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THERMODYNAMICS OF AN INTERACTING FERMI SYSTEMIN THE STATIC FLUCTUATION APPROXIMATIONR. R. Nigmatullin, A. A. Khamzin *, I. I. PopovTheoretial Physis Department, Kazan (Volga Region) Federal University420008, Kazan, RussiaReeived April 19, 2011We suggest a new method of alulation of the equilibrium orrelation funtions of an arbitrary order for theinterating Fermi-gas model in the framework of the stati �utuation approximation method. This methodbased only on a single and ontrollable approximation allows obtaining the so-alled far-distane equations.These equations onneting the quantum states of a Fermi partile with variables of the loal �eld operatorontain all neessary information related to the alulation of the desired orrelation funtions and basi ther-modynami parameters of the many-body system. The basi expressions for the mean energy and heat apaityfor the eletron gas at low temperatures in the high-density limit were obtained. All expressions are given inthe units of rs, where rs determines the ratio of a mean distane between eletrons to the Bohr radius a0.In these expressions, we alulate terms of the respetive order rs and r2s . It is also shown that the stati�utuation approximation allows �nding the terms related to higher orders of the deomposition with respetto the parameter rs.1. INTRODUCTION TO THE STATICFLUCTUATION APPROXIMATIONMETHODThe alulation of the orrelation energy of theground state in the absene of external �elds for thestrongly degenerated eletron gas onstitutes the en-tral problem in solid state physis, in partiular, thephysis of metals. In the pioneering works of Gell-Mann and Bruekner [1℄ and Wigner [2℄, the �rst ana-lyti results for the high-density and low-density ele-tron gas were obtained. In those papers, an expres-sion for the ground state energy was obtained in theterms of the dimensionless parameter rs = r0=a0, wherer0 = 3p3=4�n is the mean distane between eletrons,n is the eletron gas density, and a0 determines theonventional Bohr radius. For the high-density limit(rs < 1), the ground state energy has the form [2℄E0N = �2:21r2s � 0:916rs + 0:0622 lnrs � 0:094�Ry : (1)The �rst term orresponds to the kineti energy andthe seond term determines the ontribution of the ex-hange energy. The last two terms in Eq. (1) desribe*E-mail: airat.khamzin�rambler.ru

the orrelation energy Eorr. We note that anothernumerial oe�ient before the logarithmi term wasobtained in [3℄:EorrN = (0:0570 ln rs � 0:094)Ry : (2)Besides this observation, we note papers [4�6℄, wherethe di�erent numerial values for the onstant term inEq. (2) are presented. Therefore, the problem of theorret evaluation of the expression for the orrelationenergy remains open.The seond task is related to the problem of theaurate (error ontrollable) alulations of the orre-tions to the orrelation energy having higher degrees ofrs. In [1℄, the authors suggested only a way to �nd thedesired orretions respetively proportional to rs andrs ln rs. But the neessary alulations were not per-formed. In Ref. [7℄, in the framework of the random-phase approximation of the Rayleigh�Shrödinger per-turbation theory, similar alulations were performed,but it was shown that the numerial oe�ient beforers an be evaluated only at rs = 1. The desired termshaving higher orders of rs were not found.To summarize the foregoing, we onlude that theonventional alulation (in the framework of the dia-gram summation or the Green's funtion method with355 10*



R. R. Nigmatullin, A. A. Khamzin, I. I. Popov ÆÝÒÔ, òîì 141, âûï. 2, 2012unontrollable deoupling) of any higher-order term en-tering the orrelation energy is a omplex and laboriouswork in and of itself. It is therefore neessary to developa method that would allow realizing these alulationsfor a wide lass of interations and temperatures havingonly one (and error ontrollable) approximation.One of us (R. R. N.) suggested the desired method,whih was alled the stati �utuation approximation(SFA). The SFA generalizes the well-known mean �eldmethod and allows alulating the desired equilibriumorrelation funtions with neessary thermodynamivalues of the many-body system onsidered. The basiidea of the SFA an be formulated as follows. Insteadof replaing the omponents of the loal �eld operatorby its orresponding mean value, it is possible to pre-serve its operator struture and �nd the spetrum ofthe remaining loal �eld operator self-onsistently. Weneed to larify the basi idea of the SFA using a simpleexample. We onsider some Hamiltonian H desribingthe interating Fermi gas. The simplest equation ofmotion for the Fermi reation operator ayk(�), � = it,takes the form daykd� = [H; ayk℄ = Ekayk; (3)where k = (k; s) determines the state of a Fermi par-tile. The loal �eld operator Ek, as a projetion onstates of a single Fermi partile, is easily alulatedfrom the relationEk = h[H; ayk℄; aki+ ; [H;Ek℄ � 0; (4)where [A;B℄+ = AB + BA is an antiommutator. Wesuppose that this loal �eld operator ommutes withthe Hamiltonian of the system. Simple alulationslead to the equationhnkAi = � A1 + exp(�Ek)� ; � = 1T ; (5)where h: : : i = Sp[: : : exp(��H)℄= Sp[exp(��H)℄ is anaveraging over an equilibrium statistial ensemble. Theoperator A in Eq. (5) determines an arbitrary ombi-nation of Fermi operators that ommutes at least withoperator nk = aykak pertaining to the individual state k.The next step is to replae the eigen-values of thespetrum of Ek with their approximate values, whih,in turn, are alulated self-onsistently. We supposethat the spetrum of the loal �eld operator Ek is de-generate and �nite. In this ase, it an be presentedas nYm=1(Ek � �m) = 0; (6)

where �m are the eigenvalues of the loal �eld operatorEk. Using the Cayley�Hamilton theorem [8℄, we anexpress any operator funtion F (Ek) as a polynomial,F (Ek) = n�1Xp=0 �p(Ek)p: (7)The unknown oe�ients �p involved in (7) are foundfrom the system of linear equationsF (�m) = n�1Xp=0 �p(�m)p; m = 1; 2; : : : ; n: (8)We limit ourselves to onsidering only the linear termwith respet to the di�erene operator �Ek = Ek �� hEki. We also suppose that this operator approxi-mately satis�es the relation(�Ek)2 = bk�Ek + k;bk = h(�Ek)3ih(�Ek)2i ; k = h(�Ek)2i: (9)These expressions ontain the basi approximation ofthe SFA. The unknown parameters bk and k in (9)are alulated self-onsistently, beause they an be ex-pressed as a ombination of the operators nk0 , k0 6= k,involved in bk and k and entering the operator A inEq. (5). The details of alulations (with bk = 0) aregiven below.Using the Cayley�Hamilton theorem, we �nd anapproximate relation onneting the operator nk with�Ek. This equation has the formhnkAi = �0(T )hAi+ �1(T )h�EkAi (10)and is alled the far-distane equation E [9℄. This equa-tion allows losing all the relation for the desired equi-librium orrelation funtions and thermodynami val-ues that need to be alulated. We do not give thevalues of the temperature onstants �0(T ) and �1(T )here. They are easily obtained from system (7) andEq. (5). Other neessary details are given in the nextsetion.The SFA was suessfully used in the analysis ofequilibrium properties of the Ising model in an arbi-trary dimension [10�12℄, thermodynamis of the in-terating Bose gas [13℄ and Hubbard model [14℄, andnanosystems in the Hubbard model [15�17℄. This newmethod was also used in studying the thermodynamiproperties of di�erent Bose systems [18�20℄.The SFA essentially improves the mean �eld ap-proximation and allows onsidering the thermodynam-is of strongly interating systems and a wide interval of356



ÆÝÒÔ, òîì 141, âûï. 2, 2012 Thermodynamis of an interating Fermi system : : :temperatures and �elds. From the mathematial stand-point, we obtain a nonlinear system of di�erene equa-tions (lattie models) or a losed system of nonlinearintegral equations (Fermi and Bose systems), and henefurther information an only be obtained by numerialmethods or in the form of approximate deompositionswith the use of some small deomposition parameter.In this paper, using the SFA allows alulating the de-omposition oe�ients for the orrelation energy withrs (the parameter de�ned above) as a small parameterfor a detailed analysis of a high-density eletron gas.2. THE BASIC EQUATIONSThe full Hamiltonian of the interating homoge-neous eletron gas in the seondary quantization rep-resentation an be written asH =Xks "knks + 12
Xq6=0V (q)(�q��q �N); (11)�q = 1pN Xks ayq+ksaks; (12)V (q) = 4�q2 + q20 ; (13)where "k = k22 � �; q0 =s6�n"0F = 3r 9�2 1a0rsis the inverse Thomas�Fermi sreening radius, � is ahemial potential. For onveniene in what follows,we realize the transformation of the given oordinatesystem as � = (3=4�)1=3r=r0. Then the Fermi systemof a given volume 
 is transformed into the systemwith the volume N . The mean partile density in thisspae is equal to unity. The Hamiltonian of the ele-tron gas in the seondary quantization representationthen beomesH 0 =Xks "knks + �2 Xq6=0V (q)(�q��q � 1); (14)where � = (4�=3)1=3rs de�nes the bond onstant har-aterizing the interation strength; after this transfor-mation, energy is expressed in double rydbergs. Therelation to the initial Hamiltonian H is given byH = 1�2 H 0: (15)We also note that for the modi�ed system, the in-verse sreening radius is equal to q0 = p4kF�=� and

the Fermi vetor beomes dimensionless and equal tokF = (3�2)1=3.The equation of motion for the operator ayks in theHeisenberg representation beomesdayksd� = [H 0; ayks℄ = "kayks + �2pN ��Xq V (q)��qayk�qs + ayk+qs��q� : (16)As before, � = it. We suppose that the Hamiltonian ofthe system an be presented in the formH 0 =Xks Eksnks; (17)where Eks determines a loal �eld operator, and it fol-lows from Eq. (4) thatdayksd� = Eksayks = "kayks ++ �2pN Xq V (q)��qayk�qs + ayk+qs��q� ; (18)Eks = "dayksd� ; aks#+ = "k� �N Xq6=kV (k�q)nqs: (19)Expression (19) determines the so-alled Hartree�Fokoperator, whih satis�es the ommutation relations[Eks; aks℄ = 0; [H 0; Eks℄ = 0: (20)In the mean �eld approximation, the operator Eks isreplaed by its mean value, whih signi�es that the�utuations of the loal �eld operator are not takeninto aount (the Hartree�Fok approximation). Here,we want to show how to take the �utuations of theloal �led operator into aount. For this, we re-plae the square of the loal �eld deviation operator�Eks = Eks � hEksi by its mean value. In aordanewith expressions (9), we then onsider only the simplestase where (�Eks)2 � h(�Eks)2i � '2ks: (21)Approximate equality (21) is the key point of the SFA.The physial meaning of the SFA is that alongside themean value of the loal �eld operator, its quadrati�utuations are taken into aount.We next apply this basi approximation to the al-ulation of the desired harateristis of the interatingFermi gas. For this, we �nd an expression for the op-erator ayks(�) in the Heisenberg representationayks(�) = ayks exp(Eks�): (22)357



R. R. Nigmatullin, A. A. Khamzin, I. I. Popov ÆÝÒÔ, òîì 141, âûï. 2, 2012We then �nd the orrelation funtionhayks(�)aksAi = hayksaks exp(Eks�)i: (23)Setting � = � here and using the quantum identity fora pair of nonommuting operators,hO1(�)O2i = hO2O1i; (24)where O1(�) is an arbitrary operator in the Heisenbergrepresentation and O2 is another arbitrary operator at� = 0, we obtain the relationhayks(�)aksAi = haksayksAi == hayksaks exp(�Eks)Ai: (25)Here, A is an arbitrary ombination of Fermi operatorsommuting with nks and Eks. Using the ommutationrules for Fermi operators, we an represent Eq. (25) inthe form hnks[1 + exp(�Eks)℄Ai = hAi: (26)Replaing A ! [1 + exp(�Eks)℄�1A, we an rewriteEq. (26) ashnksAi = � 11 + exp(�Eks) A� = hf(Eks)Ai; (27)where f(x) is the standard Fermi�Dira funtion. Wesay that Eq. (27), whih separates the Fermi opera-tors nks desribing the state of a single partile fromthe omponents of the loal �eld operator, is the far-distane equation [9℄. It is shown in what follows thatthe FDE allows establishing the desired relation be-tween equilibrium orrelation funtions of any orderand thereby losing the system of nonlinear and self-onsistent equations for the given many-body systemonsidered. Using the Cayley�Hamilton theorem andtaking relations (7) and (8) into aount, we obtainf(Eks) = 11 + exp(�Eks) == 11 + exp [� (hEksi+�Eks)℄ == �0(ks) + �1(ks)�Eks; (28)where�0(ks) = 12 (f (hEksi+'ks)+f (hEksi�'ks)) ; (29)�1(ks) = 12'ks (f (hEksi+ 'ks) �� f (hEksi � 'ks)) : (30)

As a result of this deomposition, far-distane equation(28) beomes more onvenient for further analysis:hnksAi = �0(ks)hAi + �1(ks)h�EksAi: (31)Here, we introdue the operator�Eks = � �N Xq6=kV (k� q)�nqs: (32)Equation (31) allows obtaining a losed nonlinear sys-tem of integral equations for the alulation of the de-sired thermodynami values of the Fermi system on-sidered. Setting A = 1 in (31), we obtain an equationfor hnksi: hnksi = �0(ks): (33)Using (33), we an rewrite Eq. (31) in an elegant formthat it is more onvenient for further alulations:h�nksAi = �1(ks)h�EksAi: (34)To alulate pair orrelation funtions, we setA = �nqs0 in (34) and take into aount that the wavevetors q 6= k annot oinide with eah other in (34).As a result of this substitution, we obtain the equationh�nks�nqs0i = �ksÆk;qÆs;s0 � ��1(ks)N ��Xq0 V (k� q0)h�nq0s�nqs0i (1� Æk;qÆs;s0) ; (35)where we introdue the notation�ks = hnksi(1�hnksi)and use expression (32) for �Eks. In addition, we usethe kinemati identity h(�nks)2i = �ks that is validfor any Fermi system.Equation (35) written as an integral equation servesfor the alulation of binary orrelation funtions forthe Fermi system onsidered. Next, it is neessary toobtain an equation for the loal �eld quadrati �utu-ations. For this, we set A = �Eks in Eq. (34) and usede�nition (21) to obtain'2ks = � ��1(ks)N Xq6=kV (k� q)h�nks�nqsi: (36)The set of Eqs. (19), (33), (35), and (36) is a losedsystem of nonlinear integral equations for the desiredvalues hEksi, hnksi, hnks�nqs0i, and 'ks.In the framework of the SFA, it is easy to obtain ex-pressions for the mean energy and partition funtion Z:hHi = 2�2 hH 0i = 2�2 Xks hnksEksi == 2�2 Xks ��0(ks)hEksi+ �1(ks)'2ks� ; (37)358



ÆÝÒÔ, òîì 141, âûï. 2, 2012 Thermodynamis of an interating Fermi system : : :lnZ = ln Sp exp(��H) == ln Sp exp �� 2�2 Xks Eksnks! == lnYks Xnks�Eks exp��2��2 Eksnks� = N ln 2 ++Xks ln �1 + exp��2��2 hEksi� h�2��2 'ks�� (38)(the mean energy is here measured in rydbergs).We emphasize one again that the losed system ofequations is based only on a single approximation (21),and the Fermi system an be desribed in a wide rangeof temperatures and potentials within this approxima-tion. A possible generalization of these equations thattakes the e�et of the asymmetry parameter ak intoaount an be onsidered elsewhere.3. SOLUTION OF INTEGRAL EQUATIONSFOR A HIGH-DENSITY ELECTRON GASTo be able to obtain analyti solutions, we onsiderthe interating eletron gas with a high density. It iseasy to see that the high-density eletron gas (rs ! 0)orresponds to the ase where the interation in (14)is weak in omparison with the kineti energy. Thismeans that the �utuations of the loal �eld are smallin omparison with this �eld mean value, 'ks � hEksi.In this ase, an approximate expression for the oe�-ient �1(ks) in (30) an be derived in the form�1(ks) � f 0 (hEksi0) == ��f (hEksi0) f (�hEksi0) ; (39)where hEksi0 = hEksi'ks=0 is independent of the valueof 'ks and hene of the in�uene of the binary orrela-tion funtion h�nks�nqs0i. In this ase, we an applythe step-by-step method for solution of Eq. (35) andthen insert the result into (36) to �nally obtain thedesired deomposition'2ks = 1N Xq6=k�qsV (k� q) 1Xn=1� �N�n+1 �� �n�1 n�1Yi=1 f (hEksi0) f (�hEksi0)!�� V (k � k1)V (k1 � k2) : : : V (kn�1 � q): (40)Beause 'ks is small, we an deompose Eq. (33)and represent it in the from of an in�nite series on-taining integer degrees of 'ks:

hnksi = f (hEksi0) + �22 f3 (hEksi0)'2ks + : : : ; (41)where fn(x) = (�1)n�1dnf(x)=dxn and f(x) is thestandard Fermi�Dira funtion. Equations (40) and(41) onstitute a losed system of equations for themean value hnksi and 'ks. This system an also besolved by the step-by-step method with a given au-ray in the parameter �. Keeping only the terms of theorder '2ks, we approximately obtainhHi = 1�2 Xks 8<:hnksi0hEksi0 ++ ��22 hEksi0f3 (hEksi0)� �f2 (hEksi0)�'2ks ����2hnksi0 12N Xq6=kV (k�q)f3 (hEqsi0)'2qs9=; ; (42)where hnksi0 = f (hEksi0).4. THE GROUND-STATE ENERGY AND HEATCAPACITY OF THE HIGH-DENSITYELECTRON GAS AT ZERO TEMPERATUREIn the general expressions obtained for the high-density eletron gas (rs ! 0), we keep the terms up tothe order �2. Using deomposition (40), we present thefuntion '2ks in the approximate form'2ks � � �N�2Xq6=kV 2(k� q)f2("q): (43)We also note that the expression1N Xk : : : = 1(2�)3 Z : : : d3k (44)implies that the values of the quadrati �utuations'2ks are proportional to 1=N and beome negligible,espeially in the three-dimensional ase. This is anexpeted result beause we are solving a nonlinear sys-tem of integral equations in the high-density limit when'ks � hEksi. But the losed system of equationsobtained in Se. 2 is in priniple orret for any re-lation between 'ks and hEksi. For example, in thelow-density ase (rs ! 1), when the potential energyexeeds the kineti energy, the values of �utuations'ks beome omparable with the mean value of theloal �eld hEksi.We also note that in Eq. (17), in projeting thegiven HamiltonianH 0 to the number of states nks, some359
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Fig. 1. Comparison of the ground-state energy EGM obtained by Gell-Mann Eq. (1) with ESFA obtained in the SFA frame-work (Eq. (46)). The data are seen to pratially oinide with eah other. The relative error (de�ned as the ratio of thestandard deviation taken from the di�erene ESFA �EGM to the ESFA mean value) does not exeed 0:5%terms in the expression for the mean energy are nottaken into aount. These terms arise beause someterms do not ommute with the Fermi operators ayks(aks). In our ase, these terms are the exhange (orbakground) energy,EexN = � 2�N Xq V (q� q0): (45)Following the results in [21℄, it an be shown that thisterm is proportional to �0:916=rs.Taking the above remarks into aount and deom-posing the mean value hnksi0 in (41) up to terms of theorder �2, we an obtain the desired expression for theground-state energy. The alulation sheme and theevaluation of some terms are presented in Appendix A.The �nal expression for the ground-state energy (atT = 0) is

E0N = �2:21r2s � 0:916rs + 0:781prs + 1:556prs ++ 0:304 ln rs � 1:002+O(rs)�Ry : (46)Here we did not take the temperature dependene ofthe hemial potential �(T ) � �(0) into aount. Com-paring Eq. (1) with Eq. (46), we note that formally theyare strongly di�erent. But when plotted on the same�gure (Fig. 1), they pratially oinide, with the rela-tive �tting error not exeeding 0.5%. This testi�es infavor of a very good oinidene of these expressions ifwe take into aount that di�erent values for the on-stant and the oe�ient before the logarithmi termwere hosen in [3�6℄. In Fig. 2, we show the relativedi�erenes between expressions obtained by other au-thors [1; 3; 6℄ and the SFA expression. We ompare theprevious expressions with (46) for only one reason. Theexpressions obtained by other authors ontain unon-trollable errors (beause of a separate summation of a360
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Fig. 2. The relative expressions jE0 � ESFAj=ESFAfor the ground-state energy obtained by Gell-Mann [1℄,Talman [3℄, and Porter [6℄ (solid, dashed, and dottedurves, respetively). The relative deviations of dataobtained by the �rst two authors pratially oinidewith eah other. Visible deviations at relatively largers are observed for Porter's results. All relative di�er-enes inrease with inreasing rs
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Fig. 3. The relative heat apaities CF =C obtained byGell-Mann [1℄ and Pines [4℄ (urves 1 and 2, respe-tively) ompared with the data obtained in the SFAframework (urve 3 ). The deviations are notieable.In the SFA method, we have the minimal deviations forall range of rs ompared with the result for ideal Fermigasertain lass of diagrams). In our ase, we made onlyone assumption (21) and this supposition is ontrol-lable, with the ratio 'ks=hEksi � 1.Taking the derivative of the mean energy with re-spet to temperature yields the heat apaity at lowtemperatures (T = 0). For omparison, it is onvenientto represent this result in the form

CFC = 1 + 0:055rs � 0:070r3=2s +O(r2s ); (47)where CF is the heat apaity of the noninteratingFermi gas. We ompare our result with similar re-sults of other authors [19; 20℄ in Fig. 3. We observemore essential disrepanies than in Fig. 1. But weagain onsider our result more aurate beause itontains the minimal value of the error expressed byEq. (21). Within the SFA method, it is rather easy to�nd the terms of higher orders in rs. For this, it suf-�es to keep not only quadrati terms proportional to�2 in the deomposition of the mean energy ontaininghnksi0. Keeping the terms proportional to �3 in this�-deomposition, we an �nd terms of the respetiveorder rs and r2s in the expressions for the mean energyand heat apaity. Additional terms appearing in thedeomposition for the mean energy are given in Ap-pendix A. The expressions for the ground-state energyand heat apaity then beomeE0N = �2:21r2s � 0:916rs + 0:781prs + 1:556prs ++ 0:304 ln rs � 1:002+ (�1:644 + 0:538 ln rs)rs ++ O(r3=2s )�Ry; (48)CFC = 1 + 0:055rs � 0:070r3=2s + [�0:026 ++ 0:012 ln rs � 0:007 ln2 rs� r2s +O(r2s ): (49)The ontributions of the third-order terms with respetto expression (46) are shown in Fig. 4. It an be seenthat the third-order terms are beoming more essentialas the parameter rs inreases.5. RESULTS AND DISCUSSIONWe have demonstrated the alulation of the or-relation energy in the framework of the SFA method.The alulation sheme is very simple but leads �nallyto the solution of a nonlinear system of integral equa-tions. This system of equations, based on only oneassumption (21), allows easily alulating the desiredorrelation funtions and obtaining the expressions forthe ground state energy and heat apaity that are inaordane with results obtained by other authors. It isinteresting to note that the simplest deoupling sheme(21) admits some generalization given in (9). The more361
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Fig. 4. The in�uene of third-order orretions involvedin Eq. (48) with respet to Eq. (46). The ontributionsof the third-order terms are seen to beome essentialas the parameter rs inreasesgeneral sheme in (9) allows onsidering an asymmetrispetrum of the loal �eld operator and opens new pos-sibilities in obtaining more general results. This gener-alization for the Fermi gas and other many-body sys-tems with a strong interation between partiles meritsa separate researh.APPENDIX ATo �nd an analyti expression for the mean energy,it is neessary to realize the deomposition of the ex-pression for hnksi0 in (42) with respet to � and totake into aount that the �utuation terms 'ks areproportional to 1=N in the ase of high density. In thisase, keeping the terms proportional to �3 in the or-responding deomposition, we write the expression forhnksi0 ashnksi0 = f("k) + �N �f2("k)Xq6=kV (k� q)f("q) ++� �N�2 �2f2("k)24�12 � f("k)� ��0�Xq6=kV (k� q)f("q)1A2 +Xq6=kV (k� q)f2("q)�

� Xq1 6=qV (q� q1)f("q1)35++� �N�3 �3 26416 f4("k)0�Xq6=kV (k� q)f("q)1A3 ++ f3("k)Xq6=kV (k� q)f("q)Xq6=kV (k� q)f2("q)�� Xq6=q1 V (q� q1)f("q1) + 12f2("k)��Xq6=kV (k�q)f3("q)0�Xq6=q1 V (q�q1)f("q1)1A2++f2("k)Xq6=kV (k�q)f2("q) Xq6=q1 V (q�q1)f2("q1)�� Xq2 6=q1 V (q1 � q2)f("q2)375 : (A.1)Then the mean energy an be represented in the formEN = hHiN = 2hH 0i�2N = 2�2 (E0+E1+E2+E3); (A.2)where E0 ontains the zeroth-order terms with respetto �, E0 = 2N Xk "kf("k): (A.3)The term E1 ontains only a pair of �rst-order termswith respet to �, E1 = E(1)1 �E(2)1 ; (A.4)E(1)1 = 2��N2 Xk "kf2("k)Xq6=kV (k� q)f("q); (A.5)E(2)1 = 2�N2 Xk f("k)Xq6=kV (k� q)f("q): (A.6)The expression for E2 entering (A.2) ontains threeterms of the seond order with respet to �:E2 = E(1)2 +E(2)2 �E(3)2 ; (A.7)E(1)2 = �2�2N3 ��Xk "kf3("k)0�Xq6=kV (k � q)f("q)1A2 ; (A.8)362



ÆÝÒÔ, òîì 141, âûï. 2, 2012 Thermodynamis of an interating Fermi system : : :E(2)2 = 2�2�2N3 Xk "kf2("k)Xq6=kV (k� q)f2("q)�� Xq1 6=qV (q� q1)f("q1); (A.9)E(3)2 = 4�2�N3 Xk f("k)Xq6=kV (k� q)f2("q)�� Xq1 6=qV (q� q1)f("q1): (A.10)Expression for E3 in (A.2) already ontains six third-order terms:E3 = E(1)3 +E(2)3 +E(3)3 +E(4)3 �E(5)3 �E(6)3 ; (A.11)E(1)3 = �3�33N4 ��Xk "kf4("k)0�Xq6=kV (k� q)f("q)1A3 ; (A.12)E(2)3 = 2�3�3N4 Xk "kf3("k) Xq0 6=kV (k� q0)f("q0)��Xq6=kV (k� q)f2("q) Xq6=q1 V (q� q1)f("q1); (A.13)E(3)3 = �3�3N4 Xk "kf2("k)Xq6=kV (k� q)f3("q)��0�Xq6=q1 V (q� q1)f("q1)1A2 ; (A.14)E(4)3 = 2�3�3N4 Xk "kf2("k)Xq6=kV (k� q)f2("q)�� Xq1 6=qV (q � q1)f2("q1)�� Xq2 6=q1 V (q1 � q2)f("q2); (A.15)E(5)3 = �3�2N4 Xk f("k)Xq6=kV (k� q)f3("q)��0�Xq1 6=qV (q� q1)f("q1)1A2 ; (A.16)

E(6)3 = 2�3�2N4 Xk f("k)Xq6=kV (k� q)f2("q)�� Xq1 6=qV (q � q1)f2("q1)�� Xq2 6=q1 V (q1 � q2)f("q2): (A.17)To larify the basi alulation sheme, we onsiderthe alulation of the term E(2)2 (determined by expres-sion (A.9)) in detail. We �rst replae the summationby integration in aordane with (44), also using de�-nition (13) for the potential V (k � q):E(2)2 = 2�2�2(2�)9 Z "kf2("k) d3k Z V (k�q)f2("q) d3q�� Z V (q � q1)f("q1) d3q1 == �2�2�4 1Z0 "kf2("k) k2dk 1Z�1 d�1 �� 1Z0 f2("q)q2dqk2 + q2 � 2kq�1 + q20 1Z�1 d�2 �� 1Z0 f("q1)q21dq1q21 + q2 � 2q1q�2 + q20 = �2�24�4 �� 1Z0 "kf2("k)k dk 1Z0 f2("q) ln ����(k + q)2 + q20(k � q)2 + q20 ���� dq �� 1Z0 f("q1) ln ����(q1 + q)2 + q20(q1 � q)2 + q20 ���� q1dq1: (A.18)Changing the variables ask22 = xq22 = y q212 = z;we obtainE(2)2 = �2�24p2�4 1Z0 f2�x��T � dx 1Z0 f2�y��T � dy�� 1Z0 f1�z � �T � h(x; y; z) dz; (A.19)363



R. R. Nigmatullin, A. A. Khamzin, I. I. Popov ÆÝÒÔ, òîì 141, âûï. 2, 2012whereh(x; y; z) = xpy ln �px+py �2 + "0�px�py �2 + "0!�� ln �py +pz �2 + "0�py �pz �2 + "0! (A.20)with "0 = q20=2. Using relations (B.2) and (B.3) inAppendix B, we obtain the expressionE(2)2 = �2�24p2�4 1Z0 f2�x��T � dx 1Z0 f2�y��T � dy��8<: �Z0 h(x; y; z) dz + �26 h0z(x; y; �)T 29=; == �2�4p2�4 1Z0 f2�x� �T � dx��8><>: �Z0 h(x; �; z) dz + �26 (h0z(x; �; �) ++ �Z0 h00yy(x; �; z) dz1AT 29=; = �24p2�4 ��8<: �Z0 h(�; �; z) dz + �26 24h0z(�; �; �) ++ �Z0 �h00xx(�; �; z) + h00yy(�; �; z)� dz35T 29=; : (A.21)Performing simple but umbersome alulations, we �-nally obtainE(2)2 = �24p2�4 ��(p"3=202 �p+ ln(1 + p2)� 2p artgp� ln(1 + p2) ++ �26p"0 ��2p(p4�p2�4)(1+p2)2 +4(p2+2)(p2�1)(1+p2)2 artgp �� 2(4p4 + 9p2 + 3)p(1 + p2)2 ln(1 + p2) + 2(p2 + 3)p3 �� ln2(1 + p2)�T 2 + : : :� ; (A.22)where p = 2p�="0. Other terms involved in the basiexpression (A.2) are alulated similarly.

We reall that all mean values for the sought ther-modynami funtions were obtained using the Hamil-tonian H 0. To pass to H , it is neessary to use therelationhÂ(�)i = Q�1 Sp hexp (�H�) Âi == Q�1 Sp hexp ��H 02�=�2� Âi == �Â� 2�2 ��� (A.23)and the replaements� ! ~� = 2�2 �; T ! ~T = �22 T: (A.24)APPENDIX BWe onsider the integralsIi(T; �) = 1Z0 g(x)fi �x� �T � dx;i = 1; 2; 3; 4; (B.1)where g(x) de�nes a smooth funtion, fi(x) == (�1)i�1di�1f(x)=dxi�1, and f(x) is the standardFermi�Dira funtion. In the ase i = 1, at low tem-peratures, we have the well-known low-temperature de-ompositionI1(T; �) = �Z0 g(x) dx+ �26 g0(�)T 2 + : : : (B.2)Di�erentiating both parts of this expression with re-spet to the hemial potential �, we obtain the usefulexpressionsI2(T; �) = g(�)T + �26 g00(�)T 3 + : : : ; (B.3)I3(T; �) = g0(�)T 2 + �26 g000(�)T 4 + : : : ; (B.4)I4(T; �) = g00(�)T 3 + �26 g(IV)(�)T 5 + : : : ; (B.5)whih were used in evaluating expression (A.21).REFERENCES1. M. Gell-Mann and K. A. Bruekner, Phys. Rev. 106,364 (1957).2. E. P. Wigner, Phys. Rev. 46, 1002 (1934).3. J. D. Talman, Phys. Rev. A 10, 1333 (1974).364
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