МАГНИТНЫЕ ФАЗОВЫЕ ПЕРЕХОДЫ В ФЕРРОБОРАТАХ $Nd_{1-x}Dy_xFe_3(BO_3)_4$

А. А. Демидов^а^{*}, И. А. Гудим^b, Е. В. Еремин^b

^а Брянский государственный технический университет 241035, Брянск, Россия

^b Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660038, Красноярск, Россия

Поступила в редакцию 26 февраля 2011 г.

ферроборатов Исследованы магнитные свойства монокристаллов замешенных составов $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) с конкурирующими обменными Nd-Fe- и Dy-Fe-взаимодействиями. Для каждого состава обнаружены спонтанный спин-переориентационный переход из легкоосного в легкоплоскостное состояние и ступенчатые аномалии на кривых намагничивания при спин-флоп-переходе, индуцируемом магнитным полем ${f B}\parallel c.$ Измеренные свойства и эффекты проинтерпретированы в рамках единого теоретического подхода, который базируется на приближении молекулярного поля и расчетах в модели кристаллического поля для редкоземельного иона. Описаны экспериментальные температурные зависимости начальной магнитной восприимчивости от $T\,=\,2\,$ K до T~=~300 K, аномалии на кривых намагничивания при ${f B}\parallel {f c}$ в полях до 1.8 Tл, их эволюция с температурой, а также температурные и полевые зависимости намагниченности в полях до 9 Тл. При интерпретации экспериментальных данных определены параметры кристаллического поля тригональной симметрии для редкоземельной подсистемы и параметры обменных Nd-Fe- и Dy-Fe-взаимодействий.

1. ВВЕДЕНИЕ

Редкоземельные ферробораты RFe₃ (BO₃)₄ представляют большой интерес для физики магнитных явлений как *f*-*d*-соединения со своей спецификой взаимодействия редкоземельной и железной подсистем. Установлено, что RFe₃(BO₃)₄ принадлежат к классу мультиферроиков, в которых сосуществуют упругие, магнитные и электрические параметры порядка [1,2]. Главным элементом кристаллической структуры редкоземельных ферроборатов (пространственная группа R32) являются спиральные цепочки октаэдров FeO₆, соприкасающихся по ребру, ориентированные вдоль оси с [3]. Связи между ионами Fe³⁺ вдоль цепочки и между цепочками таковы, что антиферромагнитное взаимодействие внутри цепочки сильнее, чем взаимодействие между цепочками. Железная подсистема в RFe₃(BO₃)₄ упорядочивается при температурах Нееля T_N порядка 30-40 К. Редкоземельная подсистема подмагничена *f*-*d*-взаимодействием и дает существенный

вклад в магнитную анизотропию и ориентацию магнитных моментов. Поскольку ферробораты с разными R имеют разные магнитные структуры, это дает возможность выявить роль редкоземельной подсистемы в формировании магнитной структуры при изучении магнитных характеристик и фазовых переходов апробированными теоретическими моделями (например, модель кристаллического поля для R-иона в соединении). Ферробораты могут быть легкоосными (магнитные моменты R и Fe ориентированы вдоль оси *с* кристалла), легкоплоскостными (магнитные моменты R и Fe лежат в плоскости *ab* кристалла), либо как в GdFe₃(BO₃)₄ и HoFe₃(BO₃)₄, спонтанно переходить из легкоосного в легкоплоскостное состояние.

Первые результаты по изучению ферроборатов замещенных составов $R_{1-x}R'_xFe_3(BO_3)_4$ появились в 2008–2009 гг. [4–8]. Принадлежность $R_{1-x}R'_xFe_3(BO_3)_4$ к классу мультиферроиков в настоящее время устанавливается [4, 6–8]. При наличии в $R_{1-x}R'_xFe_3(BO_3)_4$ конкурирующих обменных R–Fe- и R'–Fe-взаимодействий возможно появление эффектов, обусловленных конкуренцией

^{*}E-mail: demandr@yandex.ru

вкладов, например, реализация спонтанных переориентационных переходов между легкоосным и легкоплоскостным состояниями [4–8].

В NdFe₃(BO₃)₄ магнитные моменты неодимовой и железной подсистем лежат в базисной плоскости $ab [2, 9]; DyFe_3(BO_3)_4$ имеет ориентацию магнитных моментов Dy и Fe вдоль тригональной оси с и проявляет спин-флоп-переход при В || с [10]. Таким образом, в результате конкуренции разных вкладов от ионов Nd³⁺ и Dy³⁺ в магнитную анизотропию $Nd_{1-x}Dy_xFe_3(BO_3)_4$ возможно возникновение спонтанных и индуцированных магнитным полем спин-переориентационных переходов от оси с к плоскости *ab* [4,5]. Для Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ [4, 7] и $Nd_{1-x}Dy_{x}Fe_{3}(BO_{3})_{4}$ (x = 0.1, 0.25) [5] были обнаружены аномалии в поведении магнитной восприимчивости, намагниченности, спонтанной электрической поляризации и магнитострикции, построены *H*-*T*-диаграммы возможных магнитных фаз.

Однако некоторые принципиальные вопросы для ферроборатов $Nd_{1-x}Dy_xFe_3(BO_3)_4$ остаются открытыми. Например, для Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ к данному моменту имеются экспериментальные данные с несовпадающим характером аномалий на кривых намагничивания при В || с [4,5]. В результате были построены различающиеся Н-Т-диаграммы возможных магнитных фаз и высказываются разные мнения о природе и механизмах наблюдаемых аномалий [4,5,7]. В работе [4] показано, что в $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ ниже $T_N \approx$ \approx 32 K антиферромагнитное состояние является легкоплоскостным и аномалия на кривых магнитной восприимчивости вблизи $T \approx 25$ К обусловлена спин-переориентационным переходом из легкоплоскостного в легкоосное состояние. Обнаружены аномалии в поведении намагниченности, спонтанной электрической поляризации и магнитострикции при спин-флоп-переходе, индуцируемом магнитным полем В || с и построена фазовая *H*-*T*-диаграмма. В работе [5] на температурной зависимости намагниченности видны две особенности при $T_1 \approx 16$ K, $T_2 \approx 24$ К для $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ и одна при $T \approx 8 \text{ K}$ для $Nd_{0.9}Dy_{0.1}Fe_3(BO_3)_4$. Также обнаружены ступенчатые аномалии на кривых намагничивания $M_c(B)$ Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ вблизи поля спин-флоп-перехода, причем на аналогичных зависимостях в работе [4] наблюдалась только одна аномалия. В работе [6] изучены упругие свойства $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ ультразвуковым методом. Исследованы особенности на температурных и магнитополевых зависимостях скорости и поглощения поперечного звука. Эти особенности трактуются как проявления магнитных фазовых переходов. Представлен отличающийся от результатов работы [4] вариант низкотемпературной части фазовой *H*-*T*-диаграммы.

Данная работа посвящена экспериментальному и теоретическому исследованию низкотемпературных магнитных фазовых переходов в $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25), сравнению полученных экспериментальных данных с результатами расчетов, проведенных в рамках единого теоретического подхода, и определению параметров соединений.

2. ЭКСПЕРИМЕНТ

Монокристаллы выращивались ИЗ растворов-расплавов на основе тримолибдата висмута 75 macc. % $\{Bi_2Mo_3O_{12} + 3B_2O_3 + 0.6[(1-x)Nd_2O_3 +$ $+ x Dy_2 O_3$] + 25 масс. % Nd_{1-x} Dy_x Fe₃ (BO₃)₄ по технологии, подробно описанной в работе [5]. В растворе-расплаве массой 300 г одновременно на четырех затравках объемом примерно 1 мм³ росли кристаллы в одинаковых гидродинамических условиях. Кристаллодержатель вращался со скоростью 30 об/мин реверсивно с периодом 1 мин. Величина переохлаждения соответствовала приросту не более 1 мм/сут. По окончании процесса выращивания кристаллодержатель приподнимался над раствором-расплавом и кристаллы охлаждались до комнатной температуры при отключенном питании печи. Выращенные кристаллы размером 6-10 мм имели небольшую треугольную грань {0001} пинакоида перпендикулярную оси C₃. Образцы необходимых ориентаций изготавливались в соответствии с морфологией кристалла. Они имели хорошее оптическое качество и не содержали видимых дефектов. Для определения содержания неодима и диспрозия в кристалле использовался рентгеноспектральный флуоресцентный анализ. Магнитные измерения были выполнены на установке Physical Properties Measurement System (Quantum Design) в температурном интервале 2–300 К и магнитных полях до 9 Тл.

3. МЕТОДИКА РАСЧЕТОВ

За магнитные свойства ферроборатов $Nd_{1-x}Dy_xFe_3(BO_3)_4$ ответственны обе магнитные подсистемы, редкоземельная (неодимовая и диспрозиевая) и железная, взаимодействующие друг с другом. Взаимодействием внутри R-подсистемы

можно пренебречь, поскольку ни один из редкоземельных ферроборатов [3,11] и изоструктурных им редкоземельных алюмоборатов [12] не имеет собственного упорядочения в R-подсистеме. Железная подсистема может рассматриваться как совокупность двух антиферромагнитных подрешеток. Также в виде двух подрешеток может быть представлена и R-подсистема, подмагниченная за счет f-d-взаимодействия.

При расчетах использовался теоретический подход, успешно примененный к чистым ферроборатам RFe₃(BO₃)₄ с R = Tb [13–15], Nd [9], Dy [10,16], Pr [17], Er [18,19], Ho [20] и адаптированный для ферроборатов замещенных составов Nd_{1-x}Dy_xFe₃(BO₃)₄ с конкурирующими обменными Nd–Fe- и Dy–Fe-взаимодействиями. Данный теоретический подход основывается на модели кристаллического поля для редкоземельной подсистемы и приближении молекулярного поля.

Исходя из магнитной структуры и иерархии взаимодействий $Nd_{1-x}Dy_xFe_3(BO_3)_4$, в присутствии магнитного поля **В** эффективные гамильтонианы R/Fe иона *i*-й (*i* = 1, 2) подрешетки могут быть записаны в следующем виде

$$\mathcal{H}_{i}(\mathrm{Nd}) = \mathcal{H}_{i}^{CF(\mathrm{Nd})} - g_{J}^{\mathrm{Nd}} \mu_{B} \mathbf{J}_{i}^{\mathrm{Nd}} \left[\mathbf{B} + \lambda_{fd}^{\mathrm{Nd}} \mathbf{M}_{i}^{\mathrm{Fe}} \right], (1)$$

$$\mathcal{H}_{i}(\mathrm{Dy}) = \mathcal{H}_{i}^{CF(\mathrm{Dy})} - g_{J}^{\mathrm{Dy}} \mu_{B} \mathbf{J}_{i}^{\mathrm{Dy}} \left[\mathbf{B} + \lambda_{fd}^{\mathrm{Dy}} \mathbf{M}_{i}^{\mathrm{Fe}} \right], \quad (2)$$

$$\mathcal{H}_{i}(\mathrm{Fe}) = -g_{S}\mu_{B}\mathbf{S}_{i}\left[\mathbf{B} + \lambda\mathbf{M}_{J}^{\mathrm{Fe}} + (1-x)\lambda_{fd}^{\mathrm{Nd}}\mathbf{m}_{i}^{\mathrm{Nd}} + x\lambda_{fd}^{\mathrm{Dy}}\mathbf{m}_{i}^{\mathrm{Dy}}\right], \quad j = 1, 2, \quad j \neq i. \quad (3)$$

Здесь $\mathcal{H}_i^{CF(\mathbf{R})}$ — гамильтониан кристаллического поля, $g_J^{\mathbf{R}}$ — фактор Ланде, $\mathbf{J}_i^{\mathbf{R}}$ — оператор углового момента R-иона, $g_S = 2 - g$ -фактор, \mathbf{S}_i — оператор спинового момента иона железа, $\lambda_{fd}^{\mathbf{R}} < 0$ и $\lambda < 0$ — молекулярные константы R–Fe- и Fe–Fe-антиферромагнитных взаимодействий.

Магнитные моменты *i*-й железной $\mathbf{M}_{i}^{\text{Fe}}$ и редкоземельной $\mathbf{m}_{i}^{\text{R}}$ подрешеток в расчете на формульную единицу определяются соотношениями

$$\mathbf{M}_{i}^{\mathrm{Fe}} = 3g_{S}\mu_{B}\langle \mathbf{S}_{i}\rangle, \quad \mathbf{m}_{i}^{\mathrm{R}} = g_{J}^{\mathrm{R}}\mu_{B}\langle \mathbf{J}_{i}^{\mathrm{R}}\rangle.$$
(4)

Правая часть уравнения для $\mathbf{M}_{i}^{\mathrm{Fe}}$ представляет собой соответствующую функцию Бриллюэна, которая получается в случае эквидистантного спектра *S*-иона Fe³⁺ для теплового среднего $\langle S_i \rangle$. Ион Fe³⁺ в RFe₃ (BO₃)₄ находится в высокоспиновом состоянии [11], это дает максимальное значение магнитного момента иона 5 μ_B . Выражение для гамильтониана кристаллического поля $\mathcal{H}^{CF\,(\mathbf{R})}$ в неприводимых тензорных операторах C_q^k имеет вид

$$\mathcal{H}^{CF(\mathbf{R})} = B_0^2 C_0^2 + B_0^4 C_0^4 + B_3^4 (C_{-3}^4 - C_3^4) + B_0^6 C_0^6 + B_3^6 (C_{-3}^6 - C_3^6) + B_6^6 (C_{-6}^6 + C_6^6).$$
(5)

Параметры кристаллического поля B_q^k для ионов Nd^{3+} и Dy^{3+} в $Nd_{1-x}Dy_xFe_3(BO_3)_4$ неизвестны. Также нет определенной информации о расщеплении основного мультиплета ионов Nd^{3+} и Dy^{3+} в $Nd_{1-x}Dy_xFe_3(BO_3)_4$.

Вычисление величин и ориентаций магнитных моментов Fe- и R-подсистем при решении самосогласованных задач на основе гамильтонианов (1)-(3)при условии минимума соответствующего термодинамического потенциала позволяет рассчитать области устойчивости различных магнитных фаз, поля фазовых переходов, кривые намагничивания, восприимчивость и т. д. В рамках стандартной термодинамической теории возмущений, изложенной для f-d-соединений в монографии [21], термодинамический потенциал может быть записан следующим образом:

$$\Phi(T,B) = \frac{1}{2} \sum_{i=1}^{2} \left[-(1-x)k_B T \ln Z_i(\mathrm{Nd}) - xk_B T \ln Z_i(\mathrm{Dy}) + (1-x)\frac{1}{2}g_J^{\mathrm{Nd}}\mu_B \langle \mathbf{J}_i^{\mathrm{Nd}} \rangle \lambda_{fd}^{\mathrm{Nd}} \mathbf{M}_i^{\mathrm{Fe}} + x\frac{1}{2}g_J^{\mathrm{Dy}}\mu_B \langle \mathbf{J}_i^{\mathrm{Dy}} \rangle \lambda_{fd}^{\mathrm{Dy}} \mathbf{M}_i^{\mathrm{Fe}} - 3k_B T \ln Z_i(\mathrm{Fe}) + \frac{1}{2}3g_S\mu_B \langle \mathbf{S}_i \rangle \left(\lambda \mathbf{M}_j^{\mathrm{Fe}} + (1-x)\lambda_{fd}^{\mathrm{Nd}} \mathbf{m}_i^{\mathrm{Nd}} + x\lambda_{fd}^{\mathrm{Dy}} \mathbf{m}_i^{\mathrm{Dy}}\right) + \Phi_{an}^i \right], \quad (6)$$

где $Z_i(\mathbf{R}/\mathbf{Fe})$ — статистические суммы, рассчитываемые на гамильтонианах (1)–(3), Φ^i_{an} — энергия анизотропии для *i*-й подрешетки Fe-подсистемы, которая гораздо меньше, чем обменные энергии, и поэтому может быть записана как аддитивное слагаемое. Для кристалла тригональной симметрии она имеет вид

$$\Phi^{i}_{an} = K_2 \cos^2 \vartheta_i + K_6 \sin^6 \vartheta_i \cos 6\varphi_i, \qquad (7)$$

где $K_2 > 0$ — одноосная константа, $K_6 < 0$ — константа анизотропии в базисной плоскости, ϑ_i и φ_i — полярный и азимутальный углы вектора магнитного момента железа \mathbf{M}_i^{Fe} .

Hамагниченность и восприимчивость $Nd_{1-x}Dy_xFe_3(BO_3)_4$ равны

$$\mathbf{M} = \frac{1}{2} \sum_{i=1}^{2} \left(\mathbf{M}_{i}^{\text{Fe}} + (1-x)\mathbf{m}_{i}^{\text{Nd}} + x\mathbf{m}_{i}^{\text{Dy}} \right),$$

$$\chi_k = \chi_k^{\text{Fe}} + (1-x)\chi_k^{\text{Nd}} + x\chi_k^{\text{Dy}}, \quad k = a, b, c.$$
 (8)

В упорядоченной фазе начальные магнитные восприимчивости соединения можно найти из начальных линейных участков кривых намагничивания, рассчитанных для соответствующих направлений внешнего магнитного поля. В парамагнитной области, где взаимодействием между Rи Fe-подсистемами можно пренебречь, магнитная восприимчивость R-подсистемы рассчитывается по известной формуле Ван Флека, энергетический спектр и волновые функции для которой вычисляются на основе гамильтониана кристаллического поля (5). Восприимчивость Fe-подсистемы $\chi_p^{\rm Fe}$ может быть описана законом Кюри–Вейсса с соответствующей парамагнитной температурой Нееля Θ :

$$\chi_{p}^{\text{Fe}} = \frac{\mu_{eff}^{2}}{3k_{B}(T - \Theta)},$$

$$\mu_{eff}^{2} = 105\mu_{B}^{2} \quad для \quad S = \frac{5}{2}.$$
(9)

Вклад R-подсистемы в магнитную часть теплоемкости соединений $Nd_{1-x}Dy_xFe_3(BO_3)_4$ рассчитывается по обычной квантовомеханической формуле (на один редкоземельный ион, т. е. на одну формульную единицу):

$$C = (1 - x)C_{\rm Nd} + xC_{\rm Dy},$$

$$C_{\rm R} = k_B \left(\frac{\langle E^2 \rangle - \langle E \rangle^2}{(k_B T)^2}\right).$$
(10)

Тепловые средние $\langle E^2 \rangle$ и $\langle E \rangle^2$ вычисляются на спектре редкоземельного иона, формируемого кристаллическим полем и взаимодействиями с Fe-подсистемой и внешним магнитным полем.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для теоретического исследования магнитных свойств ферроборатов $Nd_{1-x}Dy_xFe_3(BO_3)_4$ необходимо в первую очередь определить параметры кристаллического поля B_q^k , поскольку именно кристаллическое поле, формируя электронную структуру редкоземельного иона (его спектр и волновые функции), дает вклад в анизотропию магнитных свойств редкоземельных ферроборатов и в парамагнитной, и в упорядоченной областях температур. Для определения параметров B_q^k были использованы экспериментальные данные для температурных зависимостей начальной магнитной восприимчивости $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) вдоль тригональной оси и в базисной плоскости в парамагнитной области от $T_N \approx 31$ K до 300 K. В качестве начальных значений параметров кристаллического поля, с которых стартовала процедура минимизации соответствующей целевой функции, были взяты параметры для ранее исследованных чистых ферроборатов NdFe₃(BO₃)₄ [9] (для Nd_{1-x}-подсистемы) и DyFe₃(BO₃)₄ [10] (для Dy_x-подсистемы).

Полученные параметры, сильно отличающиеся от стартовых, отбрасывались, поскольку для редкоземельных соединений определенной структуры параметры B_q^k не слишком сильно различаются по редкоземельному ряду. Для каждого из отобранных наборов было проверено, что восприимчивости $\chi_c(T)$ и $\chi_{\perp c}(T)$ в парамагнитной области описываются хорошо, причем парамагнитная температура Нееля для Fe-подсистемы для двух составов оказалась практически одинаковой: $\Theta = -132$ K (x = 0.15), $\Theta = -135$ K (x = 0.25).

Для определения, какой из найденных наборов параметров B_q^k позволяет описать всю совокупность измеренных магнитных характеристик $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25), рассчитывались кривые намагничивания вдоль тригональной оси и в базисной плоскости $M_{c,\perp c}(B)$ с тем, чтобы подобрать параметры $\lambda_{fd}^{\mathrm{R}}$ (антиферромагнитных Nd-Fe- и Dy-Fe-взаимодействий) и λ_1 (внутрицепочечного антиферромагнитного Fe-Fe-взаимодействия). Для антиферромагнитной ориентации магнитных моментов Fe-подсистемы вдоль тригональной оси при T < 4.2 К и В \parallel с железная подсистема вклада в намагниченность не дает вследствие малости параллельной восприимчивости, и по начальному участку $M_c(B)$ можно подобрать параметр $\lambda_{fd}^{\rm R},$ к которому кривая намагничивания на этом участке чрезвычайно чувствительна. При $B > B_{SF}$ (B_{SF} — поле спин-флоп-перехода) наклон кривой намагничивания определяется величиной внутрицепочечного обменного Fe-Fe-взаимодействия λ_1 , поскольку поворот магнитных моментов железа во флоп-фазе к направлению поля происходит против него. Найденные параметры $\lambda_{fd}^{\mathrm{R}}$ и λ_1 позволяют рассчитать кривые $M_{c,\perp c}(B)$ при $T \leq 4.2$ К. Таким образом, было найдено несколько наборов параметров кристаллического поля, которые позволяют наиболее удачно описать экспериментальные кривые восприимчивости $\chi_{c,\perp c}(T)$ в парамагнитной области температур и кривые намагниченности $M_{c,\perp c}(B)$.

Следующим важным критерием окончательного выбора параметров B^k_a является описание тем-

пературы спонтанного спин-переориентационного перехода $T_{SR} \approx 12.5$ К (x = 0.15) и $T_{SR} \approx 24$ К (x = 0.25). Расчеты показали, что данный критерий накладывает существенные ограничения на значения параметров кристаллического по-Спин-переориентационный переход между ля. легкоосным и легкоплоскостным состояниями $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) обусловлен конкуренцией вкладов железной и редкоземельной подсистем в полную магнитную анизотропию кристалла. Магнитная анизотропия железной и неодимовой подсистем стабилизирует легкоплоскостную магнитную структуру [2,9]. Вклад в полную анизотропию от диспрозиевой подсистемы имеет противоположный знак и стабилизирует легкоосную структуру [10]. Близкие значения различных вкладов в полную анизотропию $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) и их различные температурные зависимости приводят к спонтанному спин-переориентационному переходу.

Таким образом, руководствуясь перечисленными критериями описания кривых $\chi_{c,\perp c}(B)$, $M_c(B)$ и величины T_{SR} , из всех найденных на начальном этапе параметров кристаллического поля были выбраны наборы, которые позволяют наиболее хорошо описать экспериментальные данные для $\mathrm{Nd}_{1-x}\mathrm{Dy}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ (x = 0.15, 0.25) $\left(B_q^k[\mathrm{cm}^{-1}] = \frac{\mathrm{Nd}[\mathrm{Dy}](x = 0.15)}{\mathrm{Nd}[\mathrm{Dy}](x = 0.25)}\right)$:

$$B_0^2 = \frac{597[626]}{527[611]}, \quad B_0^4 = \frac{-1361[-1300]}{-1361[-1250]},$$
$$B_3^4 = \frac{750[-523]}{750[-623]}, \quad B_0^6 = \frac{585[696]}{585[696]},$$
$$B_3^6 = \frac{140[-60]}{140[-60]}, \quad B_6^6 = \frac{408[-283]}{420[-283]}.$$
(11)

Эти параметры были определены при расчетах на базисе основного мультиплета, поэтому они могут рассматриваться только как эффективные, пригодные для описания термодинамических свойств соединения. Отметим небольшое различие параметров B_a^k для составов с x = 0.15 и x = 0.25.

Набору параметров (11) соответствуют приведенные в табл. 1 значения энергий восьми нижних уровней основного мультиплета ионов Nd³⁺ и Dy³⁺ в Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ при B = 0. Приведены значения энергий при $T > T_N$, с учетом f-d-взаимодействия для T = 25 K > T_{SR} (легкоплоскостное состояние) и T = 2,23 K < T_{SR} (легкоосное состояние). Поскольку параметры (11) для составов с x = 0.15, 0.25 мало различаются, величины расщеплений Δ для Nd_{0.85}Dy_{0.15}Fe₃(BO₃)₄ аналогичны. В табл. 1 видно, как учет f-d-взаимодействия при $T < T_N$ приводит к снятию вырождения, затем с уменьшением температуры происходит увеличение расщепления и при T_{SR} относительное смещение энергетических уровней, причем в случае Dy смещение энергетических уровней приводит к увеличению расщепления (с $\Delta = 0.9 \text{ см}^{-1}$ до 16.1 см⁻¹), а для Nd к сужению энергетических уровней (с $\Delta = 11.6 \text{ см}^{-1}$ до 7.3 см⁻¹).

Расщепление основного мультиплета ионов Nd³⁺ и Dy^{3+} в $\mathrm{Nd}_{1-x}\mathrm{Dy}_{x}\mathrm{Fe}_{3}(\mathrm{BO}_{3})_{4}$ определяется совместным действием кристаллического поля, внешнего магнитного поля В и взаимодействием с железной подсистемой. Положение энергетических уровней зависит от взаимной ориентации обменных и внешних полей, действующих на редкоземельный ион, а также от их ориентации относительно основных кристаллографических направлений. Расчеты показывают, что магнитная структура $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) при $T \approx T_{SR}$ является неустойчивой и оказывается возможна перестройка магнитной структуры между легкоосным и легкоплоскостным состояниями. Таким образом, ситуация в $Nd_{1-x}Dy_{x}Fe_{3}(BO_{3})_{4}$ (x = 0.15, 0.25) похожа на ту, с которой имели дело в случае HoFe₃(BO₃)₄ [20]. Понизить энергию системы можно за счет изменения магнитной структуры Fe-подсистемы, т.е. за счет смены ориентаций её магнитных моментов от легкоплоскостного к легкоосному состоянию. Энергия анизотропии железной и неодимовой подсистем препятствует такому изменению магнитной структуры, так как они стабилизируют легкоплоскостное состояние. С понижением температуры возможный выигрыш по энергии за счет перехода от легкоплоскостной к легкоосной структуре возрастает, и при T_{SR} путем фазового перехода первого рода система переходит в легкоосное состояние. В легкоосной фазе энергетические уровни основного мультиплета иона Dy³⁺ максимально расщеплены $(\Delta = 17.8 \text{ см}^{-1})$. Для иона Nd^{3+} (вклад в полную анизотропию от которого стабилизирует легкоплоскостное состояние) расщепление не максимальное, но возрастает (с $\Delta = 7.3 \text{ см}^{-1}$ до 8.2 см^{-1}). Происходит перераспределение населенностей энергетических уровней основного мультиплета ионов Nd³⁺ и Dy³⁺. Это явление, по сути, представляет собой магнитный аналог эффекта Яна-Теллера в редкоземельных соединениях (например, в RVO₄ со структурой циркона), когда при низких температурах за счет деформации кристалла происходит аналогичное перераспределение населенностей энергетических уровней при изменении расщепле-

R	Т	$\Delta = E_i - E_1 \ (i = 1 - 8), \ \mathrm{cm}^{-1}$
Nd	$T > T_N$	0, 0, 79.2, 79.2, 165.8, 165.8, 261, 261
	$25 \text{ K} > T_{SR}$	0,11.6,85.8,85.9,167,176.6,267,267
	$23 \text{ K} < T_{SR}$	$0,\ 7.3,\ 73.5,\ 92.5,\ 163.8,\ 177.1,\ 256,\ 274$
	$2 \mathrm{K} < T_{SR}$	$0,\ 8.2,\ 72.9,\ 94,\ 163.7,\ 178.5,\ 256,\ 276$
Dy	$T > T_N$	0, 0, 21.9, 21.9, 108.6, 108.6, 207, 207
	$25 \text{ K} > T_{SR}$	0, 0.9, 22.8, 23.7, 109.7, 109.7, 208, 208
	$23 \text{ K} < T_{SR}$	0,16.1,23.3,36.9,110.7,122.8,206,224
	$2 \mathrm{K} < T_{SR}$	0,17.8,23.6,38.5,111,124.3,206,226

Таблица 1. Значения энергий восьми нижних уровней основного мультиплета ионов Nd^{3+} и Dy^{3+} в $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$, расщепленных кристаллическим полем (параметры (11)) и с учетом f-d-взаимодействия при B = 0 в парамагнитной и упорядоченной областях температур

ния основного мультиплета, также сопровождаемое аномалиями магнитной восприимчивости (см., например, [22]).

Далее с выбранными параметрами B_q^k (11) были рассчитаны кривые намагничивания $M_{c,\perp c}(B)$ в полях до 9 Тл при температурах, соответствующих экспериментальным, от 2 до 50 К, температурные зависимости начальной магнитной восприимчивости $\chi_{c,\perp c}(T)$ от 2 до 300 К, а также вклад R-подсистемы в теплоемкость Nd_{1-x}Dy_xFe₃(BO₃)₄ (x = 0, 0.25,1). Сравнение с экспериментальными данными позволило уточнить параметры Nd_{1-x}Dy_xFe₃(BO₃)₄ (x = 0.15, 0.25) и для единого набора параметров для каждого из составов удалось получить согласие теории и эксперимента для всей совокупности измеренных характеристик.

Отметим, что рентгенофлюоресцентный анализ на содержание элементов проводился только для состава x = 0.25. В растворе-расплаве задавалось соотношение x = 0.25. Анализ показал содержание Dy в Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ равным $x = 0.26 \pm 0.01$. Таким образом, расхождение заданного и полученного значений параметра x в Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ составляет менее 5%. Расчеты показали наилучшее совпадение с экспериментом при $x_{calc} = 0.17$ и $x_{calc} = 0.266$ соответственно для составов x = 0.15 и x = 0.25.

Представленные далее на рисунках теоретические магнитные характеристики рассчитаны для параметров, приведенных в табл. 2, в которой также для сравнения показаны параметры чистых ферроборатов NdFe₃(BO₃)₄ из работы [9] и DyFe₃(BO₃)₄ из работы [10]. Приведенный в табл. 2 параметр λ_2 , входщий в функцию Бриллюэна, соответствен за величину магнитного момента железа при данных температуре и поле и определяет температуру Нееля, поскольку трехмерный порядок в структуре ферробората невозможен без обменного взаимодействия между цепочками ионов Fe³⁺. Значение параметра λ_2 было выбрано из условия наилучшего согласия экспериментальных и рассчитанных кривых намагничивания $M_{c,\perp c}(B)$ для всех температур. Также в расчетах участвуют одноосная константа анизотропии железа $K_2 = 0.48$ Тл · μ_B (при T = 2 K) и константа анизотропии железа в базисной плоскости $K_6 = -1.35 \cdot 10^{-2}$ Тл · μ_B .

В табл. 2 видно отличие молекулярной константы $\lambda_{fd}^{\rm Nd}$ для ${\rm Nd}_{1-x}{\rm Dy}_x{\rm Fe}_3({\rm BO}_3)_4$ (x = 0.15, 0.25) и ${\rm NdFe}_3({\rm BO}_3)_4$, которое можно объяснить различием низкотемпературного магнитного состояния легкоплоскостное в ${\rm NdFe}_3({\rm BO}_3)_4$ и легкоосное в ${\rm Nd}_{1-x}{\rm Dy}_x{\rm Fe}_3({\rm BO}_3)_4$ (x = 0.15, 0.25). Отметим также, что для близкого к ${\rm NdFe}_3({\rm BO}_3)_4$ по значению радиуса R-иона легкоосного ${\rm PrFe}_3({\rm BO}_3)_4$ значение параметра $\lambda_{fd}^{\rm Nd} = -0.73 \,{\rm Tr}/\mu_B \,[17]$, что согласуется с найденным значением $\lambda_{fd}^{\rm Nd} = -0.77 \,{\rm Tr}/\mu_B$ (см. табл. 2).

Для расчета магнитных характеристик $Nd_{1-x}Dy_{x}Fe_{3}(BO_{3})_{4}$ (x = 0.15, 0.25) при направлении внешнего магнитного поля вдоль и перпендикулярно тригональной оси с учетом возможного легкоосного и легкоплоскостного состояний магнитной подсистемы соединений использовались изображенные на рис. 1 схемы ориентаций магнитных моментов железа $\mathbf{M}^{\mathrm{Fe}}_i$ и редкой земли $\mathbf{m}_{i}^{\mathrm{R}}$. Расчет по схемам a, b, b проводился для направлении поля вдоль тригональной оси В || с. Схемы г, д использовались для случая ориентации

Соединение	$\rm NdFe_3(BO_3)_4$	${\rm Nd}_{0.85}{\rm Dy}_{0.15}{\rm Fe}_3({\rm BO}_3)_4$	${\rm Nd}_{0.75}{\rm Dy}_{0.25}{\rm Fe}_3({\rm BO}_3)_4$	$\mathrm{DyFe}_3(\mathrm{BO}_3)_4$
$B_{dd1} = \lambda_1 M_0, \mathrm{T}_{\mathrm{J}}$	58	54	54	53
$\lambda_1,{ m T}\pi/\mu_B$	-3.87	-3.6	-3.6	-3.53
$B_{dd2} = \lambda_2 M_0, \mathrm{T}_{\mathrm{J}}$	27	30	28.5	28
$\lambda_2,{ m Tn}/\mu_B$	-1.8	-2	-1.9	-1.87
$B_{fd} = \lambda_{fd}^{\mathrm{R}} M_0, \mathrm{T}$ л	7.1	11.5 (Nd)	11.5 (Nd)	3.3
		2 (Dy)	2.3 (Dy)	
$\lambda^{\rm R}_{\rm e}$, $T_{\rm T}/\mu_{\rm R}$	-0.47	-0.77 (Nd)	$-0.77 \;({ m Nd})$	-0.22
$\wedge_{fd}, \ \mathbf{I}_{JI}/\mu_B$		-0.13 (Dy)	-0.15 (Dy)	0.22
$\Delta_{fd} = \mu_B g \lambda_{fd} M_0,$ $_{\rm CM}^{-1}$	8.8 (ЛП)	$\left. \begin{array}{c} \sim 8 (\Pi {\rm O}) \\ \sim 13 (\Pi {\rm I}) \end{array} \right\} {\rm Nd}$	$\left. \begin{array}{c} \sim 8.2 (\mathrm{JO}) \\ \sim 11.6 (\mathrm{J\Pi}) \end{array} \right\} \mathrm{Nd}$	~ 19 (ЛО)
		$\left. \begin{array}{c} \sim 15.7 (\mathrm{JIO}) \\ \sim 0.8 (\mathrm{JII}) \end{array} \right\} \mathrm{Dy}$	$\left. \begin{array}{c} \sim 17.8 ({\rm JIO}) \\ \sim 0.9 ({\rm JII}) \end{array} \right\} {\rm Dy}$	
Θ, Κ	-130	-132	-135	-180

Таблица 2. Параметры исследованных ферроборатов $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25), а также $NdFe_3(BO_3)_4$ и $DyFe_3(BO_3)_4$ из работ [9, 10]

Примечание. B_{dd1} (внутрицепочечное Fe-Fe), B_{dd2} (межцепочечное Fe-Fe), B_{fd} — низкотемпературные значения обменных полей, соответствующих молекулярным константам λ_1 , λ_2 , $\lambda_{fd}^{\rm R}$; Δ_{fd} — низкотемпературное расщепление основного состояния редкоземельного иона вследствие f-d-взаимодействия в легкоосном (ЛО) и легкоплоскостном (ЛП) состояниях; Θ — парамагнитная температура Нееля для Fe-подсистемы; $M_0 = |M_i(T = 0, B = 0)| = 15\mu_B$ — магнитный момент железа в расчете на одну формульную единицу.

внешнего поля в базисной плоскости $\mathbf{B} \perp \mathbf{c}$. Показаны направления результирующих магнитных моментов R-подсистемы $\mathbf{m}_1 = (1-x)\mathbf{m}_1^{\mathrm{Nd}} + x\mathbf{m}_1^{\mathrm{Dy}}$ и $\mathbf{m}_2 = (1-x)\mathbf{m}_2^{\mathrm{Nd}} + x\mathbf{m}_2^{\mathrm{Dy}}$, а также их проекции (\mathbf{m}_{ic} и \mathbf{m}_{ia}) вдоль направления поля.

Из представленных 2на рис. для $Nd_{0.85}Dy_{0.15}Fe_3(BO_3)_4$ 3 И на рис. для $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ экспериментальных кривых намагничивания $M_c(B)$ видно, что пр
и $T=2~{\rm K}$ имеет место небольшой скачок на кривой $M_c(B)$ в поле $B \approx 1.1$ Тл (x = 0.15) и в поле $B \approx 1.46$ Тл (x = 0.25), а затем следует более выраженный второй скачок намагниченности при $B \approx 1.26$ Тл (x = 0.15) и $B \approx 1.66$ Тл (x = 0.25). Подобный ступенчатый вид возрастания с полем кривых $M_c(B)$ обнаружен также и для других температур, причем с возрастанием температуры первый скачок становится практически невидимым при $T \approx 10 \text{ K}$ (x = 0.15) и $T \approx 16$ К (x = 0.25), а второй скачок различим до $T \approx 13$ К (x = 0.15) и $T \approx 23$ К (x = 0.25). Кривые $M_c(B)$ для $T \ge 14$ К (x = 0.15)и $T\,\geq\,24$ К $(x\,=\,0.25)$ монотонно возрастают. Отметим, что видимая небольшая аномалия в малом поле $B \approx 0.9$ Тл для x = 0.15 отсутствует в малых полях на кривых $M_c(B)$ для x = 0.25.

Анализ полученных экспериментальных данных, результаты работ [4, 5, 7] и выполненные нами расчеты показывают, что в $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) при низких температурах и B = 0 магнитные моменты Nd_{1-x} -, Dy_x - и Fe-подсистем имеют ориентацию вдоль тригональной оси c (коллинеарная фаза, схема a на рис. 1). Наблюдаемый на рис. 2, 3 резкий скачок намагниченности на кривых $M_c(B)$ обусловлен спин-флоп-переходом в железной подсистеме от исходной коллинеарной фазы (схема a на рис. 1) во флоп-фазу (схема δ на рис. 1) и сопровождается переориентацией магнитных моментов обеих подрешеток ионов Nd^{3+} и Dy^{3+} вдоль направления поля **В** || **с**.

Проведенные обширные расчеты магнитных фаз, которые могут быть реализованы в $Nd_{1-x}Dy_{x}Fe_{3}(BO_{3})_{4}$ (x = 0.15, 0.25) при разных ориентациях магнитных моментов железной, неодимовой и диспрозиевой подсистем, позволили

Рис. 1. Схемы ориентаций магнитных моментов железа $\mathbf{M}_i^{\mathsf{Fe}}$ и редкой земли $\mathbf{m}_i^{\mathsf{R}}$, использованные при расчете магнитных характеристик $\mathrm{Nd}_{1-x}\mathrm{Dy}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ ($x=0.15,\ 0.25$) для разных температурных диапазонов и направлений внешнего магнитного поля; \mathbf{m}_{ic} и \mathbf{m}_{ia} — проекции магнитных моментов R-подсистемы вдоль направления поля. Схемы a, b, b -при $\mathbf{B} \parallel \mathbf{c}$ (плоскость ab перпендикулярна плоскости рисунка). Схемы плоскости рисунка

сделать предположение, что наблюдаемый на рис. 2, 3 двухступенчатый вид скачка намагниченности, возможно, обусловлен наличием промежуточного состояния между коллинеарной и флоп-фазами. Первый небольшой скачок на кривых $M_c(B)$ может быть связан с отклонением магнитных моментов железа от оси *c* на угол порядка 30° и реализацией слабонеколлинеарной антиферромагнитной

Рис.2. Кривые намагничивания $Nd_{0.85}Dy_{0.15}Fe_3(BO_3)_4$ для В || с при указанных температурах. Точки — экспериментальные данные, линии — расчет. Вставка на рис. a — рассчитанные и экспериментальные кривые намагничивания для разных температур в полях до 1.5 Тл. Вставка на рис. δ — полевая зависимость энергий $Nd_{0.85}Dy_{0.15}Fe_3(BO_3)_4$ в легкоосном (кривая 1), промежуточном (кривая 2) и легкоплоскостном (кривая 3) состояниях при T = 2 К и В || с

фазы (схема є на рис. 1). Второй, более ярко выраженный, скачок обусловлен переориентацией магнитных моментов Fe-подсистемы из промежуточного состояния (схема є на рис. 1) во флоп-фазу (схема є на рис. 1) и сопровождается переориентацией вдоль направления поля **B** || **с** магнитных моментов обеих подрешеток ионов Nd^{3+} и Dy^{3+} .

Причиной реализации возможного промежуточного состояния со слабонеколлинеарной антиферромагнитной структурой (схема в на рис. 1) является конкуренция вкладов от железной и редкоземельной подсистем в полную магнитную анизо-

Рис. 3. Кривые намагничивания $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ для В || с при указанных температурах. Значки — экспериментальные данные, линии — расчет. На вставках — рассчитанные и экспериментальные кривые намагничивания для разных температур в полях до 1.9 Гл (вставка на рис. *a*) и для $T > T_N$ (вставка на рис. *б*)

тропию $Nd_{1-x}Dy_xFe_3(BO_3)_4$. Магнитная анизотропия железной и неодимовой подсистем стабилизирует легкоплоскостную магнитную структуру, а вклад в полную анизотропию от диспрозиевой подсистемы стабилизирует легкоосную структуру. В результате, при определенных значениях температуры и поля, магнитные моменты железа могут быть ориентированы под углом к оси *c*, величина которого, как показывают расчеты, разная для соединений с x = 0.15 и x = 0.25. Отметим, что ранее в работе [23] при исследовании также проявляющего спин-переориентационный переход GdFe₃(BO₃)₄ был сделан вывод об отклонении магнитных моментов железа от оси *c* в легкоосной фазе на большие величины углов, меняющихся при разных темпераЖЭТФ, том 141, вып. 2, 2012

турах и значениях магнитного поля (см. рис. 6 в работе [23]).

Расчет по схеме *в* на рис. 1 позволяет также объяснить наличие на экспериментальных кривых $M_c(B)$ Nd_{0.85}Dy_{0.15}Fe₃(BO₃)₄ при T = 2, 4 K и третьей небольшой аномалии в поле $B \approx 0.9$ Tл, предположив реализацию в данном поле слабонеколлинеарной антиферромагнитной структуры со значительно меньшим значением угла отклонения магнитных моментов железа от оси *c*, чем при $B \approx 1.1$ Tл. Отсутствие низкополевой третьей аномалии на кривых $M_c(B)$ для x = 0.25, по-видимому, связано с возросшим вкладом от Dy-подсистемы, стабилизующим начальное состояние до больших полей.

На вставке к рис. 26 показана полевая зависимость энергий $Nd_{0.85}Dy_{0.15}Fe_3(BO_3)_4$ при T = 2 K в легкоосном состоянии (кривая 1), промежуточном состоянии, для которого магнитные моменты Fe-подсистемы отклонены от оси c (кривая 2), и легкоплоскостном состоянии (кривая 3). Расчеты показывают, что для B = 0 и в полях до 1.1 Тл наиболее выгодным состоянием магнитной подсистемы Nd_{0.85}Dy_{0.15}Fe₃(BO₃)₄ является легкоосное состояние (кривая 1, схема а на рис. 1). Затем при $B_{SF1} \approx 1.1$ Тл более выгодным становится промежуточное состояние (кривая 2, схема в на рис. 1) и слабонеколлинеарная антиферромагнитная структура дает вклад в первый скачок на $M_c(B)$. При $B_{SF2} \approx 1.26$ Тл наступает флоп-фаза (кривая 3, схема б на рис. 1), в которой магнитные моменты неодимовой $\mathbf{m}_1^{\mathrm{Nd}}$ и диспрозиевой $\mathbf{m}_1^{\mathrm{Dy}}$ подсистем переориентируются вдоль поля, что дает наиболее заметный на кривой $M_c(B)$ вклад во второй скачок намагниченности. Во флоп-фазе магнитные моменты железных подрешеток $\mathbf{M}_1^{\mathrm{Fe}}$ и $\mathbf{M}_2^{\mathrm{Fe}}$ сгибаются к направлению поля **В** || **с**, выходя из плоскости *ab*.

Из вставок на рис. 2а и рис. За хорошо видно, что значение поля спин-флоп-перехода B_{SF} падает с ростом температуры, т.е. с ростом температуры исходная коллинеарная фаза оказывается менее устойчивой, несмотря на возрастающую параллельную восприимчивость Fe-подсистемы. Данная зависимость $B_{SF}(T)$ отличается от имеющихся в $RFe_3(BO_3)_4$ с R = Pr [17], Nd [9], Tb [14], Dy [10], в которых поле спин-флоп-перехода с ростом температуры росло, как это чаще всего и бывает для одноосных антиферромагнетиков. Подобное поведение зависимости $B_{SF}(T)$ было обнаружено для HoFe₃(BO₃)₄ [24, 25, 20] и обусловлено возрастающей близостью температур, при которых измерены кривые $M_c(B)$, к температуре спонтанного спин-переориентационного перехода $T_{SR} \approx 12.5 \text{ K}$

(для x = 0.15) и $T_{SR} \approx 24$ К (для x = 0.25). При увеличении температуры происходит уменьшение суммарной эффективной константы анизотропии соединения от железной и редкоземельной подсистем.

расчетах поля спин-флоп-перехода для В каждой температуры определялись из равенства термодинамических потенциалов соответствующих магнитных фаз. Отметим, что кривые намагничивания $M_c(B)$ на рис. 2, 3 рассчитаны для разных значений параметра внутрицепочечного обменного Fe-Fe-взаимодействия λ_1 в коллинеарной и флоп-фазах. Таким образом, ситуация в $Nd_{1-x}Dy_{x}Fe_{3}(BO_{3})_{4}$ (x = 0.15, 0.25) похожа на ту, с которой имели дело в случае TbFe₃(BO₃)₄ [13–15] и DyFe₃(BO₃)₄ [10]. В TbFe₃(BO₃)₄ для адекватного описания фазовой В-Т-диаграммы было предположено небольшое (около 1%) различие в величинах обменного параметра λ_1 в коллинеарной и флоп-фазах, которое могло быть следствием магнитоупругих эффектов, сопровождающих этот индуцированный магнитным полем фазовый переход первого рода [13–15]. Дальнейшие расчеты магнитоупругих эффектов в редкоземельных ферроборатах [17,26,27] показали наличие весьма существенных скачков мультипольных моментов изинговского иона Tb³⁺ в структуре ферробората при спин-флоп-переходе, которые могут приводить к значительным скачкам магнитострикции при этом переходе и соответственно изменению величины обменного параметра. Ситуация с DyFe₃(BO₃)₄ [10] отличается от ситуации с $TbFe_3(BO_3)_4$ тем, что скачки мультипольных моментов [16] анизотропного, но не изинговского, иона Dy³⁺ при спин-флоп-переходе меньше, чем у иона Tb³⁺, и поэтому изменение обменного параметра оказалось меньшим (около 0.1%) [10]. Для Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ в работе [4] были обнаружены резкие скачки магнитострикции при спин-флоп-переходе для В || с. Расчеты показали, что для $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) различие в величинах обменного параметра λ_1 в коллинеарной и флоп-фазах составило около 1.2 % и позволило получить хорошее согласие экспериментальной и рассчитанной фазовых В-Т-диаграмм.

Отметим отличающийся характер аномалий при спин-флоп-переходе на представленных в данной работе экспериментальных кривых намагничивания $M_c(B)$ Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ и приведенных в работе [4], на которых видна только одна аномалия. Кристаллы Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄, на которых проведены измерения в данной работе и в работах [4, 5], были из одного ростового эксперимента. Поскольку $m_i^{\rm R}, M_{col}, M_c^{\rm Fe}, m_c^{\rm R}, M_{flop}, \mu_B/$ форм. ед.

Рис. 4. Рассчитанные полевые зависимости компонент вдоль оси c магнитных моментов R- и Fe-подсистем Nd_{0.85} Dy_{0.15} Fe₃ (BO₃)₄ в коллинеарной и флоп-фазах при T = 2 К для В \parallel с. Коллинеарная фаза ($B < B_{SF}$): \mathbf{m}_1^{R} (магнитный момент против поля) и \mathbf{m}_2^{R} (по полю), M_{col} — результирующий магнитный момент в коллинеарной фазе. Флоп-фаза ($B > B_{SF}$): проекции вдоль поля редкоземельной \mathbf{m}_c^{R} и железной M_c^{Fe} подсистем, M_{flop} — результирующий магнитный момент во флоп-фазе

в работе [4] наблюдался широкий гистерезис на кривых $M_c(B)$ при спин-флоп-переходе, одной из возможных причин различия в экспериментальных результатах может быть существенная величина магнитокалорического эффекта и релаксационных процессов, которые имеют место в магнитной системе, перемагничиваемой импульсным полем с большой скоростью ввода и вывода поля. Появление в кристаллах $Nd_{1-x}Dy_{x}Fe_{3}(BO_{3})_{4}$ (x = 0.15, 0.25) магнитной неоднородности, обусловленной образованием в процессе роста областей с преобладанием ионов Dy³⁺ или Nd³⁺, по технологическим причинам маловероятно. Магнитные измерения, выполненные на образцах одного состава, но из разных ростовых экспериментов, дают совпадающие результаты. Концентрационная неоднородность, а именно различие в содержании ионов Nd³⁺ и Dy³⁺ в составе пирамид роста различных граней кристалла, не измерялась. В изготовленных образцах с большой вероятностью содержатся области, принадлежащие разным пирамидам роста.

На рис. 4 показаны полевые зависимости компонент магнитных моментов редкоземельной и железной подсистем $\mathrm{Nd}_{0.85}\mathrm{Dy}_{0.15}\mathrm{Fe}_3(\mathrm{BO}_3)_4$ вдоль оси cпри T=2 К для $\mathbf{B} \parallel \mathbf{c}$. Приведены следующие кривые: для подрешетки $\mathbf{m}_1^{\mathrm{R}}$ (магнитный момент против поля) и подрешетки $\mathbf{m}_2^{\mathrm{R}}$ (по полю) показан результирующий магнитный момент в коллинеарной фазе $M_{col}=m_2^{\mathrm{R}}-m_1^{\mathrm{R}}$ (при T=2 К и $\mathbf{B} \parallel \mathbf{c}$ подсистема железа вклада в намагниченность не дает) и результирующий магнитный момент во флоп-фазе $M_{flop}=M_c^{\mathrm{Fe}}+(1-x)m_c^{\mathrm{Nd}}+xm_c^{\mathrm{Dy}}$.

На рис. 4 хорошо видно различие значений M_{col} и M_{flop} в поле B_{SF} , которое в основном обусловлено вкладом R-подсистемы (наибольший вклад от $Dy_{0.15}$) в величину скачка на кривой $M_c(B)$ в данном поле. Для B = 0 магнитный момент неодином поле. Для D = 0 магнитный момент неодимовой подсистемы $m_2^{Nd_{0.85}} = |m_1^{Nd_{0.85}}| = 0.79\mu_B$ $(m_2^{Nd_{0.75}} = |m_1^{Nd_{0.75}}| = 0.7\mu_B)$, а диспрозиевой подсистемы $m_2^{Dy_{0.15}} = |m_1^{Dy_{0.15}}| = 1.45\mu_B$ $(m_2^{Dy_{0.25}} = |m_1^{Dy_{0.25}}| = 2.25\mu_B)$. В поле **В** || **с** и $B = m_1^{Dy_{0.25}}$ = 2 Тл в неодимовой подсистеме $m_a^{\text{Nd}_{0.85}} = 1.24 \mu_B$ $(m_a^{\text{Nd}_{0.75}} = 1.1 \mu_B)$ и $m_c^{\text{Nd}_{0.85}} = 0.091 \mu_B$ $(m_c^{\text{Nd}_{0.75}} =$ $=~0.036 \mu_B),$ в диспрозиевой подсистеме $m_a^{{\rm Dy}_{0.15}}$ = $= 0.19 \mu_B \ (m_a^{
m Dy_{0.25}} = 0.34 \mu_B)$ и $m_c^{
m Dy_{0.15}} = 1.44 \mu_B$ $(m_c^{\text{Dy}_{0.25}} = 2.23 \mu_B)$. Таким образом, после индуцированного полем В || с спин-флоп-перехода магнитные моменты неодимовой подсистемы из-за значительного f-d-обмена ($\lambda_{fd}^{
m Nd} = -0.77~{
m Tn}/\mu_B$) практически полностью лежат в плоскости $ab~(m_a^{{
m Nd}_{1-x}}>$ > $m_c^{\mathrm{Nd}_{1-x}}$), что и обусловливает небольшой вклад в намагниченность соединения от двух неодимовых подрешеток $m_c^{\mathrm{Nd}_{1-x}}$, в частности, в скачок намагниченности на теоретической кривой $M_c(B)$ при B_{SF} .

При В || с с ростом поля эффективное поле, действующее на редкоземельную подрешетку с магнитным моментом $\mathbf{m}_{1}^{\mathrm{R}}$, направленным противоположно внешнему полю, уменьшается и этот магнитный момент стремится уменьшиться (см. рис. 4). Именно этот процесс и определяет вид кривых $M_c(B)$ при T = 2 К и T = 4 К до спин-флоп-перехода, поскольку Fe-подсистема при такой низкой температуре в процессе намагничивания практически не участвует из-за весьма малой параллельной восприимчивости ($T_N \approx 31$ K). Расчеты показывают, что этот процесс связан с уменьшением расщепления между нижними энергетическими уровнями ионов Nd^{3+} и Dy^{3+} , определяемого параметром λ_{fd}^{R} , и поэтому этот участок кривой намагничивания чрезвычайно чувствителен к $\lambda_{fd}^{\mathrm{R}}$. Из рис. 4 понятно, что с возрастанием поля переориентация магнитных моментов железных подрешеток от оси в плос-

Рис.5. Кривые намагничивания $Nd_{0.85}Dy_{0.15}Fe_3(BO_3)_4$ для В \perp с при указанных температурах. Значки — экспериментальные данные, линии — расчет. На рис. a показаны рассичитанные вклады в полную намагниченность при T = 2 K от $Nd_{0.85}$, $Dy_{0.15}$ и Fe при В \perp с

кость происходит раньше, чем магнитный момент $\mathbf{m}_{1}^{\mathrm{Dy}_{0.85}}$ (тонкая штриховая кривая) и $\mathbf{m}_{1}^{\mathrm{Nd}_{0.15}}$ (тонкая штрихпунктирная кривая) обратятся в нуль. Это дает оценку для величины поля, действующего на R-подсистему со стороны железной (при x = 0.15): $B_{fd}^{\mathrm{Nd}} \gg B_{SF}(T = 2 \text{ K}) \approx 1.1 \text{ Тл}$ и $B_{fd}^{\mathrm{Dy}} > B_{SF}(T = 2 \text{ K}) \approx 1.26 \text{ Тл}$. Аналогичные рассмотренным на рис. 4 процессы протекают и для состава $\mathrm{Nd}_{0.75}\mathrm{Dy}_{0.25}\mathrm{Fe}_3(\mathrm{BO}_3)_4$.

Для больших полей в базисной плоскости ферробораты $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) находятся в угловой фазе и ведут себя как однодоменные, при этом магнитные моменты железа сгибаются к полю $\mathbf{B} \perp \mathbf{c}$, проявляя перпендикуляр-

Рис. 6. Кривые намагничивания $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ для В \perp с при указанных температурах. Значки — экспериментальные данные, линии — расчет. На рис. a показаны рассиитанные вклады в полную намагниченность при T = 2 К от $Nd_{0.75}$, $Dy_{0.25}$ и Fe при В \perp с

ную восприимчивость, которая для типичного антиферромагнетика от температуры не зависит, а у R-подсистемы растут компоненты магнитного момента вдоль направления поля (см. схему ∂ на рис. 1). На рис. 5, 6 показаны экспериментальные $M_{\perp c}(B)$ и рассчитанные $M_a(B)$ кривые намагничивания в полях до 9 Тл. Видно, что предложенная теоретическая модель позволяет хорошо описать поведение кривых намагничивания $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) в базисной плоскости и их температурную зависимость, аналогичную экспериментальной.

Рассмотрим ситуацию, возникающую с намагничиванием $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) при **В** \perp **с** в небольших полях B < 1 Тл (для сравне-

ния с экспериментальными кривыми $M_{\perp c}(B)$ выбрано направление В || а). В соответствии с предложенной теоретической моделью и анализом экспериментальных данных в поле B = 0 для $T < T_{SR}$ ферробораты $Nd_{1-x}Dy_{x}Fe_{3}(BO_{3})_{4}$ (x = 0.15, 0.25) находятся в легкоосном состоянии, магнитные моменты железной $\mathbf{M}_{i}^{\mathrm{Fe}}$ и редкоземельной $\mathbf{m}_{i}^{\mathrm{R}}$ подсистем направлены вдоль оси с, т. е. для направлений В \perp с соединения изначально находятся в угловой фазе (см. схему г на рис. 1). Таким образом, существует возможность реализации индуцированного полем В \perp с спин-переориентационного перехода, после которого магнитные моменты Fe- и R-подсистем будут находиться уже в плоскости *ab*. В данной фазе происходят поворот магнитных моментов Fe-подсистемы к направлению поля и увеличение проекции магнитного момента $\mathbf{m}_{i}^{\mathrm{R}}$ на направление поля (схема д на рис. 1). Тогда возможная аномалия на кривых $M_{\perp c}(B)$ при индуцированном полем $\mathbf{B} \perp \mathbf{c}$ спин-переориентационном переходе будет обусловлена разницей между угловой фазой 1 (схема г на рис. 1) и угловой фазой 2 (схема ∂ на рис. 1). На рис. 5, 6 видно, что экспериментальные кривые $M_{\perp c}(B)$ практически не обнаруживают видимых аномалий, т. е. в данном случае можно предположить отсутствие индуцированного полем $\mathbf{B} \perp \mathbf{c}$ спин-переориентационного перехода или его невыраженную реализацию, при которой проекции магнитных моментов вдоль направления поля не меняются. Расчеты кривых $M_{\perp c}(B)$ при реализации индуцированного спин-переориентационного перехода практически не показывают наличие аномалий в критическом поле перехода. Отметим, что подобная слабая выраженность аномалий при индуцированном полем $\mathbf{B} \perp \mathbf{c}$ спин-переориентационном переходе наблюдалась на рассчитанных кривых $M_a(B)$ и более заметны аномалии на экспериментальных кривых $M_a(B)$ Но $Fe_3(BO_3)_4$ [20, 24, 25]. Представленные на рис. 5, 6 теоретические кривые рассчитаны по схеме ϵ (см. рис. 1) при $T < T_{SR}$ и по схеме ∂ при $T > T_{SR}$ $(T_{SR} \approx 12.5 \text{ K} (x = 0.15) \text{ и} T_{SR} \approx 24 \text{ K} (x = 0.15)).$ Также на рис. 5а, 6а показаны составляющие вклада в намагниченность при T = 2 K, из сравнения которых понятна степень ответственности каждого вклада за результирующий вид кривой $M_{\perp c}(B)$.

В начальную восприимчивость $Nd_{1-x}Dy_xFe_3(BO_3)_4$ дают вклад как упорядоченная при $T < T_N$ железная подсистема, так и редкоземельные (неодимовая и диспрозиевая), подмагниченные f-d-взаимодействием. Рассчитывая эти вклады самосогласованным образом так, как это описано в разд. 3, получаем температурные за-

Рис.7. Температурные зависимости начальной магнитной восприим- $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ чивости (a) И Nd_{0.85}Dy_{0.15}Fe₃(BO₃)₄ (б) для направлений магнитного поля $\mathbf{B} \parallel \mathbf{c}$ и $\mathbf{B} \perp \mathbf{c}$ при B = 0.01 Тл. Значки — экспериментальные данные, линии расчет. На вставках — низкотемпературная область кривых $\chi_{c,\perp c}(T)$ при $T < T_N$. Штриховые кривые — дальнейший рассчитанный ход кривых $\chi_c(T)$ в соответствующих фазах

висимости начальных восприимчивостей $\chi_{c,\perp c}(T)$, изображенные на рис. 7 для Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ (a) и Nd_{0.85}Dy_{0.15}Fe₃(BO₃)₄ (б). Там же точками приведены экспериментальные кривые $\chi_{c,\perp c}(T)$. Видно, что в высокотемпературной области от $T_N \approx 31$ K до $T_N = 300$ K рассчитанные кривые хорошо описывают эксперимент и для x = 0.25(a), и для x = 0.15 (б). Расчеты показывают, что анизотропия кривых $\chi_{c,\perp c}(T)$ в парамагнитной области температур обусловлена в основном вкладом от диспрозиевой части редкоземельной подсистемы. Наблюдаемое значительное возрастание кривых $\chi_{c,\perp c}(T)$ при $T < T_N$ связано с вкладом R-подсистемы. Подобное возрастание кривых $\chi_{c,\perp c}(T)$ при $T < T_N$ наблюдалось также у ErFe₃(BO₃) [18, 19] и HoFe₃(BO₃)₄ [20, 24, 25].

На рис. 7 видно, что аномалии на экспериментальных кривых $\chi_c(T)$, соответствующие антиферромагнитному упорядочению в Fe-подсистеме, при $T_N \approx 31$ К практически не видны. Затем при уменьшении температуры экспериментальные кривые $\chi_c(T)$ продолжают возрастать, что характерно для легкоплоскостного состояния, а при $T \approx 24$ К (для x = 0.25 (*a*)) и $T \approx 12.5$ К (для x = 0.15 (*б*)) происходит резкий спад кривых $\chi_c(T)$, которое можно объяснить, предположив наличие спин-переориентационного перехода из легкоплоскостного в легкоосное состояние, что подтверждается выполненными расчетами (сплошные линии на рис. 7).

На вставках к рис. 7а, б приведены низкотемпературные области (для $T < T_N \approx 31$ K) экспериментальных и рассчитанных зависимостей $\chi_{c,\perp c}(T)$. Хорошо видны сглаженные ступенчатые аномалии на экспериментальной кривой $\chi_c(T)$ для $\mathrm{Nd}_{0.75}\mathrm{Dy}_{0.25}\mathrm{Fe}_3(\mathrm{BO}_3)_4$ (a) при T_1 pprox 16 K и $T_2 \approx 24$ К. В случае $Nd_{0.85}Dy_{0.15}Fe_3(BO_3)_4$ (вставка к рис. 76) наблюдается относительно плавное без заметных ступенек убывание экспериментальной кривой $\chi_c(T)$ при $T < T \approx 12.5$ К. Отметим, что для $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ подобные показанным на рис. 7а ступенчатые аномалии, слабо выраженные для 1 кЭ и хорошо наблюдаемые для 10 и 13 кЭ, видны и на кривых $\chi_c(T)$ из работы [4] (см. рис. 16 в работе [4]). Таким образом, в отличие от кривых намагничивания $M_c(B)$, характеры аномалий на кривых $\chi_c(T)$ Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ в данной работе и в работе [4] согласуются.

Проведенные расчеты и анализ экспериментальных данных позволили сделать предположение, что наблюдаемые в случае $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ ступенчатые аномалии на кривых $\chi_c(T)$ обусловлены сменой при повышении температуры легкоосного состояния на легкоплоскостное не единым скачком при T_{SR} , как в случае HoFe₃(BO₃)₄ [20, 24, 25], а с разделенной по температуре реализацией при $T_{SR1} \approx 16$ К промежуточного состояния с отклоненными магнитными моментами железной и редкоземельной подсистем от оси с и затем легкоплоскостного состояния при $T_{SR2} \approx 23.3$ К. Что касается низкотемпературной области экспериментальных кривых $Nd_{0.85}Dy_{0.15}Fe_3(BO_3)_4$ (вставка к рис. 76), на

которой не видно выраженных ступенек, то расче ты и в данном случае демонстрируют лучшее совпа дение с экспериментом в предположении, что пере ориентация магнитных моментов обеих подрешеток ионов Nd³⁺ и Dy³⁺ ($T_{SR2} \approx 11.8$ K) происходит после реализации промежуточной угловой фазы при $T_{SR1} \approx 10$ К. Показанные на вставках к рис. 7a, 6рассчитанные штриховые кривые $\chi_c(T)$ демонстрируют дальнейший ход кривых $\chi_c(T)$ в легкоосном, промежуточном и легкоплоскостном состояниях в случае, если бы в Nd_{1-x}Dy_xFe₃(BO₃)₄ при рассчитанных $T_{SR1} \approx 16$ К, $T_{SR2} \approx 24$ К (для x = 0.25 (*a*)) и $T_{SR1} \approx 10$ К, $T_{SR2} \approx 11.8$ К (для x = 0.15 (*б*)) не произошла бы переориентация магнитных моментов редкоземельной и железной подсистем.

При направлении магнитного поля в базисной плоскости температурные зависимости начальной магнитной восприимчивости $\chi_{\perp c}(T)$ $\mathrm{Nd}_{0.75}\mathrm{Dy}_{0.25}\mathrm{Fe}_3(\mathrm{BO}_3)_4$ (*a*) и $\mathrm{Nd}_{0.85}\mathrm{Dy}_{0.15}\mathrm{Fe}_3(\mathrm{BO}_3)_4$ (*b*) демонстрируют аномалии вблизи 24 K (*a*) и 11.8 K (*b*), связанные со спин-переориентационным переходом, слабо выраженные и на экспериментальных, и на рассчитанных кривых (рис. 7*a*,*b*). Переориентация магнитных моментов всех подсистем (из состояния *г* в состояние *d*, см. схемы на рис. 1) происходит практически с полным сохранением их проекций вдоль поля $\mathbf{B} \perp \mathbf{c}$.

Отметим, что при расчете кривых $\chi_{c,\perp c}(T)$ в упорядоченной области температур использовались параметры соединений, определенные при анали зе полевых зависимостей кривых намагничивания $M_{c,\perp c}(B)$, подгоночных параметров не было.

Экспериментальные данные для теплоемкости NdFe₃(BO₃)₄ (кривая 1 построена по данным работы [28]), $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ (кривая 2) и $\mathrm{DyFe_3(BO_3)_4}$ (кривая 3 построена по данным работы [29]) при B = 0 представлены на рис. 8 в координатах C/T(T). Хорошо видимый пик на кривой 1 при $T \approx 4.1$ K, менее выраженные пики вблизи T = 3.8 К и T = 13.4 К на кривой 2 и широкий пик при $T~pprox~10.6~{
m K}$ на кривой 3 являются аномалиями Шоттки. На кривой 2 различимы также небольшие острые пики при T = 22.6 К и T = 24.2 К, которые, по-видимому, связаны со спонтанным спин-переориентационным переходом Nd_{0.75}Dy_{0.25}Fe₃(BO₃)₄ из легкоосного в легкоплоскостное состояние. Отметим, что аномалия на кривой C/T(T), обусловленная спонтанным спин-переориентационным переходом в НоFe₃(BO₃)₄ [20, 25], выражена значительно сильнее. Также на рис. 8 приведен рассчитанный вклад редкоземельной подсистемы в теплоемкость

Рис. 8. Теплоемкость $MdFe_3(BO_3)_4$ (1), $Md_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ (2) и $DyFe_3(BO_3)_4$ (3) для B = 0. Значки — экспериментальные данные (кривые 1 и 3 построены по данным работ [28, 29]), линии — рассчитанный вклад R-подсистемы в теплоемкость: $MdFe_3(BO_3)_4$ (штриховая кривая 1'), $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ (сплошная кривая 2') и $DyFe_3(BO_3)_4$ (штрихпунктирная кривая 3'). На вставке — низкотемпературная область экспериментальной и рассчитанных (показаны составляющие R-вклада) кривых $C/T(T) Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$

 $NdFe_3(BO_3)_4$ (кривая 1', рассчитанная с параметрами из работы [9]), $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ (кривая 2') и $DyFe_3(BO_3)_4$ (кривая 3', рассчитанная с параметрами из работы [10]). Вклад R-подсистемы в теплоемкость $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ (кривая 2') до T = 22.6 К рассчитан для легкоосного состояния, затем до T = 24.2 К в промежуточ-

ном состоянии, а для $T > T_{SR} \approx 24.2$ К — в легкоплоскостном состоянии. На вставке к рис. 8 показана низкотемпературная область экспериментальной и рассчитанных кривых C/T(T) для $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$. Приведены рассчитанный вклад R-подсистемы (кривая 2') и составляющие данного вклада от неодимовой и диспрозиевой подсистем.

На рис. 8 видно, что расчет вклада R-подсистемы в теплоемкость соединений $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0, 0.25, 1) для B = 0 воспроизводит результаты эксперимента. Низкотемпературная аномалия Шоттки для $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ (кривые 2, 2') обусловлена вкладом от неодимовой подсистемы и связана с перераспределением населенностей уровней основного дублета иона Nd^{3+} , расщепленного f-d-взаимодействием (см. вставку на рис. 8). Аномалия Шоттки на экспериментальной кривой 2 вблизи T = 13.4 К обусловлена вкладом от диспрозиевой подсистемы, однако видно, что выраженность данной аномалии на суммарной расчетной кривой 2' ухудшается при учете вклада и от неодимовой части редкоземельной подсистемы.

Расчеты показывают, что если бы в $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ при понижении температуры не произошел бы спин-переориентационный переход, то для легкоплоскостного состояния аномалия Шоттки находилась бы вблизи T = 6.2 К. Также для $Nd_{0.75}Dy_{0.25}Fe_3(BO_3)_4$ расчеты предсказывают сдвиг аномалии Шоттки в поле **В** || **с** с увеличением поля в сторону больших температур.

5. ЗАКЛЮЧЕНИЕ

Проведено экспериментальное и теоретическое исследование магнитных свойств ферроборатов замещенных составов $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) с конкурирующими обменными Nd–Fe- и Dy–Fe-взаимодействиями и получено согласие теории и эксперимента для всей совокупности измеренных характеристик. Единый теоретический подход, основанный на модели кристаллического поля для редкоземельного иона и приближении молекулярного поля, позволил определить параметры ферроборатов $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15, 0.25) при сравнении результатов расчета с экспериментальными данными. Значения найденных параметров сравнимы по величине с параметрами чистых ферроборатов с R = Nd, Dy (см. табл. 2).

Проведенные расчеты показали, что обнаруженный для $Nd_{1-x}Dy_xFe_3(BO_3)_4$ (x = 0.15,

0.25) спонтанный спин-переориентационный переход является магнитным аналогом эффекта Яна-Теллера. Найденные параметры позволили описать экспериментальные кривые намагничивания $M_{c,\perp c}(B)$ для разных температур, а также экспериментальную зависимость $B_{SF}(T)$: критическое поле спин-флоп-перехода уменьшается с возрастанием температуры вследствие уменьшения суммарной эффективной константы анизотропии соединения. Для каждого состава описан обнаруженный при $T < T_{SR}$ спин-флоп-переход для $\mathbf{B} \parallel \mathbf{c}$ и предложен один из возможных вариантов объяснения ступенчатого характера связанных с ним аномалий на кривых $M_c(B)$.

Получено хорошее согласие экспериментальных и рассчитанных температурных зависимостей $\chi_{c,\perp c}(T)$ в парамагнитной области температур при $\Theta = -132$ К (x = 0.15), $\Theta = -135$ К (x = 0.25). Рассмотрение конкурирующих вкладов подсистем в полную анизотропию $\mathrm{Nd}_{1-x}\mathrm{Dy}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ показало возможность описания обнаруженных аномалий на кривых $\chi_{c,\perp c}(T)$ ниже температуры Нееля. Рассчитанный вклад R-подсистемы в теплоемкость $\mathrm{Nd}_{1-x}\mathrm{Dy}_x\mathrm{Fe}_3(\mathrm{BO}_3)_4$ (x = 0, 0.25, 1) для B = 0 воспроизводит результаты эксперимента и позволяет понять степень ответственности составляющих редкоземельного вклада за наблюдаемые аномалии Шоттки.

Благодарим А. П. Пятакова за полезные обсуждения и интерес к работе.

Работа выполнена при финансовой поддержке гранта Президента РФ (МК-497.2010.2).

ЛИТЕРАТУРА

- А. К. Звездин, С. С. Кротов, А. М. Кадомцева и др., Письма в ЖЭТФ 81, 335 (2005).
- А. К. Звездин, Г. П. Воробьев, А. М. Кадомцева и др., Письма в ЖЭТФ 83, 600 (2006).
- J. A. Campa, C. Cascales, E. Gutierrez-Puebla et al., Chem. Mater. 9, 237 (1997).
- Ю. Ф. Попов, А. М. Кадомцева, Г. П. Воробьев и др., Письма в ЖЭТФ 89, 405 (2009).
- I. A. Gudim, E. V. Eremin, and V. L. Temerov, J. Cryst. Growth 312, 2427 (2010).
- А. К. Звездин, А. М. Кадомцева, Ю. Ф. Попов и др., ЖЭТФ 136, 80 (2009).
- Г. А. Звягина, К. Р. Жеков, И. В. Билыч и др., ФНТ 36, 352 (2010).

- R. P. Chaudhury, F. Yen, B. Lorenz et al., Phys. Rev. B 80, 104424 (2009).
- Д. В. Волков, А. А. Демидов, Н. П. Колмакова, ЖЭТФ 131, 1030 (2007).
- Д. В. Волков, А. А. Демидов, Н. П. Колмакова, ЖЭТФ 133, 830 (2008).
- 11. Y. Hinatsu, Y. Doi, K. Ito et al., J. Sol. St. Chem. 172, 438 (2003).
- 12. C. Cascales, C. Zaldo, U. Caldino et al., J. Phys.: Condens. Matter 13, 8071 (2001).
- 13. Е. А. Попова, Д. В. Волков, А. Н. Васильев и др., Труды 34-го собещания по физике низких температур, т. 1, Изд. РГПУ, Ростов-на-Дону (2006), с. 78.
- 14. E. A. Popova, D. V. Volkov, A. N. Vasiliev et al., Phys. Rev. B 75, 224413 (2007).
- D. V. Volkov, E. A. Popova, N. P. Kolmakova et al., J. Magn. Magn. Mat. **316**, e717 (2007).
- 16. Д. В. Волков, А. А. Демидов, Труды 35-го совещания по физике низких температур НТ-35, Черноголовка (2009), с. 158.
- 17. A. A. Demidov, N. P. Kolmakova, D. V. Volkov et al., Physica B 404, 213 (2009).
- D. V. Volkov and A. A. Demidov, Abstracts of International conference on Functional Materials (ICFM-2009), Crimea, Ukraine (2009), p. 159.
- 19. Д. В. Волков, А. А. Демидов, Фазовые переходы, упорядоченные состояния и новые материалы 5, 1 (2010).
- 20. А. А. Демидов, Д. В. Волков, ФТТ 53, 926 (2011).
- 21. А. К. Звездин, В. М. Матвеев, А. А. Мухин, А. И. Попов, Редкоземельные ионы в магнитоупорядоченных кристаллах, Наука, Москва (1985), с. 103.
- G. A. Gehring and K. A. Gehring, Rep. Progr. Phys. 38, 1 (1975).
- 23. S. A. Kharlamova, S. G. Ovchinnikov, A. D. Balaev et al., *WЭ*T*Ф* 128, 1252 (2005).

- 24. C. Ritter, A. Vorotynov, A. Pankrats et al., J. Phys.: Condens. Matter 20, 365209 (2008).
- A. Pankrats, G. Petrakovskii, A. Kartashev et al., J. Phys.: Condens. Matter 21, 436001 (2009).
- 26. A. A. Demidov, N. P. Kolmakova, L. V. Takunov et al., Physica B 398, 78 (2007).
- **27**. Д. В. Волков, А. А. Демидов, Н. П. Колмакова и др., ФТТ **50**, 1613 (2008).
- 28. Е. А. Попова, Н. Тристан, Х. Хесс и др., ЖЭТФ 132, 121 (2007).
- **29**. E. A. Popova, N. Tristan, and A. N. Vasiliev, Eur. Phys. J. B **62**, 123 (2008).