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The spatial structure of the Bose—Einstein condensate (BEC) is investigated and spatially chaotic distributions
of the condensates are revealed. By means of changing the s-wave scattering length with a Feshbach resonance,
the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are
different periodic orbits according to different s-wave scattering lengths only if the Lyapunov exponent of the

system is negative.

1. INTRODUCTION

Eighty years after its prediction, the Bose-Einstein
condensate (BEC) was observed in trapped gases of ru-
bidium, sodium, and lithium [1]. The mean field theory
(the Gross—Pitaevskii (GP) equation) has been quite
successful in quantitatively reproducing many experi-
mental observations [2].

The achievement of BEC in dilute alkali vapors has
opened the field of weakly interacting degenerate Bose
gases. Experimental and theoretical progress has been
made in studying the properties of this new state of
matter. Several remarkable phenomena, which strongly
resemble well-known effects in nonlinear optics, have
been observed in the BEC, such as four-wave mixing,
vortices, dark and bright solitons, and chaos [3-13].
In a realistic experimental setting, an external electro-
magnetic field is used to produce, trap, and manipulate
the BEC. In early experiments, only the harmonic po-
tential was used, but a wide variety of potentials can
now be constructed experimentally. Among the most
frequently studied both experimentally and theoreti-
cally are periodic lattice potentials. The optical lat-
tice is created as a standing-wave interference pattern
of mutually coherent laser beams. With each lattice
site occupied by one mass of alkali atoms in its ground
state, the BEC in optical lattices shows a number of
potential applications, such as an atomic interferome-
ter, detectors for quantum computers, an atom laser,
and quantum information processing on the nanometer
scale. Optical lattices are therefore of particular inter-

*E-mail: wzx2007111@126.com

432

est from the perspective of both fundamental quantum
physics and applications [8].

Numerous experimental studies have confirmed
the general validity of the time-dependent nonlinear
Schréodinger equation, also called the GP equation,
used to calculate the ground state and excitations of
various BECs of trapped alkali atoms. The dynamics
of the system are described by a Schrédinger equation
with a nonlinear term that represents many-body inter-
actions in the mean-field approximation. This nonlin-
earity allows introducing chaos into a quantum system:.
The existence of BEC chaos has been proved, and the
chaos properties have also been extensively investigated
in many previous works. Naturally, chaos, which plays
a role in the regularity of the system, causes instability
of the condensate wave function. The study of chaos in
nonlinear deterministic systems has been underway for
many years. In addition to addressing basic questions
on the mechanisms and predictions of chaos, the abili-
ty to control it to a regular state is also an important
subject for relevant studies.

For the purpose of applications, the control of chaos
has been anticipated. Chaos control in BEC has al-
ways been a widely attractive field since the pioneering
work [14]. Controlling chaos can be separated into two
categories: feedback (active) control and nonfeedback
(passive) control. The general method for feedback
control is to push the state of a system onto a stable
manifold of a target orbit, that is, to stabilize the unsta-
ble target orbits embedded within a chaotic attractor.
The main purpose is to control the chaos into stable
states in the BEC by means of changing the s-wave
scattering length by using the Feshbach resonance. We
can force the system to a stable periodic orbit.
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2. CONTROLLING CHAOS IN THE BEC

The BEC system considered here is created in a
harmonically trapped potential and is then loaded into
an optical lattice. For the system considered here, this
is similar to the case of the linear junction linking of
many BECs. Thus, a damping effect caused by similar
elements or other factors may also exist. With these
considerations, the system is governed by the quasi-
one-dimensional GP equation [15]
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where m is the atomic mass, 9 is the macroscopic quan-
tum wave function, and
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characterizes the interatomic interaction strength, here
a is the s-wave scattering length: a > 0 corresponds
to a repulsive interaction and a < 0 corresponds to an
attractive interaction. Furthermore, the term propor-
tional to v represents the damping effect that was used
in Ref. [15], £ = = + v t, and vy, is the velocity of the
traveling lattice.

Due to the complexity of Eq. (1), we focus our inte-
rest only on the traveling wave solution of this equation
and write it in the form

¥ = @) exp [i(arz + it)], (2)

where aq and 31 are two undetermined real constants.
For simplicity, we use the dimensionless variables
and parameters
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where I is the optical intensity, k£ is the laser wave
vector, and E, = h>k?/2m is the recoil energy.
Writing the complex function ¢ in the form

o = R(t)e!*®),

where R and 6 are real functions, and letting v = 0, we
obtain two coupled equations
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Fig.1. The maximum Lyapunov exponent \,q» as
a function of the optical intensity Iy with v + 2a =
=0.0001, g=—05, B+’ =2,c1=0

Clearly, the square of the amplitude R is just the
particle number density because

Rl =[] = [¥1,

and € is the phase of ¢. It is not difficult to see that
when the phase is related to the space-time variable
linearly, i.e.,
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Fig.2. The attractors with the initial conditions (R,dR/dn) = (v/2,0), ¢c1 =0, a =0, 3=2.0, g = —0.5
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where ¢y is a constant, we obtain the uncoupled equa-

tion
d’>R ( )

dn?
v+2a)?
, (20
2

Here g = 8mak is the dimensionless strength [16].

R—(B+a®)R—gR? = Iy cos*(n)R. (5)

3. NUMERICAL SIMULATION

We calculate the Lyapunov exponent of the BEC
system. Figure 1 shows the maximum Lyapunov expo-
nent \pq. as a function of the optical intensity Iy. The
middle point-drawing line stands for zero value. The
parameters are:

v+2a=0.0001, ¢g=-05 pB+a’=2, ¢ =0.
The initial conditions are
dR(0
R(0) = V2, #:0 (6)

Using the fourth Runge-Kutta algorithm, we solve
Eq. (5) numerically, and illustrate the attractors in the
equivalent phase of (R,dR/dn). The initial conditions
are (R,dR/dn) = (v/2,0). The three Lyapunov expo-
nents are different.

Figure 2a: Iy = 0.3, v = 0.0001, \; = 0.03122,
Ay =0, and A3 = —0.03122.

Figure 2b: Iy = 0.28, v = 0.0001, Ay = 0.15013,
A2 =0, and A3 = —0.15013.

Figure 2¢: Iy = 0.95, v = 0.0001, A\; = 0.3122,
/\2 = 07 and /\3 = —0.3122.

Figure 2d: Iy = 0.001, v = 0.2, \y = 0.00734,
A2 =0, and A3 = —0.00734.

Figure 2e: Iy = 0.0095, v = 0.0001, A; = 0.00793,
Ay =0, and A3 = —0.00793.

Figure 2f Iy = 0.015, v = 0.0001, A\; = 0.00778,
A2 =0, and A3 = —0.00778.

Figure 2¢: Iy = 0.057, v = 0.0001, A; = 0.00745,
A2 =0, and A3 = —0.00745.

The BEC system is in a chaotic state.

To control the chaos in the BEC, we adjust the
interaction by changing the s-wave scattering length,
that is, changing the value of ¢g. In this paper, we only
consider the effect of the s-wave.

Figure 3 shows the maximum Lyapunov exponent
as a function of the s-wave scattering length g. The
middle point-drawing line stands for the zero value. We
find that in many ranges, for example,

—0.161 < g < —0.16, and —0.1582 < g < —0.1578,
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Fig.3. The maximum Lyapunov exponent .. as a
function of the s-wave scattering length g with ¢y =0,
a=0, =20, Iy=0.95 v=0.0001

Fig.4. The attractor projection on the y1y> plane with
c1t =0, a=0 8=20 I = 0.95 v = 0.0001,
g = —0.1602

the maximum Lyapunov exponent is negative. If ¢
takes a value in these ranges, the BEC is in a periodic
state. The BEC is in a periodic state when g takes the
values —0.1602.

We solve Eq. (5) numerically by using the fourth
Runge-Kutta algorithm. The initial conditions are
y1 = V2 and y» = 0.023. Figure 4 shows the attrac-
tor projected onto the y;y» plane. The parameters are
the same as in Fig. 2, the other parameter being g =

%
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= 0.1602. We can therefore transform a chaotic state
into a periodic regular state by modulating the s-wave
length g.

4. CONCLUSIONS

We have investigated chaotic behavior in the BEC.
The stationary features of the system have been
studied analytically and numerically. In the recent
advancements in applications of the BEC, quantum
computation with BEC atoms in Mott-insulating
states is an interesting subject [18]. However, chaos is
associated with quantum entanglement [19] and quan-
tum error corrections [20], which are all key subject
in quantum computation; therefore, investigating the
chaos in BEC is very important.

This paper is supported by the National Natu-
ral Science Foundation of China (Grant Ne10871203)
and the Natural Science Foundation of JiLin province,
China (Grant Ne201115133).
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