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MASSLESS AND TACHYON FIELDS IN SUPERSTRING THEORY

.k T
Z. Rezaei, D. Kamant

Physics Department, Amirkabir University of Technology (Tehran Polytechnic)
15875-4413, Tehran, Iran

Received May 22, 2011

Using the boundary state formalism, we study a moving Dp-brane in a partially compact spacetime in the
presence of background fields: the Kalb-Ramond field B,., a U(1) gauge field A,, and the tachyon field.
The boundary state enables us to obtain the interaction amplitude of two branes with the above background
fields. The branes are parallel or perpendicular to each other. Because of the presence of background fields,
compactification of some space—time directions, motion of the branes, and the arbitrariness of the dimensions
of the branes, the system is rather general. Due to the tachyon fields and velocities of the branes, the behavior
of the interaction amplitude reveals obvious differences from the conventional behavoir.

1. INTRODUCTION

The discovery of the D-branes, as an intrinsic part
of string theory [1], gave rise to studies of the proper-
ties and interactions of the branes. One of the most
applicable methods for this purpose is the boundary
state formalism. A boundary state is a BRST-invariant
state that describes the creation of closed string from
the vacuum.

Among the achievements in this formalism is its ex-
tension to the superstring theory and the analysis of
the contribution of the conformal and super conformal
ghosts to boundary states [2]. There are separate stud-
ies that add background fields such as the Kalb-Ra-
mond field By, a U(1) gauge field in a compact space-
time [3], and the tachyon field [4-6] to boundary states.
These background fields give to the subject a greater
generality. Apart from the longitudinal fluctuations of
the brane (for instance, the U(1) gauge field and the
tachyon field), transverse brane fluctuations [7] should
also be considered. This allows interpreting it as a dy-
namical object. This can be performed by considering
velocity for the brane [8,9]. These observations moti-
vated us to take all background fields and also com-
pactification of some directions of the spacetime into
account to study moving branes in the general frame-
work of superstring theory. This general set-up cannot
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be found in the literature on the boundary state and
brane interaction.

Because open strings are quantum excitations of a
brane [10], the presence of the open string tachyon re-
veals an instability of the brane. In the bosonic string
theory, this is a natural property, while in the super-
string theories, this occurs in special cases. For in-
stance, there are Dp-branes with wrong dimensions in
the type-ITA and type-IIB superstring theories; that
is, there are Dp-branes with odd dimensions in the
type-IIA theory and even dimensions in the type-IIB
theory [11], which are unstable. Actually, this insta-
bility can be removed by the tachyon rolling toward
its minimum potential [12]. During this process, the
tachyon energy dissipates to the bulk modes and the
unstable system reaches a stable state that consists of
lower-dimensional branes or just the closed string vac-
uum without any D-branes [10]. In the literature, the
tachyon field is usually considered in just one dimen-
sion, and its effect is studied on a space-filling brane.
In this paper, we consider a Dp-brane of an arbitrary
dimension, and hence the tachyon field has components
along all directions of the brane worldvolume.

We calculate the boundary state corresponding to
a moving Dp-brane in the presence of the background
fields By, a U(1) gauge field, and a tachyon. We use
this boundary state to detect the interaction between
two moving D-branes. There is no restriction on the
brane dimensions, and they can be parallel or per-
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pendicular to each other. To keep the generality, we
let some of the spacetime directions be compact. We
observe that the presence of the tachyon prevents the
closed string from wrapping around the compact direc-
tions. Using the boundary state, we calculate the in-
teraction amplitude between two branes in the NS—-NS
and the R—-R sectors. Due to the presence of the veloci-
ties and the background tachyon fields, no cancellation
between these amplitudes occurs. This is the case even
for similar and parallel Dp-branes with the same back-
ground fields. We observe that the interaction amp-
litude vanishes after a long time (or, equivalently, for
large distances berween the branes). The origin of this
effect is the rolling of the background tachyon field and
the decay of the D-branes in this limit.

Putting all this together allows us to study a sys-
tem in the most general form to obtain considerable
results in spite of some mathematical difficulties due
to considering longitudinal and transverse fluctuations
simultaneously.

2. THE BOUNDARY STATE ASSOCIATED
WITH A Dp-BRANE

To obtain the boundary state corresponding to a
moving brane in the presence of the antisymmetric field
B,,, in the bulk and the tachyon and U(1) gauge fields
on the boundary, we consider the following sigma-mo-
del action for a closed string;:
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where the first integral is over the worldsheet of a closed
string exchanged by the branes, and the second in-
tegral is over the boundary of this worldsheet, which
can be at 7 = 0 or 7 = 19. The U(1) gauge field 4,
lives on the Dp-brane worldvolume and V? is the brane
velocity component along X’ direction. The coordi-
nates { X} and {X'} are respectively directed along
and perpendicular to the Dp-brane worldvolume. The
term 1U,3X“X? with a constant symmetric matrix
Uap specifies the tachyon profile. According to [13], the
tachyon field appears in a square form in the action to
produce a Gaussian integral. We take the tachyon field

to have components along the Dp-brane worldvolume.
We consider G, to be a flat spacetime metric with the
signature

N = diag(—1,1,...,1)

and the Kalb-Ramond field B, to be constant.

Equating the variation of action (1) with respect
to X*(o,7) to zero gives the equations of motion and
boundary equations for the emitted (absorbed) closed
string.

2.1. Bosonic part of the boundary state
Boundary equations following from action (1) at

7 =0 are given by

[0-(X° = ViX) + FO 0, X —

-U°,X|B,, 7 =0)=0,

(0: X%+ F%30,X° —U®;XP)| By, 7 =0) =0,

(X' =V'X° —y")|B,, 7 =0) = 0.
Here, X are the spatial directions of the brane world-
volume (i.e., @ # 0) and

-7:016 - aozAﬁ - 65Aa — BQB

is the total field strength, which contains the B field
as well as the U(1) gauge field. We note that we have
assumed the mixed elements of the Kalb—-Ramond field
to be zero, i.e.,
B*, =0.
The solution of the closed string equation of motion
is

X*a, 1) = 2" + 2a'p"T + 2LF 0 + %\/204’ X

Here, L* is zero for noncompact directions and
ILF = NERH

for the compact direction X* with the compactification
radius R* and the closed string winding number N*.
The closed string center-of~-mass momentum is

MK
Tr

where M* is the momentum number. Substituting this
solution in boundary equations (2) expresses them in
terms of oscillators and zero modes. As a result an
interesting condition on the closed string winding is
obtained,

=
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UQEL§p|Bz,T =0)=0.

We assume that there is no compactification along time
direction, and hence

L’ =o.

If the matrix UEE, is invertible this equation reduces
to
LT |B,, 7 =0) = 0.

Therefore, the presence of the background tachyon field
prevents the closed string from wrapping around com-
pact directions that are parallel to the brane worldvo-
lume.

Using the coherent state method [14] to solve
boundary equations (2) for oscillating modes leads to
the state

| Bose, 7 = 0) = | [ [det M,,)]7" x

2

n=1

WE

<%a”m8(m)“,,c~t'im>] 0), (4)

X exp l—

m=1

where the matrix S, is defined by

— T
Smy = Semy + (S )

—1
= M(m) (m)

(5)
Sim)

The matrices M,y and N(,,), which are functions of
background fields, are defined by

My, =0 U8, (6)
where
00, =0, Vo', — F6%,,
0%, =6%, — F306°,, (7)
QO .= 5 = Vi(;o,“
and

N(Om)” = 6011 _ VZ(SZM + foaéau + %anfsaw
(8)

a & a i a
N(m)u =0 ptF B‘sﬁu + %U B‘sﬁw
Ny = =00+ V'8,

When we solve the boundary equations, the matrix
(S(__lm))T also appears in Eq. (5). This is because the
matrix S,,) is mode dependent and is not orthogo-
nal general. In the absence of the tachyon field, S
becomes mode independent and orthogonal, and hence

S = S [3]. The infinite product in Eq. (4), which comes
from the path integral, can be regularized [15] as

rf:[l[det M)~ = Vdet Q det [F (ﬁ)] . (9)

From now on, we consider a selected direction X%
for the motion of the Dp-brane, and hence the other
components of the velocity are zero. We also set

Ve =V.

Then the zero-mode part of the boundary state be-
comes

1B, 7 =0)" =

X /I_IdpCv {exp {—4ia'(U_1)a3 X

Loy
2

1 .
X (1 - 5%3) PP’ + Vp“’pﬁéo(‘))] X

x 8zl — Va® — yio) H 52" —y') x

i' #ig
< [T e =) I Iph = pk = 0) x
o i1£ig
o

The two delta-functions indicate the position of the
brane along the perpendicular directions. The integra-
tion over the momenta indicates that the effects of all
values of the momentum components have been taken
into account. In addition, the equality p§ = p% origi-
nates from the unwrapping of the closed string around
the brane directions and the noncompactness of the
time direction.

There are two special limit cases for U. In the
limit Uss — 0, the oscillating part of the boundary
state, i.e., the Eq. (4), reduces to a boundary state
corresponding to a moving Dp-brane in the absence of
tachyon field [9].

When we send some of the elements of U to infinity,
we deal with the boundary state within the concept of
tachyon condensation. This condensation can be per-
formed on some or all elements of the tachyon matrix
U. Without loss of generality, we regard U as a diag-
onal matrix. By sending the spatial element Ugg to
infinity, we transform the boundary state into the one
related to a moving D(p — 1)-brane that has lost its
dimension along the X@ direction, and is in the pre-
sence of a new tachyon field U(Ip71)x(p71) that does not
include the component Ugg.
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A notable point here is that although in the process
of condensation along the X @ direction, the matrices
M and S in boundary state (4) change to lower dimen-
sional ones, as expected, the effect of the condensated
component remains as a \/Ugg factor after regulariza-
tion of the infinite product

o0

H [det M(n)]_l.

n=1

This result is different from the conventional case in
which this factor is canceled by the factor 1/v/Ugg from
zero mode part, which is absent here.

When condensation occurs along the time compo-
nent of the tachyon matrix, Uyy — oo, besides a de-
crease in the brane worldvolume dimension in the X°
direction, the brane also loses its velocity. In other
words, the tachyon condensation along the temporal
direction fixes the Dp-brane in time and space, i.e.,
produces an instantonic Dp-brane, which has no velo-
city.

2.2. Fermionic part of the boundary state

The boundary equations for the fermionic degrees
of freedom can be found in two ways: 1) by super-
symmetrizing action (1) and setting the variation of
the fermionic part of the action equal to zero, and
2) by performing the worldsheet supersymmetry on the
bosonic boundary in Eqs. (2) and transforming them
into fermionic ones, because the supersymmetrized ac-
tion is invariant under global worldsheet supersymme-
try transformations. We choose the second approach
here. The fermionic boundary equations are then given
by

[—in(] =V )+ @2 =ViPL)+F° (=i —¢2)—
- UOV(_inw:— + 1/11)“3«/:»7777' = 0> =0,

[—iny§ — % + F5 (=il +972) -
—U® (=inll —¢2)||By,n, 7 =0) =0,
[—in(h = Vi) — (L = Vipl)] x

X |By,n, T =0)=0.

(11)

With the solution of the equations of motion for the
fermions

wﬁ — Z wze—%k(r—a)7
k

wi _ Z J5672ik(7'+0')7
k

the boundary state in Eqs. (11) can be represented as

(1/155 - iUS”(k)ul/;ikﬂBwﬂ%T = 0> =0. (13)

We note that in Egs. (12) and (13), k is an integer num-
ber m for the R-R sector, with ¢ = d*, and Jﬁl = J‘,jl,
while in the NS-NS sector, £ is a half-integer number r,
with ¢ = b¥ and ¥ = b¥. The constant number 1 can
be +1 or —1. It is irrelevant whether we choose +1 or
—1, because to obtain the interaction of the branes, we
need to use the boundary state that has been affected
by the GSO projector. As we see in what follows, this
projection operator causes both states with n = +1 and
1n = —1 to contribute to the interaction.

Similarly to the bosonic part, we should also con-
sider the part of the superconformal ghosts in the
fermionic boundary state. The superghosts include the
commuting fields 3, v, 3, and 7.

2.2.1. The NS—NS sector

According to Eq. (13), the resultant NS-NS sector
boundary state of the fermions is given by

o0

|B¢,17,T = 0>NS = H [detM(T)] X
r=1/2

X exp {in i (b’i,,S(r)u,,g'ir)} [O)ns.  (14)

r=1/2

When the path integral is computed, the determinant
is inversed in comparison to the bosonic case, Eq. (4).
This is due to the Grassmann nature of the integration
variables [2]. Because r is half-integer, the regulariza-
tion of this infinite product is

lo_o[ [det M(T)] = det L . (15)

U 1
= F {m i 5]

2.2.2. The R—R sector

To derive the boundary state in the R-R sector,
we have to follow the same procedure as in the NS—-NS
sector with little differences that require some care. Be-
cause k = m in Eq. (13) runs over integers in the R-R
sector, there is a zero mode that affects the boundary
state. Solving Eq. (13) in the R-R sector yields the
boundary state
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_ _ i The total Hamiltonian Hyg g is the sum of the Hamil-
| By, 7 = O)r = Hl[det Mim)] % tonians of the X#, the ¢*, and the ghosts and su-
m=
oo perghosts in each sector. To calculate the interaction
x exp |in Z (dﬁms(m)uug'im) By, >(0) (16) amplitude, we need the total projected boundary state.

m=1
Because m is an integer number, the regularization of
the infinite product is exactly similar to the one in
bosonic case (of course, the determinant is here the
inverse of one in the bosonic case)

nﬁl[det M) =
= {m det ( {

1+ o=

)y o

2i8)

The state |By, )( ) in Eq. (16) is the zero-mode
boundary state
) x

|B¢7 >( ) = [Crn <

1
X exp <§‘I>WF“F”>

1+ inI‘n
14
AB

|4)|B),  (18)

where |A)|B) is the vacuum of the zero modes db and
dfy, C'is the charge conjugate matrix, and the antisym-
metric matrix ® is defined in terms of the matrix S:

S=(1-9)"1+a).

The details of obtaining Eqs. (18) and (19) are given in
Appendix A. Because the matrix S should be orthogo-

nal, S1_gT

(19)

its definition

Stmy = Simy + [(Semy) ™"
implies that the matrix S should satisfy the relation
T 1
Stmy = Simy = Sy + Sy (20)

According to Eqgs. (5)—(8), S is defined in terms of the
background fields. Thus, Eq. (20) imposes a relation on
these background fields. When the tachyon and veloc-
ity are put to zero in action (1), we obtain ® = F, and
hence the term exp(3®,3I*T'?) reduces to the known
form exp(3FasTT?) [3].

3. INTERACTION OF THE BRANES

The interaction amplitude between Dp;- and

Dpo-branes in each sector is defined as

ANS-NSR-R =

= 2a'/dt NS7R<Bl,T = 0|€_tHNS‘R|BQ,T = 0>NS,R~
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The total boundary state of each sector is

|B,17,7' = 0>NS7R = |BX7T = 0>|th,7' = 0> X
X |By,n, T = 0)xs R|Bsgh, 7, T = 0)Ns R-
In Appendix B, the projection process is discussed. The

total projected boundary states are given by Eqs. (40)
and (41).

3.1. Interaction amplitude in the NS—NS sector

Using boundary state (40) for NS-NS sector, after
a long calculation, we obtain the total interaction am-
plitude in this sector as

o'Vg T, T
A B — u P17 p2
VN 5emE -Vl
y lo—o[ det[M(m—1/2)1 M(m—1/2)2] o
m—1 det[M(m)lM 2]
7 i gl ialt
dt
< i Iles (Mg i) -
0 ic '
7\ din - _
in, in )2
in
1[5 1— g™ )2
x = — ] x
(1 [

det(1 4+ S(m_1/2)18(7;n_1/2)2q2m71)
det(1 — S(m)ls(T )2q2m)
1>‘|>
X

2
_ H ( ) X
det(1 — S(m—1/2)13(m_1/2)2q2m7
1
X exp | —7 ETQT'E+ Z y2 y2 (K )allﬁll +
o8]

det(1 — S(m)lsa)Qqu)
1
X X
\/det Q det Ky det K>

5
+ 3y (K sy ., (21)

a6y

where ¢ = 72! and V; is the common volume of the
branes. The set {i} comprises directions perpendicular
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to both branes except ig, {u} comprises the directions
along both branes except 0, {a}} is used for the di-
rections along the Dp;-brane and perpendicular to the
Dpo-brane and {ah} indicates the directions along the
Dp»-brane and perpendicular to the Dp;-brane. i, and
i, are respectively related to the compact and non-
compact parts of i. The matrices Q, K;, K» and the
doublet E are defined is terms of their elements as

o't
- _ - 1 2 1_ 2
Qn 2(V2—V1)2( + V51 -7 +
+ 2ia’ (U7 (1 = V2)?,
Om= —t (1412 (1-W2)—
22 = 2(Va — 1) 2 1 (22)
_ 2Z~al(U2—1)00(1 _ V12)2,
a't 5
Q12=Q21=W(1+V1 ) X
X (1+V22)(1—V1V2),
i i 2\2 i
Bl = ——— O(14+Vi9) =y O (1414 V5
1 (Vo V1)[y2(+1) y1(+12)],(23)
i i 212 i
By = ———— °(1 —yp"0(1
A (Y10 (14V3%)? =o' (1411 V3)] |
’O/B' . 1
K7 =4dia <1—§(5O/15/1> X
(U5 — ol
(11 ) 1 (24)
I’uv = 4io/ (1 - 551“,) (U'fl)W - 5a't5m,

KT = K = dio! (U7 )"

By changing 1 — 2 and ¢ — —i in the elements of
the matrix K, we obtain the elements of the matrix
K5. Obviously @, E, and K are velocity and tachyon
dependent.

In amplitude (21), the theta function comes from
the compact part of the set {X z}, while the exponential
and its pre-factor in the third line originate from the
noncompact part. In fact, the exponential is a damping
factor with respect to the distance of the branes. If all
directions {X 5} are compact, the exponential and its
pre-factor disappear. In this case, i. takes all values of
i. In the case where all directions {X'} are noncom-
pact, the ©3 factor is removed, and hence 7,, takes all
values of i. The next two lines, which contain the S ma-
trix, reflect the part of the oscillators, conformal ghosts
and superconformal ghosts. The remaining part, which
is obtained by integration over the momenta, Eq. (10),
is due to the presence of the velocities and the back-
ground tachyon fields. In the absence of the velocities
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and tachyon fields, this factor is also absent, and hence
the interaction amplitude resembles the one in [3].

3.2. Interaction amplitude in the R-R sector

For interaction amplitude in the R—R sector, we use
the total GSO-projected boundary state for the R-R
sector, the Eq. (41), and follow the same procedure as
in the NS-NS sector, whence

_ OéIVﬁ Tp1Tp2
ARR = San® W n )
Ood o - y2 ia't
x [t 1105 27rR— )
0 ic
T %, 1 = =
X( a) e T Z(yﬁ"—yy")z X
ad 2det(14+Sm)1 S 1,a*™)
< | ¢TI < ) 1 (m)2 +¢' | x
oyt 14+¢2m det(l—S(m)lg(m)2q2m)
1

X _ — X
Vdet QQ det Ky det K»

xexp |—- | ETQ'E + Z yz y2 11)0/16’1 +
o8]
3 U (K ey ] . (25)
oy, J
where
(= --Tr[G.C'GE, (26)
(= —iTr[GLC'GTery), (27)
and

G2 = exp %(‘I)(m))uurury
We note that the variables ¢ and ¢’ implicitly depend on
the brane dimensions through ®; and ®» in G; and G».

We now study the total amplitude, i.e., the combi-
nation of the amplitudes in the NS-NS and R-R sec-
tors. We consider the following special case: there is
no compactification, the two Dp-branes are parallel and
have the same dimensions, and the same fields live on
them. As in the literature, this interaction amplitude
vanishes due to the cancelation of the attractive and
repulsive forces in the NS-NS and R-R sectors.

In the case under study, in addition to the fields
living on the branes, velocities are also present, which
are transverse fluctuations of the branes. In amplitudes
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(21) and (25), the relative speed appears in the denom-
inators. This imposes a constraint on the system that
the velocities of the branes should be different; other-
wise, the total amplitude becomes infinite. In this case,
we cannot check the vanishing of the interaction ampli-
tude for identical parallel branes with the same fields.
Therefore, even if all the fields are identical, the veloci-
ties should be different. This causes the branes to have
different ®’s and consequently different S’s. Then the
NS-NS and R-R amplitudes cannot cancel the effect of
each other.

4. LONG-DISTANCE BEHAVIOR OF THE
AMPLITUDE

We now find the interaction between the branes
when they are far from each other. That is, we find
the behavior of interaction amplitudes (21) and (25) as
time tends to infinity. Conventionally, in the large-
distance limit, only, the massless states of a closed
string contribute to the brane interaction.

The large-distance amplitude is equivalent to the
long-time behavior of the branes. It can be obtained
by sending ¢ to zero in Eqs. (21) and (25). Hence, the
interaction amplitudes due to massless states in the
NS-NS and R-R sectors are
VUTZM sz

4(2m)%
Z'(_]_)(P1+ZD2)/2 9dw+1/2
X al(p1+p2)/2(1 + V12)(1 + ‘/22)

oo

% H det[M(m—l/Q)lM(m—1/2)2] %
det[M(m)lM(m)2]

lim Ans—ns =
q—0

X

m=1
™ " T Fnn2
X/dt ( m) exp _4O{It Z(ylz _le ) X
in
2[Te(S1)15()) — 2
t1+(p1+p2)/2 ’

(28)

and
. _ Vz Tp1Tp2
o ARR = g X
i(—=1)(prtp2)/2 9dut1/2
X 5 5 X
o (Pr+p2)/2(1 + V7)) (1 + V57)

[e’e] d-
T\ 1 Tn L, in2
<Ja{ (V) oo (- Do)

in

li 71 29
th;rgot1+(:01+:v2)/2 - (29)
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We do not extend the limit to the exponential part and
its pre-factor in Eqgs. (28) and (29) because these factors
are related to the positions of the branes, and closed
string emission is independent of the location of the
branes. When there is no tachyonic background [3], the
last factors in Eqgs. (28) and (29) do not have the factor
1/t1+(P14p2)/2 - Thus, due to the presence of tachyon
fields, the interaction amplitude decreases with time.
In fact, the statement that the massless closed string
states dominate in the interaction at large distances
berween the branes is valid until there is no tachyon
background in the system.

There is an interpretation for this unusual behavior.
In fact, the open string tachyon background causes an
instability in the system. Therefore, after a sufficiently
long time, by the tachyon rolling [12] toward its min-
imum potential, unstable D-branes decay to the bulk
modes and their dimensions decrease to reach a sta-
ble system. Final products of this process are branes
with lower dimensions or the closed string vacuum [10].
This implies that there are no physical perturbative
open-string states around the minimum of the poten-
tial. This is because the open string states live only on
the branes. Thus, in the concept of interacting branes,
as time passes, leading to the tachyon rolling and a
decrease in their dimensions, the brane configuration
distorts and prevents them from interacting.

The amplitude Ans—ns in Eq. (28) depends on
the background fields through the factor Tr(8(1)18(T1)2)
and the determinants of the matrices {My,_1/2)|m =
=1,2,3,...}, while such a dependence is absent in the
amplitude Ag-r in Eq. (29). In other words, when
the branes are far from each other, the R—R amplitude
becomes background independent.

Another interesting feature of the long-time ampli-
tude is its time-dependent behavior on the brane di-
mensions. An exception here is the D-instanton. When
two D-instantons, which have the dimension p; = py =
= —1, interact, the factor 1/t'T(P1+r2)/2 is removed and
the long-time amplitude behavior resembles that of a
system without a tachyon. For this system, the pre-
sence of the tachyon does not affect the conventional
behavior of the large-distance interaction.

5. CONCLUSIONS

The boundary state of a closed superstring traveling
between two moving branes in the presence of B, a
tachyon, and a U(1) gauge field was calculated. A no-
table feature in the boundary state equations is the pre-
vention of closed string wrapping around the compact
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directions of spacetime, which is due to the presence of
the tachyon field. Also, the boundary state includes a
momentum-dependent exponential factor, which is ab-
sent in the conventional boundary states. This factor
originates from the zero-mode parts of the velocity and
tachyon terms in the boundary action.

The interaction amplitude of the branes via an ex-
change by a closed string was calculated for the NS-NS
and R-R sectors. It is shown that even for codimen-
sion parallel branes with similar external fields, the to-
tal amplitude is not zero. This is due to the presence
of the velocities and tachyon fields in the system.

The long-distance behavior of the interaction am-
plitude was studied. In this domain, the instability of
the branes due to the background tachyon fields weak-
ens the interaction. This decreasing behavior can be
understood in terms of dissipation of the branes to the
bulk modes because of the rolling of the tachyon to its
minimum potential in the long-time regime. The in-
teraction of two D-instantons obviates this decreasing
behavior. The long-time amplitude in this case behaves
as in the conventional case, in which the massless states
dominate.

APPENDIX A

Zero-mode boundary state in the R—R sector

The state |B¢7n)g}) in Eq. (16) is the zero-mode

boundary state that obeys the equation

|By,m)y) = M5 | 4)|BY, (30)

where |A)|B) is the vacuum of the zero modes db and
dy. The matrix M has to satisfy the equation

(T MM —inst | T MOT =0, (31)
We consider a solution of the form
1+ in[‘n
(m — or Ll 92
M cn(Hin)G, (32)

where C is the charge conjugation matrix. Substitution
of Eq. (32) in Eq. (31) leads to the following equation
for the matrix G:

‘G = 8" ,Gr". (33)
There is a conventional solution for G in the form
1
G =exp <§<I>,“,F“FV> . (34)

Indeed, we must expand the exponential with the con-
vention that all gamma matrices anticommute, and
therefore there are a finite number of terms. The anti-
symmetric matrix ® is defined in terms of the matrix
S, see Eg. (19).
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APPENDIX B

GSO-projected and ghosts boundary states
The GSO-projected boundary states are given by

1— (_1)F+G 1— (_1)F+G

|B,T:0>Ns: D) 5 X
X |B,77 =4+1,7= 0>NS7 (35)
1 —1"(=1 F+G 1= (=1 F+G
Bor gy = LHED"CED ()G

2 2

x |B,n=+1,7=0)r, (36)

where n is an even number for the type-ITA superstring
theory and an odd number for the type-IIB superstring
theory. The definitions of F' and G are

o0
F:E:Mwm
r=1/2

o0

G=- Z (Y=rBr + B=rr)

r=1/2
in the NS-NS sector, and
(—1)F - Fll(_1)2:=1 d‘imdmu7

oo

G= _'YOBO - Z (77mﬂm + ﬂfm'Ym)

m=1

(38)

in the R-R sector. Similar definitions also hold for F'
and G. Hence, the total projected boundary states are

|B,7 = 0)ns =

1
:§(|B7+7T:0>NS_|B7_7T:0>NS)7 (39)

|B, 7 =0)

(|B7+7T = 0>R + |B,—,T = 0>R) . (40)

R
1
T2
Since the bulk action in the Eq. (1) preserves con-
formal symmetry, working in the covariant formalism
requires including conformal ghosts [2, 16]. In fact, we
need a part of the ghosts (i. e., anticommuting fields b,
c, Z, and ¢) in the bosonic boundary state. This part is
independent of the background fields and is expressed

as
]X

1).

|th,7’ = 0> =

= exp lz ehimro (c,mg,m — b,mE,m)
m=1

co + ¢o
X
2

lg="1)lg (41)



MKITD, Tom 141, Bhm. 2, 2012

Interaction of moving branes with background massless . ..

In superstring theory, in addition to the conformal
ghosts, we should also consider the superconformal
ghosts. Then, the boundary states, corresponding to
the superconformal ghosts in the NS-NS and R-R sec-
tors, are given by

|BSgh7n7T = 0>NS =

=exp |in i (”y—rg—r—ﬂ_ﬁ—r) X

r=1/2

|BSgh7n7T = 0>R =

o0
= exp lin > (v-mBom = Bomom) + imo,é’o] x
m=1
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