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INTERACTION OF MOVING BRANES WITH BACKGROUNDMASSLESS AND TACHYON FIELDS IN SUPERSTRING THEORYZ. Rezaei *, D. Kamani **Physi
s Department, Amirkabir University of Te
hnology (Tehran Polyte
hni
)15875-4413, Tehran, IranRe
eived May 22, 2011Using the boundary state formalism, we study a moving Dp-brane in a partially 
ompa
t spa
etime in thepresen
e of ba
kground �elds: the Kalb�Ramond �eld B�� , a U(1) gauge �eld A�, and the ta
hyon �eld.The boundary state enables us to obtain the intera
tion amplitude of two branes with the above ba
kground�elds. The branes are parallel or perpendi
ular to ea
h other. Be
ause of the presen
e of ba
kground �elds,
ompa
ti�
ation of some spa
e�time dire
tions, motion of the branes, and the arbitrariness of the dimensionsof the branes, the system is rather general. Due to the ta
hyon �elds and velo
ities of the branes, the behaviorof the intera
tion amplitude reveals obvious di�eren
es from the 
onventional behavoir.1. INTRODUCTIONThe dis
overy of the D-branes, as an intrinsi
 partof string theory [1℄, gave rise to studies of the proper-ties and intera
tions of the branes. One of the mostappli
able methods for this purpose is the boundarystate formalism. A boundary state is a BRST-invariantstate that des
ribes the 
reation of 
losed string fromthe va
uum.Among the a
hievements in this formalism is its ex-tension to the superstring theory and the analysis ofthe 
ontribution of the 
onformal and super 
onformalghosts to boundary states [2℄. There are separate stud-ies that add ba
kground �elds su
h as the Kalb�Ra-mond �eld B�� , a U(1) gauge �eld in a 
ompa
t spa
e-time [3℄, and the ta
hyon �eld [4�6℄ to boundary states.These ba
kground �elds give to the subje
t a greatergenerality. Apart from the longitudinal �u
tuations ofthe brane (for instan
e, the U(1) gauge �eld and theta
hyon �eld), transverse brane �u
tuations [7℄ shouldalso be 
onsidered. This allows interpreting it as a dy-nami
al obje
t. This 
an be performed by 
onsideringvelo
ity for the brane [8; 9℄. These observations moti-vated us to take all ba
kground �elds and also 
om-pa
ti�
ation of some dire
tions of the spa
etime intoa

ount to study moving branes in the general frame-work of superstring theory. This general set-up 
annot*E-mail: z.rezaei�aut.a
.ir**E-mail: kamani�aut.a
.ir

be found in the literature on the boundary state andbrane intera
tion.Be
ause open strings are quantum ex
itations of abrane [10℄, the presen
e of the open string ta
hyon re-veals an instability of the brane. In the bosoni
 stringtheory, this is a natural property, while in the super-string theories, this o

urs in spe
ial 
ases. For in-stan
e, there are Dp-branes with wrong dimensions inthe type-IIA and type-IIB superstring theories; thatis, there are Dp-branes with odd dimensions in thetype-IIA theory and even dimensions in the type-IIBtheory [11℄, whi
h are unstable. A
tually, this insta-bility 
an be removed by the ta
hyon rolling towardits minimum potential [12℄. During this pro
ess, theta
hyon energy dissipates to the bulk modes and theunstable system rea
hes a stable state that 
onsists oflower-dimensional branes or just the 
losed string va
-uum without any D-branes [10℄. In the literature, theta
hyon �eld is usually 
onsidered in just one dimen-sion, and its e�e
t is studied on a spa
e-�lling brane.In this paper, we 
onsider a Dp-brane of an arbitrarydimension, and hen
e the ta
hyon �eld has 
omponentsalong all dire
tions of the brane worldvolume.We 
al
ulate the boundary state 
orresponding toa moving Dp-brane in the presen
e of the ba
kground�elds B�� , a U(1) gauge �eld, and a ta
hyon. We usethis boundary state to dete
t the intera
tion betweentwo moving D-branes. There is no restri
tion on thebrane dimensions, and they 
an be parallel or per-267
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ular to ea
h other. To keep the generality, welet some of the spa
etime dire
tions be 
ompa
t. Weobserve that the presen
e of the ta
hyon prevents the
losed string from wrapping around the 
ompa
t dire
-tions. Using the boundary state, we 
al
ulate the in-tera
tion amplitude between two branes in the NS�NSand the R�R se
tors. Due to the presen
e of the velo
i-ties and the ba
kground ta
hyon �elds, no 
an
ellationbetween these amplitudes o

urs. This is the 
ase evenfor similar and parallel Dp-branes with the same ba
k-ground �elds. We observe that the intera
tion amp-litude vanishes after a long time (or, equivalently, forlarge distan
es berween the branes). The origin of thise�e
t is the rolling of the ba
kground ta
hyon �eld andthe de
ay of the D-branes in this limit.Putting all this together allows us to study a sys-tem in the most general form to obtain 
onsiderableresults in spite of some mathemati
al di�
ulties dueto 
onsidering longitudinal and transverse �u
tuationssimultaneously.2. THE BOUNDARY STATE ASSOCIATEDWITH A Dp-BRANETo obtain the boundary state 
orresponding to amoving brane in the presen
e of the antisymmetri
 �eldB�� in the bulk and the ta
hyon and U(1) gauge �eldson the boundary, we 
onsider the following sigma-mo-del a
tion for a 
losed string:S = � 14��0 Z� d2� �� �p�ggabG���aX��bX� + "abB���aX��bX��++ 12��0 Z�� d��A���X� + V iX0��X i ++ 12U��X�X�� ; (1)where the �rst integral is over the worldsheet of a 
losedstring ex
hanged by the branes, and the se
ond in-tegral is over the boundary of this worldsheet, whi
h
an be at � = 0 or � = �0. The U(1) gauge �eld A�lives on the Dp-brane worldvolume and V i is the branevelo
ity 
omponent along X i dire
tion. The 
oordi-nates fX�g and fX ig are respe
tively dire
ted alongand perpendi
ular to the Dp-brane worldvolume. Theterm 12U��X�X� with a 
onstant symmetri
 matrixU�� spe
i�es the ta
hyon pro�le. A

ording to [13℄, theta
hyon �eld appears in a square form in the a
tion toprodu
e a Gaussian integral. We take the ta
hyon �eld

to have 
omponents along the Dp-brane worldvolume.We 
onsider G�� to be a �at spa
etime metri
 with thesignature ��� = diag(�1; 1; : : : ; 1)and the Kalb�Ramond �eld B�� to be 
onstant.Equating the variation of a
tion (1) with respe
tto X�(�; �) to zero gives the equations of motion andboundary equations for the emitted (absorbed) 
losedstring.2.1. Bosoni
 part of the boundary stateBoundary equations following from a
tion (1) at� = 0 are given by[�� (X0 � V iX i) + F0 ���X� �� U0 �X�℄jBx; � = 0i = 0;(��X �� + F �����X� � U ���X�)jBx; � = 0i = 0;(X i � V iX0 � yi)jBx; � = 0i = 0: (2)Here, X� are the spatial dire
tions of the brane world-volume (i. e., � 6= 0) andF�� = ��A� � ��A� �B��is the total �eld strength, whi
h 
ontains the B �eldas well as the U(1) gauge �eld. We note that we haveassumed the mixed elements of the Kalb�Ramond �eldto be zero, i. e., B� i = 0:The solution of the 
losed string equation of motionis X�(�; �) = x� + 2�0p�� + 2L�� + i2p2�0 ��Xm 6=0 1m ���me�2im(���) + ~��me�2im(�+�)� : (3)Here, L� is zero for non
ompa
t dire
tions andL� = N�R�for the 
ompa
t dire
tionX� with the 
ompa
ti�
ationradius R� and the 
losed string winding number N�.The 
losed string 
enter-of-mass momentum isp� = M�R� ;whereM� is the momentum number. Substituting thissolution in boundary equations (2) expresses them interms of os
illators and zero modes. As a result aninteresting 
ondition on the 
losed string winding isobtained,268
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tion of moving branes with ba
kground massless : : :U��L�opjBx; � = 0i = 0:We assume that there is no 
ompa
ti�
ation along timedire
tion, and hen
e L0 = 0:If the matrix U�� , is invertible this equation redu
esto L�opjBx; � = 0i = 0:Therefore, the presen
e of the ba
kground ta
hyon �eldprevents the 
losed string from wrapping around 
om-pa
t dire
tions that are parallel to the brane worldvo-lume.Using the 
oherent state method [14℄ to solveboundary equations (2) for os
illating modes leads tothe statejBos
; � = 0i = 1Yn=1[detM(n)℄�1 �� exp"� 1Xm=1� 1m���mS(m)�� e���m�# j0i; (4)where the matrix S(m) is de�ned byS(m) = S(m) + (S�1(�m))T ;S(m) =M�1(m)N(m): (5)The matri
es M(m) and N(m), whi
h are fun
tions ofba
kground �elds, are de�ned byM�(m) � = 
� � � i2mU��Æ� �Æ� � ; (6)where 
0 � = Æ0� � V iÆi� �F0�Æ��;
�� � = Æ ��� �F ���Æ��;
i � = Æi � � V iÆ0�; (7)andN0(m)� = Æ0� � V iÆi� + F0�Æ�� + i2mU0�Æ��;N ��(m)� = Æ ��� + F ���Æ�� + i2mU ���Æ��;N i(m)� = �Æi� + V iÆ0�: (8)When we solve the boundary equations, the matrix(S�1(�m))T also appears in Eq. (5). This is be
ause thematrix S(m) is mode dependent and is not orthogo-nal general. In the absen
e of the ta
hyon �eld, Sbe
omes mode independent and orthogonal, and hen
e

S = S [3℄. The in�nite produ
t in Eq. (4), whi
h 
omesfrom the path integral, 
an be regularized [15℄ as1Yn=1[detM(n)℄�1 = pdet
 det ��� U1 + 2i
�� : (9)From now on, we 
onsider a sele
ted dire
tion X i0for the motion of the Dp-brane, and hen
e the other
omponents of the velo
ity are zero. We also setV i0 = V:Then the zero-mode part of the boundary state be-
omesjBx; � = 0i(0) = Tp2 �� 1Z�1 Y� dp��exp�� 4i�0(U�1)�� �� ��1� 12Æ��� p�p� + V pi0p�Æ�0�� �� Æ(xi0 � V x0 � yi0) Yi0 6=i0 Æ(xi0 � yi0)��Y� jp�L = p�Ri Yi0 6=i0 jpi0L = pi0R = 0i �� ����pi0L = pi0R = 12V p0�� : (10)The two delta-fun
tions indi
ate the position of thebrane along the perpendi
ular dire
tions. The integra-tion over the momenta indi
ates that the e�e
ts of allvalues of the momentum 
omponents have been takeninto a

ount. In addition, the equality p�L = p�R origi-nates from the unwrapping of the 
losed string aroundthe brane dire
tions and the non
ompa
tness of thetime dire
tion.There are two spe
ial limit 
ases for U . In thelimit U�� ! 0, the os
illating part of the boundarystate, i. e., the Eq. (4), redu
es to a boundary state
orresponding to a moving Dp-brane in the absen
e ofta
hyon �eld [9℄.When we send some of the elements of U to in�nity,we deal with the boundary state within the 
on
ept ofta
hyon 
ondensation. This 
ondensation 
an be per-formed on some or all elements of the ta
hyon matrixU . Without loss of generality, we regard U as a diag-onal matrix. By sending the spatial element U�� toin�nity, we transform the boundary state into the onerelated to a moving D(p � 1)-brane that has lost itsdimension along the X �� dire
tion, and is in the pre-sen
e of a new ta
hyon �eld U 0(p�1)�(p�1) that does notin
lude the 
omponent U��.269
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essof 
ondensation along the X� dire
tion, the matri
esM and S in boundary state (4) 
hange to lower dimen-sional ones, as expe
ted, the e�e
t of the 
ondensated
omponent remains as a pU�� fa
tor after regulariza-tion of the in�nite produ
t1Yn=1[detM(n)℄�1:This result is di�erent from the 
onventional 
ase inwhi
h this fa
tor is 
an
eled by the fa
tor 1=pU�� fromzero mode part, whi
h is absent here.When 
ondensation o

urs along the time 
ompo-nent of the ta
hyon matrix, U00 ! 1, besides a de-
rease in the brane worldvolume dimension in the X0dire
tion, the brane also loses its velo
ity. In otherwords, the ta
hyon 
ondensation along the temporaldire
tion �xes the Dp-brane in time and spa
e, i. e.,produ
es an instantoni
 Dp-brane, whi
h has no velo-
ity.2.2. Fermioni
 part of the boundary stateThe boundary equations for the fermioni
 degreesof freedom 
an be found in two ways: 1) by super-symmetrizing a
tion (1) and setting the variation ofthe fermioni
 part of the a
tion equal to zero, and2) by performing the worldsheet supersymmetry on thebosoni
 boundary in Eqs. (2) and transforming theminto fermioni
 ones, be
ause the supersymmetrized a
-tion is invariant under global worldsheet supersymme-try transformations. We 
hoose the se
ond approa
hhere. The fermioni
 boundary equations are then givenby[�i�( 0+�V i i+)+( 0��V i i�)+F0 �(�i� �+� ��)�� U0 �(�i� �+ +  ��)℄jB ; �; � = 0i = 0;[�i� ��+ �  ��� + F ��� (�i� �+ +  ��)�� U ���(�i� �+ �  ��)℄jB ; �; � = 0i = 0;[�i�( i+ � V i 0+)� ( i� � V i 0�)℄�� jB ; �; � = 0i = 0: (11)With the solution of the equations of motion for thefermions  �� =Xk  �k e�2ik(���); �+ =Xk e �k e�2ik(�+�); (12)

the boundary state in Eqs. (11) 
an be represented as( �k � i�S�(k)� ~ ��k)jB ; �; � = 0i = 0: (13)We note that in Eqs. (12) and (13), k is an integer num-berm for the R�R se
tor, with  �m = d�m and e �m = ed�m,while in the NS�NS se
tor, k is a half-integer number r,with  �r = b�r and e �r = eb�r . The 
onstant number � 
anbe +1 or �1. It is irrelevant whether we 
hoose +1 or�1, be
ause to obtain the intera
tion of the branes, weneed to use the boundary state that has been a�e
tedby the GSO proje
tor. As we see in what follows, thisproje
tion operator 
auses both states with � = +1 and� = �1 to 
ontribute to the intera
tion.Similarly to the bosoni
 part, we should also 
on-sider the part of the super
onformal ghosts in thefermioni
 boundary state. The superghosts in
lude the
ommuting �elds �, 
, e�, and e
.2.2.1. The NS�NS se
torA

ording to Eq. (13), the resultant NS�NS se
torboundary state of the fermions is given byjB ; �; � = 0iNS = 1Yr=1=2[detM(r)℄�� exp24i� 1Xr=1=2(b��rS(r)��eb��r)35 j0iNS: (14)When the path integral is 
omputed, the determinantis inversed in 
omparison to the bosoni
 
ase, Eq. (4).This is due to the Grassmann nature of the integrationvariables [2℄. Be
ause r is half-integer, the regulariza-tion of this in�nite produ
t is1Yr=1=2[detM(r)℄ = det0BB� p�� � U2i
 + 12�1CCA : (15)2.2.2. The R�R se
torTo derive the boundary state in the R�R se
tor,we have to follow the same pro
edure as in the NS�NSse
tor with little di�eren
es that require some 
are. Be-
ause k = m in Eq. (13) runs over integers in the R�Rse
tor, there is a zero mode that a�e
ts the boundarystate. Solving Eq. (13) in the R�R se
tor yields theboundary state270



ÆÝÒÔ, òîì 141, âûï. 2, 2012 Intera
tion of moving branes with ba
kground massless : : :jB ; �; � = 0iR = 1Ym=1[detM(m)℄�� exp"i� 1Xm=1(d��mS(m)�� ed��m)# jB ; �i(0)R : (16)Be
ause m is an integer number, the regularization ofthe in�nite produ
t is exa
tly similar to the one inbosoni
 
ase (of 
ourse, the determinant is here theinverse of one in the bosoni
 
ase)1Ym=1[detM(m)℄ == �pdet
 det�� �1 + U2i
����1 : (17)The state jB ; �i(0)R in Eq. (16) is the zero-modeboundary statejB ; �i(0)R = �C�11 �1 + i��111 + i� � �� exp �12���������AB jAij eBi; (18)where jAij eBi is the va
uum of the zero modes d�0 anded�0 , C is the 
harge 
onjugate matrix, and the antisym-metri
 matrix � is de�ned in terms of the matrix S:S = (1� �)�1(1 + �): (19)The details of obtaining Eqs. (18) and (19) are given inAppendix A. Be
ause the matrix S should be orthogo-nal, S�1 = ST ;its de�nition S(m) = S(m) + [(S(�m))�1℄Timplies that the matrix S should satisfy the relationST(m) � S�1(m) = ST(�m) + S�1(�m): (20)A

ording to Eqs. (5)�(8), S is de�ned in terms of theba
kground �elds. Thus, Eq. (20) imposes a relation onthese ba
kground �elds. When the ta
hyon and velo
-ity are put to zero in a
tion (1), we obtain � = F , andhen
e the term exp( 12�������) redu
es to the knownform exp( 12F������) [3℄.3. INTERACTION OF THE BRANESThe intera
tion amplitude between Dp1- andDp2-branes in ea
h se
tor is de�ned asANS�NS;R�R == 2�0 1Z0 dt NS;RhB1; � = 0je�tHNS;R jB2; � = 0iNS;R:

The total Hamiltonian HNS;R is the sum of the Hamil-tonians of the X�, the  �, and the ghosts and su-perghosts in ea
h se
tor. To 
al
ulate the intera
tionamplitude, we need the total proje
ted boundary state.The total boundary state of ea
h se
tor isjB; �; � = 0iNS;R = jBX ; � = 0ijBgh; � = 0i �� jB ; �; � = 0iNS;RjBsgh; �; � = 0iNS;R:In Appendix B, the proje
tion pro
ess is dis
ussed. Thetotal proje
ted boundary states are given by Eqs. (40)and (41).3.1. Intera
tion amplitude in the NS�NS se
torUsing boundary state (40) for NS�NS se
tor, aftera long 
al
ulation, we obtain the total intera
tion am-plitude in this se
tor asANS�NS = �0Vu8(2�)di Tp1Tp2jV1 � V2j �� 1Ym=1 det[M(m�1=2)1M(m�1=2)2℄det[M(m)1M(m)2℄ �� 1Z0 dt8<:Y�i
 �3 y�i
1 � y�i
22�R�i
 j i�0t�(R�i
)2! ���r ��0t �din exp0�� 14�0tXin (y1in � y2in)21A�� 1q  1Ym=1"� 1� q2m1 + q2m�1�2 �� det(1 + S(m�1=2)1ST(m�1=2)2q2m�1)det(1� S(m)1ST(m)2q2m) # �� 1Ym=1"� 1� q2m1� q2m�1�2 �� det(1� S(m�1=2)1ST(m�1=2)2q2m�1)det(1� S(m)1ST(m)2q2m) #!�� 1pdetQ detK1 detK2 �� exp24�14 0�ETQ�1E + X�01;�01 y�012 y�012 (K�11 )�01�01 ++ X�02;�02 y�021 y�021 (K�12 )�02�021A359=; ; (21)where q = e�2t and V�u is the 
ommon volume of thebranes. The set fig 
omprises dire
tions perpendi
ular271



Z. Rezaei, D. Kamani ÆÝÒÔ, òîì 141, âûï. 2, 2012to both branes ex
ept i0, fug 
omprises the dire
tionsalong both branes ex
ept 0, f�01g is used for the di-re
tions along the Dp1-brane and perpendi
ular to theDp2-brane and f�02g indi
ates the dire
tions along theDp2-brane and perpendi
ular to the Dp1-brane. i
 andin are respe
tively related to the 
ompa
t and non-
ompa
t parts of i. The matri
es Q, K1, K2 and thedoublet E are de�ned is terms of their elements asQ11 = �0t2(V2 � V1)2 (1 + V12)(1� V22) ++ 2i�0(U�11 )00(1� V 22 )2;Q22 = �0t2(V2 � V1)2 (1 + V22)(1� V12)�� 2i�0(U�12 )00(1� V 21 )2;Q12 = Q21 = �0t(V2 � V1)2 (1 + V12)�� (1 + V22)(1� V1V2); (22)
E1 = i2(V2�V1) �y2i0(1+V12)2�y1i0(1+V1V2)� ;E2 = i2(V2�V1) �y1i0(1+V22)2�y2i0(1+V1V2)� ; (23)K�01�011 = 4i�0�1� 12Æ�01�01��� (U�11 )�01�01 � �0tÆ�01�01 ;Kuv1 = 4i�0�1� 12Æuv� (U�11 )uv � 12�0tÆuv ;K�01u1 = Ku�011 = 4i�0(U�11 )�01u: (24)By 
hanging 1 ! 2 and i ! �i in the elements ofthe matrix K1, we obtain the elements of the matrixK2. Obviously Q, E, and K are velo
ity and ta
hyondependent.In amplitude (21), the theta fun
tion 
omes fromthe 
ompa
t part of the set fX�ig, while the exponentialand its pre-fa
tor in the third line originate from thenon
ompa
t part. In fa
t, the exponential is a dampingfa
tor with respe
t to the distan
e of the branes. If alldire
tions fX�ig are 
ompa
t, the exponential and itspre-fa
tor disappear. In this 
ase, �i
 takes all values of�i. In the 
ase where all dire
tions fX�ig are non
om-pa
t, the �3 fa
tor is removed, and hen
e �in takes allvalues of �i. The next two lines, whi
h 
ontain the S ma-trix, re�e
t the part of the os
illators, 
onformal ghostsand super
onformal ghosts. The remaining part, whi
his obtained by integration over the momenta, Eq. (10),is due to the presen
e of the velo
ities and the ba
k-ground ta
hyon �elds. In the absen
e of the velo
ities

and ta
hyon �elds, this fa
tor is also absent, and hen
ethe intera
tion amplitude resembles the one in [3℄.3.2. Intera
tion amplitude in the R�R se
torFor intera
tion amplitude in the R�R se
tor, we usethe total GSO-proje
ted boundary state for the R�Rse
tor, the Eq. (41), and follow the same pro
edure asin the NS�NS se
tor, when
eAR�R = �0Vu8(2�)di Tp1Tp2jV1 � V2j �� 1Z0 dt8<:Y�i
 �3 y�i
1 � y�i
22�R�i
 j i�0t�(R�i
)2! ���r ��0t �din exp0�� 14�0tXin (y1in � y2in)21A�� � 1Ym=1"�1�q2m1+q2m�2 det(1+S(m)1ST(m)2q2m)det(1�S(m)1ST(m)2q2m)#+� 0!�� 1pdetQ detK1 detK2 �� exp24�14 0�ETQ�1E + X�01;�01 y�012 y�012 (K�11 )�01�01 ++ X�02;�02 y�021 y�021 (K�12 )�02�021A359=; ; (25)where � � �12Tr[G1C�1GT2 C℄; (26)� 0 � �iTr[G1C�1GT2 C�11℄; (27)and G1;2 = exp �12(�(1;2))������� :We note that the variables � and � 0 impli
itly depend onthe brane dimensions through �1 and �2 in G1 and G2.We now study the total amplitude, i. e., the 
ombi-nation of the amplitudes in the NS�NS and R�R se
-tors. We 
onsider the following spe
ial 
ase: there isno 
ompa
ti�
ation, the two Dp-branes are parallel andhave the same dimensions, and the same �elds live onthem. As in the literature, this intera
tion amplitudevanishes due to the 
an
elation of the attra
tive andrepulsive for
es in the NS�NS and R�R se
tors.In the 
ase under study, in addition to the �eldsliving on the branes, velo
ities are also present, whi
hare transverse �u
tuations of the branes. In amplitudes272
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tion of moving branes with ba
kground massless : : :(21) and (25), the relative speed appears in the denom-inators. This imposes a 
onstraint on the system thatthe velo
ities of the branes should be di�erent; other-wise, the total amplitude be
omes in�nite. In this 
ase,we 
annot 
he
k the vanishing of the intera
tion ampli-tude for identi
al parallel branes with the same �elds.Therefore, even if all the �elds are identi
al, the velo
i-ties should be di�erent. This 
auses the branes to havedi�erent �'s and 
onsequently di�erent S's. Then theNS�NS and R�R amplitudes 
annot 
an
el the e�e
t ofea
h other.4. LONG-DISTANCE BEHAVIOR OF THEAMPLITUDEWe now �nd the intera
tion between the braneswhen they are far from ea
h other. That is, we �ndthe behavior of intera
tion amplitudes (21) and (25) astime tends to in�nity. Conventionally, in the large-distan
e limit, only, the massless states of a 
losedstring 
ontribute to the brane intera
tion.The large-distan
e amplitude is equivalent to thelong-time behavior of the branes. It 
an be obtainedby sending q to zero in Eqs. (21) and (25). Hen
e, theintera
tion amplitudes due to massless states in theNS�NS and R�R se
tors arelimq!0ANS�NS = VuTp1Tp24(2�)di �� i(�1)(p1+p2)=2 2du+1=2�0(p1+p2)=2(1 + V12)(1 + V22) �� 1Ym=1 det[M(m�1=2)1M(m�1=2)2℄det[M(m)1M(m)2℄ �� 1Z dt8<:�r ��0t �dinexp0�� 14�0tXin (y1in�y2in)21A �� limt!1 2[Tr(S(1)1ST(1)2)� 2℄t1+(p1+p2)=2 9=; ; (28)andlimq!0AR�R = Vu Tp1Tp28(2�)di �� i(�1)(p1+p2)=2 2du+1=2�0(p1+p2)=2(1 + V12)(1 + V22) �� 1Z dt8<:�r ��0t �dinexp0�� 14�0tXin (y1in�y2in)21A �� limt!1 1t1+(p1+p2)=29=; : (29)

We do not extend the limit to the exponential part andits pre-fa
tor in Eqs. (28) and (29) be
ause these fa
torsare related to the positions of the branes, and 
losedstring emission is independent of the lo
ation of thebranes. When there is no ta
hyoni
 ba
kground [3℄, thelast fa
tors in Eqs. (28) and (29) do not have the fa
tor1=t1+(p1+p2)=2. Thus, due to the presen
e of ta
hyon�elds, the intera
tion amplitude de
reases with time.In fa
t, the statement that the massless 
losed stringstates dominate in the intera
tion at large distan
esberween the branes is valid until there is no ta
hyonba
kground in the system.There is an interpretation for this unusual behavior.In fa
t, the open string ta
hyon ba
kground 
auses aninstability in the system. Therefore, after a su�
ientlylong time, by the ta
hyon rolling [12℄ toward its min-imum potential, unstable D-branes de
ay to the bulkmodes and their dimensions de
rease to rea
h a sta-ble system. Final produ
ts of this pro
ess are braneswith lower dimensions or the 
losed string va
uum [10℄.This implies that there are no physi
al perturbativeopen-string states around the minimum of the poten-tial. This is be
ause the open string states live only onthe branes. Thus, in the 
on
ept of intera
ting branes,as time passes, leading to the ta
hyon rolling and ade
rease in their dimensions, the brane 
on�gurationdistorts and prevents them from intera
ting.The amplitude ANS�NS in Eq. (28) depends onthe ba
kground �elds through the fa
tor Tr(S(1)1ST(1)2)and the determinants of the matri
es fM(m�1=2)jm == 1; 2; 3; : : :g, while su
h a dependen
e is absent in theamplitude AR�R in Eq. (29). In other words, whenthe branes are far from ea
h other, the R�R amplitudebe
omes ba
kground independent.Another interesting feature of the long-time ampli-tude is its time-dependent behavior on the brane di-mensions. An ex
eption here is the D-instanton. Whentwo D-instantons, whi
h have the dimension p1 = p2 == �1, intera
t, the fa
tor 1=t1+(p1+p2)=2 is removed andthe long-time amplitude behavior resembles that of asystem without a ta
hyon. For this system, the pre-sen
e of the ta
hyon does not a�e
t the 
onventionalbehavior of the large-distan
e intera
tion.5. CONCLUSIONSThe boundary state of a 
losed superstring travelingbetween two moving branes in the presen
e of B�� , ata
hyon, and a U(1) gauge �eld was 
al
ulated. A no-table feature in the boundary state equations is the pre-vention of 
losed string wrapping around the 
ompa
t5 ÆÝÒÔ, âûï. 2 273
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tions of spa
etime, whi
h is due to the presen
e ofthe ta
hyon �eld. Also, the boundary state in
ludes amomentum-dependent exponential fa
tor, whi
h is ab-sent in the 
onventional boundary states. This fa
tororiginates from the zero-mode parts of the velo
ity andta
hyon terms in the boundary a
tion.The intera
tion amplitude of the branes via an ex-
hange by a 
losed string was 
al
ulated for the NS�NSand R�R se
tors. It is shown that even for 
odimen-sion parallel branes with similar external �elds, the to-tal amplitude is not zero. This is due to the presen
eof the velo
ities and ta
hyon �elds in the system.The long-distan
e behavior of the intera
tion am-plitude was studied. In this domain, the instability ofthe branes due to the ba
kground ta
hyon �elds weak-ens the intera
tion. This de
reasing behavior 
an beunderstood in terms of dissipation of the branes to thebulk modes be
ause of the rolling of the ta
hyon to itsminimum potential in the long-time regime. The in-tera
tion of two D-instantons obviates this de
reasingbehavior. The long-time amplitude in this 
ase behavesas in the 
onventional 
ase, in whi
h the massless statesdominate. APPENDIX AZero-mode boundary state in the R�R se
torThe state jB ; �i(0)R in Eq. (16) is the zero-modeboundary state that obeys the equationjB ; �i(0)R =M(�)AB jAij eBi; (30)where jAij eBi is the va
uum of the zero modes d�0 anded�0 . The matrix M(�) has to satisfy the equation(��)TM(�) � i�S�(m)��11M(�)�� = 0: (31)We 
onsider a solution of the formM(�) = C�11�1 + i��111 + i� �G; (32)where C is the 
harge 
onjugation matrix. Substitutionof Eq. (32) in Eq. (31) leads to the following equationfor the matrix G: ��G = S� �G�� : (33)There is a 
onventional solution for G in the formG = exp�12�������� : (34)Indeed, we must expand the exponential with the 
on-vention that all gamma matri
es anti
ommute, andtherefore there are a �nite number of terms. The anti-symmetri
 matrix � is de�ned in terms of the matrixS, see Eg. (19).

APPENDIX BGSO-proje
ted and ghosts boundary statesThe GSO-proje
ted boundary states are given byjB; � = 0iNS = 1� (�1)F+G2 1� (�1) eF+ eG2 �� jB; � = +1; � = 0iNS; (35)jB; � = 0iR = 1 + (�1)n(�1)F+G2 1� (�1) eF+ eG2 �� jB; � = +1; � = 0iR; (36)where n is an even number for the type-IIA superstringtheory and an odd number for the type-IIB superstringtheory. The de�nitions of F and G areF = 1Xr=1=2 b��rbr�;G = � 1Xr=1=2(
�r�r + ��r
r) (37)in the NS�NS se
tor, and(�1)F = �11(�1)P1m=1 d��mdm� ;G = �
0�0 � 1Xm=1(
�m�m + ��m
m) (38)in the R�R se
tor. Similar de�nitions also hold for ~Fand ~G. Hen
e, the total proje
ted boundary states arejB; � = 0iNS == 12 (jB;+; � = 0iNS � jB;�; � = 0iNS) ; (39)jB; � = 0iR == 12 (jB;+; � = 0iR + jB;�; � = 0iR) : (40)Sin
e the bulk a
tion in the Eq. (1) preserves 
on-formal symmetry, working in the 
ovariant formalismrequires in
luding 
onformal ghosts [2, 16℄. In fa
t, weneed a part of the ghosts (i. e., anti
ommuting �elds b,
, eb, and e
) in the bosoni
 boundary state. This part isindependent of the ba
kground �elds and is expressedas jBgh; � = 0i == exp" 1Xm=1 e4im�0 �
�meb�m � b�me
�m�#�� 
0 + e
02 jq = 1ijeq = 1i: (41)274
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tion of moving branes with ba
kground massless : : :In superstring theory, in addition to the 
onformalghosts, we should also 
onsider the super
onformalghosts. Then, the boundary states, 
orresponding tothe super
onformal ghosts in the NS�NS and R�R se
-tors, are given byjBsgh; �; � = 0iNS == exp24i� 1Xr=1=2�
�r e��r � ��re
�r�35�� jP = �1ij eP = �1i; (42)jBsgh; �; � = 0iR == exp"i� 1Xm=1�
�m e��m � ��me
�m�+ i�
0 ~�0#�� ����P = �12� ���� eP = �32� : (43)REFERENCES1. J. Pol
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