ZK9T®, 2012, rom 141, Boim. 6, cTp. 1156-1161

© 2012

ARTIFICIAL NETS FROM SUPERCONDUCTING NANOGRANULES

Yu. N. Ovchinnikov®, V. Z. Kresin®

® Maz-Planck Institute for Physics of Complex Systems
01187, Dresden, Germany
Landau Institute for Theoretical Physics, Russian Academy of Sciences
142432, Chernogolovka, Moscow District, Russia

b Lawrence Berkeley Laboratory, University of California at Berkeley, CA 94720, USA

Received August 29, 2011

We show that a large transport current can flow through superconducting nets composed of nanoclusters. Al-
though thermal and quantum fluctuations lead to a finite value of dissipation, this value can be very small
in one- and two-dimensional systems for realistic parameters of the nanoclusters and distances between them.
The value of the action for vortex tunneling at zero temperature can be made sufficiently large to make the
dissipation negligibly small. We estimate the temperature T of the transition from the thermal activation to

quantum tunneling.

1. INTRODUCTION

It was found recently that small-size nanoclusters
with a magic or close to magic number of electrons
can have high values of the superconducting transition
temperature [1-3]. In such systems, the resonance tun-
neling between nanoclusters can occur [4,5] and the
nonresonant part of the critical current can be signifi-
cantly larger than the estimate of the critical current
value made by Ambegaokar and Baratoff [6]. The res-
onant part of the critical current depends on geome-
try of the system. As a result, the self-organization
can occur in the degenerate case. The high-T, super-
conducting clusters are promising blocks to construct
superconducting nets or chains.

An important question for such systems is the role
of quantum and thermal fluctuations. The usual con-
cept of the Coulomb blockade should be significantly
modified. For example, the mass renormalization for
nanoclusters can be much larger than the zero “mass”
in the standard concept of the Coulomb blockade [7-9].

The quantum equation describing the Josephson ef-
fect is similar to that for motion of a particle in a wash-
board potential [10,11]. The junction capacitance Cj
plays the role of mass (in the zeroth approximation). In
the classical picture, the “particle” is localized in some
potential well. In this picture, the usual concept of the
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Coulomb blockade (with Uy > €?/2Cy [12,13]) corre-
sponds to the condition Uy > wg/2, where Uy is the
barrier height and wyq is the frequency of small oscilla-
tions near the bottom of the potential. This condition
means that the energy of oscillations is smaller than the
barrier height (otherwise, it is impossible to localize the
“particle”).

Quantum effects lead to a strong renormalization of
Cy (“zero mass”) that corresponds to a single junction.
According to [9], the dissipation in nets is related with
transitions of quantum vortices between neighboring
wells. It is essential that an artificial net is characteri-
zed by the intrinsic inhomogeneity (the positions of the
vortex center inside the net are not equivalent), which
leads to the appearance of pinning. There exists some
crossover temperature Tp such that at 7' > Ty, the “de-
cay” rate is described by the Arrenius law exp(—Uy/T).
At T < Tp, the quantum “tunneling” becomes the do-
minant factor. Then we are dealing with the factor
exp(—A(T)), where A(T) is an effective action along
the optimal “trajectory” (in imaginary time). The
quantity A(T") is finite as T tends to zero.

The construction of nets (in two or three dimen-
sions) and chains from roadblocks allows obtaining
macroscopic samples with superconducting properties.
The characteristic current densities in such systems can
be larger than 107 A /em?. In one- and two-dimensional
systems, the presence of fluctuations leads to a finite
value of dissipation [9]. The objective is therefore to
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obtain samples with a low level of dissipation created
by classical (thermal) and quantum fluctuations.

First, we show that the value of the critical cur-
rent in superconducting nanocluster chains decays very
slowly as the number of links increases. Second, we
show that under the realistic assumptions taking only
the nonresonant part of the Josephson current and ef-
fective mass reorganization into account strongly sup-
presses quantum fluctuations (quantum tunneling of
vortices). If the conditions for resonant tunneling are
satisfied, the value of the critical current can increase
by several orders of magnitude [5]. As a result, all
the fluctuations are strongly suppressed and the effec-
tive action for vortex quantum tunneling is much larger
than unity [9]. Finally, we estimate the characteristic
size of a single vortex in a nanocluster net, which is
important for investigation of the properties of nets in
the presence of a magnetic field.

2. THE DEPENDENCE OF THE CRITICAL
CURRENT OF A CHAIN OF
NANOCLUSTERS ON THE NUMBER OF
LINKS

We suppose that the critical current distribution
function W of links in a chain has the Gaussian form

where J? is the mean value of the critical current
through one link. The variation is

§/2=((J2 = 1)*). (2)

The probability W (I > J) that the critical current
I > J for one pair of clusters is given by

/d]lexp< 5”2>. (3)

Hence, the probability for a chain of NV + 1 clusters to
have the critical current I > .J is

W =

W(I>J) =

Wyl > J) =
N

L [ane (-2
J

From Eq. (4), we obtain a distribution function (the
probability density) Wy 1 for the critical current of a
chain of N 41 clusters:

0
—Wn(I>J)=

Whr = =57

X exp { —

« In {%/Oiﬂexp(—w)} . )
J

The mean of the critical current of a chain with N
links is given by

(IYni1 = / dJ JWs1(J). (6)
0

For N > 1, the extremal point Jeze of Wi (J) is a

solution of the equation
N -1 K?)

eXp
/ dy exp(—

(7)

2K =

l\DI»—t

where
= (r]g - Jemtr) /\/S (8)

Equation (7) is quite accurate even for N ~ 1. From
Eq. (6), we can obtain the exact value of (J)s:

(J)s=J2 =) 5= (9)

Substituting N = 3 in Eq. (7), we obtain x(3) = 0.541.
For N > 1, we obtain

cewr (31 g

from Eq. (7). Tt follows from Eq. (10) that the criti-
cal current decreases very slowly with the length of the
chain. The value of the length at which the chain is
still superconducting can be estimated as

N < 2\/7?% exp ((Jg)Q) . (11)

Even for a relatively broad distribution v/§/J? ~ 0.1,
we obtain

N < 10%. (12)

Hence, the main problem is to suppress the thermal
and quantum fluctuations.
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3. THE AMPLITUDE OF THE NONRESONANT
PART OF THE JOSEPHSON CURRENT

The nonresonant part .J,, of the Josephson cur-
rent JO is quite simple for magic or near-magic clusters
because the form is nearly spherical for such clusters
(see [4, 5]):

i AP
Inor. = mz Z Z [wz +E2 w2 +E2(L1)] 8

) (2L+1)(2L1+1)Z0(L)ZO(L1) Eo (Lf
ab 6U0 \/m
V2mél D\ [ V2méUy
><I“L+1/2 5 9 Kp-1/2 —n ¢ *

(L+Dh <\/2m5U0 a)} o y
av/2mdUy, L+1/2 h

vV 2m5U0 D - vV 2m6U0
XI‘Ll—‘rl/Z T E IXL1,1/2 TG +

P (PR

Here, K, (z) is the Bessel function, a is the radius of
a cluster, D is the distance between the centers of the
clusters, dUp is the height of the potential barrier, Ey
is the energy of the last occupied shell, and Zy(L) are
zeros of the Bessel function (the states near the Fermi
level),

E*(L) = A%(w) + (i — E7)?, (14)
where fi is the chemical potential and E? is the electron
energy in the normal state with the angular momen-
tum L.

If the resonance conditions are satisfied, the reso-
nant part of the critical current exceeds the nonreso-
nant part (by many orders of magnitude). Our goal
is to show that although we take only the nonreso-
nant part of the current into account, the value of the
action for vortex tunneling can be made much larger
than unity. This guarantees that the resonant tunnel-
ing completely suppresses quantum fluctuations.

It is convenient to represent Eq. (13) for the value

of the critical current as

S el Ey h "
" 2rm2at §Uy \ 2moUga

X 3 (2LA+1)(2L1+1) Zo(L) Zo(L1)Crr, Brr,,  (15)
L,Ly

where
Crr, =277 Y |Aw)]?

x [0+ AW+ (i — E?] ' x

X [w? +|Aw)]? !

+ (ﬂ_Egl)Q]i 9

i V2méU, D
Bri, =K} < h 5) -
V2
X |:I‘7L1/2 <71Z(5U0a> +
(L+1)h <\/2m5U0 )}‘2
+ 71&[/4,1/2 —Q X
av/2mdUy, h

vV 2m6U0 D - vV 2m6U0
XI‘Ll—‘rl/Z T? IXL1,1/2 TU/ +

(L +1h . Vamdly \1°

LS TN C.oh | Rt

av/2mdU, h

For small junctions, the geometric capacity Co be-
tween two granules can be much smaller (see [9]) than
the effective value of the renormalized capacity C [7, 8].
The value of the renormalized capacity C' determines
the value of the action for vortex tunneling [9]. In
the low-temperature regime, the value of C is given
by (see [7,8])
3eh,

4. DETAILED INVESTIGATION OF THE
PARTICULAR CASE OF A MAGIC
CLUSTER WITH N; = 168

We consider the magic cluster Alsg (N, = 168) with
the parameters (HOS is the highest occupied state,
LUS is the lowest unoccupied state)

FEy = 1.467-107'" erg,
HOS(L =7, Zy(7) = 11.657),
LUS(L =4, Zy(4) = 11.7049),

a=6.07-10"% cm

(18)

In the low-temperature regime, we obtain the order
parameter A and the chemical potential fi:

B<Q2>1/2
1+ Cw?/(Q2)’ (19)
Q)2 =350 K, B=0455 C =0.065,

(Z8) -]}

A=Aw) =

p—FE}_,=E}_; {0.72

~—
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Zo(4)
Zo(7)

(28) 1))

Substituting the above value of the order parameter A
in Eq. (16), we obtain

p—EY_,=-E}_. {0.28

1012

EY_,—EY_,=1467 107" G

[

{By4 = 3.9397- 1075,
{By4 = 9.770609 - 104,
{Bys = 4.94382 - 1073,

11.7049
11.657

2
) - 1] = 0.0755 eV,
|

Brr = 6.3545 - 107©

2. For Uy = 2.5 €V, it follows from Eq. (16) that

{Bys = 2.093629 - 104,
{Byy = 2.448279- 1073,
{Bys = 8.535846- 1073,

By = 1.8725 - 1075,

3. For §Uy = 1 €V, it follows from Eq. (16) that

{Bys = 4.714718 - 107,
{Bys = 2.995027- 102,
{Bys = 7.732681- 102,

)

B.7 =2.33012- 1074,

Brr = 3.581055 - 1074,
Brr = 1.631306 - 1073,

Brr = 1.956326- 1073,
Brr = 2.30809 - 104,
Brr = 8.315719- 1074,

_0.530046 _ 4.2186-107
N L.
0.141228
047 = (92>1/2
as T — 0.
We consider the following special cases
0Uy = {5¢eV,25eV, 1eV},
o=1{5¢€ e ev} (21)

D={15A,14A,135A}.
1. For 6Uy = 5 eV, it then follows from Eq. (16)
that

By =1.5822-107°}, D =154,

By =4.77144-107%}, D =14 A, (22)
Byr = 1.460418 - 1073, By; = 2.68701-1073}, D =13.5 A,

Byr = 6.261247-107°}, D =15 A,

Byr =9.363453-107*}, D =14 A, (23)

Byr = 3.731565- 1073}, D =135 A.

Bz = 9.603918-107%}, D =15 A,

Byr = 8314328107}, D =14 A, (24)

By =2.5358-107%}, D =13.5A.

Using Eqs. (15), (20), (22)—(24), we can obtain the values of the critical current and the renormalized capacity
for different values of the distance D between centers of the clusters and the height of the potential barrier §Uy.

For 6Uy =5 eV,
1.22696 - 10> (D =15 A) 1.09748 -10~7 (D =15 A)
Jnr [CGSE] = | 3.247735-10% (D=14A) |, Y[em]= | 2905-10"¢ (D=14A4) |, (25
1.7111-10* (D =135 A) 1.53061-10~° (D =13.5 A)
for 06Uy = 2.5 €V,
2.40842-10° (D =15 A) 2.15427-10"% (D =15 A)
Jnr. [CGSE] = | 3.0055-10* (D =14A) |, Y [em]=| 268833-10° (D=144) |, (26)
1.09238-10° (D =13.5A) 9.77106-10~% (D =13.5 A)
and for §Uy =1 eV,
3.13935-10* (D =15 A) 2.808065-10~° (D =15 A)
Jnr [CGSE] = | 2.11697-10° (D =14 A) |, Y [em]=| 1.89357-10~* (D=144) |, (27
5.68733-10° (D =13.5 A) 5.08717-107* (D =13.5 A)
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where
3ehd,
Y =
16A2

(see Eq. (20)). The effective action value A for the vor-
tex underbarrier tunneling at 7' = 0 and zero value of
the transport current Iy, is given by (see [9])

h
A=4.522\/—J,,.Y. 2
522/ <5 Jur (29)

For several values of {6Up, D}, the following values
of the action A follow from Eq. (26)—(28):

(28)

{6Uy=2.5¢eV, D=135A, A=15.706},
{Us=1eV, D=14 A, A =30.438}, (30)
{6Us=1eV, D=135A, A=81.774}.

In those three cases, the action value is much
larger than unity. Hence, the nets with the parame-
ters {6Up, D, A} have large values of the critical cur-
rent. For example, when {60y, = 16V, D = 14 A},
the expected value of the critical current density is
j~10% A/cm”.

If the resonant conditions for tunneling processes
are satisfied, the critical current value exceeds the non-
resonant part J, . by several orders of magnitude [5].
As aresult, the admissible range of values of the param-
eters {0Uy, D, A} for which the thermal and quantum
fluctuations do not completely destroy the supercon-
ducting current is significantly expanded.

5. CURRENT DISTRIBUTION IN A SINGLE
VORTEX

At large distances (p > D) from a vortex center,
the distribution of currents in a granular artificial net
is similar to that in thin films (a Pearl vortex [14]).
The Maxwell equation for the vector potential A can
be written as

4 J, 1 2eA
rot rotA = —& “¢5(2) <— - e—) eg, (31)
c h p c
where eg = (—sinf,cosf) and A = A(z, p)ey.
In the considered gauge, div A = 0 and the Fourier
transformation of Eq. (31) gives

2
(K + %) Agg = —1— x

eff

Q2

XAy — %(— sinfg, cosby), (32)
4mel,
-1 _ c
Aeif = The

where ¢ is the speed of light.
From Eq. (32), we readily obtain

A, Aeff (_ 4im? ],

=1 iy ” ) (—sinf,,cosb,). (33)

Substituting (33) in the right-hand side of Eq. (31), we
obtain the current density j (per unit length) in the
form

~‘:/jdz:—Aeffj‘c X
p

0(gp) .
__J09P) ( 4
X /dq(l )\eﬁg)Z( sinf,cosh), (34)

where Jy(x) is the Bessel function. Because Jo(0) = 1
and [;¥ daJo(z) = 1, we obtain [10]

Je, .
J(p<reps) = ?(— sin 6, cos h),
: Aeft J, (35)
J(o>Ae) = e (—sinf, cosf).

In the particular case where D = 14 A and U, =
= 1 eV, we use (35) to obtain the value of the “pene-
tration depth” or the vortex characteristic size

Aer = 7-107* cm. (36)

The characteristic magnetic field H; at which vor-
tices start overlapping is determined by the condition

Hy X\ = ®o, (37)

where ®; = whe/e is the quantum flux. If Ao is given
by Eq. (36), then the value of H; is very small:

H, [O€] ~ 0.4. (38)

However, the distances essential for the pinning phe-
nomenon are of the order of D. The characteristic
magnetic field Hy that corresponds to such distances
is extremely high:

P
H, [T] ~ D2 ™ 500. (39)
Therefore, in a wide range of the magnetic fields, we
can expect a weak dependence of the critical current
on the magnetic field.
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6. CONCLUSIONS

We showed that a large-density transport current
can flow through superconducting nanoclusters nets.
For realistic values of the parameters, the energy dissi-
pation due to thermal and quantum fluctuations can be
made negligibly small. For such systems, the value of
the temperature Ty defined as the temperature of the
transition from thermal activations to quantum tunnel-
ing can be estimated as [9]

1 /2ehl, Ah

To="7.136-10"2— =0.233—. 40
0 VY . (40)
For the parameter value given by (19), we obtain
T, =37 K. (41)
Equation (40) is valid under the condition
3ehJ,
— 42
Co < 16A2 (42)

We note that the effective mass M ™ near the top of
the barrier of the vortex tunneling in the net is approx-
imately 30 times larger than the renormalized mass of
a single junction [9].

The results obtained here indicate that supercon-
ducting nets are promising objects for obtaining high-
temperature superconducting lines with a high trans-
port current density and a weak dependence on the
external magnetic field.
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