the one obtained in the model of spacetime
foam containing baby universes. In higher dimensions,
spacetime is known to possess more exotic topologies
like the black rings. It would also be interesting to
analyze a model of spacetime containing virtual black
rings. The results of this paper can easily be generali-
zed to virtual black rings.
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