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We suggest a new method of calculation of the equilibrium correlation functions of an arbitrary order for the
interacting Fermi-gas model in the framework of the static fluctuation approximation method. This method
based only on a single and controllable approximation allows obtaining the so-called far-distance equations.
These equations connecting the quantum states of a Fermi particle with variables of the local field operator
contain all necessary information related to the calculation of the desired correlation functions and basic ther-
modynamic parameters of the many-body system. The basic expressions for the mean energy and heat capacity
for the electron gas at low temperatures in the high-density limit were obtained. All expressions are given in
the units of rs, where r; determines the ratio of a mean distance between electrons to the Bohr radius ag.
In these expressions, we calculate terms of the respective order r, and r2. It is also shown that the static
fluctuation approximation allows finding the terms related to higher orders of the decomposition with respect

to the parameter r;.

1. INTRODUCTION TO THE STATIC
FLUCTUATION APPROXIMATION
METHOD

The calculation of the correlation energy of the
ground state in the absence of external fields for the
strongly degenerated electron gas constitutes the cen-
tral problem in solid state physics, in particular, the
physics of metals. In the pioneering works of Gell-
Mann and Brueckner [1] and Wigner [2], the first ana-
lytic results for the high-density and low-density elec-
tron gas were obtained. In those papers, an expres-
sion for the ground state energy was obtained in the
terms of the dimensionless parameter s = ro/ag, where
ro = {/3/4mn is the mean distance between electrons,
n is the electron gas density, and ao determines the
conventional Bohr radius. For the high-density limit
(rs < 1), the ground state energy has the form [2]

0916
2 =

E 2.21
2= < - +0.06221nr, — 0.094) Ry. (1)
g Ts

The first term corresponds to the kinetic energy and
the second term determines the contribution of the ex-
change energy. The last two terms in Eq. (1) describe
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the correlation energy E.,... We note that another
numerical coefficient before the logarithmic term was
obtained in [3]:

ECOTT
N

= (0.05701nr, — 0.094) Ry (2)

Besides this observation, we note papers [4-6], where
the different numerical values for the constant term in
Eq. (2) are presented. Therefore, the problem of the
correct evaluation of the expression for the correlation
energy remains open.

The second task is related to the problem of the
accurate (error controllable) calculations of the correc-
tions to the correlation energy having higher degrees of
rs. In [1], the authors suggested only a way to find the
desired corrections respectively proportional to s and
rslnrs. But the necessary calculations were not per-
formed. In Ref. [7], in the framework of the random-
phase approximation of the Rayleigh—Schrodinger per-
turbation theory, similar calculations were performed,
but it was shown that the numerical coefficient before
rs can be evaluated only at r; = 1. The desired terms
having higher orders of r5 were not found.

To summarize the foregoing, we conclude that the
conventional calculation (in the framework of the dia-
gram summation or the Green’s function method with
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uncontrollable decoupling) of any higher-order term en-
tering the correlation energy is a complex and laborious
work in and of itself. It is therefore necessary to develop
a method that would allow realizing these calculations
for a wide class of interactions and temperatures having
only one (and error controllable) approximation.

One of us (R. R. N.) suggested the desired method,
which was called the static fluctuation approximation
(SFA). The SFA generalizes the well-known mean field
method and allows calculating the desired equilibrium
correlation functions with necessary thermodynamic
values of the many-body system considered. The basic
idea of the SFA can be formulated as follows. Instead
of replacing the components of the local field operator
by its corresponding mean value, it is possible to pre-
serve its operator structure and find the spectrum of
the remaining local field operator self-consistently. We
need to clarify the basic idea of the SFA using a simple
example. We consider some Hamiltonian H describing
the interacting Fermi gas. The simplest equation of
motion for the Fermi creation operator aL (1), T = it,
takes the form

T
day

dr = [Hv aL] = Ekaza

(3)
where & = (k, s) determines the state of a Fermi par-
ticle. The local field operator Ej, as a projection on
states of a single Fermi particle, is easily calculated
from the relation
B = [[H.alla] , [HE]~0,  (4)
where [A, B]+ = AB + BA is an anticommutator. We
suppose that this local field operator commutes with
the Hamiltonian of the system. Simple calculations
A

lead to the equation
TG -
1+ exp(BEL)

where (...) = Spl...exp(—pH)]/Splexp(—FH)] is an
averaging over an equilibrium statistical ensemble. The
operator A in Eq. (5) determines an arbitrary combi-
nation of Fermi operators that commutes at least with
operator ny = azak pertaining to the individual state k.

The next step is to replace the eigen-values of the
spectrum of Ej with their approximate values, which,
in turn, are calculated self-consistently. We suppose
that the spectrum of the local field operator Ej, is de-
generate and finite. In this case, it can be presented
as

1

() = ENG

n
(Ek - O//m) =0,
1

(6)

m
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where a,, are the eigenvalues of the local field operator
Ej. Using the Cayley—Hamilton theorem [8], we can
express any operator function F(FE}) as a polynomial,

FED = Y (B )
p=0

The unknown coefficients 1, involved in (7) are found
from the system of linear equations

(8)

3

n—1
Flam) =Y mplam)’, m=12,...
p=0

We limit ourselves to considering only the linear term
with respect to the difference operator AE, = Ej, —
— (Ey). We also suppose that this operator approxi-
mately satisfies the relation

(AEk)Z = b AE} + ¢y,
_ ((AE)?)

((AEx)?)

b (9)

cr = ((AER)?).
These expressions contain the basic approximation of
the SFA. The unknown parameters by and ¢; in (9)
are calculated self-consistently, because they can be ex-
pressed as a combination of the operators ngr, k' # k,
involved in b, and ¢; and entering the operator A in
Eq. (5). The details of calculations (with b, = 0) are
given below.

Using the Cayley—Hamilton theorem, we find an
approximate relation connecting the operator nj with
AFE}. This equation has the form

(niA) = no(T)(A) +m (T)(AEA) (10)

and is called the far-distance equation E [9]. This equa-
tion allows closing all the relation for the desired equi-
librium correlation functions and thermodynamic val-
ues that need to be calculated. We do not give the
values of the temperature constants 1o(7") and n,(7T)
here. They are easily obtained from system (7) and
Eq. (5). Other necessary details are given in the next
section.

The SFA was successfully used in the analysis of
equilibrium properties of the Ising model in an arbi-
trary dimension [10-12], thermodynamics of the in-
teracting Bose gas [13] and Hubbard model [14], and
nanosystems in the Hubbard model [15-17]. This new
method was also used in studying the thermodynamic
properties of different Bose systems [18-20].

The SFA essentially improves the mean field ap-
proximation and allows considering the thermodynam-
ics of strongly interacting systems and a wide interval of
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temperatures and fields. From the mathematical stand-
point, we obtain a nonlinear system of difference equa-
tions (lattice models) or a closed system of nonlinear
integral equations (Fermi and Bose systems), and hence
further information can only be obtained by numerical
methods or in the form of approximate decompositions
with the use of some small decomposition parameter.
In this paper, using the SFA allows calculating the de-
composition coefficients for the correlation energy with
rs (the parameter defined above) as a small parameter
for a detailed analysis of a high-density electron gas.

2. THE BASIC EQUATIONS

The full Hamiltonian of the interacting homoge-
neous electron gas in the secondary quantization rep-
resentation can be written as

H = ZEknks QQZV

q#0

1
== > al s 0s, (12)
ks

47
V(q) = ——, 13
@ = o (13)

Pqp a—N), (11)

where

E_kQ _ |6 /9 1
k — 2 I3 qo = 6(1);‘ - 2 aoTs

is the inverse Thomas—Fermi screening radius, u is a
chemical potential. For convenience in what follows,
we realize the transformation of the given coordinate
system as ¢ = (3/47)"/?r/ro. Then the Fermi system
of a given volume 2 is transformed into the system
with the volume N. The mean particle density in this
space is equal to unity. The Hamiltonian of the elec-
tron gas in the secondary quantization representation
then becomes

kanks + 3 Z Vg

q750

)(pap—q—1), (14)

where A = (47/3)"/3r, defines the bond constant char-
acterizing the interaction strength; after this transfor-
mation, energy is expressed in double rydbergs. The
relation to the initial Hamiltonian H is given by

H= ﬁ H'. (15)

We also note that for the modified system, the in-
verse screening radius is equal to ¢o = \/4kpA/7 and

the Fermi vector becomes dimensionless and equal to
krp = (371'2)1/3.

The equation of motion for the operator aLs in the
Heisenberg representation becomes

daLs

A
ik [H’,aLS] = akaLs + — X

2VN
X ZV ( qak le—l—ak+qu q) (16)

As before, 7 = it. We suppose that the Hamiltonian of
the system can be presented in the form

H' =" Bishis, (17)
ks

where Eys determines a local field operator, and it fol-
lows from Eq. (4) that

da;f(s
dr

A t t
+ m g V(a) (pqak—qs + ak—&-qsp*q) , (18)

= Eksa;r(s = 6kaLs +

=&k~ 77 Z Vik— Q)nqs (19)
+ q;ék

Expression (19) determines the so-called Hartree—Fock
operator, which satisfies the commutation relations

dal
Eks - [ d:s s (ks

[Ek57 aks] =0, [Hlv Eks] =0. (20)

In the mean field approximation, the operator Ey, is
replaced by its mean value, which signifies that the
fluctuations of the local field operator are not taken
into account (the Hartree—Fock approximation). Here,
we want to show how to take the fluctuations of the
local filed operator into account. For this, we re-
place the square of the local field deviation operator
AFEy; = Exs — (Exs) by its mean value. In accordance
with expressions (9), we then consider only the simplest
case where

(ABk;)* ~ ((ABks)?) = $is- (21)

Approximate equality (21) is the key point of the SFA.
The physical meaning of the SFA is that alongside the
mean value of the local field operator, its quadratic
fluctuations are taken into account.

We next apply this basic approximation to the cal-
culation of the desired characteristics of the interacting
Fermi gas. For this, we find an expression for the op-

erator aLS(T) in the Heisenberg representation

al (1) = al , exp(F,7). (22)
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We then find the correlation function

(af ,(T)ars A) = (af. ,arcs exp(FiesT)). (23)

Setting 7 = /8 here and using the quantum identity for
a pair of noncommuting operators,

(01(B)02) = (0201), (24)

where Oy (1) is an arbitrary operator in the Heisenberg
representation and O, is another arbitrary operator at
7 = 0, we obtain the relation

(

t
Ay

(ﬁ)aksA> = <aksaLsA>
= <aLsaks exp(BExs)A).

(25)

Here, A is an arbitrary combination of Fermi operators
commuting with ny, and Ey,. Using the commutation
rules for Fermi operators, we can represent Eq. (25) in
the form

(nues[1 + exp(BEis)]A) = (A). (26)

Replacing A — [1 + exp(BEks)] 1A, we can rewrite
Eq. (26) as

1
1+ exp(BExs)

where f(x) is the standard Fermi-Dirac function. We
say that Eq. (27), which separates the Fermi opera-
tors nks describing the state of a single particle from
the components of the local field operator, is the far-
distance equation [9]. It is shown in what follows that
the FDE allows establishing the desired relation be-
tween equilibrium correlation functions of any order
and thereby closing the system of nonlinear and self-
consistent equations for the given many-body system
considered. Using the Cayley—Hamilton theorem and
taking relations (7) and (8) into account, we obtain

ety = AY = (j(Ba)A), (D

1
F(Bies) = 1 + exp(BFxks) -
1
" 1+ exp [ (Bis) + ABiy)]
=no(ks) + m (ks)AEys, (28)
where
no(ks) = % (f ((Bis)+¢xs) +f ((Bks)—¢xs)),  (29)
m(ks) = o (f ((Bxs) + ¢xs) —
— f ({(Bxs) — ¥xs)) - (30)
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As a result of this decomposition, far-distance equation
(28) becomes more convenient for further analysis:

(nies A) = 10(ks)(A) + 1 (ks)(AEksA). (31)
Here, we introduce the operator
A
AP = -1 > V(k - q)Ang,. (32)

a7k

Equation (31) allows obtaining a closed nonlinear sys-
tem of integral equations for the calculation of the de-
sired thermodynamic values of the Fermi system con-
sidered. Setting A = 1 in (31), we obtain an equation
for (nxs):

(naes) = mo(ks). (33)
Using (33), we can rewrite Eq. (31) in an elegant form
that it is more convenient for further calculations:

(Anis A) = 1 (ks)(A By, A). (34)

To calculate pair correlation functions, we set
A = Angy in (34) and take into account that the wave
vectors q # k cannot coincide with each other in (34).
As a result of this substitution, we obtain the equation

A (k
<AnksAnqs’> = Aks(sk,q(ss7s’ - 771]5[ S) X
X > V(k = q){AngAngy) (1= diqdes), (35)

q

where we introduce the notation Aygs = (nys)(1—(nks))
and use expression (32) for AFy,. In addition, we use
the kinematic identity ((Anys)?) = Ays that is valid
for any Fermi system.

Equation (35) written as an integral equation serves
for the calculation of binary correlation functions for
the Fermi system considered. Next, it is necessary to
obtain an equation for the local field quadratic fluctu-
ations. For this, we set A = AFy in Eq. (34) and use
definition (21) to obtain

m (ks)N (36)

Pies = Z V(k — q){Ank;Angs).

q#k

The set of Eqgs. (19), (33), (35), and (36) is a closed
system of nonlinear integral equations for the desired
values (Fxs), (Nks), (NksANgs'), and Qks.

In the framework of the SFA, it is easy to obtain ex-
pressions for the mean energy and partition function Z:

2
A2

(H) = o (H') = =5 3 ks Fia)
ks

25 (noes) (Bie) + milka)gd) . (37)
ks
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InZ =InSpexp(—8H) =

=InSpexp (—ﬂ% Z Eks”ks)
ks
=In H Z exp

2
<—/\—§ E'ksnks> =NIn2+
ks nksAEks

pulbren () ()] o

ks
(the mean energy is here measured in rydbergs).

We emphasize once again that the closed system of
equations is based only on a single approximation (21),
and the Fermi system can be described in a wide range
of temperatures and potentials within this approxima-
tion. A possible generalization of these equations that
takes the effect of the asymmetry parameter a; into
account can be considered elsewhere.

2p
2

2p

< p Pks

3. SOLUTION OF INTEGRAL EQUATIONS
FOR A HIGH-DENSITY ELECTRON GAS

To be able to obtain analytic solutions, we consider
the interacting electron gas with a high density. It is
easy to see that the high-density electron gas (rs — 0)
corresponds to the case where the interaction in (14)
is weak in comparison with the kinetic energy. This
means that the fluctuations of the local field are small
in comparison with this field mean value, pirs < (Fis)-
In this case, an approximate expression for the coeffi-
cient 1y (ks) in (30) can be derived in the form

m(ks) = f' ((Exs)o)
_ﬂf ((Eks>0) f (_<Eks>0)a

(39)

where (Eixs)o = (Fks) gy, =0 is independent of the value
of pxs and hence of the influence of the binary correla-
tion function (AnksAngs ). In this case, we can apply
the step-by-step method for solution of Eq. (35) and
then insert the result into (36) to finally obtain the
desired decomposition

) 1 o] A n+1
Prs T Z AgsV(k —q) Z <N> X

q#k n=1
x gt (H f((Eks>0)f(—(Eks>o)> X
X V(k—kl)V(kl —kg)V(kn,1 —q) (40)

Because ¢y is small, we can decompose Eq. (33)
and represent it in the from of an infinite series con-
taining integer degrees of @y:
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2

() = £ ((Bro)o) + 5 f5 ({Ficbo) s + -, (41)

where f,(r) = (=1)"td"f(x)/dz™ and f(x) is the
standard Fermi-Dirac function. Equations (40) and
(41) constitute a closed system of equations for the
mean value (nys) and @is. This system can also be
solved by the step-by-step method with a given accu-
racy in the parameter . Keeping only the terms of the

order ¢, we approximately obtain

(H) = 53 34 (o (Busho +
ks

+ |:%<Eks>0f3 ((Bxs)o) = Bf2 ((Exs)o) | Pis —

AP ldoge S0V fs (Basdo) el ¢ (42)
a7k

where (niks)o = f ((Eks)o)-

4. THE GROUND-STATE ENERGY AND HEAT
CAPACITY OF THE HIGH-DENSITY
ELECTRON GAS AT ZERO TEMPERATURE

In the general expressions obtained for the high-
density electron gas (rs — 0), we keep the terms up to
the order A2. Using decomposition (40), we present the
function ¢, in the approximate form

A\ 2
dox (3) Sr-ane). @
a7k
We also note that the expression
1 1 3
N;..._(QWP/...dk (44)

implies that the values of the quadratic fluctuations
¢, are proportional to 1/N and become negligible,
especially in the three-dimensional case. This is an
expected result because we are solving a nonlinear sys-
tem of integral equations in the high-density limit when
vrs < (Fxs). But the closed system of equations
obtained in Sec. 2 is in principle correct for any re-
lation between @iy and (Fxs). For example, in the
low-density case (rs — oo), when the potential energy
exceeds the kinetic energy, the values of fluctuations
Yks become comparable with the mean value of the
local field (Exs).

We also note that in Eq. (17), in projecting the
given Hamiltonian H' to the number of states nys, some
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Fig.1. Comparison of the ground-state energy Faar obtained by Gell-Mann Eq. (1) with Espa obtained in the SFA frame-
work (Eq. (46)). The data are seen to practically coincide with each other. The relative error (defined as the ratio of the
standard deviation taken from the difference Esra — Equ to the Esrpa mean value) does not exceed 0.5 %

terms in the expression for the mean energy are not
taken into account. These terms arise because some
terms do not commute with the Fermi operators aLs
(axs). In our case, these terms are the exchange (or
background) energy,

(45)

Following the results in [21], it can be shown that this
term is proportional to —0.916/r.

Taking the above remarks into account and decom-
posing the mean value (nxs)o in (41) up to terms of the
order A2, we can obtain the desired expression for the
ground-state energy. The calculation scheme and the
evaluation of some terms are presented in Appendix A.
The final expression for the ground-state energy (at
T=0)is

360

Ey 221 0916 0.781
— = == 1.556+/
N < r2 Ts * Vs * et

+0.304In7, — 1.002 + O(rs)> Ry. (46)

Here we did not take the temperature dependence of
the chemical potential p(T") &~ u(0) into account. Com-
paring Eq. (1) with Eq. (46), we note that formally they
are strongly different. But when plotted on the same
figure (Fig. 1), they practically coincide, with the rela-
tive fitting error not exceeding 0.5 %. This testifies in
favor of a very good coincidence of these expressions if
we take into account that different values for the con-
stant, and the coefficient before the logarithmic term
were chosen in [3-6]. In Fig. 2, we show the relative
differences between expressions obtained by other au-
thors [1, 3,6] and the SFA expression. We compare the
previous expressions with (46) for only one reason. The
expressions obtained by other authors contain uncon-
trollable errors (because of a separate summation of a
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|Eo — Esral/Esra
0.3 : :

0.2

0.1

Ts

Fig.2. The relative expressions |Eo — Esral|/Esra
for the ground-state energy obtained by Gell-Mann [1],
Talman [3], and Porter [6] (solid, dashed, and dotted
curves, respectively). The relative deviations of data
obtained by the first two authors practically coincide
with each other. Visible deviations at relatively large
rs are observed for Porter’s results. All relative differ-
ences increase with increasing r

Cr/C
1.10 | - -
_ -
1.08 | -7 ;
2 -7
1.06 L P i
7
7
1.04 | e .
/ 1
T
1.02 | g e T -
4”, 3 Sea
1.00 ke
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Ts

Fig.3. The relative heat capacities C'r/C obtained by

Gell-Mann [1] and Pines [4] (curves 1 and 2, respec-

tively) compared with the data obtained in the SFA

framework (curve 3). The deviations are noticeable.

In the SFA method, we have the minimal deviations for

all range of r; compared with the result for ideal Fermi
gas

certain class of diagrams). In our case, we made only
one assumption (21) and this supposition is control-
lable, with the ratio pis/{Exs) < 1.

Taking the derivative of the mean energy with re-
spect to temperature yields the heat capacity at low
temperatures (I' = 0). For comparison, it is convenient
to represent this result in the form

361

cg =1+ 0.055r — 0.070r%/2 + O(r?),

A (47)
where Cr is the heat capacity of the noninteracting
Fermi gas. We compare our result with similar re-
sults of other authors [19,20] in Fig. 3. We observe
more essential discrepancies than in Fig. 1. But we
again consider our result more accurate because it
contains the minimal value of the error expressed by
Eq. (21). Within the SFA method, it is rather easy to
find the terms of higher orders in 5. For this, it suf-
fices to keep not only quadratic terms proportional to
A2 in the decomposition of the mean energy containing
(nxs)o. Keeping the terms proportional to A* in this
A-decomposition, we can find terms of the respective
order rs and 72 in the expressions for the mean energy
and heat capacity. Additional terms appearing in the
decomposition for the mean energy are given in Ap-
pendix A. The expressions for the ground-state energy
and heat capacity then become

2.21

— -
s

0.916

T's

0.781

S

Ey
N_

+ 15565 +

+0.304In7; — 1.002 + (—1.644 + 0.538 In7,)rs +

+0(r3?)| Ry, (48)
Cr 3/2
& = 1400557, = 0.070r/? +[-0.026 +
+0.012In7s — 0.007Inrg] 72 + O(r2).  (49)

The contributions of the third-order terms with respect
to expression (46) are shown in Fig. 4. It can be seen
that the third-order terms are becoming more essential
as the parameter rg increases.

5. RESULTS AND DISCUSSION

We have demonstrated the calculation of the cor-
relation energy in the framework of the SFA method.
The calculation scheme is very simple but leads finally
to the solution of a nonlinear system of integral equa-
tions. This system of equations, based on only one
assumption (21), allows easily calculating the desired
correlation functions and obtaining the expressions for
the ground state energy and heat capacity that are in
accordance with results obtained by other authors. It is
interesting to note that the simplest decoupling scheme
(21) admits some generalization given in (9). The more
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Fig.4. The influence of third-order corrections involved

in Eq. (48) with respect to Eq. (46). The contributions

of the third-order terms are seen to become essential
as the parameter rg increases

general scheme in (9) allows considering an asymmetric
spectrum of the local field operator and opens new pos-
sibilities in obtaining more general results. This gener-
alization for the Fermi gas and other many-body sys-
tems with a strong interaction between particles merits
a separate research.

APPENDIX A

To find an analytic expression for the mean energy,
it is necessary to realize the decomposition of the ex-
pression for (nxs)o in (42) with respect to A and to
take into account that the fluctuation terms ¢ys are
proportional to 1/N in the case of high density. In this
case, keeping the terms proportional to A* in the cor-
responding decomposition, we write the expression for
(nks)o as

(o = fex) + 5 B2(e) 3V (k — @) f(2a) +

azk

; (%)2%&(@) (% - f(ak>) x

2

< | > V(k—q)f(eq)

a7k

+ ) V(k - q)faleq)

a7k

x 3 Via—a)f(ea) | +

ai1#q
+ <%> 53 %le(f:k) Z Vik —q)f(eq) +
q#k

+ fae) D Vik—a)f(eq) Y Vik — q)fa(eq) X

3

a7k a#k
x Z V(q - q1)f(€q1) + %fz(&‘k) X

aFq:

xS Vk-a)fsleq) | S Via-a) flea) | +
a#k a#ai

+f2(ex) Z V(k—q)f2(cq) Z V(q—ai) fa(eq, ) X

a7k qFqi

x> Ve — @) f(eq) |- (A1)

A2 Fq1

Then the mean energy can be represented in the form

2H') 2

AN N2

E
N

_ )

N

(Eo+E1+E>+E3), (A.2)

where Ey contains the zeroth-order terms with respect
to A,

By = =3 cf (o). (43)
k

The term E; contains only a pair of first-order terms
with respect to A,

B =E" - g

> enfaler)
k

7 (A.4)

29

1
EP:N2

> Vik—a)f(e,), (A5)

a#k
> Vik—a)f(e,).
azk

The expression for E, entering (A.2) contains three
terms of the second order with respect to A:

B2 = 25 fe) (A.6)
k

B, =E" +E® - E{, (A7)
)‘2/82
EY = e
2
x Y enfalen) [ D Vik—a)f(e) | , (AB)
k q#k

362



MKITD, Tom 141, Bhm. 2, 2012

Thermodynamics of an interacting Fermi system ...

20242
EY =2 ﬂ Zakfz k) > Vik = a)fale) %

a7k
x 3 Via-a)fen), (A9)
a1 7#q
B = 4])\\75 Fler) Y Vik—a)faleg) x
k a#k
x 3 Via-af(eq). (A10)
a1 7#q

Expression for E5 in (A.2) already contains six third-
order terms:

By = BV EP +EP +EN —EP —ES, (A1)
323
(1 _ A8
E3 = W X

D Vi(k—a)f(eq

a7k

3
)) . (A.12)

X Zakh(ak) (
k

3R3
2)— )\ﬂzakfwfk ZVk q')f(eq) x
a'#k
x Y V(k-q)fa(cq) D Via—a1)f(eq), (A13)
a#k aFa1
(3>— )Y V(k—aq)fs(eq) x
a#k

x (Z V(q—Q1)f(Eq1)) ., (A14)
aFq1

(4)—2>\ﬂ Zaka €k ZVk q) f2(eq) X

a7k

X Y V(g —ai)fa(eq) X

qi17q
x S Vi —a2)f(eq). (A15)
AaxZd1
5) _ )\362 Zf o ZV o)+
azk

x (Z V(q—ql)f(fql)) ., (A.16)
a1 7#q
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Bo = 2 ﬂ S flew) V- (o)
a7k

x > Via—ai)faleq)

ai17#q

X Z Vidi — a2) f(eqs)-

A2 #q1

(A.17)

To clarify the basic calculatlon scheme, we consider
the calculation of the term E (determmed by expres-
sion (A.9)) in detail. We first replace the summation
by integration in accordance with (44), also using defi-
nition (13) for the potential V(k — q):

)\2ﬂ2
= @)
x / Via—a)f(ea) da

/
/dzxzx

)‘2/82
T 4gt

B = /Ekf2 (k) d*k /V k—q) f2(gq) d*qx

)\2ﬂ2

dl/1 X

/skfg(sk)k2dk
. / =
0

[

skfg(sk)kdkff (€¢)1In

/

Changing the variables as

fz 6q qu
¢? — 2kquy + ¢}

feq)ddda
@+ —2qqv + ¢

(k+9)*+q

dag x
(k—q?+a2| ™!

f

(n+a)? +q

X
(1 —q)®+ad

fleq) ‘ q1dgr .

(A.18)

we obtain

)\2ﬂ2

i () o ()
X O/ﬁ <

E2 _
E,

z —

,u) h(z,y,z)dz, (A.19)
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where

h(l‘ Y, 2 ) JU ((\/E-I-\/@) +60>X

y \(vVi-v7) +e0

In <(\/§+\/z)z +5°> (A.20)
(T —V2) +o0

with eg = ¢3/2. Using relations (B.2) and (B.3) in
Appendix B, we obtain the expression

B = L:;f; /f2( ) d:c/f2 <—) dyx

1 2
/hxy, dz+€h'z(x,y,u)T2 =

0
_ Vﬂ /f2< )dxx

m
2

/h N d2+% (RL (2, o) +

0

1 , A2
+ [ by (e, p,2)dz | T? 5 = X
0/ w0 H 2 4/2 7
I
ﬂ- !
hu, i, 2) dz + = | he (1) +
0

(A.21)

f s 2) + hiyy (i, 1, 2)) dz | T

7
+/h”
0

Performing simple but cumbersome calculations, we fi-
nally obtain

)\2
EP =~ «
2 4y/2 74
2
{ ; [p+1In(1+p?) — 2parctgp] In(1 + p?) +
s { 2p(p*—p*—4)
6/0 (14p?)?

_2(4p* + 997 +3)
p(1+p?)?

x In?(1 +p2)} T2 +

4(p*+2)(p*-1)
(1+p?)?

2(p? + 3) "
p3

N } . (A.22)

arctgp —

In(1+p*) +

where p = 24/pu/eo. Other terms involved in the basic
expression (A.2) are calculated similarly.

We recall that all mean values for the sought ther-
modynamic functions were obtained using the Hamil-
tonian H'. To pass to H, it is necessary to use the
relation

(A(8)) = Q" Sp [exp (~HB) A] =
=Q 'Sp [exp (—H'28/)?) fl] =

(3(29) w

and the replacements

B—>B—2,6’ T—>T—>\2T (A.24)
oA 2 '
APPENDIX B
We consider the integrals

T — p

0= [ ot (7 )
i=1,2,3,4,

where ¢(z) defines a smooth function, f;(z) =

= (=1)7ta=  f(2)/dz*~", and f(z) is the standard
Fermi—Dirac function. In the case i = 1, at low tem-
peratures, we have the well-known low-temperature de-
composition
1 >
LT = [ g@)de+ 5 g

0

(WT? + (B.2)

Differentiating both parts of this expression with re-
spect to the chemical potential i, we obtain the useful
expressions

2

L(T, 1) = 9T + % 9" (WT* + (B.3)
L(T,p) = ¢ (WT? + = ¢"(WT* +..., (B4)
L(T.p) = g" (T + g™ (T +.... (BS)

which were used in evaluating expression (A.21).
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