
ÆÝÒÔ, 2012, òîì 141, âûï. 2, ñòð. 267�275  2012
INTERACTION OF MOVING BRANES WITH BACKGROUNDMASSLESS AND TACHYON FIELDS IN SUPERSTRING THEORYZ. Rezaei *, D. Kamani **Physis Department, Amirkabir University of Tehnology (Tehran Polytehni)15875-4413, Tehran, IranReeived May 22, 2011Using the boundary state formalism, we study a moving Dp-brane in a partially ompat spaetime in thepresene of bakground �elds: the Kalb�Ramond �eld B�� , a U(1) gauge �eld A�, and the tahyon �eld.The boundary state enables us to obtain the interation amplitude of two branes with the above bakground�elds. The branes are parallel or perpendiular to eah other. Beause of the presene of bakground �elds,ompati�ation of some spae�time diretions, motion of the branes, and the arbitrariness of the dimensionsof the branes, the system is rather general. Due to the tahyon �elds and veloities of the branes, the behaviorof the interation amplitude reveals obvious di�erenes from the onventional behavoir.1. INTRODUCTIONThe disovery of the D-branes, as an intrinsi partof string theory [1℄, gave rise to studies of the proper-ties and interations of the branes. One of the mostappliable methods for this purpose is the boundarystate formalism. A boundary state is a BRST-invariantstate that desribes the reation of losed string fromthe vauum.Among the ahievements in this formalism is its ex-tension to the superstring theory and the analysis ofthe ontribution of the onformal and super onformalghosts to boundary states [2℄. There are separate stud-ies that add bakground �elds suh as the Kalb�Ra-mond �eld B�� , a U(1) gauge �eld in a ompat spae-time [3℄, and the tahyon �eld [4�6℄ to boundary states.These bakground �elds give to the subjet a greatergenerality. Apart from the longitudinal �utuations ofthe brane (for instane, the U(1) gauge �eld and thetahyon �eld), transverse brane �utuations [7℄ shouldalso be onsidered. This allows interpreting it as a dy-namial objet. This an be performed by onsideringveloity for the brane [8; 9℄. These observations moti-vated us to take all bakground �elds and also om-pati�ation of some diretions of the spaetime intoaount to study moving branes in the general frame-work of superstring theory. This general set-up annot*E-mail: z.rezaei�aut.a.ir**E-mail: kamani�aut.a.ir

be found in the literature on the boundary state andbrane interation.Beause open strings are quantum exitations of abrane [10℄, the presene of the open string tahyon re-veals an instability of the brane. In the bosoni stringtheory, this is a natural property, while in the super-string theories, this ours in speial ases. For in-stane, there are Dp-branes with wrong dimensions inthe type-IIA and type-IIB superstring theories; thatis, there are Dp-branes with odd dimensions in thetype-IIA theory and even dimensions in the type-IIBtheory [11℄, whih are unstable. Atually, this insta-bility an be removed by the tahyon rolling towardits minimum potential [12℄. During this proess, thetahyon energy dissipates to the bulk modes and theunstable system reahes a stable state that onsists oflower-dimensional branes or just the losed string va-uum without any D-branes [10℄. In the literature, thetahyon �eld is usually onsidered in just one dimen-sion, and its e�et is studied on a spae-�lling brane.In this paper, we onsider a Dp-brane of an arbitrarydimension, and hene the tahyon �eld has omponentsalong all diretions of the brane worldvolume.We alulate the boundary state orresponding toa moving Dp-brane in the presene of the bakground�elds B�� , a U(1) gauge �eld, and a tahyon. We usethis boundary state to detet the interation betweentwo moving D-branes. There is no restrition on thebrane dimensions, and they an be parallel or per-267



Z. Rezaei, D. Kamani ÆÝÒÔ, òîì 141, âûï. 2, 2012pendiular to eah other. To keep the generality, welet some of the spaetime diretions be ompat. Weobserve that the presene of the tahyon prevents thelosed string from wrapping around the ompat dire-tions. Using the boundary state, we alulate the in-teration amplitude between two branes in the NS�NSand the R�R setors. Due to the presene of the veloi-ties and the bakground tahyon �elds, no anellationbetween these amplitudes ours. This is the ase evenfor similar and parallel Dp-branes with the same bak-ground �elds. We observe that the interation amp-litude vanishes after a long time (or, equivalently, forlarge distanes berween the branes). The origin of thise�et is the rolling of the bakground tahyon �eld andthe deay of the D-branes in this limit.Putting all this together allows us to study a sys-tem in the most general form to obtain onsiderableresults in spite of some mathematial di�ulties dueto onsidering longitudinal and transverse �utuationssimultaneously.2. THE BOUNDARY STATE ASSOCIATEDWITH A Dp-BRANETo obtain the boundary state orresponding to amoving brane in the presene of the antisymmetri �eldB�� in the bulk and the tahyon and U(1) gauge �eldson the boundary, we onsider the following sigma-mo-del ation for a losed string:S = � 14��0 Z� d2� �� �p�ggabG���aX��bX� + "abB���aX��bX��++ 12��0 Z�� d��A���X� + V iX0��X i ++ 12U��X�X�� ; (1)where the �rst integral is over the worldsheet of a losedstring exhanged by the branes, and the seond in-tegral is over the boundary of this worldsheet, whihan be at � = 0 or � = �0. The U(1) gauge �eld A�lives on the Dp-brane worldvolume and V i is the braneveloity omponent along X i diretion. The oordi-nates fX�g and fX ig are respetively direted alongand perpendiular to the Dp-brane worldvolume. Theterm 12U��X�X� with a onstant symmetri matrixU�� spei�es the tahyon pro�le. Aording to [13℄, thetahyon �eld appears in a square form in the ation toprodue a Gaussian integral. We take the tahyon �eld

to have omponents along the Dp-brane worldvolume.We onsider G�� to be a �at spaetime metri with thesignature ��� = diag(�1; 1; : : : ; 1)and the Kalb�Ramond �eld B�� to be onstant.Equating the variation of ation (1) with respetto X�(�; �) to zero gives the equations of motion andboundary equations for the emitted (absorbed) losedstring.2.1. Bosoni part of the boundary stateBoundary equations following from ation (1) at� = 0 are given by[�� (X0 � V iX i) + F0 ���X� �� U0 �X�℄jBx; � = 0i = 0;(��X �� + F �����X� � U ���X�)jBx; � = 0i = 0;(X i � V iX0 � yi)jBx; � = 0i = 0: (2)Here, X� are the spatial diretions of the brane world-volume (i. e., � 6= 0) andF�� = ��A� � ��A� �B��is the total �eld strength, whih ontains the B �eldas well as the U(1) gauge �eld. We note that we haveassumed the mixed elements of the Kalb�Ramond �eldto be zero, i. e., B� i = 0:The solution of the losed string equation of motionis X�(�; �) = x� + 2�0p�� + 2L�� + i2p2�0 ��Xm 6=0 1m ���me�2im(���) + ~��me�2im(�+�)� : (3)Here, L� is zero for nonompat diretions andL� = N�R�for the ompat diretionX� with the ompati�ationradius R� and the losed string winding number N�.The losed string enter-of-mass momentum isp� = M�R� ;whereM� is the momentum number. Substituting thissolution in boundary equations (2) expresses them interms of osillators and zero modes. As a result aninteresting ondition on the losed string winding isobtained,268



ÆÝÒÔ, òîì 141, âûï. 2, 2012 Interation of moving branes with bakground massless : : :U��L�opjBx; � = 0i = 0:We assume that there is no ompati�ation along timediretion, and hene L0 = 0:If the matrix U�� , is invertible this equation reduesto L�opjBx; � = 0i = 0:Therefore, the presene of the bakground tahyon �eldprevents the losed string from wrapping around om-pat diretions that are parallel to the brane worldvo-lume.Using the oherent state method [14℄ to solveboundary equations (2) for osillating modes leads tothe statejBos; � = 0i = 1Yn=1[detM(n)℄�1 �� exp"� 1Xm=1� 1m���mS(m)�� e���m�# j0i; (4)where the matrix S(m) is de�ned byS(m) = S(m) + (S�1(�m))T ;S(m) =M�1(m)N(m): (5)The matries M(m) and N(m), whih are funtions ofbakground �elds, are de�ned byM�(m) � = 
� � � i2mU��Æ� �Æ� � ; (6)where 
0 � = Æ0� � V iÆi� �F0�Æ��;
�� � = Æ ��� �F ���Æ��;
i � = Æi � � V iÆ0�; (7)andN0(m)� = Æ0� � V iÆi� + F0�Æ�� + i2mU0�Æ��;N ��(m)� = Æ ��� + F ���Æ�� + i2mU ���Æ��;N i(m)� = �Æi� + V iÆ0�: (8)When we solve the boundary equations, the matrix(S�1(�m))T also appears in Eq. (5). This is beause thematrix S(m) is mode dependent and is not orthogo-nal general. In the absene of the tahyon �eld, Sbeomes mode independent and orthogonal, and hene

S = S [3℄. The in�nite produt in Eq. (4), whih omesfrom the path integral, an be regularized [15℄ as1Yn=1[detM(n)℄�1 = pdet
 det ��� U1 + 2i
�� : (9)From now on, we onsider a seleted diretion X i0for the motion of the Dp-brane, and hene the otheromponents of the veloity are zero. We also setV i0 = V:Then the zero-mode part of the boundary state be-omesjBx; � = 0i(0) = Tp2 �� 1Z�1 Y� dp��exp�� 4i�0(U�1)�� �� ��1� 12Æ��� p�p� + V pi0p�Æ�0�� �� Æ(xi0 � V x0 � yi0) Yi0 6=i0 Æ(xi0 � yi0)��Y� jp�L = p�Ri Yi0 6=i0 jpi0L = pi0R = 0i �� ����pi0L = pi0R = 12V p0�� : (10)The two delta-funtions indiate the position of thebrane along the perpendiular diretions. The integra-tion over the momenta indiates that the e�ets of allvalues of the momentum omponents have been takeninto aount. In addition, the equality p�L = p�R origi-nates from the unwrapping of the losed string aroundthe brane diretions and the nonompatness of thetime diretion.There are two speial limit ases for U . In thelimit U�� ! 0, the osillating part of the boundarystate, i. e., the Eq. (4), redues to a boundary stateorresponding to a moving Dp-brane in the absene oftahyon �eld [9℄.When we send some of the elements of U to in�nity,we deal with the boundary state within the onept oftahyon ondensation. This ondensation an be per-formed on some or all elements of the tahyon matrixU . Without loss of generality, we regard U as a diag-onal matrix. By sending the spatial element U�� toin�nity, we transform the boundary state into the onerelated to a moving D(p � 1)-brane that has lost itsdimension along the X �� diretion, and is in the pre-sene of a new tahyon �eld U 0(p�1)�(p�1) that does notinlude the omponent U��.269



Z. Rezaei, D. Kamani ÆÝÒÔ, òîì 141, âûï. 2, 2012A notable point here is that although in the proessof ondensation along the X� diretion, the matriesM and S in boundary state (4) hange to lower dimen-sional ones, as expeted, the e�et of the ondensatedomponent remains as a pU�� fator after regulariza-tion of the in�nite produt1Yn=1[detM(n)℄�1:This result is di�erent from the onventional ase inwhih this fator is aneled by the fator 1=pU�� fromzero mode part, whih is absent here.When ondensation ours along the time ompo-nent of the tahyon matrix, U00 ! 1, besides a de-rease in the brane worldvolume dimension in the X0diretion, the brane also loses its veloity. In otherwords, the tahyon ondensation along the temporaldiretion �xes the Dp-brane in time and spae, i. e.,produes an instantoni Dp-brane, whih has no velo-ity.2.2. Fermioni part of the boundary stateThe boundary equations for the fermioni degreesof freedom an be found in two ways: 1) by super-symmetrizing ation (1) and setting the variation ofthe fermioni part of the ation equal to zero, and2) by performing the worldsheet supersymmetry on thebosoni boundary in Eqs. (2) and transforming theminto fermioni ones, beause the supersymmetrized a-tion is invariant under global worldsheet supersymme-try transformations. We hoose the seond approahhere. The fermioni boundary equations are then givenby[�i�( 0+�V i i+)+( 0��V i i�)+F0 �(�i� �+� ��)�� U0 �(�i� �+ +  ��)℄jB ; �; � = 0i = 0;[�i� ��+ �  ��� + F ��� (�i� �+ +  ��)�� U ���(�i� �+ �  ��)℄jB ; �; � = 0i = 0;[�i�( i+ � V i 0+)� ( i� � V i 0�)℄�� jB ; �; � = 0i = 0: (11)With the solution of the equations of motion for thefermions  �� =Xk  �k e�2ik(���); �+ =Xk e �k e�2ik(�+�); (12)

the boundary state in Eqs. (11) an be represented as( �k � i�S�(k)� ~ ��k)jB ; �; � = 0i = 0: (13)We note that in Eqs. (12) and (13), k is an integer num-berm for the R�R setor, with  �m = d�m and e �m = ed�m,while in the NS�NS setor, k is a half-integer number r,with  �r = b�r and e �r = eb�r . The onstant number � anbe +1 or �1. It is irrelevant whether we hoose +1 or�1, beause to obtain the interation of the branes, weneed to use the boundary state that has been a�etedby the GSO projetor. As we see in what follows, thisprojetion operator auses both states with � = +1 and� = �1 to ontribute to the interation.Similarly to the bosoni part, we should also on-sider the part of the superonformal ghosts in thefermioni boundary state. The superghosts inlude theommuting �elds �, , e�, and e.2.2.1. The NS�NS setorAording to Eq. (13), the resultant NS�NS setorboundary state of the fermions is given byjB ; �; � = 0iNS = 1Yr=1=2[detM(r)℄�� exp24i� 1Xr=1=2(b��rS(r)��eb��r)35 j0iNS: (14)When the path integral is omputed, the determinantis inversed in omparison to the bosoni ase, Eq. (4).This is due to the Grassmann nature of the integrationvariables [2℄. Beause r is half-integer, the regulariza-tion of this in�nite produt is1Yr=1=2[detM(r)℄ = det0BB� p�� � U2i
 + 12�1CCA : (15)2.2.2. The R�R setorTo derive the boundary state in the R�R setor,we have to follow the same proedure as in the NS�NSsetor with little di�erenes that require some are. Be-ause k = m in Eq. (13) runs over integers in the R�Rsetor, there is a zero mode that a�ets the boundarystate. Solving Eq. (13) in the R�R setor yields theboundary state270



ÆÝÒÔ, òîì 141, âûï. 2, 2012 Interation of moving branes with bakground massless : : :jB ; �; � = 0iR = 1Ym=1[detM(m)℄�� exp"i� 1Xm=1(d��mS(m)�� ed��m)# jB ; �i(0)R : (16)Beause m is an integer number, the regularization ofthe in�nite produt is exatly similar to the one inbosoni ase (of ourse, the determinant is here theinverse of one in the bosoni ase)1Ym=1[detM(m)℄ == �pdet
 det�� �1 + U2i
����1 : (17)The state jB ; �i(0)R in Eq. (16) is the zero-modeboundary statejB ; �i(0)R = �C�11 �1 + i��111 + i� � �� exp �12���������AB jAij eBi; (18)where jAij eBi is the vauum of the zero modes d�0 anded�0 , C is the harge onjugate matrix, and the antisym-metri matrix � is de�ned in terms of the matrix S:S = (1� �)�1(1 + �): (19)The details of obtaining Eqs. (18) and (19) are given inAppendix A. Beause the matrix S should be orthogo-nal, S�1 = ST ;its de�nition S(m) = S(m) + [(S(�m))�1℄Timplies that the matrix S should satisfy the relationST(m) � S�1(m) = ST(�m) + S�1(�m): (20)Aording to Eqs. (5)�(8), S is de�ned in terms of thebakground �elds. Thus, Eq. (20) imposes a relation onthese bakground �elds. When the tahyon and velo-ity are put to zero in ation (1), we obtain � = F , andhene the term exp( 12�������) redues to the knownform exp( 12F������) [3℄.3. INTERACTION OF THE BRANESThe interation amplitude between Dp1- andDp2-branes in eah setor is de�ned asANS�NS;R�R == 2�0 1Z0 dt NS;RhB1; � = 0je�tHNS;R jB2; � = 0iNS;R:

The total Hamiltonian HNS;R is the sum of the Hamil-tonians of the X�, the  �, and the ghosts and su-perghosts in eah setor. To alulate the interationamplitude, we need the total projeted boundary state.The total boundary state of eah setor isjB; �; � = 0iNS;R = jBX ; � = 0ijBgh; � = 0i �� jB ; �; � = 0iNS;RjBsgh; �; � = 0iNS;R:In Appendix B, the projetion proess is disussed. Thetotal projeted boundary states are given by Eqs. (40)and (41).3.1. Interation amplitude in the NS�NS setorUsing boundary state (40) for NS�NS setor, aftera long alulation, we obtain the total interation am-plitude in this setor asANS�NS = �0Vu8(2�)di Tp1Tp2jV1 � V2j �� 1Ym=1 det[M(m�1=2)1M(m�1=2)2℄det[M(m)1M(m)2℄ �� 1Z0 dt8<:Y�i �3 y�i1 � y�i22�R�i j i�0t�(R�i)2! ���r ��0t �din exp0�� 14�0tXin (y1in � y2in)21A�� 1q  1Ym=1"� 1� q2m1 + q2m�1�2 �� det(1 + S(m�1=2)1ST(m�1=2)2q2m�1)det(1� S(m)1ST(m)2q2m) # �� 1Ym=1"� 1� q2m1� q2m�1�2 �� det(1� S(m�1=2)1ST(m�1=2)2q2m�1)det(1� S(m)1ST(m)2q2m) #!�� 1pdetQ detK1 detK2 �� exp24�14 0�ETQ�1E + X�01;�01 y�012 y�012 (K�11 )�01�01 ++ X�02;�02 y�021 y�021 (K�12 )�02�021A359=; ; (21)where q = e�2t and V�u is the ommon volume of thebranes. The set fig omprises diretions perpendiular271



Z. Rezaei, D. Kamani ÆÝÒÔ, òîì 141, âûï. 2, 2012to both branes exept i0, fug omprises the diretionsalong both branes exept 0, f�01g is used for the di-retions along the Dp1-brane and perpendiular to theDp2-brane and f�02g indiates the diretions along theDp2-brane and perpendiular to the Dp1-brane. i andin are respetively related to the ompat and non-ompat parts of i. The matries Q, K1, K2 and thedoublet E are de�ned is terms of their elements asQ11 = �0t2(V2 � V1)2 (1 + V12)(1� V22) ++ 2i�0(U�11 )00(1� V 22 )2;Q22 = �0t2(V2 � V1)2 (1 + V22)(1� V12)�� 2i�0(U�12 )00(1� V 21 )2;Q12 = Q21 = �0t(V2 � V1)2 (1 + V12)�� (1 + V22)(1� V1V2); (22)
E1 = i2(V2�V1) �y2i0(1+V12)2�y1i0(1+V1V2)� ;E2 = i2(V2�V1) �y1i0(1+V22)2�y2i0(1+V1V2)� ; (23)K�01�011 = 4i�0�1� 12Æ�01�01��� (U�11 )�01�01 � �0tÆ�01�01 ;Kuv1 = 4i�0�1� 12Æuv� (U�11 )uv � 12�0tÆuv ;K�01u1 = Ku�011 = 4i�0(U�11 )�01u: (24)By hanging 1 ! 2 and i ! �i in the elements ofthe matrix K1, we obtain the elements of the matrixK2. Obviously Q, E, and K are veloity and tahyondependent.In amplitude (21), the theta funtion omes fromthe ompat part of the set fX�ig, while the exponentialand its pre-fator in the third line originate from thenonompat part. In fat, the exponential is a dampingfator with respet to the distane of the branes. If alldiretions fX�ig are ompat, the exponential and itspre-fator disappear. In this ase, �i takes all values of�i. In the ase where all diretions fX�ig are nonom-pat, the �3 fator is removed, and hene �in takes allvalues of �i. The next two lines, whih ontain the S ma-trix, re�et the part of the osillators, onformal ghostsand superonformal ghosts. The remaining part, whihis obtained by integration over the momenta, Eq. (10),is due to the presene of the veloities and the bak-ground tahyon �elds. In the absene of the veloities

and tahyon �elds, this fator is also absent, and henethe interation amplitude resembles the one in [3℄.3.2. Interation amplitude in the R�R setorFor interation amplitude in the R�R setor, we usethe total GSO-projeted boundary state for the R�Rsetor, the Eq. (41), and follow the same proedure asin the NS�NS setor, wheneAR�R = �0Vu8(2�)di Tp1Tp2jV1 � V2j �� 1Z0 dt8<:Y�i �3 y�i1 � y�i22�R�i j i�0t�(R�i)2! ���r ��0t �din exp0�� 14�0tXin (y1in � y2in)21A�� � 1Ym=1"�1�q2m1+q2m�2 det(1+S(m)1ST(m)2q2m)det(1�S(m)1ST(m)2q2m)#+� 0!�� 1pdetQ detK1 detK2 �� exp24�14 0�ETQ�1E + X�01;�01 y�012 y�012 (K�11 )�01�01 ++ X�02;�02 y�021 y�021 (K�12 )�02�021A359=; ; (25)where � � �12Tr[G1C�1GT2 C℄; (26)� 0 � �iTr[G1C�1GT2 C�11℄; (27)and G1;2 = exp �12(�(1;2))������� :We note that the variables � and � 0 impliitly depend onthe brane dimensions through �1 and �2 in G1 and G2.We now study the total amplitude, i. e., the ombi-nation of the amplitudes in the NS�NS and R�R se-tors. We onsider the following speial ase: there isno ompati�ation, the two Dp-branes are parallel andhave the same dimensions, and the same �elds live onthem. As in the literature, this interation amplitudevanishes due to the anelation of the attrative andrepulsive fores in the NS�NS and R�R setors.In the ase under study, in addition to the �eldsliving on the branes, veloities are also present, whihare transverse �utuations of the branes. In amplitudes272



ÆÝÒÔ, òîì 141, âûï. 2, 2012 Interation of moving branes with bakground massless : : :(21) and (25), the relative speed appears in the denom-inators. This imposes a onstraint on the system thatthe veloities of the branes should be di�erent; other-wise, the total amplitude beomes in�nite. In this ase,we annot hek the vanishing of the interation ampli-tude for idential parallel branes with the same �elds.Therefore, even if all the �elds are idential, the veloi-ties should be di�erent. This auses the branes to havedi�erent �'s and onsequently di�erent S's. Then theNS�NS and R�R amplitudes annot anel the e�et ofeah other.4. LONG-DISTANCE BEHAVIOR OF THEAMPLITUDEWe now �nd the interation between the braneswhen they are far from eah other. That is, we �ndthe behavior of interation amplitudes (21) and (25) astime tends to in�nity. Conventionally, in the large-distane limit, only, the massless states of a losedstring ontribute to the brane interation.The large-distane amplitude is equivalent to thelong-time behavior of the branes. It an be obtainedby sending q to zero in Eqs. (21) and (25). Hene, theinteration amplitudes due to massless states in theNS�NS and R�R setors arelimq!0ANS�NS = VuTp1Tp24(2�)di �� i(�1)(p1+p2)=2 2du+1=2�0(p1+p2)=2(1 + V12)(1 + V22) �� 1Ym=1 det[M(m�1=2)1M(m�1=2)2℄det[M(m)1M(m)2℄ �� 1Z dt8<:�r ��0t �dinexp0�� 14�0tXin (y1in�y2in)21A �� limt!1 2[Tr(S(1)1ST(1)2)� 2℄t1+(p1+p2)=2 9=; ; (28)andlimq!0AR�R = Vu Tp1Tp28(2�)di �� i(�1)(p1+p2)=2 2du+1=2�0(p1+p2)=2(1 + V12)(1 + V22) �� 1Z dt8<:�r ��0t �dinexp0�� 14�0tXin (y1in�y2in)21A �� limt!1 1t1+(p1+p2)=29=; : (29)

We do not extend the limit to the exponential part andits pre-fator in Eqs. (28) and (29) beause these fatorsare related to the positions of the branes, and losedstring emission is independent of the loation of thebranes. When there is no tahyoni bakground [3℄, thelast fators in Eqs. (28) and (29) do not have the fator1=t1+(p1+p2)=2. Thus, due to the presene of tahyon�elds, the interation amplitude dereases with time.In fat, the statement that the massless losed stringstates dominate in the interation at large distanesberween the branes is valid until there is no tahyonbakground in the system.There is an interpretation for this unusual behavior.In fat, the open string tahyon bakground auses aninstability in the system. Therefore, after a su�ientlylong time, by the tahyon rolling [12℄ toward its min-imum potential, unstable D-branes deay to the bulkmodes and their dimensions derease to reah a sta-ble system. Final produts of this proess are braneswith lower dimensions or the losed string vauum [10℄.This implies that there are no physial perturbativeopen-string states around the minimum of the poten-tial. This is beause the open string states live only onthe branes. Thus, in the onept of interating branes,as time passes, leading to the tahyon rolling and aderease in their dimensions, the brane on�gurationdistorts and prevents them from interating.The amplitude ANS�NS in Eq. (28) depends onthe bakground �elds through the fator Tr(S(1)1ST(1)2)and the determinants of the matries fM(m�1=2)jm == 1; 2; 3; : : :g, while suh a dependene is absent in theamplitude AR�R in Eq. (29). In other words, whenthe branes are far from eah other, the R�R amplitudebeomes bakground independent.Another interesting feature of the long-time ampli-tude is its time-dependent behavior on the brane di-mensions. An exeption here is the D-instanton. Whentwo D-instantons, whih have the dimension p1 = p2 == �1, interat, the fator 1=t1+(p1+p2)=2 is removed andthe long-time amplitude behavior resembles that of asystem without a tahyon. For this system, the pre-sene of the tahyon does not a�et the onventionalbehavior of the large-distane interation.5. CONCLUSIONSThe boundary state of a losed superstring travelingbetween two moving branes in the presene of B�� , atahyon, and a U(1) gauge �eld was alulated. A no-table feature in the boundary state equations is the pre-vention of losed string wrapping around the ompat5 ÆÝÒÔ, âûï. 2 273



Z. Rezaei, D. Kamani ÆÝÒÔ, òîì 141, âûï. 2, 2012diretions of spaetime, whih is due to the presene ofthe tahyon �eld. Also, the boundary state inludes amomentum-dependent exponential fator, whih is ab-sent in the onventional boundary states. This fatororiginates from the zero-mode parts of the veloity andtahyon terms in the boundary ation.The interation amplitude of the branes via an ex-hange by a losed string was alulated for the NS�NSand R�R setors. It is shown that even for odimen-sion parallel branes with similar external �elds, the to-tal amplitude is not zero. This is due to the preseneof the veloities and tahyon �elds in the system.The long-distane behavior of the interation am-plitude was studied. In this domain, the instability ofthe branes due to the bakground tahyon �elds weak-ens the interation. This dereasing behavior an beunderstood in terms of dissipation of the branes to thebulk modes beause of the rolling of the tahyon to itsminimum potential in the long-time regime. The in-teration of two D-instantons obviates this dereasingbehavior. The long-time amplitude in this ase behavesas in the onventional ase, in whih the massless statesdominate. APPENDIX AZero-mode boundary state in the R�R setorThe state jB ; �i(0)R in Eq. (16) is the zero-modeboundary state that obeys the equationjB ; �i(0)R =M(�)AB jAij eBi; (30)where jAij eBi is the vauum of the zero modes d�0 anded�0 . The matrix M(�) has to satisfy the equation(��)TM(�) � i�S�(m)��11M(�)�� = 0: (31)We onsider a solution of the formM(�) = C�11�1 + i��111 + i� �G; (32)where C is the harge onjugation matrix. Substitutionof Eq. (32) in Eq. (31) leads to the following equationfor the matrix G: ��G = S� �G�� : (33)There is a onventional solution for G in the formG = exp�12�������� : (34)Indeed, we must expand the exponential with the on-vention that all gamma matries antiommute, andtherefore there are a �nite number of terms. The anti-symmetri matrix � is de�ned in terms of the matrixS, see Eg. (19).

APPENDIX BGSO-projeted and ghosts boundary statesThe GSO-projeted boundary states are given byjB; � = 0iNS = 1� (�1)F+G2 1� (�1) eF+ eG2 �� jB; � = +1; � = 0iNS; (35)jB; � = 0iR = 1 + (�1)n(�1)F+G2 1� (�1) eF+ eG2 �� jB; � = +1; � = 0iR; (36)where n is an even number for the type-IIA superstringtheory and an odd number for the type-IIB superstringtheory. The de�nitions of F and G areF = 1Xr=1=2 b��rbr�;G = � 1Xr=1=2(�r�r + ��rr) (37)in the NS�NS setor, and(�1)F = �11(�1)P1m=1 d��mdm� ;G = �0�0 � 1Xm=1(�m�m + ��mm) (38)in the R�R setor. Similar de�nitions also hold for ~Fand ~G. Hene, the total projeted boundary states arejB; � = 0iNS == 12 (jB;+; � = 0iNS � jB;�; � = 0iNS) ; (39)jB; � = 0iR == 12 (jB;+; � = 0iR + jB;�; � = 0iR) : (40)Sine the bulk ation in the Eq. (1) preserves on-formal symmetry, working in the ovariant formalismrequires inluding onformal ghosts [2, 16℄. In fat, weneed a part of the ghosts (i. e., antiommuting �elds b,, eb, and e) in the bosoni boundary state. This part isindependent of the bakground �elds and is expressedas jBgh; � = 0i == exp" 1Xm=1 e4im�0 ��meb�m � b�me�m�#�� 0 + e02 jq = 1ijeq = 1i: (41)274
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