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THERMODYNAMICS OF AN INTERACTING FERMI SYSTEMIN THE STATIC FLUCTUATION APPROXIMATIONR. R. Nigmatullin, A. A. Khamzin *, I. I. PopovTheoreti
al Physi
s Department, Kazan (Volga Region) Federal University420008, Kazan, RussiaRe
eived April 19, 2011We suggest a new method of 
al
ulation of the equilibrium 
orrelation fun
tions of an arbitrary order for theintera
ting Fermi-gas model in the framework of the stati
 �u
tuation approximation method. This methodbased only on a single and 
ontrollable approximation allows obtaining the so-
alled far-distan
e equations.These equations 
onne
ting the quantum states of a Fermi parti
le with variables of the lo
al �eld operator
ontain all ne
essary information related to the 
al
ulation of the desired 
orrelation fun
tions and basi
 ther-modynami
 parameters of the many-body system. The basi
 expressions for the mean energy and heat 
apa
ityfor the ele
tron gas at low temperatures in the high-density limit were obtained. All expressions are given inthe units of rs, where rs determines the ratio of a mean distan
e between ele
trons to the Bohr radius a0.In these expressions, we 
al
ulate terms of the respe
tive order rs and r2s . It is also shown that the stati
�u
tuation approximation allows �nding the terms related to higher orders of the de
omposition with respe
tto the parameter rs.1. INTRODUCTION TO THE STATICFLUCTUATION APPROXIMATIONMETHODThe 
al
ulation of the 
orrelation energy of theground state in the absen
e of external �elds for thestrongly degenerated ele
tron gas 
onstitutes the 
en-tral problem in solid state physi
s, in parti
ular, thephysi
s of metals. In the pioneering works of Gell-Mann and Brue
kner [1℄ and Wigner [2℄, the �rst ana-lyti
 results for the high-density and low-density ele
-tron gas were obtained. In those papers, an expres-sion for the ground state energy was obtained in theterms of the dimensionless parameter rs = r0=a0, wherer0 = 3p3=4�n is the mean distan
e between ele
trons,n is the ele
tron gas density, and a0 determines the
onventional Bohr radius. For the high-density limit(rs < 1), the ground state energy has the form [2℄E0N = �2:21r2s � 0:916rs + 0:0622 lnrs � 0:094�Ry : (1)The �rst term 
orresponds to the kineti
 energy andthe se
ond term determines the 
ontribution of the ex-
hange energy. The last two terms in Eq. (1) des
ribe*E-mail: airat.khamzin�rambler.ru

the 
orrelation energy E
orr. We note that anothernumeri
al 
oe�
ient before the logarithmi
 term wasobtained in [3℄:E
orrN = (0:0570 ln rs � 0:094)Ry : (2)Besides this observation, we note papers [4�6℄, wherethe di�erent numeri
al values for the 
onstant term inEq. (2) are presented. Therefore, the problem of the
orre
t evaluation of the expression for the 
orrelationenergy remains open.The se
ond task is related to the problem of thea

urate (error 
ontrollable) 
al
ulations of the 
orre
-tions to the 
orrelation energy having higher degrees ofrs. In [1℄, the authors suggested only a way to �nd thedesired 
orre
tions respe
tively proportional to rs andrs ln rs. But the ne
essary 
al
ulations were not per-formed. In Ref. [7℄, in the framework of the random-phase approximation of the Rayleigh�S
hrödinger per-turbation theory, similar 
al
ulations were performed,but it was shown that the numeri
al 
oe�
ient beforers 
an be evaluated only at rs = 1. The desired termshaving higher orders of rs were not found.To summarize the foregoing, we 
on
lude that the
onventional 
al
ulation (in the framework of the dia-gram summation or the Green's fun
tion method with355 10*
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ontrollable de
oupling) of any higher-order term en-tering the 
orrelation energy is a 
omplex and laboriouswork in and of itself. It is therefore ne
essary to developa method that would allow realizing these 
al
ulationsfor a wide 
lass of intera
tions and temperatures havingonly one (and error 
ontrollable) approximation.One of us (R. R. N.) suggested the desired method,whi
h was 
alled the stati
 �u
tuation approximation(SFA). The SFA generalizes the well-known mean �eldmethod and allows 
al
ulating the desired equilibrium
orrelation fun
tions with ne
essary thermodynami
values of the many-body system 
onsidered. The basi
idea of the SFA 
an be formulated as follows. Insteadof repla
ing the 
omponents of the lo
al �eld operatorby its 
orresponding mean value, it is possible to pre-serve its operator stru
ture and �nd the spe
trum ofthe remaining lo
al �eld operator self-
onsistently. Weneed to 
larify the basi
 idea of the SFA using a simpleexample. We 
onsider some Hamiltonian H des
ribingthe intera
ting Fermi gas. The simplest equation ofmotion for the Fermi 
reation operator ayk(�), � = it,takes the form daykd� = [H; ayk℄ = Ekayk; (3)where k = (k; s) determines the state of a Fermi par-ti
le. The lo
al �eld operator Ek, as a proje
tion onstates of a single Fermi parti
le, is easily 
al
ulatedfrom the relationEk = h[H; ayk℄; aki+ ; [H;Ek℄ � 0; (4)where [A;B℄+ = AB + BA is an anti
ommutator. Wesuppose that this lo
al �eld operator 
ommutes withthe Hamiltonian of the system. Simple 
al
ulationslead to the equationhnkAi = � A1 + exp(�Ek)� ; � = 1T ; (5)where h: : : i = Sp[: : : exp(��H)℄= Sp[exp(��H)℄ is anaveraging over an equilibrium statisti
al ensemble. Theoperator A in Eq. (5) determines an arbitrary 
ombi-nation of Fermi operators that 
ommutes at least withoperator nk = aykak pertaining to the individual state k.The next step is to repla
e the eigen-values of thespe
trum of Ek with their approximate values, whi
h,in turn, are 
al
ulated self-
onsistently. We supposethat the spe
trum of the lo
al �eld operator Ek is de-generate and �nite. In this 
ase, it 
an be presentedas nYm=1(Ek � �m) = 0; (6)

where �m are the eigenvalues of the lo
al �eld operatorEk. Using the Cayley�Hamilton theorem [8℄, we 
anexpress any operator fun
tion F (Ek) as a polynomial,F (Ek) = n�1Xp=0 �p(Ek)p: (7)The unknown 
oe�
ients �p involved in (7) are foundfrom the system of linear equationsF (�m) = n�1Xp=0 �p(�m)p; m = 1; 2; : : : ; n: (8)We limit ourselves to 
onsidering only the linear termwith respe
t to the di�eren
e operator �Ek = Ek �� hEki. We also suppose that this operator approxi-mately satis�es the relation(�Ek)2 = bk�Ek + 
k;bk = h(�Ek)3ih(�Ek)2i ; 
k = h(�Ek)2i: (9)These expressions 
ontain the basi
 approximation ofthe SFA. The unknown parameters bk and 
k in (9)are 
al
ulated self-
onsistently, be
ause they 
an be ex-pressed as a 
ombination of the operators nk0 , k0 6= k,involved in bk and 
k and entering the operator A inEq. (5). The details of 
al
ulations (with bk = 0) aregiven below.Using the Cayley�Hamilton theorem, we �nd anapproximate relation 
onne
ting the operator nk with�Ek. This equation has the formhnkAi = �0(T )hAi+ �1(T )h�EkAi (10)and is 
alled the far-distan
e equation E [9℄. This equa-tion allows 
losing all the relation for the desired equi-librium 
orrelation fun
tions and thermodynami
 val-ues that need to be 
al
ulated. We do not give thevalues of the temperature 
onstants �0(T ) and �1(T )here. They are easily obtained from system (7) andEq. (5). Other ne
essary details are given in the nextse
tion.The SFA was su

essfully used in the analysis ofequilibrium properties of the Ising model in an arbi-trary dimension [10�12℄, thermodynami
s of the in-tera
ting Bose gas [13℄ and Hubbard model [14℄, andnanosystems in the Hubbard model [15�17℄. This newmethod was also used in studying the thermodynami
properties of di�erent Bose systems [18�20℄.The SFA essentially improves the mean �eld ap-proximation and allows 
onsidering the thermodynam-i
s of strongly intera
ting systems and a wide interval of356



ÆÝÒÔ, òîì 141, âûï. 2, 2012 Thermodynami
s of an intera
ting Fermi system : : :temperatures and �elds. From the mathemati
al stand-point, we obtain a nonlinear system of di�eren
e equa-tions (latti
e models) or a 
losed system of nonlinearintegral equations (Fermi and Bose systems), and hen
efurther information 
an only be obtained by numeri
almethods or in the form of approximate de
ompositionswith the use of some small de
omposition parameter.In this paper, using the SFA allows 
al
ulating the de-
omposition 
oe�
ients for the 
orrelation energy withrs (the parameter de�ned above) as a small parameterfor a detailed analysis of a high-density ele
tron gas.2. THE BASIC EQUATIONSThe full Hamiltonian of the intera
ting homoge-neous ele
tron gas in the se
ondary quantization rep-resentation 
an be written asH =Xks "knks + 12
Xq6=0V (q)(�q��q �N); (11)�q = 1pN Xks ayq+ksaks; (12)V (q) = 4�q2 + q20 ; (13)where "k = k22 � �; q0 =s6�n"0F = 3r 9�2 1a0rsis the inverse Thomas�Fermi s
reening radius, � is a
hemi
al potential. For 
onvenien
e in what follows,we realize the transformation of the given 
oordinatesystem as � = (3=4�)1=3r=r0. Then the Fermi systemof a given volume 
 is transformed into the systemwith the volume N . The mean parti
le density in thisspa
e is equal to unity. The Hamiltonian of the ele
-tron gas in the se
ondary quantization representationthen be
omesH 0 =Xks "knks + �2 Xq6=0V (q)(�q��q � 1); (14)where � = (4�=3)1=3rs de�nes the bond 
onstant 
har-a
terizing the intera
tion strength; after this transfor-mation, energy is expressed in double rydbergs. Therelation to the initial Hamiltonian H is given byH = 1�2 H 0: (15)We also note that for the modi�ed system, the in-verse s
reening radius is equal to q0 = p4kF�=� and

the Fermi ve
tor be
omes dimensionless and equal tokF = (3�2)1=3.The equation of motion for the operator ayks in theHeisenberg representation be
omesdayksd� = [H 0; ayks℄ = "kayks + �2pN ��Xq V (q)��qayk�qs + ayk+qs��q� : (16)As before, � = it. We suppose that the Hamiltonian ofthe system 
an be presented in the formH 0 =Xks Eksnks; (17)where Eks determines a lo
al �eld operator, and it fol-lows from Eq. (4) thatdayksd� = Eksayks = "kayks ++ �2pN Xq V (q)��qayk�qs + ayk+qs��q� ; (18)Eks = "dayksd� ; aks#+ = "k� �N Xq6=kV (k�q)nqs: (19)Expression (19) determines the so-
alled Hartree�Fo
koperator, whi
h satis�es the 
ommutation relations[Eks; aks℄ = 0; [H 0; Eks℄ = 0: (20)In the mean �eld approximation, the operator Eks isrepla
ed by its mean value, whi
h signi�es that the�u
tuations of the lo
al �eld operator are not takeninto a

ount (the Hartree�Fo
k approximation). Here,we want to show how to take the �u
tuations of thelo
al �led operator into a

ount. For this, we re-pla
e the square of the lo
al �eld deviation operator�Eks = Eks � hEksi by its mean value. In a

ordan
ewith expressions (9), we then 
onsider only the simplest
ase where (�Eks)2 � h(�Eks)2i � '2ks: (21)Approximate equality (21) is the key point of the SFA.The physi
al meaning of the SFA is that alongside themean value of the lo
al �eld operator, its quadrati
�u
tuations are taken into a

ount.We next apply this basi
 approximation to the 
al-
ulation of the desired 
hara
teristi
s of the intera
tingFermi gas. For this, we �nd an expression for the op-erator ayks(�) in the Heisenberg representationayks(�) = ayks exp(Eks�): (22)357
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orrelation fun
tionhayks(�)aksAi = hayksaks exp(Eks�)i: (23)Setting � = � here and using the quantum identity fora pair of non
ommuting operators,hO1(�)O2i = hO2O1i; (24)where O1(�) is an arbitrary operator in the Heisenbergrepresentation and O2 is another arbitrary operator at� = 0, we obtain the relationhayks(�)aksAi = haksayksAi == hayksaks exp(�Eks)Ai: (25)Here, A is an arbitrary 
ombination of Fermi operators
ommuting with nks and Eks. Using the 
ommutationrules for Fermi operators, we 
an represent Eq. (25) inthe form hnks[1 + exp(�Eks)℄Ai = hAi: (26)Repla
ing A ! [1 + exp(�Eks)℄�1A, we 
an rewriteEq. (26) ashnksAi = � 11 + exp(�Eks) A� = hf(Eks)Ai; (27)where f(x) is the standard Fermi�Dira
 fun
tion. Wesay that Eq. (27), whi
h separates the Fermi opera-tors nks des
ribing the state of a single parti
le fromthe 
omponents of the lo
al �eld operator, is the far-distan
e equation [9℄. It is shown in what follows thatthe FDE allows establishing the desired relation be-tween equilibrium 
orrelation fun
tions of any orderand thereby 
losing the system of nonlinear and self-
onsistent equations for the given many-body system
onsidered. Using the Cayley�Hamilton theorem andtaking relations (7) and (8) into a

ount, we obtainf(Eks) = 11 + exp(�Eks) == 11 + exp [� (hEksi+�Eks)℄ == �0(ks) + �1(ks)�Eks; (28)where�0(ks) = 12 (f (hEksi+'ks)+f (hEksi�'ks)) ; (29)�1(ks) = 12'ks (f (hEksi+ 'ks) �� f (hEksi � 'ks)) : (30)

As a result of this de
omposition, far-distan
e equation(28) be
omes more 
onvenient for further analysis:hnksAi = �0(ks)hAi + �1(ks)h�EksAi: (31)Here, we introdu
e the operator�Eks = � �N Xq6=kV (k� q)�nqs: (32)Equation (31) allows obtaining a 
losed nonlinear sys-tem of integral equations for the 
al
ulation of the de-sired thermodynami
 values of the Fermi system 
on-sidered. Setting A = 1 in (31), we obtain an equationfor hnksi: hnksi = �0(ks): (33)Using (33), we 
an rewrite Eq. (31) in an elegant formthat it is more 
onvenient for further 
al
ulations:h�nksAi = �1(ks)h�EksAi: (34)To 
al
ulate pair 
orrelation fun
tions, we setA = �nqs0 in (34) and take into a

ount that the waveve
tors q 6= k 
annot 
oin
ide with ea
h other in (34).As a result of this substitution, we obtain the equationh�nks�nqs0i = �ksÆk;qÆs;s0 � ��1(ks)N ��Xq0 V (k� q0)h�nq0s�nqs0i (1� Æk;qÆs;s0) ; (35)where we introdu
e the notation�ks = hnksi(1�hnksi)and use expression (32) for �Eks. In addition, we usethe kinemati
 identity h(�nks)2i = �ks that is validfor any Fermi system.Equation (35) written as an integral equation servesfor the 
al
ulation of binary 
orrelation fun
tions forthe Fermi system 
onsidered. Next, it is ne
essary toobtain an equation for the lo
al �eld quadrati
 �u
tu-ations. For this, we set A = �Eks in Eq. (34) and usede�nition (21) to obtain'2ks = � ��1(ks)N Xq6=kV (k� q)h�nks�nqsi: (36)The set of Eqs. (19), (33), (35), and (36) is a 
losedsystem of nonlinear integral equations for the desiredvalues hEksi, hnksi, hnks�nqs0i, and 'ks.In the framework of the SFA, it is easy to obtain ex-pressions for the mean energy and partition fun
tion Z:hHi = 2�2 hH 0i = 2�2 Xks hnksEksi == 2�2 Xks ��0(ks)hEksi+ �1(ks)'2ks� ; (37)358
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s of an intera
ting Fermi system : : :lnZ = ln Sp exp(��H) == ln Sp exp �� 2�2 Xks Eksnks! == lnYks Xnks�Eks exp��2��2 Eksnks� = N ln 2 ++Xks ln �1 + exp��2��2 hEksi� 
h�2��2 'ks�� (38)(the mean energy is here measured in rydbergs).We emphasize on
e again that the 
losed system ofequations is based only on a single approximation (21),and the Fermi system 
an be des
ribed in a wide rangeof temperatures and potentials within this approxima-tion. A possible generalization of these equations thattakes the e�e
t of the asymmetry parameter ak intoa

ount 
an be 
onsidered elsewhere.3. SOLUTION OF INTEGRAL EQUATIONSFOR A HIGH-DENSITY ELECTRON GASTo be able to obtain analyti
 solutions, we 
onsiderthe intera
ting ele
tron gas with a high density. It iseasy to see that the high-density ele
tron gas (rs ! 0)
orresponds to the 
ase where the intera
tion in (14)is weak in 
omparison with the kineti
 energy. Thismeans that the �u
tuations of the lo
al �eld are smallin 
omparison with this �eld mean value, 'ks � hEksi.In this 
ase, an approximate expression for the 
oe�-
ient �1(ks) in (30) 
an be derived in the form�1(ks) � f 0 (hEksi0) == ��f (hEksi0) f (�hEksi0) ; (39)where hEksi0 = hEksi'ks=0 is independent of the valueof 'ks and hen
e of the in�uen
e of the binary 
orrela-tion fun
tion h�nks�nqs0i. In this 
ase, we 
an applythe step-by-step method for solution of Eq. (35) andthen insert the result into (36) to �nally obtain thedesired de
omposition'2ks = 1N Xq6=k�qsV (k� q) 1Xn=1� �N�n+1 �� �n�1 n�1Yi=1 f (hEksi0) f (�hEksi0)!�� V (k � k1)V (k1 � k2) : : : V (kn�1 � q): (40)Be
ause 'ks is small, we 
an de
ompose Eq. (33)and represent it in the from of an in�nite series 
on-taining integer degrees of 'ks:

hnksi = f (hEksi0) + �22 f3 (hEksi0)'2ks + : : : ; (41)where fn(x) = (�1)n�1dnf(x)=dxn and f(x) is thestandard Fermi�Dira
 fun
tion. Equations (40) and(41) 
onstitute a 
losed system of equations for themean value hnksi and 'ks. This system 
an also besolved by the step-by-step method with a given a

u-ra
y in the parameter �. Keeping only the terms of theorder '2ks, we approximately obtainhHi = 1�2 Xks 8<:hnksi0hEksi0 ++ ��22 hEksi0f3 (hEksi0)� �f2 (hEksi0)�'2ks ����2hnksi0 12N Xq6=kV (k�q)f3 (hEqsi0)'2qs9=; ; (42)where hnksi0 = f (hEksi0).4. THE GROUND-STATE ENERGY AND HEATCAPACITY OF THE HIGH-DENSITYELECTRON GAS AT ZERO TEMPERATUREIn the general expressions obtained for the high-density ele
tron gas (rs ! 0), we keep the terms up tothe order �2. Using de
omposition (40), we present thefun
tion '2ks in the approximate form'2ks � � �N�2Xq6=kV 2(k� q)f2("q): (43)We also note that the expression1N Xk : : : = 1(2�)3 Z : : : d3k (44)implies that the values of the quadrati
 �u
tuations'2ks are proportional to 1=N and be
ome negligible,espe
ially in the three-dimensional 
ase. This is anexpe
ted result be
ause we are solving a nonlinear sys-tem of integral equations in the high-density limit when'ks � hEksi. But the 
losed system of equationsobtained in Se
. 2 is in prin
iple 
orre
t for any re-lation between 'ks and hEksi. For example, in thelow-density 
ase (rs ! 1), when the potential energyex
eeds the kineti
 energy, the values of �u
tuations'ks be
ome 
omparable with the mean value of thelo
al �eld hEksi.We also note that in Eq. (17), in proje
ting thegiven HamiltonianH 0 to the number of states nks, some359
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Fig. 1. Comparison of the ground-state energy EGM obtained by Gell-Mann Eq. (1) with ESFA obtained in the SFA frame-work (Eq. (46)). The data are seen to pra
ti
ally 
oin
ide with ea
h other. The relative error (de�ned as the ratio of thestandard deviation taken from the di�eren
e ESFA �EGM to the ESFA mean value) does not ex
eed 0:5%terms in the expression for the mean energy are nottaken into a

ount. These terms arise be
ause someterms do not 
ommute with the Fermi operators ayks(aks). In our 
ase, these terms are the ex
hange (orba
kground) energy,EexN = � 2�N Xq V (q� q0): (45)Following the results in [21℄, it 
an be shown that thisterm is proportional to �0:916=rs.Taking the above remarks into a

ount and de
om-posing the mean value hnksi0 in (41) up to terms of theorder �2, we 
an obtain the desired expression for theground-state energy. The 
al
ulation s
heme and theevaluation of some terms are presented in Appendix A.The �nal expression for the ground-state energy (atT = 0) is

E0N = �2:21r2s � 0:916rs + 0:781prs + 1:556prs ++ 0:304 ln rs � 1:002+O(rs)�Ry : (46)Here we did not take the temperature dependen
e ofthe 
hemi
al potential �(T ) � �(0) into a

ount. Com-paring Eq. (1) with Eq. (46), we note that formally theyare strongly di�erent. But when plotted on the same�gure (Fig. 1), they pra
ti
ally 
oin
ide, with the rela-tive �tting error not ex
eeding 0.5%. This testi�es infavor of a very good 
oin
iden
e of these expressions ifwe take into a

ount that di�erent values for the 
on-stant and the 
oe�
ient before the logarithmi
 termwere 
hosen in [3�6℄. In Fig. 2, we show the relativedi�eren
es between expressions obtained by other au-thors [1; 3; 6℄ and the SFA expression. We 
ompare theprevious expressions with (46) for only one reason. Theexpressions obtained by other authors 
ontain un
on-trollable errors (be
ause of a separate summation of a360
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0:3 0:6 rs00:10:20:3jE0 �ESFAj=ESFA

Fig. 2. The relative expressions jE0 � ESFAj=ESFAfor the ground-state energy obtained by Gell-Mann [1℄,Talman [3℄, and Porter [6℄ (solid, dashed, and dotted
urves, respe
tively). The relative deviations of dataobtained by the �rst two authors pra
ti
ally 
oin
idewith ea
h other. Visible deviations at relatively largers are observed for Porter's results. All relative di�er-en
es in
rease with in
reasing rs
2
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3

0 0.70.60.50.40.30.20.1
rs

1.00

1.02

1.04

1.06

1.08

1.10

CF /C

Fig. 3. The relative heat 
apa
ities CF =C obtained byGell-Mann [1℄ and Pines [4℄ (
urves 1 and 2, respe
-tively) 
ompared with the data obtained in the SFAframework (
urve 3 ). The deviations are noti
eable.In the SFA method, we have the minimal deviations forall range of rs 
ompared with the result for ideal Fermigas
ertain 
lass of diagrams). In our 
ase, we made onlyone assumption (21) and this supposition is 
ontrol-lable, with the ratio 'ks=hEksi � 1.Taking the derivative of the mean energy with re-spe
t to temperature yields the heat 
apa
ity at lowtemperatures (T = 0). For 
omparison, it is 
onvenientto represent this result in the form

CFC = 1 + 0:055rs � 0:070r3=2s +O(r2s ); (47)where CF is the heat 
apa
ity of the nonintera
tingFermi gas. We 
ompare our result with similar re-sults of other authors [19; 20℄ in Fig. 3. We observemore essential dis
repan
ies than in Fig. 1. But weagain 
onsider our result more a

urate be
ause it
ontains the minimal value of the error expressed byEq. (21). Within the SFA method, it is rather easy to�nd the terms of higher orders in rs. For this, it suf-�
es to keep not only quadrati
 terms proportional to�2 in the de
omposition of the mean energy 
ontaininghnksi0. Keeping the terms proportional to �3 in this�-de
omposition, we 
an �nd terms of the respe
tiveorder rs and r2s in the expressions for the mean energyand heat 
apa
ity. Additional terms appearing in thede
omposition for the mean energy are given in Ap-pendix A. The expressions for the ground-state energyand heat 
apa
ity then be
omeE0N = �2:21r2s � 0:916rs + 0:781prs + 1:556prs ++ 0:304 ln rs � 1:002+ (�1:644 + 0:538 ln rs)rs ++ O(r3=2s )�Ry; (48)CFC = 1 + 0:055rs � 0:070r3=2s + [�0:026 ++ 0:012 ln rs � 0:007 ln2 rs� r2s +O(r2s ): (49)The 
ontributions of the third-order terms with respe
tto expression (46) are shown in Fig. 4. It 
an be seenthat the third-order terms are be
oming more essentialas the parameter rs in
reases.5. RESULTS AND DISCUSSIONWe have demonstrated the 
al
ulation of the 
or-relation energy in the framework of the SFA method.The 
al
ulation s
heme is very simple but leads �nallyto the solution of a nonlinear system of integral equa-tions. This system of equations, based on only oneassumption (21), allows easily 
al
ulating the desired
orrelation fun
tions and obtaining the expressions forthe ground state energy and heat 
apa
ity that are ina

ordan
e with results obtained by other authors. It isinteresting to note that the simplest de
oupling s
heme(21) admits some generalization given in (9). The more361
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Fig. 4. The in�uen
e of third-order 
orre
tions involvedin Eq. (48) with respe
t to Eq. (46). The 
ontributionsof the third-order terms are seen to be
ome essentialas the parameter rs in
reasesgeneral s
heme in (9) allows 
onsidering an asymmetri
spe
trum of the lo
al �eld operator and opens new pos-sibilities in obtaining more general results. This gener-alization for the Fermi gas and other many-body sys-tems with a strong intera
tion between parti
les meritsa separate resear
h.APPENDIX ATo �nd an analyti
 expression for the mean energy,it is ne
essary to realize the de
omposition of the ex-pression for hnksi0 in (42) with respe
t to � and totake into a

ount that the �u
tuation terms 'ks areproportional to 1=N in the 
ase of high density. In this
ase, keeping the terms proportional to �3 in the 
or-responding de
omposition, we write the expression forhnksi0 ashnksi0 = f("k) + �N �f2("k)Xq6=kV (k� q)f("q) ++� �N�2 �2f2("k)24�12 � f("k)� ��0�Xq6=kV (k� q)f("q)1A2 +Xq6=kV (k� q)f2("q)�

� Xq1 6=qV (q� q1)f("q1)35++� �N�3 �3 26416 f4("k)0�Xq6=kV (k� q)f("q)1A3 ++ f3("k)Xq6=kV (k� q)f("q)Xq6=kV (k� q)f2("q)�� Xq6=q1 V (q� q1)f("q1) + 12f2("k)��Xq6=kV (k�q)f3("q)0�Xq6=q1 V (q�q1)f("q1)1A2++f2("k)Xq6=kV (k�q)f2("q) Xq6=q1 V (q�q1)f2("q1)�� Xq2 6=q1 V (q1 � q2)f("q2)375 : (A.1)Then the mean energy 
an be represented in the formEN = hHiN = 2hH 0i�2N = 2�2 (E0+E1+E2+E3); (A.2)where E0 
ontains the zeroth-order terms with respe
tto �, E0 = 2N Xk "kf("k): (A.3)The term E1 
ontains only a pair of �rst-order termswith respe
t to �, E1 = E(1)1 �E(2)1 ; (A.4)E(1)1 = 2��N2 Xk "kf2("k)Xq6=kV (k� q)f("q); (A.5)E(2)1 = 2�N2 Xk f("k)Xq6=kV (k� q)f("q): (A.6)The expression for E2 entering (A.2) 
ontains threeterms of the se
ond order with respe
t to �:E2 = E(1)2 +E(2)2 �E(3)2 ; (A.7)E(1)2 = �2�2N3 ��Xk "kf3("k)0�Xq6=kV (k � q)f("q)1A2 ; (A.8)362
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s of an intera
ting Fermi system : : :E(2)2 = 2�2�2N3 Xk "kf2("k)Xq6=kV (k� q)f2("q)�� Xq1 6=qV (q� q1)f("q1); (A.9)E(3)2 = 4�2�N3 Xk f("k)Xq6=kV (k� q)f2("q)�� Xq1 6=qV (q� q1)f("q1): (A.10)Expression for E3 in (A.2) already 
ontains six third-order terms:E3 = E(1)3 +E(2)3 +E(3)3 +E(4)3 �E(5)3 �E(6)3 ; (A.11)E(1)3 = �3�33N4 ��Xk "kf4("k)0�Xq6=kV (k� q)f("q)1A3 ; (A.12)E(2)3 = 2�3�3N4 Xk "kf3("k) Xq0 6=kV (k� q0)f("q0)��Xq6=kV (k� q)f2("q) Xq6=q1 V (q� q1)f("q1); (A.13)E(3)3 = �3�3N4 Xk "kf2("k)Xq6=kV (k� q)f3("q)��0�Xq6=q1 V (q� q1)f("q1)1A2 ; (A.14)E(4)3 = 2�3�3N4 Xk "kf2("k)Xq6=kV (k� q)f2("q)�� Xq1 6=qV (q � q1)f2("q1)�� Xq2 6=q1 V (q1 � q2)f("q2); (A.15)E(5)3 = �3�2N4 Xk f("k)Xq6=kV (k� q)f3("q)��0�Xq1 6=qV (q� q1)f("q1)1A2 ; (A.16)

E(6)3 = 2�3�2N4 Xk f("k)Xq6=kV (k� q)f2("q)�� Xq1 6=qV (q � q1)f2("q1)�� Xq2 6=q1 V (q1 � q2)f("q2): (A.17)To 
larify the basi
 
al
ulation s
heme, we 
onsiderthe 
al
ulation of the term E(2)2 (determined by expres-sion (A.9)) in detail. We �rst repla
e the summationby integration in a

ordan
e with (44), also using de�-nition (13) for the potential V (k � q):E(2)2 = 2�2�2(2�)9 Z "kf2("k) d3k Z V (k�q)f2("q) d3q�� Z V (q � q1)f("q1) d3q1 == �2�2�4 1Z0 "kf2("k) k2dk 1Z�1 d�1 �� 1Z0 f2("q)q2dqk2 + q2 � 2kq�1 + q20 1Z�1 d�2 �� 1Z0 f("q1)q21dq1q21 + q2 � 2q1q�2 + q20 = �2�24�4 �� 1Z0 "kf2("k)k dk 1Z0 f2("q) ln ����(k + q)2 + q20(k � q)2 + q20 ���� dq �� 1Z0 f("q1) ln ����(q1 + q)2 + q20(q1 � q)2 + q20 ���� q1dq1: (A.18)Changing the variables ask22 = xq22 = y q212 = z;we obtainE(2)2 = �2�24p2�4 1Z0 f2�x��T � dx 1Z0 f2�y��T � dy�� 1Z0 f1�z � �T � h(x; y; z) dz; (A.19)363



R. R. Nigmatullin, A. A. Khamzin, I. I. Popov ÆÝÒÔ, òîì 141, âûï. 2, 2012whereh(x; y; z) = xpy ln �px+py �2 + "0�px�py �2 + "0!�� ln �py +pz �2 + "0�py �pz �2 + "0! (A.20)with "0 = q20=2. Using relations (B.2) and (B.3) inAppendix B, we obtain the expressionE(2)2 = �2�24p2�4 1Z0 f2�x��T � dx 1Z0 f2�y��T � dy��8<: �Z0 h(x; y; z) dz + �26 h0z(x; y; �)T 29=; == �2�4p2�4 1Z0 f2�x� �T � dx��8><>: �Z0 h(x; �; z) dz + �26 (h0z(x; �; �) ++ �Z0 h00yy(x; �; z) dz1AT 29=; = �24p2�4 ��8<: �Z0 h(�; �; z) dz + �26 24h0z(�; �; �) ++ �Z0 �h00xx(�; �; z) + h00yy(�; �; z)� dz35T 29=; : (A.21)Performing simple but 
umbersome 
al
ulations, we �-nally obtainE(2)2 = �24p2�4 ��(p"3=202 �p+ ln(1 + p2)� 2p ar
tgp� ln(1 + p2) ++ �26p"0 ��2p(p4�p2�4)(1+p2)2 +4(p2+2)(p2�1)(1+p2)2 ar
tgp �� 2(4p4 + 9p2 + 3)p(1 + p2)2 ln(1 + p2) + 2(p2 + 3)p3 �� ln2(1 + p2)�T 2 + : : :� ; (A.22)where p = 2p�="0. Other terms involved in the basi
expression (A.2) are 
al
ulated similarly.

We re
all that all mean values for the sought ther-modynami
 fun
tions were obtained using the Hamil-tonian H 0. To pass to H , it is ne
essary to use therelationhÂ(�)i = Q�1 Sp hexp (�H�) Âi == Q�1 Sp hexp ��H 02�=�2� Âi == �Â� 2�2 ��� (A.23)and the repla
ements� ! ~� = 2�2 �; T ! ~T = �22 T: (A.24)APPENDIX BWe 
onsider the integralsIi(T; �) = 1Z0 g(x)fi �x� �T � dx;i = 1; 2; 3; 4; (B.1)where g(x) de�nes a smooth fun
tion, fi(x) == (�1)i�1di�1f(x)=dxi�1, and f(x) is the standardFermi�Dira
 fun
tion. In the 
ase i = 1, at low tem-peratures, we have the well-known low-temperature de-
ompositionI1(T; �) = �Z0 g(x) dx+ �26 g0(�)T 2 + : : : (B.2)Di�erentiating both parts of this expression with re-spe
t to the 
hemi
al potential �, we obtain the usefulexpressionsI2(T; �) = g(�)T + �26 g00(�)T 3 + : : : ; (B.3)I3(T; �) = g0(�)T 2 + �26 g000(�)T 4 + : : : ; (B.4)I4(T; �) = g00(�)T 3 + �26 g(IV)(�)T 5 + : : : ; (B.5)whi
h were used in evaluating expression (A.21).REFERENCES1. M. Gell-Mann and K. A. Brue
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