РАСЧЕТЫ СТРУКТУРЫ И ЭНЕРГИИ КОГЕРЕНТНЫХ МЕЖФАЗНЫХ ГРАНИЦ МЕЖДУ АУСТЕНИТОМ И МАРТЕНСИТОМ В ЖЕЛЕЗЕ МЕТОДОМ ОБОБЩЕННОГО ФУНКЦИОНАЛА ГИНЗБУРГА – ЛАНДАУ

В. Г. Вакс^{а,b*}, А. Д. Заболотский^{а,b}, И. Р. Панкратов^а

^а Национальный исследовательский центр «Курчатовский институт» 123182, Москва, Россия

^b Московский физико-технический институт (государственный университет) 117303, Москва, Россия

Поступила в редакцию 16 августа 2011 г.

На основе развитых ранее методов и экспериментальных данных о фононных спектрах и термодинамике ГЦК- и ОЦК-железа построен обобщенный функционал Гинзбурга – Ландау для микроскопических исследований кинетики фазовых превращений аустенит-мартенсит в железе. Этот функционал использован для расчетов структуры и свойств плоской межфазной границы между аустенитом и мартенситом при произвольных ориентациях этой границы и различных температурах. Рассчитаны профили параметра превращения в области межфазной границы. Найдено, что ширина межфазной границы обычно существенно превышает межатомные расстояния. Значения поверхностных энергий межфазных границ имеют порядок 500–800 эрг/см², сильно зависят от ориентации и имеют резкий минимум, когда межфазные границы параллельны плотноупакованным атомным плоскостям.

1. ВВЕДЕНИЕ

Теоретические подходы к описанию мартенситных фазовых превращений в металлах и сплавах, прежде всего, в железе и сталях, обсуждаются уже многие годы, см., например, [1–5]. Однако эти обсуждения носят обычно только феноменологический или качественный характер, микроскопические же подходы здесь пока не развиты. Как отмечено в работах [6, 7], для развития последовательной теории мартенситных превращений можно использовать метод обобщенного функционала Гинзбурга-Ландау (ОФГЛ). В этом методе эволюция структуры кристалла при фазовом переходе описывается с помощью нескольких слабонеоднородных параметров превращения η_n , в качестве которых для мартенситных превращений естественно выбирать параметр s, описывающий относительное скольжение (в литературе называемое "shuffling", "тасование" [11]) плотноупакованных атомных плоскостей, а также деформацию кристалла $u_{\alpha\beta}$ [6, 7]. Метод ОФГЛ

при описании фазовых превращений в неоднородных системах отличается от обычного метода Гинзбурга-Ландау (ГЛ) тем, что в ОФГЛ малыми предполагаются только градиенты параметров превращения η_p , а сами η_p могут быть любыми [8], в то время как для применимости метода ГЛ сами η_p тоже должны быть малы. Поэтому метод ГЛ применим только к описанию фазовых переходов второго рода, которые в реальных сплавах очень редки, в то время как ОФГЛ может использоваться для изучения весьма широкого круга явлений, включая мартенситные превращения с фазовыми переходами первого рода. При этом ОФГЛ может строиться не только на основе феноменологических разложений по степеням η_p , как это обычно делается в методе ГЛ, но и на основе микроскопических расчетов, как это делалось, например, в работе [9] и делается ниже.

Как обсуждалось в работах [6, 7], реалистические ОФГЛ для описания мартенситных превращений можно строить на основе экспериментальных данных о фононных спектрах, если использовать некоторые естественные интерполяции. В работе [6]

^{*}E-mail: vaks@mbslab.kiae.ru

точность таких интерполяций при описании фазового перехода между ОЦК- и ГПУ-фазами железа под давлением была проиллюстрирована сравнением с результатами расчета *ab initio* [10]. В настоящей работе аналогичная интерполяция будет использована для того, чтобы на основе имеющихся данных о фононных спектрах в ГЦК- и ОЦК-фазах железа [12–14] построить ОФГЛ, описывающий превращения аустенит-мартенсит в железе и малоуглеродистых сталях.

Далее этот ОФГЛ будет использован для расчетов структуры и свойств плоской когерентной межфазной границы (МФГ) между аустенитом и мартенситом. Отметим, что для реальных включений мартенсита в аустените МФГ являются когерентными и практически плоскими только в случае мартенситных превращений при достаточно низких температурах, когда образуется пластинчатый (plate) мартенсит, в то время как при более высоких температурах образуется реечный (lath) мартенсит с заметной пластической деформацией на границах [1]. Однако в этой работе эффекты пластической деформации для простоты не рассматриваются. Будут рассчитаны все основные характеристики обсуждаемых межфазных границ, включая профили параметра превращения s в области МФГ, ширину МФГ w и ее поверхностную энергию σ , в зависимости от ориентации МФГ n и температуры T. Как обсуждалось многими авторами, эти характеристики МФГ существенно входят в любые микроскопические рассмотрения кинетики мартенситного превращения, прежде всего, в теории зарождения и роста мартенситных включений в аустените, см., например, [1, 2]. В то же время какие-либо расчеты или оценки значений $w(\mathbf{n}, T)$ и $\sigma(\mathbf{n}, T)$ в литературе отсутствуют, а в теоретических обсуждениях используются только различные произвольные предположения об этих величинах [1, 2]. Поэтому расчеты и оценки, выполненные в настоящей работе, могут дать основу для реалистических теорий кинетики превращений аустенит-мартенсит в железе и сталях.

В разд. 2 обсуждаются общее выражение для используемого ОФГЛ и параметры, необходимые для его построения. В разд. 3 формулируется вариационный метод расчета свойств МФГ между мартенситом и аустенитом на основе ОФГЛ, включая наиболее важный для приложений случай, когда одна из этих фаз (аустенит) является метастабильной. В разд. 4 с помощью развитого вариационного метода получены общие уравнения для расчетов свойств МФГ и приведены явные решения этих уравнений в практически важном случае, когда вклады членов

с градиентами тензора дисторсии являются малыми. В разд. 5 и 6 обсуждаются методы микроскопических расчетов параметров используемого ОФГЛ. Эти расчеты не содержат подгоночных параметров и основаны на имеющихся экспериментальных данных о термодинамике и о фононных спектрах в ГЦК- и ОЦК-железе [12-15]. В разд. 7 приводятся численные значения параметров ОФГЛ, полученные методами, обсуждавшимися в разд. 5 и 6. В разд. 8 все описанные методы и результаты используются для расчетов различных характеристик когерентных МФГ между аустенитом и мартенситом в железе, включая ширину этих МФГ, их поверхностные энергии и профили параметров превращения в области МФГ. Основные выводы приводятся в Заключении.

2. ОБЩЕЕ ВЫРАЖЕНИЕ ДЛЯ ИСПОЛЬЗУЕМОГО ОФГЛ

Наш подход будет основан на результатах работ [6, 7]. Исходим из общего выражения для рассматриваемых ОФГЛ, аналогичного выражению (35) из работы [6]:

$$F = \int \frac{d^3 R}{v_{at}} f_{tot}(s, u_{\alpha\beta}, \nabla s, \nabla^2_{\alpha\beta} u_{\gamma}).$$
(1)

Здесь s — параметр превращения (в работах [6, 7] называвшийся параметром фононных смещений), который описывает относительные скольжения, или «тасование», плотноупакованных атомных плоскостей при обсуждаемом фазовом превращении, так что значение s = 0 соответствует аустениту, а значение s = 1 — мартенситу. Через $u_{\alpha\beta}$ обозначены деформации, сопровождающие это превращение, а через $\nabla^2_{\alpha\beta}u_{\gamma} = \partial^2 u_{\gamma}/\partial x_{\alpha}\partial x_{\beta}$ — вторые производные смещений, т.е. градиенты тензора дисторсии $u_{\alpha,\beta} = \nabla_{\beta}u_{\alpha}$. Отметим, что тензор дисторсии есть сумма симметричного тензора деформации $u_{\alpha\beta} =$ $= (\partial u_{\alpha}/\partial x_{\beta} + \partial u_{\beta}/\partial x_{\alpha})/2$ и антисимметричного тензора поворота $\varepsilon_{\alpha\beta} = (\partial u_{\alpha}/\partial x_{\beta} - \partial u_{\beta}/\partial x_{\alpha})/2$:

$$u_{\alpha,\beta} = u_{\alpha\beta} + \varepsilon_{\alpha\beta},$$

и, как обсуждалось в работе [7], при обсуждаемом превращении как деформации $u_{\alpha\beta}$, так и повороты $\varepsilon_{\alpha\beta}$ достаточно малы: $|u_{\alpha\beta}|, |\varepsilon_{\alpha\beta}| \leq 0.1$. Функция f_{tot} в формуле (1) есть свободная энергия на атом (для краткости называемая ниже просто свободной энергией), а v_{at} — объем, приходящийся на один атом. В ходе обсуждаемого превращения аустенит—мартенсит этот объем, вообще говоря, меняется, и это изменение можно учитывать, вводя в

 v_{at} зависимость от параметра превращения s, например, типа обсуждаемой ниже в уравнении (8). Однако для рассматриваемого превращения аустенит-мартенсит в железе эти изменения в множителе v_{at} малы и несущественны: $\delta v_{at}/v_{at} < 0.03$, и во избежание ненужных усложнений объем v_{at} в формуле (1) ниже считается постоянным.

Полную свободную энергию f_{tot} в формуле (1) будем записывать в виде суммы «однородных» фононного и упругого вкладов, f_s и f_u , и градиентных вкладов, обозначаемых соответственно как G_{ss} , G_{su} , G_{uu} :

$$f_{tot} = f_s + f_u + G_{ss} + G_{su} + G_{uu}.$$
 (2)

Для функции $f_s = f_s(s)$ в формуле (2) будем использовать интерполяцию полиномом по s, аналогичную использованной в работе [6] при обсуждении фазового перехода между ОЦК- и ГПУ-фазами железа под давлением. Эта интерполяция учитывает то, что функция $f_s(s)$ должна иметь минимум как при s = 0, т. е. в ГЦК-фазе (аустените), так и при s = 1, т. е. в ОЦК-фазе (мартенсите), и эти минимумы разделены некоторым барьером, плавно меняющимся с s. При этом смещение каждого атома в ходе обсуждаемого превращения, как показано в работах [6,7] и ниже, является достаточно малым. Поэтому естественно предположить, что при изменении *s* между нулем и единицей, описывающем это превращение, изменения свободной энергии $f_s(s)$ являются весьма плавными. Тогда полное изменение $f_s(s)$ в данном интервале должно адекватно описываться полиномом низшей возможной степени, аналогичным использованному в формуле (73) из работы [6], т.е. полиномом пятой степени, даваемым формулой (3) ниже.

Однако, в отличие от работы [6], мы будем рассматривать МФГ не только при наличии полного равновесия между обсуждаемыми двумя фазами, аустенитом и мартенситом, но также и случаи, когда одна из этих фаз (аустенит) метастабильна, так что свободная энергия на один атом в мартенсите ниже, чем в аустените, на некоторую величину $\Delta = \Delta(T)$. Тогда, если отсчитывать свободную энергию от ее значения в аустените, то функцию f_s в формуле (2) удобно записывать в виде суммы двух вкладов: $f_e(s)$, описывающего f_s при наличии полного межфазного равновесия и аналогичного использованному в формуле (73) из работы [6], и вклада $f_{\Delta}(s)$, связанного с метастабильностью аустенита:

$$f_{s} = f_{e}(s) + f_{\Delta}(s),$$

$$f_{e}(s) = \frac{1}{2}s^{2}(1-s)^{2}[c_{a} + (c_{m} - c_{a})s],$$

$$f_{\Delta}(s) = -s^{3}(10 - 15s + 6s^{2})\Delta =$$

$$= [(1-s)^{3}(1 + 3s + 6s^{2}) - 1]\Delta.$$
(3)

Здесь и ниже индексы «а» или «m» соответствуют аустениту или мартенситу, т.е. ГЦК- или ОЦК-фазе. Из формул (3) следует, что константа c_a или c_m имеет смысл «жесткости» (т.е. второй производной от свободной энергии) относительно параметра превращения s (т.е. относительно рассматриваемого тасования плотноупакованных плоскостей) в аустените или в мартенсите, а методы расчета этих констант описываются ниже в разд. 5.

Однородный деформационный вклад $f_u = f_u(u_{\alpha\beta},s)$ в формуле (2) будем оценивать в приближении линейной теории упругости [7, ф. (24)], поскольку, как обсуждалось в работе [7], значения упругих деформаций, возникающих при превращении $a \to m$, являются достаточно малыми:

$$f_u = \frac{1}{2} v_{at} c_{\alpha\beta\gamma\delta} (u_{\alpha\beta} - u^e_{\alpha\beta}) (u_{\gamma\delta} - u^e_{\gamma\delta}).$$
(4)

По повторяющимся греческим (декартовым) индексам здесь и ниже подразумевается суммирование, а $c_{\alpha\beta\gamma\delta} = c_{\alpha\beta\gamma\delta}(s)$ — значения модулей упругости на пути превращения, оцениваемые с помощью линейной интерполяции [7, ф. (48)] между значениями этих модулей в ГЦК- и в ОЦК-железе:

$$c_{\alpha\beta\gamma\delta}(s) = c^a_{\alpha\beta\gamma\delta} + s(c^m_{\alpha\beta\gamma\delta} - c^a_{\alpha\beta\gamma\delta}).$$
 (5)

Значения же равновесных деформаций $u^{e}_{\alpha\beta} = u^{e}_{\alpha\beta}(s)$ в (4) определяются из условия минимума функции f в формуле (24) из работы [7] по $u_{\alpha\beta}$, т. е. из уравнений

$$c_{\alpha\beta\gamma\delta}(s)u^{e}_{\gamma\delta} = \sigma_{\alpha\beta}(s), u^{e}_{\alpha\beta} = (\mathbf{c}^{-1})_{\alpha\beta,\gamma\delta}\sigma_{\gamma\delta}(s),$$
(6)

где \mathbf{c}^{-1} означает тензор, обратный тензору $\mathbf{c}.$

Для спонтанного напряжения $\sigma_{\alpha\beta}(s) = (\partial f_u / \partial u_{\alpha\beta})_{u_{\alpha\beta}=0}$ в работе [7] обсуждалась линейная интерполяция [7, ф. (51)] между значением этого напряжения в аустените, $\sigma_{\alpha\beta}(0) = \sigma^a_{\alpha\beta} = 0$, и в мартенсите, $\sigma_{\alpha\beta}(1) = \sigma^m_{\alpha\beta}: \sigma_{\alpha\beta}(s) = s\sigma^m_{\alpha\beta}$. При этом значение $\sigma^m_{\alpha\beta}$ оценивалось по формулам линейной теории упругости [7, ф. (50)]:

$$\sigma^m_{\alpha\beta} = c^m_{\alpha\beta\gamma\delta} u^m_{\gamma\delta},\tag{7}$$

где $c^m_{\alpha\beta\gamma\delta}$ — модули упругости в мартенсите, а $u^m_{\gamma\delta}$ — спонтанные деформации решетки мартенсита относительно аустенита. Однако такая линейная

интерполяция для $\sigma_{\alpha\beta}(s)$ не учитывает соображений симметрии, обсуждаемых ниже в связи с формулой (93), которые показывают, что производные $\partial \sigma_{\alpha\beta}/\partial s$ должны обращаться в нуль как при s = 0, т. е. в аустените, так и при s = 1, т. е. в мартенсите. Поэтому ниже для $\sigma_{\alpha\beta}(s)$ используется интерполяция полиномом от s минимально возможной (третьей) степени, которая удовлетворяет обоим этим условиям:

$$\sigma_{\alpha\beta}(s) = s^2 (3 - 2s) \sigma^m_{\alpha\beta}. \tag{8}$$

Для градиентного члена G_{ss} , билинейного по градиентам параметра превращения, используем то же выражение, что в формуле (23) из работы [7]

$$G_{ss} = g^{ss}_{\alpha\beta} \nabla_{\alpha} s \nabla_{\beta} s. \tag{9}$$

Явные выражения для градиентных коэффициентов $g_{\alpha\beta}^{ss}$ даются первым слагаемым формулы (48) или формулой (49) из работы [6]. Согласно этим формулам, коэффициенты $g_{\alpha\beta}^{ss}$ выражаются через матрицу силовых постоянных $\mathbf{A} = A_{mn}^{\alpha\beta}(s)$ шестиатомного кристалла, возникающего при каждом значении *s* на обсуждаемом пути превращения $a \to m$. Поскольку эти силовые постоянные, вообще говоря, меняются с *s*, то и градиентные коэффициенты $g_{\alpha\beta}^{ss}$ в формуле (9) должны зависеть от *s*.

Слагаемые G_{uu} и G_{su} в формуле (2), содержащие градиенты тензора дисторсии $\nabla^2_{\alpha\beta}$, будем для краткости называть градиентно-деформационными. Вклад G_{uu} соответствует членам, билинейным по градиентам $\nabla_{\gamma} u_{\alpha,\beta}$ (члены типа $u_{\alpha,\beta} \nabla_{\gamma} u_{\delta,\lambda}$, билинейные по компонентам тензора дисторсии и по их градиентам, не дают вклада в функционал (1), поскольку интегрированием по частям они сводятся к внеинтегральным членам, исчезающим в рассматриваемых вариационных задачах). Тогда вклад G_{su} можно записать в виде, аналогичном (9):

$$G_{uu} = g^{uu}_{\alpha\beta,\gamma\delta\lambda\mu} \nabla^2_{\gamma\delta} u_{\alpha} \nabla^2_{\lambda\mu} u_{\beta}.$$
 (10)

Аналогично, «смешанный» градиентный член G_{su} , билинейный по градиентам параметра превращения ∇s и по градиентам тензора дисторсии, можно записать в виде, аналогичном (9) и (10):

$$G_{su} = g^{su}_{\alpha,\beta\gamma\delta} \nabla_{\beta} s \nabla^2_{\gamma\delta} u_{\alpha}. \tag{11}$$

Градиентно-деформационные коэффициенты $g^{uu}_{\alpha\beta,\gamma\delta\lambda\mu}$ и $g^{su}_{\alpha,\beta\gamma\delta}$ в формулах (10) и (11), так же как и градиентные коэффициенты $g^{ss}_{\alpha\beta}$ в (9), можно вычислять или оценивать из выражений для матрицы силовых постоянных кристалла на пути

6 ЖЭТФ, вып.6

превращения **A**, как обсуждается ниже. Так же, как и в случае коэффициентов $g_{\alpha\beta}^{ss}$, эти градиентно-деформационные коэффициенты, вообще говоря, зависят от параметра превращения *s*.

Таким образом, в расчетах будет использоваться следующее общее выражение для свободной энергии f_{tot} в ОФГЛ (1):

$$f_{tot} = f_s(s) + \frac{1}{2} v_{at} c_{\alpha\beta\gamma\delta}(s) [u_{\alpha\beta} - u^e_{\alpha\beta}(s)] \times \\ \times [u_{\gamma\delta} - u^e_{\gamma\delta}(s)] + g^{ss}_{\alpha\beta}(s) \nabla_\alpha s \nabla_\beta s + \\ + g^{su}_{\alpha,\beta\gamma\delta}(s) \nabla_\beta s \nabla^2_{\gamma\delta} u_\alpha + \\ + g^{uu}_{\alpha\beta,\gamma\delta\lambda\mu}(s) \nabla^2_{\gamma\delta} u_\alpha \nabla^2_{\lambda\mu} u_\beta, \quad (12)$$

где функция $f_s(s)$ дается выражением (3). Деформации на пути превращения $u^e_{\alpha\beta}(s)$, вообще говоря, определяются уравнениями (6)–(8), хотя ниже они будут оцениваться с помощью более простых интерполяций, описываемых в разд. 6.

3. ВАРИАЦИОННЫЙ МЕТОД РАСЧЕТА СВОЙСТВ МЕЖФАЗНЫХ ГРАНИЦ МЕЖДУ ДВУМЯ СТАБИЛЬНЫМИ ФАЗАМИ И МЕЖДУ СТАБИЛЬНОЙ И МЕТАСТАБИЛЬНОЙ ФАЗАМИ

В используемом методе ОФГЛ структуру и энергию любых равновесных конфигураций, в частности, равновесных межфазных границ, можно определять из условий минимальности ОФГЛ (1) относительно вариаций параметра превращения $s(\mathbf{r})$ и локальных смещений $u_{\alpha}(\mathbf{r})$, т. е. из решения системы вариационных уравнений

$$\delta F/\delta s(\mathbf{r}) = 0, \quad \delta F/\delta u_{\alpha}(\mathbf{r}) = 0$$
(13)

при заданных граничных условиях. Явный вид этих уравнений дается ниже формулами (17)–(21). Для обсуждаемых ниже плоских МФГ, ориентированных нормально заданному направлению **n**, функции $s(\mathbf{r})$ и компоненты тензора дисторсии $u_{\alpha,\beta}$ в уравнениях (13) зависят только от одной переменной, расстояния до МФГ $\xi = \mathbf{nr}$, а граничные условия к этим уравнениям соответствуют переходу функций $s(\xi)$ и $u_{\alpha,\beta}(\xi)$ при $\xi \to (-\infty)$ в их значения s_a и $u^a_{\alpha,\beta}$ для аустенита, а при $\xi \to \infty$ — в значения s_m и $u^m_{\alpha,\beta}$ для мартенсита.

Поверхностная энергия МФГ σ определяется как отнесенная к единице площади разность между функционалом (1) с этими $s(\xi)$ и $u_{\alpha,\beta}(\xi)$ и таким же функционалом с функциями s и $u_{\alpha,\beta}$ в состоянии без МФГ. В качестве этого «реперного» состояния без МФГ можно взять, например, однородный 0

аустенит с $s = s_a$ и $u_{\alpha,\beta} = u^a_{\alpha,\beta}$, или однородный мартенсит с $s = s_m$ и $u_{\alpha,\beta} = u^m_{\alpha,\beta}$, или любую совокупность двух этих фаз, например, аустенита слева от центра МФГ (т. е. при $\xi < 0$) и мартенсита справа от центра МФГ (т. е. при $\xi > 0$):

$$\sigma = \int_{-\infty}^{0} \frac{d\xi}{v_{at}} \Big\{ f_{tot}[s(\xi), u_{\alpha,\beta}(\xi)] - f_{tot}^{a} \Big\} + \int_{0}^{\infty} \frac{d\xi}{v_{at}} \Big\{ f_{tot}[s(\xi), u_{\alpha,\beta}(\xi)] - f_{tot}^{m} \Big\}.$$
(14)

Поскольку при термодинамическом равновесии между аустенитом и мартенситом соответствующие им свободные энергии f_{tot}^a и f_{tot}^m в (1) равны друг другу, любой из таких возможных способов определения реперного состояния без МФГ дает один и тот же результат для σ . Получающиеся при этом уравнения аналогичны рассмотренным, например, в работах [9, 16].

В то же время при рассмотрении МФГ между стабильной и метастабильной фазами (ниже такая граница для краткости называется «метастабильной») использование вариационного подхода становится, вообще говоря, неоднозначным и требует уточнений. Состояние с МФГ, т. е. двухфазное состояние, теперь уже не соответствует минимуму функционала (1), поскольку такой минимум теперь соответствует однородной стабильной фазе, в нашем случае — мартенситу. Таким образом, вариационное исследование свойств метастабильных МФГ (реально возникающих при быстрой закалке в обсуждаемые метастабильные состояния) требует наложения определенных ограничений на вид рассматриваемых вариаций функций $s(\xi)$ и $\mathbf{u}(\xi)$, адекватных структуре таких МФГ. В частности, теперь нужно уточнить определение упомянутого «реперного» состояния без М $\Phi\Gamma$, чтобы искать функции $s(\xi)$ и $\mathbf{u}(\xi)$, минимизирующие разность свободных энергий состояния с МФГ и этого реперного состояния.

Математически эту задачу можно поставить таким образом. Будем определять поверхностную энергию МФГ соотношением (14), в котором «разделяющую» точку $\xi = 0$ будем называть центром МФГ. В рассмотренном выше случае равновесных МФГ выбор положения этой точки, т. е. соответствующих ей значений $s(\xi = 0) = s_0$ и $u_{\alpha,\beta}(\xi = 0) = u_{\alpha,\beta}^0$, был несуществен, поскольку значения f_{tot}^a и f_{tot}^m в (14) были равны. Но для метастабильных МФГ значения величины σ в (14), вообще говоря, зависят от выбора s_0 и $u_{\alpha,\beta}^0$, и ниже мы будем выбирать эти значения из физических соображений. При выбранном таким образом положении центра МФГ вариационную задачу нахождения функций $s(\xi)$ и $\mathbf{u}(\xi)$ будем ставить как задачу минимизации функционала (14) относительно варьирования этих функций при тех же граничных условиях перехода при $\xi \to (\pm \infty)$ в аустенит или в мартенсит, что и выше.

Обсудим вопрос о выборе значений s_0 и $u^0_{\alpha,\beta}$, соответствующих центру М $\Phi\Gamma$ $\xi = 0$ в (14). Заметим, во-первых, что на обсуждаемых ниже путях превращений значения компонент тензора дисторсии $u_{\alpha,\beta}(\xi)$ будут просто выражаться через параметр превращения s. Поэтому структура М $\Phi\Gamma$ в основном определяется изменением в области МФГ параметра превращения *s* и соответствующих ему вкладов $f_s(s)$ и G_{ss} в свободную энергию (2). Из формул (3) видно, что функция $f_s(s)$ имеет два минимума: минимум при s = 0, соответствующий аустениту, и минимум при s = 1, соответствующий мартенситу, и эти минимумы разделены потенциальным барьером, который имеет максимум при некотором значении $s = s_{max}$. В соответствии с этим термодинамическая движущая сила df_s/ds (которая определяет, в частности, кинетику релаксации к состоянию равновесия [17]) при *s* < *s*_{*max*} стимулирует эволюцию системы к состоянию аустенита, а при $s > s_{max}$ к состоянию мартенсита. В связи с этим за положение центра МФГ, разделяющего области со структурой типа аустенита и типа мартенсита, наиболее естественным кажется выбрать как раз эту точку максимума функции $f_s(s)$ в (3), т. е. определять точку $\xi = 0$ в (14) из соотношений

$$s_0 = s_{max}; \quad (df_s/ds)\Big|_{s=s_{max}} = 0.$$
 (15)

Ниже показано, что координатные зависимости функций $s(\xi)$, минимизирующие функционал (14), в точке $\xi = 0$ имеют излом, т.е. разность производных $ds/d\xi$ в этой точке имеет некоторый скачок B_{Δ} , величина которого пропорциональна параметру метастабильности Δ в (3) и зависит также от значения s_0 :

$$(ds/d\xi)_{+} - (ds/d\xi)_{-} = B_{\Delta}(s_0), \tag{16}$$

где нижний индекс «+» или «-» у $(ds/d\xi)$ указывает предельное значение данной производной при $\xi \to (+0)$ или $\xi \to (-0)$. Будет показано, что минимальное значение разрыва B_{Δ} в формуле (16) соответствует выбору значения s_0 либо равному, либо близкому к точке максимума s_{max} функции $f_s(s)$ в формуле (3). Такую «максимальную гладкость» получаемых распределений можно считать дополнительным аргументом в пользу выбора положения

центра М $\Phi\Gamma$ s_0 в точке максимума функции $f_s(s)$, определяемого равенством (15).

Отметим, однако, что при реалистических значениях параметра метастабильности Δ , обсуждаемых ниже, изломы (16) в функциях $s(\xi)$ (иллюстрируемые ниже, рис. 3) весьма малы, и их наличие несущественно для всех физически значимых характеристик метастабильных МФГ. В реальных же метастабильных МФГ такие изломы отсутствуют вследствие дискретности кристаллической решетки.

4. РЕШЕНИЕ УРАВНЕНИЙ ДЛЯ ПАРАМЕТРА ПРЕВРАЩЕНИЯ И ЛОКАЛЬНЫХ ДЕФОРМАЦИЙ В ОБЛАСТИ МФГ В ПРЕНЕБРЕЖЕНИИ ГРАДИЕНТАМИ ТЕНЗОРА ДИСТОРСИИ

Приведем явный вид вариационных уравнений (13) для ОФГЛ со свободной энергией (12). После стандартных преобразований с использованием интегрирования по частям эти уравнения принимают вид

$$\begin{split} \dot{f}_{s} &- 2g^{ss}_{\alpha\beta} \nabla^{2}_{\alpha\beta} s - \dot{g}^{ss}_{\alpha\beta} \nabla_{\alpha} s \nabla_{\beta} s + \\ &+ v_{at} \left[\frac{1}{2} \dot{c}_{\alpha\beta\gamma\delta} (u_{\alpha\beta} - u^{e}_{\alpha\beta}) - c_{\alpha\beta\gamma\delta} \dot{u}^{e}_{\alpha\beta} \right] \times \\ &\times (u_{\gamma\delta} - u^{e}_{\gamma\delta}) + \left(\dot{g}^{su}_{\alpha,\beta\gamma\delta} \nabla_{\beta} s \nabla^{2}_{\gamma\delta} u_{\alpha} - \right. \\ &- g^{su}_{\alpha,\beta\gamma\delta} \nabla^{3}_{\beta\gamma\delta} u_{\alpha} \right) + \dot{g}^{uu}_{\alpha\beta,\gamma\delta\lambda\mu} \nabla^{2}_{\gamma\lambda} u_{\alpha} \nabla^{2}_{\delta\mu} u_{\beta} = 0, \quad (17) \end{split}$$

$$\nabla_{\beta} \left[v_{at} c_{\alpha\beta\gamma\delta} (u_{\gamma\delta} - u_{\gamma\delta}^{e}) - \nabla_{\gamma} (g^{su}_{\alpha,\beta\gamma\delta} \nabla_{\delta} s + 2g^{uu}_{\alpha\delta,\beta\gamma\lambda\mu} \nabla^{2}_{\lambda\mu} u_{\delta}) \right] = 0, \quad (18)$$

где точка над функцией от s означает дифференцирование по s, например: $\dot{f}_s = df_s/ds$.

Ниже мы рассматриваем плоскую МФГ, нормальную единичному вектору **n**, в которой параметр превращения *s* и локальные дисторсии $u_{\alpha,\beta}$ зависят только от одной переменной $\xi = \mathbf{n} \cdot \mathbf{r}$. Тогда производная любой функции $\varphi(\xi)$, где φ есть $s(\xi)$ или $u_{\alpha,\beta}(\xi)$, по координате x_{α} дается выражением

$$\partial \varphi / \partial x_{\alpha} = n_{\alpha} \varphi', \tag{19}$$

где штрих означает дифференцирование по $\xi: \varphi' = d\varphi(\xi)/d\xi$. При решении уравнений (17) и (18) будем использовать граничные условия, описанные в разд. 3, т.е. переход *s* и $u_{\alpha,\beta}$ при $\xi \to (-\infty)$ в их значения s_a и $u^a_{\alpha,\beta}$ для аустенита, а при $\xi \to \infty$ — в значения для мартенсита, и будем отсчитывать $s(\xi)$ и $u_{\alpha,\beta}(\xi)$ от их значений в аустените, т.е. считать $s_a = u^a_{\alpha,\beta} = 0$. Тогда интегрирование уравнения (18) по ξ показывает, что выражение в квадратных скобках в этом уравнении равно нулю при всех ξ , и систему уравнений (17) и (18) можно записать в таком виде:

$$\dot{f}_{s} - 2gs'' - \dot{g}(s')^{2} + v_{at} \left[\frac{1}{2} \dot{c}_{\alpha\beta\gamma\delta} (u_{\alpha\beta} - u_{\alpha\beta}^{e}) - c_{\alpha\beta\gamma\delta} \dot{u}_{\alpha\beta}^{e} \right] (u_{\gamma\delta} - u_{\gamma\delta}^{e}) + \left[\dot{g}_{\alpha,\beta}^{su} s' u_{\alpha,\beta}' - g_{\alpha,\beta}^{su} u_{\alpha,\beta}' + \dot{g}_{\alpha\beta\gamma\delta}^{uu} u_{\alpha,\gamma}' u_{\beta,\delta}' \right] = 0, \quad (20)$$

$$v_{at}c_{\alpha\beta\gamma\delta}(u_{\gamma\delta} - u^{e}_{\gamma\delta}) - \left[\dot{g}^{su}_{\alpha,\beta}(s')^{2} + g^{su}_{\alpha,\beta}s'' + 2\dot{g}^{uu}_{\alpha\delta,\beta\gamma}s'u'_{\delta,\gamma} + 2g^{uu}_{\alpha\delta,\beta\gamma}u''_{\delta,\gamma}\right] = 0, \quad (21)$$

где введены сокращенные обозначения

$$g = g(\mathbf{n}) = g_{\alpha\beta}^{ss} n_{\alpha} n_{\beta},$$

$$g_{\alpha,\beta}^{su} = g_{\alpha,\beta}^{su}(\mathbf{n}) = g_{\alpha,\beta\gamma\delta}^{su} n_{\gamma} n_{\delta},$$

$$g_{\alpha\delta,\beta\gamma}^{uu} = g_{\alpha\delta,\beta\gamma}^{uu}(\mathbf{n}) = g_{\alpha\delta,\beta\gamma\lambda\mu}^{uu} n_{\lambda} n_{\mu}.$$

(22)

Отметим, что выполненное в (21) формальное интегрирование уравнения (18) на основе равенства (19) подразумевает, что мы не рассматриваем дальнодействующие слабонеоднородные упругие напряжения, связанные с несоответствием кристаллических решеток. В действительности, такие напряжения отсутствуют только в том случае, когда плоскость МФГ при фазовом превращении остается инвариантной, см., например, [18]. Однако влияние этих слабонеоднородных напряжений можно описывать стандартными методами теории упругости [18], в настоящей же работе исследуются неоднородные упругие напряжения, присутствующие только в области МФГ. Полное рассмотрение как неоднородных, так и слабонеоднородных упругих эффектов для более реалистической задачи о включении мартенсита в аустените будет дано в другой работе.

Уравнения (20) и (21) являются системой обыкновенных дифференциальных уравнений для функций $s(\xi)$ и $u_{\alpha,\beta}(\xi)$, которую в принципе можно решать численными методами. В то же время в работе [7] и выше отмечено, что значения дисторсий $u_{\alpha,\beta}$, т. е. деформаций $u_{\alpha\beta}$ и поворотов $\varepsilon_{\alpha\beta}$, при рассматриваемых мартенситных превращениях малы, и, кроме того, все градиентные члены в используемом методе ОФГЛ предполагаются малыми сравнительно с неградиентными. Поэтому слагаемые в последних квадратных скобках в уравнениях (20), (21) (которые в свободной энергии (2) соответствуют членам G_{su} и G_{uu}, содержащим градиенты тензора дисторсии) следует считать малыми поправками к первым членам этих уравнений. Тогда в нулевом приближении по градиентам деформаций и поворотов эти поправочные члены можно опускать. При этом уравнение (21) показывает, что в этом нулевом приближении локальная деформация $u_{\alpha\beta}$ полностью определяется локальным значением параметра фононных смещений $s = s(\xi)$: $u_{\alpha\beta}(\xi) = u^e_{\alpha\beta}(s)$. Значения локальных поворотов $\varepsilon_{\alpha\beta}(s)$ в этом нулевом приближении можно находить, используя интерполяции, аналогичные использованным в формуле (8), как описывается в разд. 6.3. Вклады же слагаемых в последних квадратных скобках в уравнения (20) и (21) будем находить по теории возмущений, как описывается в разд. 6.4, используя в этих слагаемых выражения для дисторсии $u_{\alpha,\beta}$, найденные в описанном выше нулевом приближении.

После отбрасывания в уравнениях (20) и (21) слагаемых в последних квадратных скобках уравнение (21) дает для деформаций «локально равновесное» решение, описываемое формулой (6):

$$u_{\alpha\beta}(\xi) = u^e_{\alpha\beta}(s). \tag{23}$$

При подстановке этого выражения для $u_{\gamma\delta}$ в последнее слагаемое первой строчки уравнения (20) это слагаемое обращается в нуль. Поэтому для нахождения функции $s(\xi)$ получается простое уравнение, соответствующее наличию в уравнении (20) только трех первых членов:

$$2g\frac{d^2s}{d\xi^2} + \frac{dg}{ds}\left(\frac{ds}{d\xi}\right)^2 - \frac{df_s}{ds} = 0.$$
 (24)

Если все члены этого уравнения умножить на $ds/d\xi$, то его левая часть примет вид полной производной по ξ , и интегрирование по ξ позволяет явно выразить производную $ds/d\xi$ через параметр превращения s:

$$\frac{d}{d\xi} \left[g\left(\frac{ds}{d\xi}\right)^2 - f(s) \right] = 0,$$

$$g\left(\frac{ds}{d\xi}\right)^2 = f(s) + C,$$
(25)

где произвольная постоянная *C* определяется из граничных условий.

Как обсуждалось в разд. 3, решение вариационной задачи о минимуме поверхностной энергии (14) дается функциями $s(\xi)$, которые в областях ($\xi < 0$, $s < s_0$) и ($\xi > 0$, $s > s_0$) являются, вообще говоря, разными. Эту функцию в первой области мы будем обозначать как $s_{-}(\xi)$, а во второй — как $s_{+}(\xi)$, и граничные условия для них имеют, соответственно, такой вид:

$$\begin{aligned} \xi \to (-\infty) : \quad s_- \to 0, \ ds_-/d\xi \to 0; \\ \xi \to \infty : \quad s_+ \to 1, \ ds_+/d\xi \to 0. \end{aligned}$$
(26)

Для того чтобы эти граничные условия выполнялись, постоянную C в формуле (25) для $s_{-}(\xi)$ нужно положить равной нулю, а для $s_{+}(\xi)$ — равной $[-f(1)] = \Delta$. Это дает следующие выражения для производных $ds/d\xi$ в (25):

$$ds_{-}/d\xi = \sqrt{f(s)/g(s)}; ds_{+}/d\xi = \sqrt{f_{+}(s)/g(s)}, \quad f_{+}(s) = f(s) + \Delta.$$
(27)

Уравнения (27) позволяют выписать координатные зависимости $s_{-}(\xi)$ и $s_{+}(\xi)$ в виде соотношений для обратных функций $\xi(s)$:

$$\xi < 0, s < s_0: \quad \xi = \int_{s_0}^s du \sqrt{g(u)/f(u)},$$

$$\xi > 0, s > s_0: \quad \xi = \int_{s_0}^s du \sqrt{g(u)/f_+(u)}.$$
(28)

Эти соотношения позволяют дать явное выражение для ширины МФГ w. Так, если определять эту ширину как интервал координат ξ , в котором параметр превращения s меняется от некоторого малого значения s_{min} до некоторого s_{max} , близкого к единице (например, от $s_{min} = 0.1$ до $s_{max} = 0.9$), то из уравнений (28) имеем

$$w = \int_{s_{min}}^{s_0} du \sqrt{g(u)/f(u)} + \int_{s_0}^{s_{max}} du \sqrt{g(u)/f_+(u)}.$$
 (29)

Скачок производных $ds/d\xi$ в точке ($\xi = 0, s = s_0$), определенный равенством (16), согласно уравнениям (27), дается выражением

$$\left(\frac{ds_{+}}{d\xi} - \frac{ds_{-}}{d\xi}\right)_{\xi=0} = B_{\Delta}(s_{0}) =$$
$$= \frac{\sqrt{f_{+}(s_{0})} - \sqrt{f(s_{0})}}{\sqrt{g(s_{0})}}.$$
 (30)

Зависимости g от s, как показано ниже, являются намного менее резкими, чем для $f_s(s)$. Поэтому из уравнения (30) видно, что минимальное относительно выбора s_0 значение скачка производных при $\xi = 0$ (которое соответствует обращению в нуль производной по s_0 от правой части уравнения (30)) достигается вблизи точки максимума функции f_s , определяемой равенством (15).

Используя уравнения (27), мы можем также выразить дифференциал $d\xi$ в интегралах (14) через ds_+ и ds_- и записать выражение (14) для поверхностной энергии МФГ σ в виде явного интеграла по параметру превращения s:

$$\sigma = \frac{2}{v_{at}} \left[\int_{0}^{s_0} ds \sqrt{g(s)f(s)} + \int_{s_0}^{1} ds \sqrt{g(s)f_+(s)} \right].$$
(31)

Исследуем соотношения (28)–(31) в разных предельных случаях. Обсудим сначала зависимость параметра порядка *s* от координаты ξ вдали от МФГ, т. е. при больших $|\xi|$ и малых *s* или (1 - s). Учитывая, что функция f(s) или $f_+(s)$ в подынтегральных выражениях в (28) при этом стремится к нулю как, соответственно, s^2 или $(1 - s)^2$, получаем такие зависимости:

$$s_{-}(\xi) = s_{-}^{0} \exp(\xi/w_{a}) = s_{-}^{0} \exp(-|\xi|/w_{a}),$$

$$1 - s_{+}(\xi) = s_{+}^{0} \exp(-\xi/w_{m}).$$
(32)

Здесь предэкспонциальные множители s_{-}^{0} и s_{+}^{0} имеют порядок величины s_{0} , а w_{a} и w_{m} — характерные длины убывания разности $s-s_{a} = s$ или $s_{m}-s = 1-s$ при удалении от МФГ в глубь аустенита или мартенсита. Эти длины выражаются через константы c_{a} и c_{m} в формуле (3) и предельные значения градиентного коэффициента $g(\mathbf{n},s)$ в формуле (22), $g_{a} = g(\mathbf{n}, s = 0)$ и $g_{m} = g(\mathbf{n}, s = 1)$, таким образом:

$$w_a = (2g_a/c_a)^{1/2}, \quad w_m = (2g_m/c_m)^{1/2}.$$
 (33)

Для иллюстрации вида зависимостей, описываемых формулами (29) и (31), рассмотрим еще частный случай, когда градиентный коэффициент g не зависит от s, а параметр Δ в формуле (3) равен нулю (т. е. ГЦК- и ОЦК-фазы находятся в равновесии). Тогда все интегралы в формулах (29) и (31) берутся аналитически, и для ширины МФГ w и ее поверхностной энергии σ имеем

$$w = \sqrt{2g} \left[\frac{1}{\sqrt{c_a}} \ln \frac{s_{max}}{s_{min}} + \frac{1}{\sqrt{c_m}} \ln \frac{1 - s_{min}}{1 - s_{max}} + \frac{2}{\sqrt{c_a}} \ln \frac{\sqrt{c_a} + \sqrt{c_a + (c_m - c_a)s_{min}}}{\sqrt{c_a} + \sqrt{c_a + (c_m - c_a)s_{max}}} - \frac{2}{\sqrt{c_m}} \ln \frac{\sqrt{c_m} + \sqrt{c_a + (c_m - c_a)s_{max}}}{\sqrt{c_m} + \sqrt{c_a + (c_m - c_a)s_{min}}} \right];$$

$$\sigma = \frac{8}{35v_{at}} \frac{\sqrt{g}}{(\sqrt{c_a} + \sqrt{c_m})^3} \times \left[(\sqrt{c_a} + \sqrt{c_m})^2 (c_a + \sqrt{c_a c_m} + c_m) - \frac{c_a c_m}{3} \right]. \quad (34)$$

Для количественных расчетов характеристик МФГ по формулам (28)–(31) нужны расчеты или оценки параметров c_a и c_m в выражении (3) для f_s , а также тензоров \mathbf{g}^{ss} , \mathbf{g}^{su} и \mathbf{g}^{uu} , входящих в выражение (3) для f_{tot} . Эти расчеты и оценки описываются ниже в разд. 5 и 6.

5. РАСЧЕТ КОНСТАНТ c_a И c_m В ВЫРАЖЕНИИ (3) ДЛЯ f_s

5.1. Смещения атомов на рассматриваемых путях превращения

Описываемые ниже расчеты основаны на общих выражениях для смещений атомов на рассматриваемых путях превращения, подробно обсуждавшихся в работах [6, 7]. Приведем необходимые соотношения из этих работ.

Для краткости называем ГЦК-структуру (аустенит) фазой γ , а ОЦК-структуру (мартенсит) — фазой α . Полное смещение атомов в плотноупакованной плоскости m кристалла, соответствующего рассматриваемому пути превращения $\gamma \rightarrow \alpha$ и содержащего шесть атомов в элементарной ячейке, обозначаем \mathbf{p}_m , так что номер m меняется от 1 до 6. Поскольку центр тяжести этой элементарной ячейки при превращении не смещается, сумма векторов \mathbf{p}_m по ячейке равна нулю:

$$\sum_{m=1}^{6} \mathbf{p}_m = 0. \tag{35}$$

Амплитуду относительных смещений (или тасования) плотноупакованных плоскостей на пути превращения обозначаем s, так что смещение каждого атома в плоскости m равно $s\mathbf{p}_m$, а значение s в ходе превращения меняется от нуля до единицы. Эти смещения можно описывать с помощью «оператора фононных смещений» $\hat{T}(s) \equiv \hat{T}_s$, определяя действие

 \hat{T}_s на вектор \mathbf{R}_m *m*-й подрешетки (плотноупакованной плоскости) рассматриваемых кристаллов соотношением [6, ф. (3); 7, ф. (1)]

$$\hat{T}_s \mathbf{R}_m = \mathbf{R}_m + s \mathbf{p}_m. \tag{36}$$

Деформации однородных растяжений или сжатий u_{ν} вдоль трех декартовых осей ν удобно определять соотношениями [6, ф. (1); 7, ф. (2)]

$$x_{\nu}(u_{\nu}) = x_{\nu}(0) \exp(u_{\nu}), \qquad (37)$$

которые можно использовать как при малых, так и при немалых деформациях u_{ν} . При этом объемная деформация u (изменение которой du связано с изменением объема кристалла Ω соотношением $du = d\Omega/\Omega$) выражается через величины u_{ν} так же, как и в случае малых деформаций:

$$u = u_1 + u_2 + u_3. \tag{38}$$

Результат действия на векторы решетки $\mathbf{R} = (x, y, z)$ растяжений u_{ν} , по аналогии с соотношением (36), удобно записывать с помощью операторов растяжений $\hat{T}(u_{\nu}) \equiv \hat{T}_{\nu}$, определяемых равенством (37), например,

$$\hat{T}_2 \mathbf{R} = (x, e^{u_2} y, z).$$
 (39)

Тогда полное значение вектора решетки $\mathbf{R}'_m = \mathbf{R}'_m(s, u_{\nu})$ на пути превращения можно выразить через его исходное значение \mathbf{R}_m таким образом:

$$\mathbf{R}'_m = \hat{T}_{123}\hat{T}_s \,\mathbf{R}_m = \hat{T}_{123} \,\mathbf{R}_m + s\tilde{\mathbf{p}}_m,\qquad(40)$$

где для краткости обозначено $\hat{T}_{123} = \hat{T}_{123} \{ u_{\nu} \} =$ = $\hat{T}_1 \hat{T}_2 \hat{T}_3$ и $\tilde{\mathbf{p}}_m = \hat{T}_{123} \mathbf{p}_m$.

Положения атомов на пути превращения удобно описывать с помощью двух троек эквивалентных векторов, \mathbf{b}_s и \mathbf{d}_s , лежащих в плотноупакованных атомных плоскостях, и вектора \mathbf{h} , нормального к этим плоскостям, который описывает относительное смещение двух таких соседних плоскостей. Векторы \mathbf{b}_1 , \mathbf{b}_2 и $\mathbf{b}_3 = -(\mathbf{b}_1 + \mathbf{b}_2)$ имеют смысл трех эквивалентных периодов в плотноупакованной плоскости (111) ГЦК-решетки; векторы \mathbf{d}_s определены равенствами

$$\mathbf{d}_s = (\mathbf{b}_{s+1} - \mathbf{b}_{s+2})/3, \quad \mathbf{b}_s = \mathbf{d}_{s+2} - \mathbf{d}_{s+1}, \quad (41)$$

а индекс «s» у векторов \mathbf{b}_s и \mathbf{d}_s определен по модулю 3: s + 2 = s - 1. При этом периоды кубической элементарной ячейки ГЦК-решетки, \mathbf{a}_1^{γ} , \mathbf{a}_2^{γ} и \mathbf{a}_3^{γ} , связаны со введенными выше векторами \mathbf{b}_s , \mathbf{d}_s и \mathbf{h} так:

$$\mathbf{b}_{1} = \frac{1}{2} (\mathbf{a}_{3}^{\gamma} - \mathbf{a}_{2}^{\gamma}), \quad \mathbf{b}_{2} = \frac{1}{2} (\mathbf{a}_{1}^{\gamma} - \mathbf{a}_{3}^{\gamma}),$$
$$\mathbf{b}_{3} = \frac{1}{2} (\mathbf{a}_{2}^{\gamma} - \mathbf{a}_{1}^{\gamma}), \quad \mathbf{h} = \frac{1}{3} (\mathbf{a}_{1}^{\gamma} + \mathbf{a}_{2}^{\gamma} + \mathbf{a}_{3}^{\gamma}), \quad (42)$$
$$\mathbf{a}_{1}^{\gamma} = \mathbf{h} + 2\mathbf{d}_{1}, \quad \mathbf{a}_{2}^{\gamma} = \mathbf{h} + 2\mathbf{d}_{2}, \quad \mathbf{a}_{3}^{\gamma} = \mathbf{h} + 2\mathbf{d}_{3},$$

а скалярные произведения векторов \mathbf{b}_s и \mathbf{d}_s друг на друга даются соотношениями

$$\mathbf{b}_s \cdot \mathbf{b}_{s\pm 1} = -b^2/2, \quad \mathbf{d}_s \cdot \mathbf{d}_{s\pm 1} = -d^2/3, \\ \mathbf{b}_s \cdot \mathbf{d}_s = 0, \quad \mathbf{d}_s \cdot \mathbf{b}_{s\pm 1} = \pm b^2/2.$$
(43)

Здесь $b = |\mathbf{b}_s| = a_{\gamma}/\sqrt{2}$ есть расстояние между ближайшими соседями в ГЦК-решетке, $a_{\gamma} = |\mathbf{a}_s^{\gamma}|, d = b/\sqrt{3}.$

Отметим, что согласно равенствам (43), векторы \mathbf{b}_s и \mathbf{d}_s взаимно ортогональны. Поэтому тройка единичных векторов

$$\mathbf{e}_{x} = \mathbf{b}_{1}/b = (0\overline{1}1)/\sqrt{2},$$

$$\mathbf{e}_{y} = \mathbf{d}_{1}/d = (2\overline{1}\overline{1})/\sqrt{6},$$

$$\mathbf{e}_{z} = \mathbf{h}/h = (111)/\sqrt{3}$$
(44)

ниже будет использоваться в качестве базиса декартовой системы координат, удобной для описания рассматриваемых структур. Отметим, что полные деформации при переходе $\gamma \rightarrow \alpha$: $u_1 = u_{xx}$, $u_2 = u_{yy}$ и $u_3 = u_{zz}$, в этой системе координат, согласно формулам (34) из работы [6] или (18) из работы [7], имеют такие значения:

$$u_1^{\gamma \to \alpha} = \frac{u}{3} + \frac{1}{6} \ln 2 \approx 0.125,$$

$$u_2^{\gamma \to \alpha} = \frac{u}{3} - \frac{1}{6} \ln \frac{27}{16} \approx -0.078,$$

$$u_3^{\gamma \to \alpha} = \frac{u}{3} - \frac{1}{6} \ln \frac{32}{27} \approx -0.019,$$
(45)

где численные значения (приводимые для иллюстрации) соответствуют переходу $\gamma \to \alpha$ в железе, для которого $u = \ln(\Omega_{\alpha}/\Omega_{\gamma}) \approx 0.027$.

В работах [6, 7] рассматривались три возможных пути превращения $\gamma \to \alpha$ (точнее, пути $\gamma \to \lambda$ в структуру λ , отличающуюся от α -фазы только растяжениями u_{ν}). Эти пути превращений нумеровались номером n, равным 1, 2 или 3, и выражения для смещений атомов на этих путях превращения через векторы \mathbf{p}_m в формулах (36) или (40) даны в табл. 3 из работы [6] и в табл. 1 из работы [7].

В табл. 1 настоящей работы приводятся явные выражения для векторов полных смещений \mathbf{p}_m на путях превращения ($\gamma \rightarrow \alpha$)1 и ($\gamma \rightarrow \alpha$)2 через векторы \mathbf{b}_1 и \mathbf{d}_1 в формулах (41)–(43). Для пути ($\gamma \rightarrow \alpha$)3 все эти выражения отличаются от выражений для

Путь превращения	\mathbf{p}_1	\mathbf{p}_2	\mathbf{p}_3	\mathbf{p}_4	\mathbf{p}_5	\mathbf{p}_6
$(\gamma \rightarrow \alpha) 1$	$-\frac{1}{6}\mathbf{b}_1-\frac{1}{4}\mathbf{d}_1$	$-\frac{1}{6}\mathbf{b}_1+\frac{1}{4}\mathbf{d}_1$	$-\frac{1}{6}\mathbf{b}_1+\frac{3}{4}\mathbf{d}_1$	$\frac{1}{3}\mathbf{b}_1-\frac{1}{4}\mathbf{d}_1$	$\frac{1}{3}\mathbf{b}_1 + \frac{1}{4}\mathbf{d}_1$	$-\frac{1}{6}\mathbf{b}_1-\frac{3}{4}\mathbf{d}_1$
$(\gamma \to \alpha)2$	$\frac{1}{4}\mathbf{b}_1$	$\frac{1}{4}\mathbf{b}_1 + \frac{1}{2}\mathbf{d}_1$	$-\frac{1}{4}\mathbf{b}_1-\frac{1}{2}\mathbf{d}_1$	$-rac{1}{4}\mathbf{b}_1$	$-\frac{1}{4}\mathbf{b}_1+\frac{1}{2}\mathbf{d}_1$	$\frac{1}{4}\mathbf{b}_1 - \frac{1}{2}\mathbf{d}_1$
Путь превращения	$ ilde{\mathbf{p}}_1$	$ ilde{\mathbf{p}}_2$	$ ilde{\mathbf{p}}_3$	$ ilde{\mathbf{p}}_4$	$ ilde{\mathbf{p}}_5$	$ ilde{\mathbf{p}}_6$
$(\gamma \rightarrow \alpha) 1$	$-\frac{1}{6}\mathbf{a}-\frac{1}{6}\mathbf{g}$	$-\frac{1}{6}\mathbf{a}+\frac{1}{6}\mathbf{g}$	$-\frac{1}{6}\mathbf{a}+\frac{1}{2}\mathbf{g}$	$rac{1}{3}\mathbf{a}-rac{1}{6}\mathbf{g}$	$\frac{1}{3}\mathbf{a} + \frac{1}{6}\mathbf{g}$	$-rac{1}{6}\mathbf{a}-rac{1}{2}\mathbf{g}$
$(\gamma \to \alpha)2$	$\frac{1}{4}\mathbf{a}$	$\frac{1}{4}\mathbf{a} + \frac{1}{3}\mathbf{g}$	$-\frac{1}{4}\mathbf{a}-\frac{1}{3}\mathbf{g}$	$-\frac{1}{4}\mathbf{a}$	$-\frac{1}{4}\mathbf{a}+\frac{1}{3}\mathbf{g}$	$\frac{1}{4}\mathbf{a} - \frac{1}{3}\mathbf{g}$

Таблица 1. Значения векторов \mathbf{p}_m в формуле (36), а также векторов $\tilde{\mathbf{p}}_m$ в формуле (40) при значениях полных деформаций $u_{\nu} = u_{\nu}^{\gamma \to \alpha}$ из (45)

пути $(\gamma \to \alpha)^2$ только заменой вектора \mathbf{b}_1 на $(-\mathbf{b}_1)$, т. е. отражением в плоскости, нормальной вектору \mathbf{b}_1 . Таким образом, два этих пути превращения полностью эквивалентны (что предполагалось, но не было доказано в работе [7]), и ниже путь $(\gamma \to \alpha)^3$ не обсуждается. Кроме того, в табл. 1 мы приводим выражения векторов $\tilde{\mathbf{p}}_m$ в формуле (40) при значениях полных деформаций $u_{\nu} = u_{\nu}^{\gamma \to \alpha}$ из (45) через векторы **а** и **g**, определенные ниже равенствами (57). В следующем разделе все эти выражения будут использоваться для расчетов констант c_a и c_m в формуле (3) для f_s .

5.2. Выражения для констант c_a и c_m в формуле (3) через матрицы силовых постоянных в ГЦК- и ОЦК-железе

Значения констант c_a или c_m в формуле (3) определяют изменения энергии кристалла при малых смещениях атомов из положений равновесия в ГЦК-фазе, что соответствует области малых *s*, или из положений равновесия в ОЦК-фазе, что соответствует области малых (1 - s). Поэтому каждую из этих констант можно выразить через матрицы силовых постоянных ГЦК- или ОЦК-железа, определенные в экспериментах [12–14], если использовать следующие соображения.

Изменение энергии кристалла U при произвольных малых смещениях атомов из положений равновесия $\mathbf{u}_{\mathbf{r}}$ выражается через матрицы силовых постоянных $A^{\alpha\beta}(\mathbf{r}-\mathbf{r}')$ в этом кристалле таким образом:

$$\delta U = \frac{1}{2} \sum_{\mathbf{r},\mathbf{r}'} A^{\alpha\beta}(\mathbf{r} - \mathbf{r}') u^{\alpha}_{\mathbf{r}} u^{\beta}_{\mathbf{r}'}.$$
 (46)

Обсудим сначала расчет константы c_a , описывающей изменения энергии при малых отклонениях от структуры аустенита. Согласно определению (3), эта константа равна второй производной энергии кристалла на один атом E(s) = U/N по *s* при $s \to 0$:

$$c_a = (\partial^2 E / \partial s^2)_{s=0}. \tag{47}$$

Смещения атомов $\mathbf{u}_{\mathbf{r}}$ на рассматриваемых путях превращения пропорциональны параметру *s*, и в отсутствие деформаций эти смещения для всех атомов в каждой плотноупакованной плоскости *m*, согласно соотношениям (36) или (40), равны

$$\mathbf{u}_{\mathbf{r}} = s \mathbf{p}_m. \tag{48}$$

Поэтому константу c_a в (47) можно найти, подставляя выражения (48) в формулы (46) и (47) и относя полученную энергию U к одному атому кристалла. Это дает следующее общее выражение для c_a :

$$c_{a} = \frac{1}{N} \sum_{\mathbf{r},\mathbf{r}'} p_{\mathbf{r}}^{\alpha} A^{\alpha\beta} (\mathbf{r} - \mathbf{r}') p_{\mathbf{r}'}^{\beta} =$$
$$= \frac{1}{6} \sum_{m,l=1}^{6} \sum_{n=0}^{n_{max}} \sum_{q} p_{m}^{\alpha} A^{\alpha\beta} (\mathbf{R}_{nq}) p_{l}^{\beta}. \quad (49)$$

Здесь функция $\mathbf{p}_{\mathbf{r}}$ имеет постоянное значение \mathbf{p}_m на каждой *m*-й плотноупакованной плоскости, т.е. на плоскости, определяемой уравнением $\mathbf{r} \cdot \mathbf{e}_z =$ = (6k + m)h, с \mathbf{e}_z из (44) и целым k; n — номер рассматриваемой координационной сферы; n_{max} номер последней из учитываемых координационных сфер; и $\mathbf{R}_{nq} = (\mathbf{r}'_l - \mathbf{r}_m) - q$ -й вектор решетки, принадлежащий координационной сфере n и соединяющий узел \mathbf{r}'_l с узлом \mathbf{r}_m . Подчеркнем, что в каждой координационной сфере лишь небольшое количество узлов может принадлежать *m*-й плотноупакованной плоскости при условии, что центральный атом принадлежит l-й плоскости, поэтому сумма по q учитывает не все векторы \mathbf{R}_{nq} , принадлежащие координационной сфере n.

Выражение (49) также можно записать в следующей форме, удобной для практических вычислений:

$$c_{a} = \frac{1}{6} \sum_{m=1}^{6} \sum_{n=0}^{n_{max}} \sum_{q} p_{m}^{\alpha} A^{\alpha\beta}(\mathbf{R}_{nq}) p_{m+k_{nq}}^{\beta}.$$
 (50)

Здесь сумма по q включает все векторы \mathbf{R}_{nq} , принадлежащие координационной сфере n; и k_{nq} определяет номер плотноупакованной плоскости, которой принадлежит атом с радиус-вектором \mathbf{R}_{nq} (где нулевой считается плоскость, содержащая $\mathbf{R} = 0$; тогда это число можно вычислить по формуле $k_{nq} = \mathbf{R}_{nq}\mathbf{h}/h^2$), причем сумма $m + k_{nq}$ в (50) определена по модулю 6:

$$m + k_{nq} + 6 = m + k_{nq}.$$

В аналогичной форме можно записать все встречающиеся ниже выражения, включающие двойную сумму по номерам плотноупакованных плоскостей *m* и *l*, например, такие как (56) и (74).

Выражения для матриц силовых постоянных $A^{\alpha\beta}(\mathbf{R}_{nq})$ (ниже для краткости обозначаемых как $A^{\alpha\beta}_{nq}$) в ОЦК- и ГЦК-кристаллах обсуждались в работе [6], и для $n \neq 0$ они даются первыми четырьмя слагаемыми формулы (58) из работы [6]:

$$A_{nq}^{\alpha\beta} = a_n n_q^{\alpha} n_q^{\beta} + b_n \delta_{\alpha\beta} + c_n T^{\alpha\beta\gamma\delta} n_q^{\gamma} n_q^{\delta} + d_n \left(T^{\alpha\gamma\delta\varepsilon} n_q^{\beta} + T^{\beta\gamma\delta\varepsilon} n_q^{\alpha} \right) n_q^{\gamma} n_q^{\delta} n_q^{\varepsilon}.$$
(51)

При написании этого выражения опущены два последних слагаемых в общей формуле (58) из работы [6], поскольку они (как отмечалось в [6]) не используются в приложениях, в частности, в работах [12–14]. В формуле (51) $\mathbf{n}_q = \mathbf{R}_{nq}/R_{nq}$ есть единичный вектор в направлении \mathbf{R}_{nq} , а скалярные величины a_n, b_n, c_n и d_n являются параметрами Борна–Кармана. Тензор $T^{\alpha\beta\gamma\delta}$ описывает влияние на матрицы силовых постоянных эффектов кристаллической анизотропии (т. е. непарных многочастичных взаимодействий), и он выражается через орты главных осей i ОЦК- или ГЦК-кристалла, обозначаемые ниже как \mathbf{e}_{ci} (чтобы отличать их от единичных векторов $\mathbf{e}_{x,y,z}$ в соотношениях (44)), таким образом:

$$T^{\alpha\beta\gamma\delta} = \sum_{i=1}^{3} e^{\alpha}_{ci} e^{\beta}_{ci} e^{\gamma}_{ci} e^{\delta}_{ci} - \left\langle \sum_{i=1}^{3} e^{\alpha}_{ci} e^{\beta}_{ci} e^{\gamma}_{ci} e^{\delta}_{ci} \right\rangle.$$
(52)

Второе слагаемое в формуле (52) соответствуют усреднению по всем ориентациям кристалла. Его вычитание позволяет выделить «собственно анизотропные» вклады в $A_{nq}^{\alpha\beta}$, а само это среднее просто выражается через символы Кронекера $\delta_{\alpha\beta}$:

$$\left\langle \sum_{i=1}^{3} e_{ci}^{\alpha} e_{ci}^{\beta} e_{ci}^{\gamma} e_{ci}^{\delta} \right\rangle = \frac{1}{5} \left(\delta_{\alpha\beta} \delta_{\gamma\delta} + \delta_{\alpha\gamma} \delta_{\beta\delta} + \delta_{\alpha\delta} \delta_{\beta\gamma} \right).$$
(53)

Выражение (51) использует ковариантную форму записи матриц \mathbf{A}_{nq} , не связанную с выбором системы координат, что удобно при используемом одновременном рассмотрении разных кристаллических структур. Связь этих матриц с «нековариантными» параметрами Борна-Кармана $\alpha_n - \delta_n$, используемыми в экспериментальных исследованиях фононов, указана в Приложении А.1, а значения параметров $a_n - d_n$ в выражениях (51) для ГЦК- и ОЦК-железа, соответствующие значениям $\alpha_n - \delta_n$ из работ [12–14], приводятся ниже в табл. 9.

Матрица $A_0^{\alpha\beta}$, описывающая вклад в энергию δU в (46) смещений $\mathbf{u_r}$ и $\mathbf{u_{r'}}$ в одном и том же узле решетки, т.е. при $\mathbf{R} = \mathbf{r'} - \mathbf{r} = 0$, определяется из условия неизменности энергии кристалла при однородном смещении всех атомов [19], т.е. из соотношения

$$\sum_{n=0}^{n_{max}} \sum_{q} A_{nq}^{\alpha\beta} = 0, \quad A_0^{\alpha\beta} = -\sum_{n=1}^{n_{max}} \sum_{q} A_{nq}^{\alpha\beta}.$$
 (54)

Таким образом, расчет константы c_a в (50) для каждого пути превращения сводится к алгебраическому суммированию с использованием векторов \mathbf{p}_m из табл. 1 и значений параметров Борна–Кармана $a_n - d_n$ в выражениях (51) из табл. 9 для ГЦК-железа.

Обсудим теперь вычисление константы c_m в (3). При расчете этой константы из выражения (46) для изменения энергии при малых смещениях атомов относительно их равновесных положений в ОЦК-фазе нужно учесть, что эти равновесные положения соответствуют наличию деформаций растяжения исходной ГЦК-фазы, иллюстрируемых рис. 1*6* из работы [7] и даваемых формулами (45). Поэтому, согласно формуле (40), в выражении (46) связь смещения $\mathbf{u_r}$ в плотноупакованной плоскости *m* с изменением параметра *s* теперь, вместо (48), дается соотношением

$$\mathbf{u}_{\mathbf{r}} = (1-s)\tilde{\mathbf{p}}_m,\tag{55}$$

где $\tilde{\mathbf{p}}_m = \hat{T}_{123}\mathbf{p}_m$ — вектор, получаемый из \mathbf{p}_m упомянутыми деформациями растяжений. Таким образом, общее выражение для c_m вполне аналогично выражению (49) для c_a , т. е. имеет вид

$$c_m = \frac{1}{6} \sum_{m,l=1}^{6} \sum_{n=0}^{n_{max}} \sum_q \tilde{p}_m^{\alpha} A_{nq}^{\alpha\beta} \tilde{p}_l^{\beta},$$
(56)

только матрицы $A_{nq}^{\alpha\beta}$ в (56) соответствуют ОЦК-фазе.

Явные выражения для векторов $\tilde{\mathbf{p}}_m$ получаются заменой в выражениях для \mathbf{p}_m во второй или третьей строке табл. 1 вектора \mathbf{b}_1 на $\tilde{\mathbf{b}}_1$, а \mathbf{d}_1 на $\tilde{\mathbf{d}}_1$. Эти «деформированные» векторы удобно выражать через периоды ОЦК-решетки $\mathbf{a}_{1\alpha}$, $\mathbf{a}_{2\alpha}$ и $\mathbf{a}_{3\alpha}$, вводя также сокращенные обозначения:

$$\mathbf{b}_1 = \mathbf{a}, \quad \mathbf{d}_1 = 2\mathbf{g}/3.$$
 (57)

Тогда используя формулы (16) и рис. 16 из работы [7], получим

$$\mathbf{a} = \mathbf{a}_{1\alpha}, \quad \mathbf{g} = (\mathbf{a}_{3\alpha} - \mathbf{a}_{2\alpha})/2, \\ \mathbf{h} = (\mathbf{a}_{3\alpha} + \mathbf{a}_{2\alpha})/2.$$
(58)

Здесь величина **h**, как и ранее, имеет смысл вектора относительного смещения плотноупакованных плоскостей, хотя длина этого вектора, равная теперь $a_{\alpha}/\sqrt{2}$, отличается от аналогичной длины в ГЦК-решетке, равной $a_{\gamma}/\sqrt{3}$. Отметим, что три вектора **a**, **g** и **h** взаимно перпендикулярны, а их длины связаны соотношениями $g^2 = h^2 = a^2/2 = a_{\alpha}^2/2$.

При использовании формул (57) и (58) расчет константы c_m в (56) вполне аналогичен расчету c_a в (49) и (50), только параметры Борна-Кармана $a_n - d_n$ в формулах (51) теперь берутся из табл. 9 для ОЦК-железа.

Значения констант c_a и c_m , полученные в этих расчетах, приводятся и обсуждаются ниже в разд. 7. Но для интерпретации этих и других результатов настоящей работы полезно рассмотреть также другой возможный способ расчета констант c_a и c_m , описываемый в следующем разделе.

Расчеты структуры и энергии . . .

5.3. Выражения для c_a и c_m через частоты фононов в ГЦК- и ОЦК-железе

Константы c_a и c_m можно также выразить через частоты некоторых фононов в ГЦК- и ОЦК-железе, измеряемые в экспериментах. Для этого заметим, что если в формуле (46) для изменения энергии кристалла при малых смещениях атомов перейти от $\mathbf{u_r}$ к их фурье-компонентам $\mathbf{u_k}$,

$$\mathbf{u_r} = \sum_{\mathbf{k}} \mathbf{u_k} \exp(i\mathbf{k} \cdot \mathbf{r}), \qquad (59)$$

где сумма по \mathbf{k} идет по зоне Бриллюэна и $\mathbf{u}_{-\mathbf{k}} = \mathbf{u}_{\mathbf{k}}^*$, то энергия (46) выражается через фурье-компоненты $\mathbf{u}(\mathbf{k})$ так:

$$\delta U = N \frac{1}{2} \sum_{\mathbf{k}} u_{\mathbf{k}}^{\alpha *} D_{\alpha \beta}(\mathbf{k}) u_{\mathbf{k}}^{\beta}.$$
 (60)

Здесь N — полное число атомов кристалла, а динамическая матрица $\mathbf{D}(\mathbf{k})$ есть фурье-компонента матрицы силовых постоянных $\mathbf{A}(\mathbf{R})$, входящей в формулу (46):

$$D_{\alpha\beta}(\mathbf{k}) = \sum_{\mathbf{R}} A^{\alpha\beta}(\mathbf{R}) \exp(-i\mathbf{k} \cdot \mathbf{R}).$$
(61)

Если при этом единичный вектор поляризации для фонона с поляризацией λ и частотой $\omega_{\lambda}(\mathbf{k})$ обозначить как $\mathbf{e}_{\mathbf{k}\lambda}$, то этот вектор для динамической матрицы $\mathbf{D}(\mathbf{k})$ является собственным и удовлетворяет уравнению

$$D_{\alpha\beta}(\mathbf{k})e^{\beta}_{\mathbf{k}\lambda} = \nu_{\lambda}(\mathbf{k})e^{\alpha}_{\mathbf{k}\lambda}, \qquad (62)$$

где мы для краткости обозначили $\nu_{\lambda}(\mathbf{k}) = M \omega_{\lambda}^2(\mathbf{k}).$

Начнем с вычисления константы са для ГЦК-решетки и сначала выразим векторы смещений **р**_m в формулах (48) и табл. 1 через векторы $\mathbf{e}_{\mathbf{k}\lambda}$ с некоторыми k и λ . Для этого заметим, во-первых, что векторы \mathbf{p}_m описывают смещения в плотноупакованных плоскостях, перпендикулярных вектору $\mathbf{h} = a_{\gamma}(1,1,1)_{\gamma}/3$, и эти смещения имеют период 6h вдоль данного направления. Поэтому при описании этих смещений в терминах амплитуд фононов $\mathbf{u}(\mathbf{k})$ по уравнению (59) значения \mathbf{k} в правой части равенства должны быть такими, чтобы эта периодичность через 6h выполнялась. Если учесть, что в зоне Бриллюэна ГЦК-решетки максимальное значение векторов **k** вдоль направления $[111]_{\gamma}$ равно $\mathbf{g}_{\gamma}/2$, где $\mathbf{g}_{\gamma} = (1, 1, 1)_{\gamma} 2\pi / a_{\gamma}$ — вектор обратной решетки для этого направления, то ясно, что при описании смещений (48) соотношением (59) правая часть может содержать только такие 5 векторов \mathbf{k} : $\pm \mathbf{k}_6$, $\pm \mathbf{k}_3$ и \mathbf{k}_2 , где через \mathbf{k}_n обозначено \mathbf{g}_{γ}/n ,

$$\pm \mathbf{k}_6 = \pm \frac{1}{6} \mathbf{g}_{\gamma}, \quad \pm \mathbf{k}_3 = \pm \frac{1}{3} \mathbf{g}_{\gamma}, \quad \mathbf{k}_2 = \frac{1}{2} \mathbf{g}_{\gamma}, \quad (63)$$

и учтено, что $\exp(i\mathbf{k}_2 \cdot \mathbf{r}) = \pm 1 \equiv \exp(-i\mathbf{k}_2 \cdot \mathbf{r})$. Таким образом, равенство (48) можно записать в виде фурье-разложения так:

$$\mathbf{u}_{\mathbf{r}} = s \mathbf{p}_{\mathbf{r}} = s \sum_{\mathbf{k}_{\nu}} \mathbf{u}(\mathbf{k}_{\nu}) \exp(i\mathbf{k}_{\nu} \cdot \mathbf{r}), \qquad (64)$$

где функция $\mathbf{p_r}$ — та же, что в (62), а индекс « ν » указывает на один из пяти волновых векторов в (63).

Заметим теперь, что для рассматриваемого направления $[111]_{\gamma}$ в ГЦК-решетке (так же, как для направления $[110]_{\alpha}$ в ОЦК-решетке) фононы распадаются на чисто поперечные и чисто продольные, т. е. вектор поляризации $\mathbf{e}_{\mathbf{k}\lambda}$ в равенствах (62) для этих фононов не зависит от величины вектора \mathbf{k} : $\mathbf{e}_{\mathbf{k}\lambda} = \mathbf{e}_{\lambda}$. Поэтому в векторах $\mathbf{u}(\mathbf{k}_{\nu})$ в (64) удобно явно указывать вектор поляризации:

$$\mathbf{u}(\mathbf{k}_{\nu}) = \mathbf{e}_{\lambda} u(\mathbf{k}_{\nu}, \lambda), \tag{65}$$

а в скалярных амплитудах $u(\mathbf{k}_{\nu}, \lambda)$ выделять множителями их модули $c_{n\lambda} = |u(\mathbf{k}_{\nu}, \lambda)|$ и фазы $\pm \alpha_{n\lambda}$, записывая эти амплитуды так:

$$u(\pm \mathbf{k}_6) = c_{6\lambda} \exp(\pm i\alpha_{6\lambda}),$$

$$u(\pm \mathbf{k}_3) = c_{3\lambda} \exp(\pm i\alpha_{3\lambda}), \quad u(\mathbf{k}_2) = c_{2\lambda}.$$
(66)

Поскольку векторы поперечных смещений \mathbf{p}_m в табл. 1 выражены через векторы \mathbf{b}_1 и \mathbf{d}_1 , в качестве ортов \mathbf{e}_{λ} в формуле (65) естественно использовать векторы $\mathbf{e}_x = \mathbf{b}_1/b$ и $\mathbf{e}_y = \mathbf{d}_1/d$ из (44), обозначая соответствующие им поляризации λ как x и y. Тогда, опуская в обеих частях равенства (64) общий множитель $s \to 0$, можно записать соотношения (64) в виде совокупности равенств для шести неэквивалентных плоскостей m, т. е. векторов $\mathbf{r}_m = m\mathbf{h}$:

$$\mathbf{p}_{m} = \sum_{\lambda=x,y} \mathbf{e}_{\lambda} \Big[\xi_{6\lambda} \cos \varphi_{6m} + \eta_{6\lambda} \sin \varphi_{6m} + \xi_{3\lambda} \cos \varphi_{3m} + \eta_{3\lambda} \sin \varphi_{3m} + \xi_{2\lambda} \cos \varphi_{2m} \Big], \quad (67)$$

где для n, равного 6 или 3, мы обозначили $\xi_{n\lambda} = 2c_{n\lambda}\cos\alpha_{n\lambda}$, $\eta_{n\lambda} = 2c_{n\lambda}\sin\alpha_{n\lambda}$ и $\xi_{2\lambda} = c_{2\lambda}\cos\alpha_{2\lambda}$. При этом величины $\varphi_{nm} = \mathbf{k}_n \cdot \mathbf{r}_m$, с учетом определений (63), имеют такие значения:

$$\varphi_{nm} = 2\pi m/n. \tag{68}$$

Соотношения (67) при каждом λ образуют систему шести уравнений для определения пяти неизвестных величин: $\xi_{6\lambda}$, $\eta_{6\lambda}$, $\xi_{3\lambda}$, $\eta_{3\lambda}$ и $\xi_{2\lambda}$. Однако суммирование этих уравнений по всем m от 1 до 6, с учетом условия (35) и соотношений $\sum_m \exp(i\varphi_{nm}) = 0$, дает в обеих частях равенства тождественный нуль. Поэтому для нахождения пяти неизвестных имеется пять независимых уравнений. Если в качестве этих независимых уравнений выбрать уравнения для m = 1, 2, 3, 4, 6, то система уравнений (67) примет вид

$$\xi_{6\lambda} + \sqrt{3} \eta_{6\lambda} - \xi_{3\lambda} + \sqrt{3} \eta_{3\lambda} + 2\xi_{2\lambda} = 2\zeta_1^{\lambda},$$

$$-\xi_{6\lambda} + \sqrt{3} \eta_{6\lambda} - \xi_{3\lambda} - \sqrt{3} \eta_{3\lambda} + 2\xi_{2\lambda} = 2\zeta_2^{\lambda},$$

$$-\xi_{6\lambda} + \xi_{3\lambda} - \xi_{2\lambda} = \zeta_3^{\lambda},$$

$$-\xi_{6\lambda} - \sqrt{3} \eta_{6\lambda} - \xi_{3\lambda} + \sqrt{3} \eta_{3\lambda} + \xi_{2\lambda} = 2\zeta_4^{\lambda},$$

$$\xi_{6\lambda} + \xi_{3\lambda} + \xi_{2\lambda} = \zeta_6^{\lambda}.$$

(69)

Здесь через ζ_m^{λ} обозначен коэффициент при \mathbf{e}_{λ} (т. е. \mathbf{e}_x или \mathbf{e}_y) в векторе \mathbf{p}_m для выбранного пути превращения, определяемый с помощью второй или третьей строк табл. 1. Решения системы уравнений (69) указаны в табл. 2.

Подставляя выражения (64) и (66) в формулу (60) с учетом соотношения (62), получаем следующее выражение для энергии δU в (60) через частоты фононов:

$$\delta U = Ns^2 \frac{1}{2} \sum_{\lambda} \left(\nu_{6\lambda} 2c_{6\lambda}^2 + \nu_{3\lambda} 2c_{3\lambda}^2 + \nu_{2\lambda} c_{2\lambda}^2 \right), \quad (70)$$

где для краткости обозначено $\nu_{n\lambda} = \nu_{\lambda}(\mathbf{k}_n)$, а $\nu_{\lambda}(\mathbf{k})$ — то же, что в (62). При этом в рассматриваемом случае ГЦК-решетки частоты двух поперечных ветвей λ , входящих в формулу (70), одинаковы, т. е. не зависят от λ . Сравнивая равенство (70) с формулой (47), можно представить константу c_a в (3) в виде

$$c_a = \sum_{\lambda=x,y} \left(\nu_{6\lambda} c_{6\lambda}^2 + \nu_{3\lambda} 2 c_{3\lambda}^2 + \nu_{2\lambda} c_{2\lambda}^2 \right).$$
(71)

Здесь величины $c_{n\lambda}^2 = (\xi_{n\lambda}^2 + \eta_{n\lambda}^2)/4$, согласно табл. 2, имеют значения, приводимые во второй и третьей строках табл. 3, где мы учли, что $d = b/\sqrt{3}$, и выразили $c_{n\lambda}^2$ через расстояние между ближайшими соседями в ГЦК-решетке $b = a_{\gamma}/\sqrt{2}$.

Расчет константы c_m в формуле (3) выполняется точно так же, как для c_a , только вектор обратной решетки \mathbf{g}_{γ} в выражениях (63) для \mathbf{k}_n , входящих в формулы (67), (70) и (71), теперь заменяется на аналогичный вектор обратной решетки \mathbf{g}_{α} , перпендику-

Путь превращения	ξ_{6x}	η_{6x}	ξ_{3x}	η_{3x}	ξ_{2x}	ξ_{6y}	η_{6y}	ξ_{3y}	η_{3y}	ξ_{2y}
$(\gamma \to \alpha)1$	0	$-b/2\sqrt{3}$	-b/6	0	0	-d/2	0	0	$-d/2\sqrt{3}$	-d/4
$(\gamma \to \alpha)2$	b/6	$b/2\sqrt{3}$	0	0	b/12	0	0	-d/2	$-d/2\sqrt{3}$	0

Таблица 2. Решения $\xi_{n\lambda}$ и $\eta_{n\lambda}$ системы уравнений (69)

Таблица 3. Значения величин $c_{n\lambda}^2$ в формулах (71) и (73)

Константа	Путь превращения	c_{6x}^{2}	c_{3x}^2	c_{2x}^{2}	c_{6y}^{2}	c_{3y}^{2}	c_{2y}^2
c_a	$\begin{aligned} (\gamma \to \alpha) 1 \\ (\gamma \to \alpha) 2 \end{aligned}$	$b^2/48 b^2/36$	$\frac{b^2}{144}$ 0	$0 \\ b^2/144$	$b^2/48$ 0	$\frac{b^2}{144} \frac{b^2}{36}$	$\frac{b^2}{48}$ 0
Cm	$\begin{aligned} (\gamma \to \alpha) 1\\ (\gamma \to \alpha) 2 \end{aligned}$	$\frac{a_{\alpha}^2/48}{a_{\alpha}^2/36}$	$\begin{array}{c}a_{\alpha}^{2}/144\\0\end{array}$	$\begin{array}{c} 0\\ a_{\alpha}^2/144 \end{array}$	$\begin{array}{c} a_{\alpha}^2/72 \\ 0 \end{array}$	$a_{lpha}^2/216 \ 2a_{lpha}^2/108$	$\frac{a_{\alpha}^2/72}{0}$

лярный плотноупакованным плоскостям в ОЦК-решетке:

$$\mathbf{k}_{6} = \frac{1}{6} \mathbf{g}_{\alpha}, \quad \mathbf{k}_{3} = \frac{1}{3} \mathbf{g}_{\alpha}, \mathbf{k}_{2} = \frac{1}{2} \mathbf{g}_{\alpha}, \quad \mathbf{g}_{\alpha} = (011)_{\alpha} \frac{2\pi}{a_{\alpha}}.$$
(72)

При этом поперечные фононы с векторами \mathbf{k}_n вдоль направления $(011)_{\alpha}$, входящие в формулу (70), имеют разные частоты для разных поляризаций, и ветвь T1 с поляризацией вдоль вектора $\mathbf{e}_y \sim (0, 1, \bar{1})_{\alpha}$ лежит ниже ветви T2 с поляризацией вдоль $\mathbf{e}_x \sim (100)_{\alpha}$. Кроме того, учитывая соотношения (57), величину $b = |\mathbf{b}_1|$ в выражениях для c_{nx}^2 в четвертой и пятой строках табл. З нужно заменять на $a = a_{\alpha}$, а в выражениях для c_{ny}^2 — на $2g/\sqrt{3} =$ $= a_{\alpha}\sqrt{2/3}$.

С учетом всех этих замечаний, выражение для c_m вместо (71) имеет такой вид:

$$c_{m} = \sum_{\lambda=x,y} \left(\nu_{6\lambda} 2c_{6\lambda}^{2} + \nu_{3\lambda} 2c_{3\lambda}^{2} + \nu_{2\lambda} c_{2\lambda}^{2} \right), \quad (73)$$

где значения $c_{n\lambda}^2$ даются четвертой и пятой строками табл. 3.

Таблицы 2 и 3 показывают, в частности, что амплитуды фононных смещений $sc_{n\lambda}$ или $(1 - s)c_{n\lambda}$ в формулах (59), (64) и (55) остаются достаточно малыми сравнительно с межатомными расстояниями на всем пути превращения. Кроме того, соотношения (55), (59) и (64) показывают, что, по крайней мере при малых *s* или (1 - s), тасование плотноупакованных атомных плоскостей, осуществляющее мартенситное превращение, можно рассматривать как возникновение суперпозиций нескольких «замороженных фононов» с волновыми векторами \mathbf{k}_n , указанными в формуле (63) или (72). Поэтому и характеристики ОФГЛ, описывающего такое превращение, отражают «фононный» механизм этого превращения. Это проявляется, в частности, в резкой анизотропии тензора градиентных коэффициентов $g^{ss}_{\alpha\beta}$ в выражении для свободной энергии (12), обсуждаемой ниже в разд. 7.

6. РАСЧЕТЫ ГРАДИЕНТНЫХ КОЭФФИЦИЕНТОВ g^{ss}, g^{su} И g^{uu} В ВЫРАЖЕНИЯХ (9)–(11)

6.1. Расчеты коэффициентов $g^{ss}_{\alpha\beta}$ в выражении (9)

Методы микроскопических расчетов градиентных членов ОФГЛ, описывающих обсуждаемые превращения, подробно рассматривались в работе [6]. Было показано, что градиентные коэффициенты $g_{\alpha\beta}^{ss}$ в (9) при любом значении параметра превращения *s* могут быть явно выражены через матрицу силовых постоянных $\mathbf{A}(\mathbf{R},s) = A_{ml}^{\alpha\beta}(\mathbf{R},s)$ кристалла на пути превращения. Элементарная ячейка этого кристалла, как отмечено выше, содержит 6 атомов, лежащих в шести неэквивалентных плотноупакованных плоскостях *m*. Выражение \mathbf{g}^{ss} через $\mathbf{A}(\mathbf{R},s)$, полученное в работе [6], дается первым слагаемым формулы (48), которое в обозначениях настоящей работы имеет вид

$$g_{\alpha\beta}^{ss}(s) =$$

$$= -\frac{1}{24} \sum_{m,l=1}^{6} \sum_{n=1}^{n_{max}} \sum_{q} \tilde{p}_{m}^{\gamma} A^{\gamma\delta}(\mathbf{R}_{nq}, s) \tilde{p}_{l}^{\delta} R_{nq}^{\alpha} R_{nq}^{\beta}, \quad (74)$$

где векторы $\tilde{\mathbf{p}}_m$ те же, что в формуле (40), а $\mathbf{R}_{nq} = \mathbf{r}'_l - \mathbf{r}_m$, как и в формуле (49), есть *q*-й вектор решетки, принадлежащий координационной сфере *n* и соединяющий узел \mathbf{r}'_l с узлом \mathbf{r}_m .

Матрицы $A^{\gamma\delta}(\mathbf{R}_{nq},s)$ в (74) можно оценивать, например, используя интерполяцию между начальным и конечным значениями каждой из этих матриц на пути превращения. Такая интерполяция обсуждалась в работе [6] и иллюстрировалась в ней формулами (60)–(62). Однако ниже мы ограничимся более простой интерполяцией, вычисляя матрицу $A^{\gamma\delta}(\mathbf{R},s)$ только при s = 0 и s = 1 (т. е. в аустените и в мартенсите) и применяя затем разные возможные способы интерполяции элементов данной матрицы между этими граничными значениями. При этом значения $g^{\alpha\beta}$ для аустенита будем указывать нижним индексом a, а для мартенсита — нижним индексом m.

Тогда, согласно соотношениям (74), общие выражения для $g_a^{\alpha\beta}$ и $g_m^{\alpha\beta}$ можно записать в виде, аналогичном выражениям (49) и (56) для c_a и c_m :

$$g_a^{\alpha\beta} = -\frac{1}{24} \sum_{m,l=1}^{6} \sum_{n=1}^{n_{max}} \sum_{q} p_m^{\gamma} A^{\gamma\delta}(\mathbf{R}_{nq}) p_l^{\delta} R_{nq}^{\alpha} R_{nq}^{\beta}, \quad (75)$$

$$g_m^{\alpha\beta} = -\frac{1}{24} \sum_{m,l=1}^{6} \sum_{n=1}^{n_{max}} \sum_{q} \tilde{p}_m^{\gamma} A^{\gamma\delta}(\mathbf{R}_{nq}) \tilde{p}_l^{\delta} R_{nq}^{\alpha} R_{nq}^{\beta}, \quad (76)$$

где матрицы $\mathbf{A}(\mathbf{R}_{nq})$ те же, что в формулах (49) и (56). Суммы по векторам решетки в (75) и (76) аналогичны таким же суммам в выражениях (49) и (56), отличаясь от них только наличием в каждом члене двух последних сомножителей (и отсутствием вклада матрицы \mathbf{A}_0 , который здесь равен нулю). Поэтому $g_a^{\alpha\beta}$ и $g_m^{\alpha\beta}$ могут вычисляться теми же методами, что c_a и c_m в разд. 5.2. Результаты этих расчетов приводятся ниже.

Обсудим теперь возможность получить для тензоров \mathbf{g}_a и \mathbf{g}_m в (75) и (76) выражения через динамическую матрицу или непосредственно через частоты фононов в ГЦК- или ОЦК-железе, аналогичные выражениям (71) и (73) для c_a и c_m . Это позволит нам обсуждать уточнения расчетов \mathbf{g}_a и \mathbf{g}_m , связанные с выходом за рамки приближенного описания фононных спектров моделями Борна – Кармана с короткодействием, использовавшимися в работах [12–14].

Для определенности рассмотрим сначала тензор \mathbf{g}_a и заметим, что если воспользоваться тождеством

$$R^{\alpha}R^{\beta} = -\left[\partial^2/\partial q_{\alpha}\partial q_{\beta}\exp(-i\mathbf{qR})\right]_{\mathbf{q}\to 0},\qquad(77)$$

то выражение (75) для \mathbf{g}_a можно записать в виде двойной суммы по всем векторам решетки, аналогичной первому выражению (49) для c_a :

$$g_{a}^{\alpha\beta} = \frac{1}{4N} \times \left[\frac{\partial^{2}}{\partial q_{\alpha}} \partial q_{\beta} \sum_{\mathbf{r},\mathbf{r}'} p_{\mathbf{r}}^{\alpha} B^{\alpha\beta}(\mathbf{r} - \mathbf{r}', \mathbf{q}) p_{\mathbf{r}'}^{\beta} \right]_{\mathbf{q} \to 0}, \quad (78)$$

где функция $B^{\alpha\beta}(\mathbf{R}, \mathbf{q})$ отличается от матрицы силовых постоянных $A^{\alpha\beta}(\mathbf{R})$ только экспоненциальным множителем, возникшим из тождества (77):

$$B^{\alpha\beta}(\mathbf{R},\mathbf{q}) = A^{\alpha\beta}(\mathbf{R})\exp(-i\mathbf{q}\cdot\mathbf{R}).$$
(79)

Переходя в выражении (78) к решеточным компонентам Фурье так же, как при переходе от выражения (46) для δU к формуле (60), и учитывая вид фурье-разложений функции **р**_г, определяемый равенствами (64) и (65), а также определения (61) и (79), можно записать компоненты $g_{\alpha}^{\alpha\beta}$ в виде

$$g_{a}^{\alpha\beta} = \frac{1}{4} \left[\frac{\partial^{2}}{\partial q_{\alpha} \partial q_{\beta}} \sum_{\nu,\lambda=x,y} u^{*}(\mathbf{k}_{\nu},\lambda) e_{\lambda}^{\gamma} \times D^{\gamma\delta}(\mathbf{k}_{\nu}+\mathbf{q}) e_{\lambda}^{\delta} u(\mathbf{k}_{\nu},\lambda) \right]_{\mathbf{q}\to 0}, \quad (80)$$

где векторы \mathbf{e}_{λ} и амплитуды $u(\mathbf{k}_{\nu}, \lambda)$ те же, что в равенствах (65). Подставляя для $u(\mathbf{k}_{\nu}, \lambda)$ выражения (66), мы можем явно выразить компоненты $g_{a}^{\alpha\beta}$ через величины $c_{n\lambda}$ из табл. 3:

$$g_{a}^{\alpha\beta} = \frac{1}{4} \Big\{ \partial^{2} / \partial q_{\alpha} \partial q_{\beta} \sum_{\lambda=x,y} e_{\lambda}^{\gamma} \Big[2c_{6\lambda}^{2} D^{\gamma\delta}(\mathbf{k}_{6} + \mathbf{q}) + 2c_{3\lambda}^{2} D^{\gamma\delta}(\mathbf{k}_{3} + \mathbf{q}) + c_{2\lambda}^{2} D^{\gamma\delta}(\mathbf{k}_{2} + \mathbf{q}) \Big] e_{\lambda}^{\delta} \Big\}_{\mathbf{q}\to 0}.$$
(81)

Если в равенстве (81) направление вектора **q** не совпадает с направлением векторов \mathbf{k}_n , т. е. если хотя бы одна из компонент α или β тензора $g_{\alpha}^{\alpha\beta}$ в используемой нами системе координат (44) равна xили y, то векторы \mathbf{e}_{λ} в (81) не являются собственными для матриц $\mathbf{D}(\mathbf{k}_{n} + \mathbf{q})$, т.е. не удовлетворяют соответствующим уравнениям (61), и соотношение (81) не дает возможности выразить $g_{a}^{\alpha\beta}$ через частоты фононов. Но если $\alpha = \beta = z$, т.е. векторы $\mathbf{k}_{n} + \mathbf{q}$ направлены нормально плотноупакованным плоскостям, то, как отмечено выше, для поперечных фононов этого направления векторы \mathbf{e}_{λ} являются собственными при любых значениях $|\mathbf{k}_{n}+\mathbf{q}|$. Поэтому каждое произведение $\mathbf{D}(\mathbf{k}_{n}+\mathbf{q})\mathbf{e}_{\lambda}$ в равенстве (81) можно упростить по уравнениям (61), и для компоненты g_{a}^{zz} получаем

$$g_a^{zz} = \frac{1}{4} \Big\{ \partial^2 / \partial q_z^2 \sum_{\lambda = x, y} \Big[2c_{6\lambda}^2 \nu_\lambda (\mathbf{k}_6 + \mathbf{q}) + 2c_{3\lambda}^2 \nu_\lambda (\mathbf{k}_3 + \mathbf{q}) + c_{2\lambda}^2 \nu_\lambda (\mathbf{k}_2 + \mathbf{q}) \Big] \Big\}_{q_z \to 0}, \quad (82)$$

где $\nu_{\lambda}(\mathbf{k})$ то же, что в (62). Ниже волновые векторы \mathbf{k} для обсуждаемого направления $\mathbf{e}_{z} = \mathbf{h}/h$ будем описывать скалярной величиной ξ , определенной обычным соотношением: $\mathbf{k} = \xi 2\pi \mathbf{h}/h^{2}$. При этом каждому вектору \mathbf{k}_{n} в (63) соответствует значение $\xi_{n} = 1/n$, а равенство (82) можно компактно записать так:

$$g_{a}^{zz} = \frac{1}{12} \left(\frac{a_{\gamma}}{2\pi}\right)^{2} \times \\ \times \sum_{\lambda=x,y} \left(2c_{6\lambda}^{2}\nu_{6\lambda}^{\prime\prime} + 2c_{3\lambda}^{2}\nu_{3\lambda}^{\prime\prime} + c_{2\lambda}^{2}\nu_{2\lambda}^{\prime\prime}\right), \quad (83)$$

где $\nu_{n\lambda}^{\prime\prime}$ — производная $d^2 \nu_\lambda(\xi)/d\xi^2$ при $\xi = \xi_n$.

Зависимости $\nu_{\lambda}(\xi)$ для обсуждаемых фононов подробно рассматривались в работе [20]. Было показано, что если обозначить номер плотноупакованной плоскости, соответствующий значению n_{max} в формуле (49) (т. е. номер последней из таких плоскостей, взаимодействие с которыми учитывается в используемой модели Борна–Кармана) через m_{max} , то каждая функция $\nu_{\lambda}(\xi)$ описывается простым соотношением:

$$\nu_{\lambda}(\xi) = \sum_{m=1}^{m_{max}} B_{m\lambda} \sin^2(\pi m \xi), \qquad (84)$$

где $B_{m\lambda}$ — постоянные коэффициенты, которые можно выразить через значения $\nu_{\lambda}(\xi_i)$ при каких-нибудь m_{max} значениях ξ_i .

При описании ГЦК-железа в этой работе мы используем модель Борна–Кармана, предложенную в работе [12], в которой $n_{max} = 6$. Как обсуждалось в работе [20], это соответствует значению $m_{max} = 3$. Расчеты структуры и энергии . . .

Поэтому в качестве упомянутых значений ξ_i естественно выбрать используемые нами $\xi_n = 1/n$, выражая коэффициенты $B_{m\lambda}$ в (84) через $\nu_{n\lambda}$. Это дает

$$B_{1\lambda} = \frac{2}{3} \left(\nu_{3\lambda} + \nu_{2\lambda} - \nu_{6\lambda} \right),$$

$$B_{2\lambda} = \frac{2}{3} \left(\nu_{6\lambda} + \nu_{3\lambda} - \nu_{2\lambda} \right),$$

$$B_{3\lambda} = \frac{2}{3} \left(\nu_{6\lambda} - \nu_{3\lambda} + \nu_{2\lambda}/2 \right).$$
(85)

Отметим, что значение $B_{1\lambda}$ в (85) обычно намного больше, чем $B_{2\lambda}$ и $B_{3\lambda}$. Так, для поперечных фононов в ГЦК-железе, используя для ν_n значения из табл. 4, имеем: $B_1 \approx \nu_2$, $B_2 \approx 0.01 B_1$, $B_3 \approx -0.02 B_1$. Заметим также, что соотношение (83) является точным и общим, в то время как формулы (75) и (76), так же как (84) и (85), основаны на моделях Борна-Кармана с некоторыми, не слишком большими, значениями n_{max} и m_{max} , входящими в эти формулы.

Соотношения (81)–(85), очевидно, сохраняют свой вид также и для компонент $g_m^{\alpha\beta}$ в (76). Только в моделях Борна–Кармана для ОЦК-железа, предложенных в работах [13,14] и используемых в настоящей работе, значение n_{max} выбиралось равным 5, что, как показано в [20], соответствует $m_{max} = 2$. Поэтому сумма в (84) здесь содержит только два члена, и $B_{3\lambda} = 0$.

Результаты расчетов величин $g_a^{\alpha\beta}$ и $g_m^{\alpha\beta}$ по соотношениям (75) и (76) или (83)-(85) приведены ниже в табл. 6. Качественной особенностью этих результатов является малость значений компонент g^{zz} сравнительно с g^{xx} и g^{yy} , т. е. сильная анизотропия рассматриваемых градиентных коэффициентов, особенно в ГЦК-железе. При этом для пути превращения $(\gamma \rightarrow \alpha)^2$ вычисленное таким образом значение g_a^{zz} оказывается даже отрицательным. Как обсуждалось в работе [6], такая отрицательность могла бы указывать на неустойчивость рассматриваемых нами структур (по крайней мере, при малых значениях параметра превращения s) относительно образования некоторых неоднородных искажений, квазипериодических вдоль направления $\mathbf{e}_z = \mathbf{h}/h$, перпендикулярного плотноупакованным плоскостям.

В этой связи мы обсудим вопрос о точности использованных нами расчетов по формулам (75) или (83)–(85), основанных на модели Борна–Кармана из работы Зарецкого и Стассиса [12], в частности, точность описания этой моделью производных $\nu''_{n\lambda}$ в общем выражении (83) для g_a^{zz} . Если сравнить экспериментальные значения частот $\omega_T(\xi)$ поперечных фононов направления $\mathbf{h}/h = (\xi, \xi, \xi)_{\gamma}$ в ГЦК-железе,

	ν_{6x}	$ u_{6y}$	ν_{3x}	ν_{3y}	ν_{2x}	ν_{2y}
ГЦК-Fe, $T = 1428$ К [12]	10875	10875	34539	34539	44724	44724
ОЦК-Fe, $T = 293$ К [13]	4561	33988	18011	90324	26901	112672
ОЦК-Fe, $T = 773$ К [14]	5608	31096	20985	94443	30753	126694
ОЦК-Fe, $T = 1043$ К [14]	11001	33660	40434	106794	58867	146267
ОЦК-Fe, $T = 1173$ К [14]	17600	34590	57360	114510	79520	159840

Таблица 4. Значения величин $\nu_{n\lambda} = M \omega_{\lambda}^2(\mathbf{k_n})$ в формулах (71), (73) и (85), найденные в экспериментах [12–14] (в дин/см)

приведенные на рис. 1 работы [12], с описанием этих частот используемой моделью Борна-Кармана (также показанным на этом рисунке), то можно видеть, что наблюдаемые значения $\nu_{6T}'' \propto (\omega_{6T}^2)''$ и $u_{3T}^{\prime\prime\prime} \propto (\omega_{3T}^2)^{\prime\prime}$ описываются достаточно точно. В то же время описание значений $\nu_{2T}^{\prime\prime} \propto (\omega_{2T}^2)^{\prime\prime}$ этой моделью Борна-Кармана кажется качественно неверным. Для значений ξ , близких к $\xi = 0.5$, экспериментальные точки, по-видимому, указывают на наличие смягчения частоты с ростом ξ , т. е. на то, что при $\xi = 0.5$ функция $\omega_T(\xi)$ имеет минимум вместо обычного максимума. Как отмечалось в ряде работ, например, [20, 21], такое смягчение является типичным проявлением зонных эффектов дальнодействия и оно наблюдается во многих металлах. Правда, погрешности измерений в работе [12] не позволяют сделать вывод о наличии данной аномалии, т.е. о наличии в ГЦК-железе минимума частот $\omega_T(\xi)$ при $\xi = 0.5$ с полной определенностью. Однако для частоты продольной ветви данного направления, $\omega_L(\xi)$, аналогичная аномалия на рис. 1 из работы [12] наблюдается вполне отчетливо. Поэтому наличие сходной аномалии также и в поперечной ветви кажется наиболее вероятным. Тогда вторая производная $u_{2T}^{\prime\prime\prime} \propto (\omega_{2T}^2)^{\prime\prime}$ в выражении (83) является положительной, в то время как в расчете с использованием модели Борна-Кармана из работы [12], в которой $\xi = 0.5$ является точкой максимума $\omega_T(\xi)$, эта производная отрицательна.

Чтобы исправить эту неточность и оценить значения g_a^{zz} в железе более реалистично, можно использовать интерполяцию данных [12] об $\omega_T(\xi)$ вблизи $\xi = 0.5$, аналогичную использованной выше в формуле (8). В соответствии с рис. 1 и табл. 1, приведенными в работе [12], будем предполагать, что в точке $\xi = 0.5$ функция $\omega_T(\xi)$ имеет минимум, равный ω_2 , в то время как точка $\xi_{\delta} = (0.5 - \delta)$ с $\delta = 0.05$,

для которой в [12] было найдено $\omega_T(\xi_{\delta}) = \omega_2(1 + \Delta)$ с $\Delta \approx 0.047$, соответствует точке максимума $\omega_T(\xi)$. Тогда, интерполируя зависимость величины $\nu_T(\xi) = M\omega_T^2(\xi)$ в интервале от ξ_{δ} до $\xi = 0.5$ так же, как при выводе формулы (8), с учетом малости Δ получим

$$\nu_T(\xi) = \nu_2 \big[1 + 2\Delta \eta^2 (3 - 2\eta) \big], \tag{86}$$

где $\eta = (0.5 - \xi)/\delta$. Вычисление производной ν''_{2T} с функцией $\nu_T(\xi)$, даваемой выражением (86) (которое мы будем называть «экспериментальным» и обозначать нижним индексом «*exp*»), дает

$$\nu_{2T,exp}^{\prime\prime} = \nu_2 \cdot 12\Delta/\delta^2 \approx 226\nu_2. \tag{87}$$

В то же время аналогичный вклад, вычисленный на основе модели Борна-Кармана из работы [12] (называемый ниже индексом «*BvK*»), согласно формулам (84) и (85), дается выражением

$$\nu_{2T,BvK}^{\prime\prime} = -2\pi^2 (B_1 - 4B_2 + 9B_3) \approx -20\nu_2.$$
 (88)

Видно, что обсуждаемая неточность приводит к резкому занижению вклада слагаемого ν''_{2T} в выражение (83).

Значения g_a^{zz} , вычисленные по соотношению (83) с использованием для ν_{2T}'' выражения (87) вместо (88), приводятся в табл. 6 в квадратных скобках. Видно, что эти значения положительны, так что упоминавшаяся методическая трудность отсутствует. Ниже во всех расчетах настоящей работы для g_a^{zz} используются экспериментальные значения, указанные ниже в табл. 6 в квадратных скобках.

6.2. Расчеты коэффициентов g^{uu} и g^{su} в выражениях (10) и (11)

Градиентно-деформационные коэффициенты \mathbf{g}^{uu} и \mathbf{g}^{su} в этой работе мы тоже будем вычислять

только для s = 0 и s = 1, т.е. для аустенита и мартенсита, указывая это индексом *a* или *m*, например: $\mathbf{g}_{a}^{uu} = g_{\alpha\beta,\gamma\delta\lambda\mu}^{uu,a}, \mathbf{g}_{m}^{su} = g_{\alpha,\beta\gamma\delta}^{su,m}$. Для других *s*, как и в расчетах \mathbf{g}^{ss} , будем использовать те или иные интерполяции между двумя этими значениями коэффициентов.

Начнем с обсуждения коэффициентов $g^{uu}_{\alpha\beta,\gamma\delta\lambda\mu}$. Поскольку в нашем подходе как сами компоненты тензора дисторси
и $\nabla_\beta u_\alpha,$ так и их градиенты $\nabla^2_{\beta\gamma} u_\alpha$ считаются малыми, для расчетов $\mathbf{g}^{uu,a}$ и $\mathbf{g}^{uu,m}$ можно снова исходить из выражения (46) для изменения энергии ГЦК- или ОЦК-кристалла при малых смещениях атомов из положений равновесия, только нужно учесть также и малость градиентов этих смещений. Это означает, что если в формуле (46) обозначить координату \mathbf{r}' как $(\mathbf{r} - \mathbf{R})$, то смещения **u**_{r'} можно разложить в ряд по степеням градиентов смещений $\mathbf{u_r}$. Если учесть также четность по \mathbf{R} матрицы силовых постоянных как в аустените, так и в мартенсите, $A^{\alpha\beta}(\mathbf{R}) = A^{\alpha\beta}(-\mathbf{R})$, то нечетные по R члены в этом разложении выпадают, и выражение (46) примет вид

$$\delta U = \frac{1}{2} \sum_{\mathbf{r}} u_{\mathbf{r}}^{\alpha} \sum_{\mathbf{R}} A^{\alpha\beta}(\mathbf{R}) \times \\ \times \left(1 + \frac{R_{\gamma}R_{\delta}}{2} \nabla_{\gamma\delta}^{2} + \frac{R_{\gamma}R_{\delta}R_{\lambda}R_{\mu}}{24} \nabla_{\gamma\delta\lambda\mu}^{4} \right) u_{\mathbf{r}}^{\beta}.$$
(89)

Используя формулы суммирования Эйлера-Маклорена, суммы по **r** в этом выражении можно преобразовать в интегралы по объему, как это подробно обсуждалось в работе [6] при выводе формул (40)-(48). При этом сумма по **R** в первом члене полученного разложения равна нулю вследствие трансляционной инвариантности (неизменности энергии кристалла при однородном смещении всех атомов), а второй член соответствует энергии однородных деформаций (см., например, [19]), которую в формулах (1) и (2) мы описываем выражением (4) для f_u. Последний, третий член разложения (89) соответствует градиентному члену G_{uu} в формулах (2) и (10). Сравнивая эти формулы с выражением (89), приходим к следующему общему выражению для градиентных коэффициентов \mathbf{g}_{a}^{uu} и \mathbf{g}_{m}^{uu} :

$$g^{uu}_{\alpha\beta,\gamma\delta\lambda\mu} = \frac{1}{48} \sum_{\mathbf{R}} A^{\alpha\beta}(\mathbf{R}) R_{\gamma} R_{\delta} R_{\lambda} R_{\mu}, \qquad (90)$$

где для коэффициентов \mathbf{g}_{a}^{uu} сумма в правой части берется по решетке аустенита, а для \mathbf{g}_{m}^{uu} — по решетке мартенсита. При использовании матриц силовых постоянных (51) с параметрами Борна – Кармана из табл. 9 эти суммы вычисляются так же, как суммы (49) и (56).

При расчетах коэффициентов \mathbf{g}^{su} мы также будем исходить из выражения (46) для изменений энергии кристалла при малых смещениях атомов. Однако здесь мы считаем, что эти смещения состоят из двух вкладов: вклада смещений в каждой *m*-й плотноупакованной плоскости, $\mathbf{u}_m(\mathbf{r})$, который при малых *s* описывается выражением (48) с малым и слабонеоднородным параметром превращения $s = s(\mathbf{r})$, и вклада малых и слабонеоднородных «акустических» смещений всех атомов кристалла, $\mathbf{u}_a(\mathbf{r})$:

$$u(\mathbf{r}) = \mathbf{p}_m s(\mathbf{r}) + \mathbf{u}_a(\mathbf{r}). \tag{91}$$

После подстановки этих выражений для $\mathbf{u}_{\mathbf{r}}$ и $\mathbf{u}_{\mathbf{r}'}$ в формулу (46) интересующее нас слагаемое, билинейное по *s* и \mathbf{u}_a , примет вид

$$\delta U_{su} = \frac{1}{6} \sum_{m,\mathbf{r},\mathbf{r}'} p_m^{\alpha} s(\mathbf{r}) A^{\alpha\beta} (\mathbf{r} - \mathbf{r}') u_a^{\beta} (\mathbf{r}'), \qquad (92)$$

где множитель 1/6 введен для того, чтобы суммирование по всем значениям m и \mathbf{r} , соответствующим разным плоскостям m, давало верный результат для полной энергии (46). После перехода от $\mathbf{r'}$ к переменой $\mathbf{R} = (\mathbf{r} - \mathbf{r'})$ слабонеоднородные функции $\mathbf{u}_a(\mathbf{r'})$ можно разложить в ряд по градиентам так же, как выше в формулах (89). Это дает

$$\delta U_{su} = \sum_{m} p_{m}^{\alpha} \sum_{\mathbf{r}} s(\mathbf{r}) \sum_{\mathbf{R}} A^{\alpha\beta}(\mathbf{R}) \times \\ \times \left[\frac{1}{6} + \frac{1}{12} (R_{\gamma}R_{\delta}) \nabla_{\gamma\delta}^{2} + \frac{1}{144} (R_{\gamma}R_{\delta}R_{\lambda}R_{\mu}) \nabla_{\gamma\delta\lambda\mu}^{4} \right] u_{a}^{\beta}(\mathbf{r}).$$
(93)

Вследствие условия (35), первый сомножитель в этом выражении равен нулю. Поэтому обсуждаемый вклад в энергию, билинейный по параметру *s* и по градиентам акустических смещений, обращается в нуль. Это отражает ортогональность фононных состояний, обсуждавшихся в разд. 5.3, при разных волновых векторах \mathbf{k} : $\mathbf{k} = \mathbf{k}_n \neq 0$, соответствующих обсуждавшемуся выше тасованию плоскостей, и малых $\mathbf{k} \to 0$, соответствующих слабонеоднородным деформациям.

Из этого результата следует, что разложение коэффициентов \mathbf{g}^{su} по степеням *s* в плотности свободной энергии (2) начинается только с членов, линейных по *s*, а при *s* = 0 эти коэффициенты обращаются в нуль. То же, очевидно, справедливо и при малых (1-s) для разложений \mathbf{g}^{su} по степеням (1-s), что в формулах (91)–(93) соответствует только замене *s* на (1 - s) и \mathbf{p}_m на $\tilde{\mathbf{p}}_m$.

В то же время для остальных градиентных коэффициентов, \mathbf{g}^{ss} и \mathbf{g}^{uu} , таких «симметрийных» ограничений нет, и эти коэффициенты имеют обсуждавшиеся выше ненулевые значения как в аустените, так и в мартенсите. Поэтому если использовать для всех рассматриваемых градиентных коэффициентов одни и те же линейные интерполяции между их значениями при s = 0 и при s = 1 (что для используемого простейшего подхода кажется последовательным), то градиентные коэффициенты \mathbf{g}^{su} в (2) следует считать равными нулю. Это приближение и будет использоваться ниже.

Заметим также, что результаты наших расчетов, описываемые ниже, показывают, что вклад в свободную энергию (2) градиентно-деформационного слагаемого G_{uu} из (10), вычисленный на основе выражения (90), оказывается пренебрежимо малым сравнительно со вкладом «основного» градиентного члена G_{ss} , билинейного по градиентам параметра превращения. И поскольку величина «смешанного» градиентно-деформационного члена G_{su} в (11) кажется сходной с величиной G_{uu} (так, из дальнейшего видно, что при малых *s* или (1 - s) эти члены имеют сходную зависимость от *s* типа $s^2(1-s)^2$), указанная малость G_{uu} кажется дополнительным аргументом в пользу пренебрежения вкладом G_{su} .

6.3. Оценка тензора поворота $\varepsilon_{\alpha\beta}(s)$

Результаты разд. 6.2 можно использовать для оценок зависимости от параметра превращения s тензора поворота $\varepsilon_{\alpha\beta}(s) = (\partial u_{\alpha}/\partial x_{\beta} - \partial u_{\beta}/\partial x_{\alpha})/2.$ Значения $\varepsilon_{\alpha\beta}$, минимизирующие функционал (1), вообще говоря, должны находиться из решения вариационных уравнений (17)-(21). В то же время, вследствие независимости энергии от однородных поворотов всей системы, эти уравнения содержат не сами компоненты $\varepsilon_{\alpha\beta}$, а только их градиенты, описывающие кручение, т.е. величины $\nabla_{\gamma} \varepsilon_{\alpha\beta}$ в уравнениях (17) и (18), или производные $\varepsilon'_{\alpha\beta} = d\varepsilon_{\alpha\beta}/d\xi$ в уравнениях (20) и (21). Поэтому в используемом нами нулевом приближении, в котором последние слагаемые в квадратных скобках в уравнениях (20) и (21) отбрасываются, величины $\varepsilon'_{\alpha\beta}$ из уравнений выпадают. Они входят только в поправочные члены, т.е. в упомянутые последние слагаемые уравнений (20) и (21), количественная оценка которых затруднена обсуждавшимся выше отсутствием экспериментальной информации о градиентных коэффициентах \mathbf{g}^{su} . Поэтому ниже мы ограничимся только

оценкой зависимостей $\varepsilon_{\alpha\beta}(s)$ при малых *s* или (1-s), аналогичной полученной выше для тензора $\sigma_{\alpha\beta}(s)$ в (8).

Рассмотрим сначала область малых *s* и обсудим, как меняются с *s* в этой области разные слагаемые в квадратных скобках в уравнении (21). Согласно результатам нулевого приближения (24) и (27), обе производные, s' и s" при малых s пропорциональны s, и градиентные коэффициенты \mathbf{g}^{su} , как отмечено выше, здесь тоже линейны по s. В то же время коэффициенты \mathbf{g}^{uu} при $s \to 0$ имеют конечные ненулевые значения (90). Поэтому, для того чтобы все члены в квадратных скобках в уравнении (21) при малых *s* имели один и тот же порядок величины (т. е. чтобы эта квадратная скобка могла обращаться в нуль), члены с $\varepsilon'_{\alpha\beta}$ здесь должны быть пропорциональны s^2 . Из этого следует, что и само $\varepsilon_{\alpha\beta}(s)$ должно быть пропорционально s^2 , поскольку при этом $\varepsilon'_{\alpha\beta} \sim ss' \sim s^2$. Аналогичные рассуждения справедливы, очевидно, и в области малых (1 - s), где они приводят к соотношению $\varepsilon_{\alpha\beta}(s) - \varepsilon_{\alpha\beta}(1) \sim (1-s)^2$.

Эти соображения показывают, что зависимости тензора поворота $\varepsilon_{\alpha\beta}(s)$ от *s* при малых *s* или (1-s)совершенно аналогичны тем, которые получены выше для тензора $\sigma_{\alpha\beta}(s)$ в (8). Поэтому, если и для $\varepsilon_{\alpha\beta}(s)$ использовать интерполяцию полиномом от *s* минимально возможной, третьей степени, то эта интерполяция должна иметь тот же вид, что в уравнении (8):

$$\varepsilon_{\alpha\beta}(s) = s^2 (3 - 2s) \,\varepsilon^m_{\alpha\beta},\tag{94}$$

где значение $\varepsilon_{\alpha\beta}^m = \varepsilon_{\alpha\beta}(1)$ соответствует мартенситу.

Как обсуждалось в работе [7], при превращении аустенита в мартенсит с ориентационными соотношениями Нишиямы (N-мартенсит), обсуждаемый поворот отсутствует, т. е. $\varepsilon_{\alpha\beta}^m = 0$. В то же время при превращении в мартенсит с ориентационными соотношениями Курдюмова–Закса (KS-мартенсит), такой поворот происходит, и тензор $\varepsilon_{\alpha\beta}^m$ в (94) можно ковариантно записать так:

$$\varepsilon^m_{\alpha\beta} = \varepsilon_{\alpha\beta\gamma} e_z^\gamma \varphi_m. \tag{95}$$

Здесь $\varepsilon_{\alpha\beta\gamma}$ — единичный полностью асимметричный тензор, а вектор $\mathbf{e}_z = \mathbf{h}/h$ тот же, что в (44). Величина φ_m в (95) есть полный угол поворота для KS-мартенсита, и согласно формулам (22) из работы [7], он имеет такое значение:

$$\varphi_m = \left(\sqrt{3} - \sqrt{2}\right) / \left(\sqrt{6} + 1\right) \approx 0.092.$$
 (96)

6.4. Расчет градиентно-деформационных вкладов в эффективный градиентный коэффициент g_{eff}^{ss}

Как отмечалось в разд. 4, вклад градиентно-деформационных членов G_{uu} и G_{su} в энергию МФГ σ , даваемую интегралом (14), в нашем подходе можно находить по теории возмущений, подставляя в выражения для G_{uu} и G_{su} в свободной энергии ftot в интеграле (14) значения тензора дисторсии $u_{\alpha,\beta}(s)$, найденные в нулевых приближениях (5)–(7) и (94). Ниже показано, что возникающая при этом поправка оказывается весьма малой. Поэтому вместо детальных расчетов этой поправки мы ограничимся ее оценкой, пренебрегая в формулах (5)-(7) различием в модулях упругости мартенсита и аустенита, т.е. считая $c^m_{\alpha\beta\gamma\delta} = c^a_{\alpha\beta\gamma\delta}$ (как отмечалось в работе [7], в случае железа это приближение может быть неплохим и количественно). Тогда зависимость тензора деформации $u^e_{\alpha\beta}$ от параметра превращения *s* в (6) принимает простой вид, аналогичный зависимости $\sigma_{\alpha\beta}(s)$ в (8) или $\varepsilon_{\alpha\beta}(s)$ в (94):

$$u^e_{\alpha\beta}(s) = s^2(3-2s) u^m_{\alpha\beta}, \qquad (97)$$

где $u^m_{\alpha\beta}$ — деформации мартенсита, которые можно ковариантно записать так:

$$u^m_{\alpha\beta} = u_1 \tilde{e}^{\alpha}_x \tilde{e}^{\beta}_x + u_2 \tilde{e}^{\alpha}_y \tilde{e}^{\beta}_y + u_3 e^{\alpha}_z e^{\beta}_z.$$
(98)

Здесь величины $u_{1,2,3}$ те же, что в (44); вектор \mathbf{e}_z тот же, что в (44); векторы $\tilde{\mathbf{e}}_x$ и $\tilde{\mathbf{e}}_y$ для N-мартенсита совпадают с \mathbf{e}_x и \mathbf{e}_y в (44), а для KS-мартенсита они, по формулам (22) из работы [7], соответствуют повороту этих \mathbf{e}_x и \mathbf{e}_y на угол φ_m из (96):

$$\tilde{\mathbf{e}}_{x} = \mathbf{e}_{x} \cos \varphi_{m} - \mathbf{e}_{y} \sin \varphi_{m},
\tilde{\mathbf{e}}_{y} = \mathbf{e}_{x} \sin \varphi_{m} + \mathbf{e}_{y} \cos \varphi_{m}.$$
(99)

В приближениях (97) и (94), градиенты тензора дисторсии $\nabla^2_{\beta\gamma} u_{\alpha} = \nabla_{\gamma} u_{\alpha,\beta}$, входящие в два последних члена свободной энергии (12), даются простым выражением:

$$\nabla^{2}_{\beta\gamma}u_{\alpha} = \nabla_{\gamma}[u^{e}_{\alpha\beta}(s) + \varepsilon_{\alpha\beta}(s)] =$$

= $6s(1-s)(u^{m}_{\alpha\beta} + \varepsilon^{m}_{\alpha\beta})\nabla_{\gamma}s.$ (100)

Как обсуждалось в разд. 6.2, в используемой интерполяционной модели коэффициенты \mathbf{g}^{su} равны нулю. Тогда подстановка выражения (100) в последнее слагаемое формулы (12) приводит просто к эффективной перенормировке градиентных коэффициен-

7 ЖЭТФ, вып.6

тов «нулевого» приближения \mathbf{g}^{ss} на их эффективные значения \mathbf{g}^{ss}_{eff} , определенные равенствами

$$\mathbf{g}_{eff}^{ss} = \mathbf{g}^{ss} + [6s(1-s)]^2 \mathbf{g}_u.$$
 (101)

Здесь второе слагаемое описывает градиентно-деформационный вклад, а тензор $\mathbf{g}_u = g_u^{\alpha\beta}$ выражается через исходный тензор $g_{\alpha\beta,\gamma\delta\lambda\mu}^{uu}(s)$ в равенствах (10) или (12) так:

$$g_{u}^{\alpha\beta} = g_{\gamma\lambda,\alpha\beta\delta\mu}^{uu} (u_{\gamma\delta}^{m} + \varepsilon_{\gamma\delta}^{m}) (u_{\lambda\mu}^{m} + \varepsilon_{\lambda\mu}^{m}).$$
(102)

Тензор \mathbf{g}_{u} для перехода в N-мартенсит (т. е. при $u_{\gamma\delta}^{m}$, даваемом выражением (98), и $\varepsilon_{\gamma\delta}^{m} = 0$) ниже обозначается как \mathbf{g}_{u}^{N} , а для перехода в KS-мартенсит (т. е. при $u_{\gamma\delta}^{m}$, даваемом выражением (98), и $\varepsilon_{\gamma\delta}^{m}$, даваемом выражением (94)) — как \mathbf{g}_{u}^{KS} . Расчеты \mathbf{g}_{u}^{N} или \mathbf{g}_{u}^{KS} по соотношениям (102) с коэффициентами $g_{\alpha\beta,\gamma\delta\lambda\mu}^{uu} = g_{\alpha\beta,\gamma\delta\lambda\mu}^{uu,a}$, даваемыми выражениями (90) для ГЦК-железа, будут указываться нижним индексом a, а расчеты с коэффициентами $g_{\alpha\beta,\gamma\delta\lambda\mu}^{uu} = g_{\alpha\beta,\gamma\delta\lambda\mu}^{uu,m}$ для ОЦК-железа — индексом m, например: $\mathbf{g}_{ua}^{ua}, \mathbf{g}_{um}^{KS}$ и т. д. Результаты этих расчетов приводятся ниже в табл. 7.

7. ХАРАКТЕРИСТИКИ СВОБОДНОЙ ЭНЕРГИИ НА АТОМ f_{tot}

В этом разделе мы приводим различные характеристики свободной энергии на атом f_{tot} в (12), вычисленные методами, описанными в разд. 5 и 6. В качестве единицы энергии обычно будет использоваться Кельвин, а в качестве единицы длины — постоянная решетки «остаточного» аустенита a_{γ} , для которой мы будем использовать ее экспериментальное значение при 20° С: $a_{\gamma} = 3.555$ Å [1]. Для постоянной решетки ОЦК-железа используется значение $a_{\alpha} = 2.866$ Å [1].

В табл. 4 мы приводим значения величин $\nu_{n\lambda} = M\omega_{\lambda}^{2}(\mathbf{k_{n}})$, взятые из экспериментов [12–14] и используемые во всех расчетах настоящей работы. В табл. 5 приводятся постоянные c_{a} и c_{m} в выражении (3) для f_{s} . Они вычислялись по соотношениям (49) и (56) или (71) и (73), с использованием для матриц силовых постоянных выражений (51) с параметрами Борна – Кармана, оцененными в экспериментах [12–14] и приведенными ниже в табл. 9.

Из табл. 5 следует, в частности, что для двух путей превращения, $(\gamma \rightarrow \alpha)1$ и $(\gamma \rightarrow \alpha)2$, соответствующих двум разным наборам векторов \mathbf{p}_m и $\tilde{\mathbf{p}}_m$ в табл. 1, результаты для c_a очень близки, а для c_m

	c	a	c_m				
Температура, К	1428		293	773	1043	1173	
Путь	$(\gamma \rightarrow \alpha)1$	$(\gamma \rightarrow \alpha)2$	$(\gamma \rightarrow \alpha)1.2$	$(\gamma \rightarrow \alpha)1, 2$	$(\gamma \rightarrow \alpha) 1.2$	$(\gamma \rightarrow \alpha)1, 2$	
превращения	()) -	(1 ·)-	(7, -, -, -	()	()	(),,	
<i>c</i> _{<i>a</i>} или <i>c</i> _{<i>m</i>} , К	12800	12970	30680	26080	20140	19860	

Таблица 5. Значения постоянных c_a и c_m в выражении (3) для f_s при различных температурах

Таблица 6. Величины $g_a^{\alpha\beta}$ и $g_m^{\alpha\beta}$ (в К· a_γ^2), рассчитанные по соотношениям (75) и (76). Нижний индекс «1» или «2» у \mathbf{g}_a или \mathbf{g}_m означает расчет для пути превращения $(\gamma \to \alpha)1$ или $(\gamma \to \alpha)2$. Для g_a^{zz} в квадратных скобках даны значения, рассчитанные с использованием соотношения (87) вместо (88)

T = 1428 K	T = 293 K	T = 773 K
$\mathbf{g}_{a1} = \begin{pmatrix} 3458 & 0 & 0\\ 0 & 4125 & 185\\ 0 & 185 & 162 \ [1937] \end{pmatrix}$	$\mathbf{g}_{m1} = \begin{pmatrix} 4206 & 0 & 0\\ 0 & 4911 & 0\\ 0 & 0 & 653 \end{pmatrix}$	$\mathbf{g}_{m1} = \begin{pmatrix} 3857 & 0 & 0\\ 0 & 5541 & 0\\ 0 & 0 & 551 \end{pmatrix}$
$\mathbf{g}_{a2} = \begin{pmatrix} 3523 & 0 & 0 \\ 0 & 3275 & 351 \\ 0 & 351 & -67 & [524] \end{pmatrix}$	$\mathbf{g}_{m2} = \begin{pmatrix} 4186 & 0 & 0\\ 0 & 4077 & 0\\ 0 & 0 & 647 \end{pmatrix}$	$\mathbf{g}_{m2} = \begin{pmatrix} 3830 & 0 & 0\\ 0 & 4627 & 0\\ 0 & 0 & 640 \end{pmatrix}$

T = 1043 K	T = 1173 K
$\mathbf{g}_{m1} = \left(\begin{array}{rrrr} 3241 & 0 & 0\\ 0 & 4887 & 0\\ 0 & 0 & 424 \end{array}\right)$	$\mathbf{g}_{m1} = \begin{pmatrix} 3057 & 0 & 0\\ 0 & 4816 & 0\\ 0 & 0 & 153 \end{pmatrix}$
$\mathbf{g}_{m2} = \left(\begin{array}{rrrr} 3197 & 0 & 0\\ 0 & 4003 & 0\\ 0 & 0 & 565 \end{array}\right)$	$\mathbf{g}_{m2} = \begin{pmatrix} 2949 & 0 & 0\\ 0 & 3877 & 0\\ 0 & 0 & 342 \end{pmatrix}$

они строго совпадают: $c_m[(\gamma \to \alpha)1] = c_m[(\gamma \to \alpha)2]$. Эта близость или совпадение результатов связаны с наличием в используемых моделях Борна–Кармана с короткодействием определенных соотношений между частотами $\omega_{\lambda}(\mathbf{k}_6), \omega_{\lambda}(\mathbf{k}_3)$ и $\omega_{\lambda}(\mathbf{k}_2)$, входящими в формулы (71) и (73), подробно обсуждаемых в работе [20].

В табл. 6 мы приводим результаты расчетов градиентных коэффициентов $g_a^{\alpha\beta}$ и $g_m^{\alpha\beta}$ по соотношениям (75) и (76), т.е. на основе интерполяций матриц силовых постоянных ГЦК- и ОЦК-железа параметрами Борна – Кармана, указанными ниже в табл. 9. Для элементов g_a^{zz} , в соответствии с обсуждением в разд. 6.1, в квадратных скобках даны также значения, рассчитанные с использованием для вклада $\nu_{2T}^{''}$ в формуле (83) его экспериментального значения (87) вместо интерполяции Борна – Кармана (88).

Таблица 6 показывает, во-первых, что градиентные коэффициенты g^{zz} как в ГЦК-, так и в ОЦК-железе являются намного меньшими, чем коэффициенты g^{xx} и g^{yy} . Согласно формулам (9) и (22), эта малость отражает относительную легкость возникновения неоднородных смещений («скольжений») плотноупакованных атомных плоскостей друг относительно друга, т. е. возникновения дефектов упаковки различного типа. Это приводит к существенной анизотропии различных характеристик МФГ, обсуждаемой в разд. 8. При этом значения немалых градиентных коэффициентов g^{xx} и g^{yy} не слишком чувствительны к замене пути превращения ($\gamma \rightarrow \alpha$)1

Рис. 1. Экспериментальные значения разности Δ свободных энергий на атом между γ - и α -железом: $\Delta(T) = f_s(0) - f_s(1)$, взятые из табл. 1 работы [15]

на $(\gamma \rightarrow \alpha)2$, меняясь при этом примерно на 20%. В то же время малые компоненты g^{zz} меняются при такой замене намного сильнее. Так, в ГЦК-фазе экспериментальные значения g_{a2}^{zz} оказываются почти в четыре раза меньшими, чем аналогичные экспериментальные значения g_{a1}^{zz} . Как видно из формул (29)–(34) и из дальнейшего (в частности, из табл. 8), это приводит к существенно меньшим значения энергии и толщины МФГ с ориентацией **n**, близкой к \mathbf{e}_z , для пути превращения $(\gamma \rightarrow \alpha)2$ сравнительно с путем $(\gamma \rightarrow \alpha)1$.

В табл. 7 приводятся значения тензоров \mathbf{g}_{u}^{N} и \mathbf{g}_{u}^{KS} , определяющих градиентно-деформационные поправки к полному эффективному градиентному коэффициенту \mathbf{g}_{eff}^{ss} в (101), для аустенита (они обозначаются как \mathbf{g}_{ua}^{N} или \mathbf{g}_{ua}^{KS}) при T = 1428 К, и для мартенсита (они обозначаются как \mathbf{g}_{ua}^{N} или \mathbf{g}_{ua}^{KS}) при T = 1428 К, и для мартенсита (они обозначаются как \mathbf{g}_{um}^{N} или \mathbf{g}_{um}^{KS}) при T = 293 К. Значения \mathbf{g}_{um}^{N} и \mathbf{g}_{um}^{KS} при других T = 293 К, 1043 К, 1173 К имеют тот же порядок величины, что при T = 773 К. Сравнивая значения \mathbf{g}_{u} в табл. 7 со значениями \mathbf{g}^{ss} , даваемыми табл. 6, мы видим, что поправки, связанные с \mathbf{g}_{u} , являются на два-три порядка меньшими, чем результаты нулевого приближения \mathbf{g}^{ss} . Поэтому ниже эти градиентно-деформационные поправки к \mathbf{g}^{ss} в (101) не учитываются.

Обсудим теперь вид функции $f_s(s)$ в выражении (2), описывающей потенциальный барьер для однородного превращения ГЦК-фазы в ОЦК. Согласно соотношению (3), эта функция определяется значениями трех параметров: c_a, c_m и Δ , каждый из которых зависит от температуры T. Функция $\Delta(T)$ есть разность свободных энергий на атом между γ - и

α-железом, для которой мы используем экспериментальные значения из табл. 1 в книге [15], показанные на рис. 1. Видно, что для обсуждаемых ниже температур $T\approx700\text{--}800~\mathrm{K}$ эта функция существенно меняется с T. Константы c_m , указанные в табл. 5, тоже заметно зависят от температуры, возрастая с ее понижением. Поэтому значения $c_m(T)$ для рассматривавшихся температур находились с использованием интерполяции (полиномом третьей степени) между значениями, указанными в табл. 5. В то же время для константы c_a известны только данные для T = 1428 K, указанные в табл. 5. Поэтому, хотя температурная зависимость $c_a(T)$ в рассматриваемой нами фазе остаточного аустенита возможна и вероятна, ниже мы не учитываем эту зависимость и используем для c_a постоянные значения из табл. 5. Опыт расчетов, описываемых ниже, позволяет предположить, что учет возможной зависимости $c_a(T)$ вряд ли заметно изменит вид функции $f_s(s)$ при интересующих нас $T \approx 700-800$ К.

Мартенситные превращения в железе и малоуглеродистых сталях реализуются только при очень высоких скоростях охлаждения: $v\gtrsim 10^3-10^4~{
m K/c}$ [3]. При этом, согласно данным работы [22] (подробно обсуждаемым в [3]), переход в состояние пластинчатого (plate) мартенсита в железе происходит при $T = T_{mp} = 693$ K, а в состояние «реечного» (lath) мартенсита — при $T = T_{ml} = 818$ К. Поскольку эффекты пластической деформации, характерные для образования реечного мартенсита, в настоящей работе не учитываются, наши результаты могут непосредственно применяться только к пластинчатому мартенситу, в котором эффекты пластической деформации малы [1]. Поэтому результаты расчетов ниже приводятся в основном только для T = 693 K, а некоторые результаты для T = 818 K указываются только для иллюстрации. Отметим также, что значения разности свободных энергий на атом $\Delta(T)$ на рис. 1 для T = 693, 818 K равны соответственно 241 и 143 К.

На рис. 2 показаны кривые $f_s(s)$ при T = 693 К и T = 818 К. Эти кривые (так же, как результаты для других температур, которые здесь не приводятся) показывают, что высота потенциального барьера f_{max} обычно слабо меняется с температурой и имеет примерно постоянное значение $f_{max} \approx 530$ К, несмотря на упоминавшиеся существенные температурные зависимости $\Delta(T)$ и $c_m(T)$. Это связано с тем, что в величине f_{max} обе эти зависимости, т.е. рост с понижением T как величины $\Delta(T)$, так и константы $c_m(T)$, в большой степени компенсиру-

T = 1428 K	T = 773 K
$\mathbf{g}_{ua}^{N} = \begin{pmatrix} -38 & 0 & 0\\ 0 & 6 & 3\\ 0 & 3 & -0.1 \end{pmatrix}$	$\mathbf{g}_{um}^{N} = \begin{pmatrix} -21 & 0 & 0\\ 0 & -2 & 0\\ 0 & 0 & -8 \end{pmatrix}$
$\mathbf{g}_{ua}^{KS} = \begin{pmatrix} -26 & 13 & 5\\ 13 & 18 & 3\\ 5 & 3 & 0.7 \end{pmatrix}$	$\mathbf{g}_{um}^{KS} = \begin{pmatrix} -15 & -13 & 0\\ -13 & 14 & 0\\ 0 & 0 & -5 \end{pmatrix}$

Таблица 7. Компоненты тензоров \mathbf{g}_{u}^{N} и \mathbf{g}_{u}^{KS} (в К $\cdot a_{\gamma}^{2}$) в выражении (102)

Рис.2. Функции $f_s(s)$, рассчитанные по соотношениям (3), как описано в тексте, при T = 693 К (сплошная линия) и при T = 818 К (штриховая линия). Для путей превращения $(\gamma \to \alpha)1$ и $(\gamma \to \alpha)2$ функции $f_s(s)$ с графической точностью совпадают

ются. Рисунок 2 и значение s_0 , указанное в подписи к рис. 3 ниже, показывают также, что положение максимума функции $f_s(s)$ (которое, как обсуждалось в разд. 3, принимается нами за положение центра МФГ $s_0 = s(\xi = 0)$) весьма близко к значению $s_0^0 = 0.5$, соответствующему температуре равновесия фаз $T_{\alpha\gamma}^e = 1184$ К (в которой $\Delta = 0$), хотя при рассматриваемых нами температурах функции $f_s(s)$, как видно на рис. 2, в целом существенно асимметричны относительно точки s = 0.5.

8. РЕЗУЛЬТАТЫ РАСЧЕТОВ СВОЙСТВ МЕЖФАЗНЫХ ГРАНИЦ МЕЖДУ АУСТЕНИТОМ И МАРТЕНСИТОМ В ЖЕЛЕЗЕ

В этом разделе приводятся результаты расчетов ряда характеристик межфазных границ между аустенитом и мартенситом в железе, включая профили параметра превращения $s(\xi)$ в области МФГ, ширины МФГ w и их поверхностные энергии σ , для различных ориентаций **n** этих границ. Наши расчеты будут основаны на общих соотношениях (28)–(31) разд. 4 и будут использовать значения параметров ОФГЛ, вычисленные методами разд. 5 и 6 и приведенные в разд. 7.

Как обсуждалось в разд. 7, деформационные поправки к эффективному градиентному коэффициенту \mathbf{g}_{eff}^{ss} в (101) пренебрежимо малы. Поэтому все рассматриваемые характеристики МФГ можно рассчитывать по формулам (28)–(31), используя для градиентных коэффициентов $\mathbf{g}^{ss}(s)$ те или иные интерполяции между их значениями при s = 0 и s = 1. Эти значения, $\mathbf{g}^{ss}(0)$ и $\mathbf{g}^{ss}(1)$, даются соответственно матрицами \mathbf{g}_a и \mathbf{g}_m в табл. 6. Ниже мы будем использовать две формы таких интерполяций: линейная интерполяция (А) и простое усреднение (В):

(A)
$$\mathbf{g}^{ss}(s) = \mathbf{g}_a + s(\mathbf{g}_m - \mathbf{g}_a);$$

(B) $\mathbf{g}^{ss} = (\mathbf{g}_a + \mathbf{g}_m)/2.$
(103)

Заметим, что линейная интерполяция (А) описывает эффекты асимметрии функции f(s) относительно «средней» точки s = 0.5, вообще говоря, намного точнее, чем простое усреднение (В). Поэтому близость результатов приближений (А) и (В) может указывать на то, что для описания рассматриваемых характеристик МФГ оба этих приближения оказываются достаточно точными. Наши вычисления показали, что для интегральных характеристик МФГ, таких как их ширины w и поверхностные энергии σ , результаты расчетов с использованием приближений (А) и (В) при всех исследованных ориентациях **n** и температурах T различаются не более, чем на доли процента, т. е. практически совпадают. Для профилей параметра порядка $s(\xi)$ различия оказываются несколько большими, поскольку в них эффекты асимметрии функции f(s) проявляются сильнее,

Рис.3. Профили параметров порядка $s(\xi)$ внутри МФГ при T=693 К, вычисленные по соотношениям (28) и (103-А) (сплошные линии) или (103-В) (пунктирные линии), для пути превращения $(\gamma \rightarrow \alpha)2$. Кривые 1 соответствуют направлению $\mathbf{n}=(001)$, кривые 2 — направлению $\mathbf{n}=(111)$ и кривые 3 — направлению $\mathbf{n}=(110)$. Значение $s_0=s(\xi=0)$ для всех кривых равно $s_0=0.502$

чем в w и σ , но и для $s(\xi)$ различия обычно малы. Это иллюстрирует рис. 3, где мы приводим профили $s(\xi)$ для пути превращения $(\gamma \rightarrow \alpha)2$ (который, как обсуждается ниже, представляется наиболее реалистичным) и нескольких ориентаций МФГ, включая ориентацию $\mathbf{n} = (001)$ (для которой толщина и энергия МФГ, как видно из табл. 8, являются минимальными), и ориентацию $\mathbf{n} = (110)$, которая близка к ориентации макроскопических пластин мартенсита в аустените. Видно, что профили $s(\xi)$, найденные с помощью простого усреднения (В), очень близки к профилям, вычисленным на основе более точного приближения (А).

В табл. 8 приводятся значения ширин МФГ w и их поверхностных энергий σ для нескольких симметричных ориентаций МФГ **n**. На рис. 4 и 5 представлены годографы поверхностной энергии $\sigma(\theta)$, описывающие зависимость величины σ от ориентации $\mathbf{n}(\theta)$ при изменении **n** в двух плоскостях наибольшей симметрии: плоскости, проходящей через орты \mathbf{e}_x и \mathbf{e}_z в формуле (44), в которой ориентации описываются соотношением $\mathbf{n}(\theta) = (\cos \theta, 0, \sin \theta)$, и плоскости, проходящей через орты \mathbf{e}_y и \mathbf{e}_z в формуле (44), в которой ориентации описываются соотношением $\mathbf{n}(\theta) = (0, \cos \theta, \sin \theta)$.

Обсудим результаты, представленные на рис. 3–5 и в табл. 8. Прежде всего, эти результаты указывают на сильную анизотропию свойств рассматриваемых МФГ. В частности, при ориентациях **n**, близких к

Рис. 4. Значения поверхностной энергии МФГ $\sigma(\theta)$ для пути превращения $(\gamma \rightarrow \alpha)2$ при T = 693 К в зависимости от угла θ для направлений $\mathbf{n}_{13} = (\cos \theta, 0, \sin \theta)$ (сплошная линия) и направлений $\mathbf{n}_{23} = (0, \cos \theta, \sin \theta)$ (штриховая линия), где θ — угол между радиус-вектором изображающей точки $\mathbf{r}(\theta)$ и осью абсцисс, а $\sigma(\theta) = |\mathbf{r}(\theta)|$

Рис.5. То же, что на рис. 4, но для пути превращения $(\gamma
ightarrow lpha) 1$

 $\mathbf{e}_{z} = (111)_{\gamma}$, эти границы в два-три раза тоньше, а их поверхностные энергии в 2–2.5 раза меньше, чем для ориентаций, не близких к \mathbf{e}_{z} . Как обсуждалось в разд. 6, эта анизотропия обусловлена в основном малостью значений градиентного коэффициента g^{zz} относительно других градиентных коэффициентов, g^{xx} и g^{yy} . Поскольку для пути превращения $(\gamma \to \alpha)^2$ значение g_a^{zz} является почти в четыре раза меньшим, чем для пути $(\gamma \to \alpha)^1$, то и значения ширины МФГ w и ее поверхностной энергии σ при **п**, близких к \mathbf{e}_{z} , для пути превращения $(\gamma \to \alpha)^2$ оказываются существенно меньшими, чем для пути $(\gamma \to \alpha)^1$. Таблица 8 и рис. 4 и 5 показывают, что это справедливо также и для почти всех других ори-

Путь превращения	$(\gamma \rightarrow \alpha)1$		$(\gamma \to \alpha)2$		
Ориентация п	w (в a_γ)	$σ$ (в K/ a_{γ}^2)	w (в a_γ)	σ (в К $/a_{\gamma}^2$)	
(100)	2.72	8210	2.72	8243	
(010)	3.11	9425	2.80	8552	
(001)	1.58	4595	1.06	3203	
(110)	2.92	8839	2.76	8400	
(011)	2.51	7536	2.20	6689	
(101)	2.23	6666	2.06	6253	

Таблица 8. Значения ширины МФГ *w* и ее поверхностной энергии *σ* при *T* = 693 K для различных ориентаций МФГ **n**, вычисленные по соотношениям (29), (31) и (103)

ентаций МФГ.

Эти результаты могут указывать на важность аналогичных эффектов анизотропии в процессах возникновения зародышей мартенсита в аустените. Поскольку с ростом поверхностной энергии σ энергетический барьер ΔF_c для образования критического зародыша должен резко расти (скажем, в простейшей модели изотропного сферического зародыша с резким краем мы имеем $\Delta F_c \propto \sigma^3$, см., например, [23]), можно ожидать, что при образовании зародышей мартенсита в аустените путь превращения ($\gamma \rightarrow \alpha$)2 является намного более вероятным, чем путь ($\gamma \rightarrow \alpha$)1.

Заметим теперь, что, кроме рассмотренных нами путей превращения $(\gamma \to \alpha) 1$ и $(\gamma \to \alpha) 2$ (и пути $(\gamma \rightarrow \alpha)3$, эквивалентного $(\gamma \rightarrow \alpha)2)$, можно рассматривать и другие возможные пути превращения $(\gamma \to \alpha)$. При этом энергетический барьер ΔF_c для каждого из таких путей превращения можно оценивать методами настоящей работы. Но, как подробно обсуждалось в работе [6], пути $(\gamma \to \alpha)1$ и $(\gamma \to \alpha)2$ кажутся оптимальными из соображений «минимальности относительных сжатий» атомов в плотноупакованных плоскостях, что тоже можно проверять с помощью описанных оценок ΔF_c . Оставляя такие оценки для возможных дальнейших исследований, ниже мы используем приведенные физические соображения, согласно которым путь $(\gamma \rightarrow \alpha)2$ представляется наиболее вероятным. В связи с этим результаты наших расчетов (в частности, приведенные на рис. 3) обсуждаются в основном для пути превращения $(\gamma \rightarrow \alpha)2.$

Рассмотрим сначала профили параметра превращения $s(\xi)$ внутри МФГ, представленные на рис. 3. Видно, во-первых, что в соответствии с приводившимися замечаниями и табл. 8, ширина МФГ для ориентации $\mathbf{n} = \mathbf{e}_z$ намного меньше, чем для других ориентаций, не близких e_z. Заметим теперь, что расстояние между соседними плотноупакованными плоскостями при ориентации $\mathbf{n} = \mathbf{e}_z$ в ГЦК-фазе составляет только $\Delta \xi = a_{\gamma}/\sqrt{3} \approx 0.58 a_{\gamma}$. Поэтому даже для МФГ с минимальной шириной $w = 1.05 a_{\gamma}$, для которой профиль $s(\xi)$ дается кривой 1 на рис. 3, эта МФГ включает примерно три плотноупакованные плоскости. Поэтому используемое в ОФГЛ (1) основное предположение о гладкости изменения всех рассматриваемых функций на межатомных расстояниях, подразумевающее, в частности, что ширина МФГ заметно превышает расстояние между соответствующими атомными плоскостями, можно считать выполненным. Отметим также, что детальное сравнение расчетов различных характеристик МФГ для дискретной решетки и для используемого в ОФГЛ «непрерывного» приближения, выполненное в работе [9] на примере модели Изинга, показало, что при значениях отношения $\Delta \xi/w \lesssim 0.5$ все результаты для дискретной решетки практически совпадают с результатами непрерывного приближения. Поэтому точность этого приближения для вопросов, рассматриваемых в настоящей работе, представляется достаточной даже для самых узких МФГ с ориентацией $\mathbf{n} = \mathbf{e}_z$, не говоря уже о более толстых МФГ других ориентаций.

Кривые 1–3 на рис. 3 иллюстрируют также малость «изломов» профилей $s(\xi)$ в точке $\xi = 0$, обсуждавшихся в связи с формулами (16) и (30). Видно, что при рассматриваемых небольших значениях параметра переохлаждения Δ в (3) (иллюстрируемых рис. 2) эти изломы малы и несущественны. Отметим также, что для менее реалистического пути превращения ($\gamma \to \alpha$)1 изломы $s(\xi)$ в точке $\xi = 0$ при ориентациях МФГ, близких к **n** = **e**_z, оказываются заметно бо́льшими, чем для пути ($\gamma \to \alpha$)2. Так, для ориентаций МФГ **n**, равных (001), (111) и (110), для которых показаны профили $s(\xi)$ на рис. 3, скачки производных $B_{\Delta}(s_0)$, определенные равенствами (30), для пути превращения ($\gamma \to \alpha$)2 равны соответственно (в единицах $1/a_{\gamma}$) 0.11, 0.05 и 0.02, в то время как для пути превращения ($\gamma \to \alpha$)1 (для которого профили $s(\xi)$ на рис. 3 не показаны) эти $B_{\Delta}(s_0)$ равны соответственно 0.69, 0.07 и 0.02.

Рисунки 4 и 5 и табл. 8 показывают также, что эффекты анизотропии МФГ для менее реалистического пути превращения ($\gamma \rightarrow \alpha$)1 являются заметно более слабыми, чем для пути ($\gamma \rightarrow \alpha$)2.

Сравним еще масштаб поверхностных энергий σ , приведенных на рис. 4, с имеющимися экспериментальными данными для других МФГ в сталях, в частности, с оценкой поверхностной энергии МФГ феррит-цементит $\sigma_{\alpha-cmt}$ в углеродистых сталях [24]:

$$\sigma_{\alpha-cmt} \approx 740 \text{ spr/cm}^2 \approx 6.8 \cdot 10^3 \text{ K/}a_{\gamma}^2.$$
(104)

Для такого сравнения на рис. 4 естественно рассматривать «обычные» когерентные МФГ с ориентациями **n**, не близкими к \mathbf{e}_z , в которых нет обсуждавшихся выше эффектов аномальной «мягкости» структуры относительно возникновения дефектов упаковки. Для этих обычных МФГ между γ и α -фазами поверхностные энергии $\sigma_{\gamma\alpha}^{coh}$, согласно рис. 4, имеют значения порядка (5–8) \cdot 10³ K/ $a_{\gamma}^2 \sim$ $\sim (500-800)$ эрг/см², т.е. того же порядка, что и $\sigma_{\alpha-cmt}$.

9. ЗАКЛЮЧЕНИЕ

В заключение перечислим основные результаты настоящей работы. На основе имеющихся экспериментальных данных о фононных спектрах ГЦК- и ОЦК-железа и некоторых физически естественных интерполяций построен обобщенный функционал Гинзбурга-Ландау для исследований кинетики мартенситных фазовых превращений в железе и малоуглеродистых сталях. Этот функционал использован для расчетов структуры и энергии когерентных межфазных границ между аустенитом и мартенситом при различных ориентациях этих границ. Обнаружены эффекты резкой анизотропии этих МФГ, включая резкие минимумы в их ширине и поверхностной энергии при ориентациях МФГ, параллельных плотноупакованным атомным плоскостям. Полученные результаты могут использоваться для развития микроскопических теорий процессов зарождения и роста мартенситных включений в аустените.

Авторы глубоко благодарны Ю. Нейхаузу за подробную информацию о результатах работы [14], существенно использованную в настоящей статье; П. А. Коржавому за большую помощь в работе; а также ИТЦ «Аусферр», Магнитогорск, за поддержку этой работы. Работа выполнена при финансовой поддержке РФФИ (грант № 09-02-00563); фонда поддержки ведущих научных школ РФ (гранты НШ-3004.2008.2, НШ-7235.2010.2), а также в рамках программы развития научного потенциала высшей школы РФ (грант № 2.1.1/4540).

приложения

А.1. Связь ковариантных параметров Борна–Кармана в (51) с аналогичными экспериментальными параметрами для ГЦК-кристаллов

В экспериментальных исследованиях фононных спектров ОЦК-металлов, в частности, в работах [12–14], принято использовать нековариантные параметры Борна–Кармана $\alpha_n - \delta_n$, являющиеся матричными элементами матриц силовых постоянных \mathbf{A}_n для некоторых векторов решетки. Для ОЦК-металлов связь этих параметров $\alpha_n - \delta_n$ с ковариантными параметрами $a_n - d_n$, используемыми в формуле (51), дается формулами (93) работы [6]. Укажем аналогичную связь для ГЦК-решетки.

Матрицы силовых постоянных \mathbf{A}_n для векторов ГЦК-решетки \mathbf{R}_n , указываемых ниже перед каждой из матриц, в экспериментальных работах (в частности, в [12]) описываются такими выражениями:

$$(0.5, 0.5, 0): \mathbf{A}_{1} = \begin{pmatrix} \alpha_{1} & \gamma_{1} & 0\\ \gamma_{1} & \alpha_{1} & 0\\ 0 & 0 & \beta_{1} \end{pmatrix};$$
$$(100): \mathbf{A}_{2} = \begin{pmatrix} \alpha_{2} & 0 & 0\\ 0 & \beta_{2} & 0\\ 0 & 0 & \beta_{2} \end{pmatrix};$$
$$(1, 0.5, 0.5): \mathbf{A}_{3} = \begin{pmatrix} \alpha_{3} & \delta_{3} & \delta_{3}\\ \delta_{3} & \beta_{3} & \gamma_{3}\\ \delta_{3} & \gamma_{3} & \beta_{3} \end{pmatrix};$$
$$(110): \mathbf{A}_{4} = \begin{pmatrix} \alpha_{4} & \gamma_{4} & 0\\ \gamma_{4} & \alpha_{4} & 0\\ 0 & 0 & \beta_{4} \end{pmatrix};$$

	n	1	2	3	4	5	6
ГЦК-Fе, T = 1428 К [12]	$ \begin{array}{c} a_n\\ b_n\\ c_n\\ d_n \end{array} $	-27018 688 5870	$21039 \\ -309$	-182 732 -10182 13752	$-908 \\ -489 \\ -1120$	-114 136 -3 4	1302 217
ОЦК-Fе, T = 293 К [13]	a_n b_n c_n d_n	-44730 -2950	$-14560 \\ -360$	-2224 278 -4060	-194 91 -2282 3731	720 - 10	
ОЦК-Fе, T = 773 К [14]	a_n b_n c_n d_n	-41680 -1633	$-11953 \\ -659$	-4172 977 -886	2152 -215 4334 -7054	-4257 1319	
ОЦК-Fе, T = 1043 К [14]	a_n b_n c_n d_n	-44889 2263	$-7402 \\ -732$	-2777 40 270	$-29 \\ 405 \\ 5104 \\ -5509$	$-596 \\ -37$	
ОЦК-Fе, T = 1173 К [14]	$ \begin{array}{c} a_n\\ b_n\\ c_n\\ d_n \end{array} $	-44507 3615	-7919 249	-3661 382 2751	-20 293 9761 -9443	$-3 \\ -374$	

Таблица 9. Параметры a_n , b_n , c_n , d_n в формулах (51) для железа (в дин/см)

$$(1.5, 0.5, 0): \mathbf{A}_{5} = \begin{pmatrix} \alpha_{5} & \delta_{5} & 0\\ \delta_{5} & \beta_{5} & 0\\ 0 & 0 & \gamma_{5} \end{pmatrix};$$
(105)
$$(111): \mathbf{A}_{6} = \begin{pmatrix} \alpha_{6} & \beta_{6} & \beta_{6}\\ \beta_{6} & \alpha_{6} & \beta_{6}\\ \beta_{6} & \beta_{6} & \alpha_{6} \end{pmatrix}.$$

При этом ковариантные параметры Борна–Кармана $a_n - d_n$ в формулах (51) выражаются через параметры $\alpha_n - \delta_n$ в формулах (105) так:

$$a_{1} = \frac{4}{5} \left(\alpha_{1} - \beta_{1} + \frac{3}{2} \gamma_{1} \right),$$

$$b_{1} = \frac{2}{5} \left(\alpha_{1} + \frac{3}{2} \beta_{1} - \gamma_{1} \right), \quad c_{1} = 2(\alpha_{1} - \beta_{1} - \gamma_{1});$$

$$a_{2} = \alpha_{2} - \beta_{2}, \quad b_{2} = \beta_{2};$$

$$a_{3} = \frac{2}{5} \left(2\alpha_{3} - 2\beta_{3} - \gamma_{3} + 5\delta_{3} \right),$$

$$b_{3} = \frac{1}{15} \left(\alpha_{3} + 14\beta_{3} - 10\gamma_{3} - 4\delta_{3} \right),$$

$$c_{3} = 2\left(\alpha_{3} - \beta_{3} + 5\gamma_{3} - 4\delta_{3}\right), \quad d_{3} = 6(\delta_{3} - 2\gamma_{3});$$

$$a_{4} = \frac{4}{5}\left(\alpha_{4} - \beta_{4} + \frac{3}{2}\gamma_{4}\right),$$

$$b_{4} = \frac{2}{5}\left(\alpha_{4} + \frac{3}{2}\beta_{4} - \gamma_{4}\right), \quad c_{4} = 2(\alpha_{4} - \beta_{4} - \gamma_{4});$$

$$a_{5} = \frac{1}{36}\left(13\alpha_{5} + 27\beta_{5} - 40\gamma_{5} + 72\delta_{5}\right),$$

$$b_{5} = \frac{1}{9}\left(\alpha_{5} + 9\beta_{5} - \gamma_{5} - 6\delta_{5}\right),$$

$$c_{5} = \frac{5}{9}\left(\alpha_{5} + 9\beta_{3} - 10\gamma_{5} - 6\delta_{5}\right),$$

$$d_{5} = \frac{25}{36}(\alpha_{5} - 9\beta_{5} + 8\gamma_{5});$$

$$a_{6} = 3\beta_{6}, \quad b_{6} = (\alpha_{6} - \beta_{6}).$$

$$(106)$$

Нужно также иметь в виду, что в экспериментальных работах значения параметров $\alpha_n - \delta_n$, т.е. динамическая матрица в формуле (61), определяются со знаком, обратным используемому нами.

А.2. Значения ковариантных параметров Борна-Кармана для ГЦК- и ОЦК-железа при различных температурах

В табл. 9 мы приводим значения параметров Борна–Кармана $a_n - d_n$ в формулах (51), пересчитанные по формулам (106) или по формулам (93) работы [6] из параметров $\alpha_n - \delta_n$, приведенных в экспериментальных работах [12–14].

ЛИТЕРАТУРА

- Г. В. Курдюмов, Л. М. Утевский, Р. И. Энтин, Превращения в железе и стали, Наука, Москва (1977), Гл. 3.
- 2. А. Л. Ройтбурд, в кн.: Несовершенства кристаллического строения и мартенситные превращения, Наука, Москва (1972), с. 7.
- **3.** A. B. Borgenstam, Nucleation and Growth of Martensite in Steel, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden (1997).
- G. L. Krasko and G. B. Olson, Phys. Rev. B 40, 11536 (1989).
- S. V. Okatov, A. R. Kuznetsov, Yu. N. Gornostyrev, V. N. Urtsev, and M. I. Katsnelson, Phys. Rev. B 79, 094111 (2009).
- 6. В. Г. Вакс, К. Ю. Хромов, ЖЭТФ 136, 722 (2009).
- 7. В. Г. Вакс, К. Ю. Хромов, ЖЭТФ 139, 924 (2011).
- I. R. Pankratov and V. G. Vaks, Phys. Rev. B 68, 134208 (2003).
- K. Yu. Khromov, I. R. Pankratov, and V. G. Vaks, Phys. Rev. B 72, 094207 (2005).
- M. Ekman, B. Sadigh, K. Einarsdotter, and P. Blaha, Phys. Rev. B 58, 5296 (1998).

Расчеты структуры и энергии . . .

- P.-A. Lindgard and O. G. Mouritsen, Phys. Rev. Lett. 57, 2458 (1986).
- 12. J. Zaretsky and C. Stassis, Phys. Rev. B 35, 4500 (1987).
- C. Van Dijk and J. Bergsma, in: Neutron Inelastic Scattering, IAEA, Vienna (1968), Vol. 1, p. 233.
- 14. J. Neuhaus, W. Petry, and A. Krimmel, Physica B 234–236, 897 (1997).
- 15. Б. М. Могутнов, И. А. Томилин, Л. А. Шварц, *Термодинамика экселезо-углеродистых сплавов*, Металлургия, Москва (1972), Гл. 5.
- 16. Л. Д. Ландау, Е. М. Лифшиц, Электродинамика сплошных сред, Наука, Москва (1982), § 43, задача 4.
- Л. Д. Ландау, Е. М. Лифшиц, Статистическая физика, Наука, Москва (1995), § 120.
- 18. А. Г. Хачатурян, Теория фазовых превращений и структура твердых растворов, Наука, Москва (1974), § 23.
- 19. М. Борн, Хуан Кунь, Динамика кристаллических решеток в гармоническом приближении, Изд-во иностр. лит., Москва (1958), Гл. 5.
- 20. В. Г. Вакс, И. А. Журавлев, А. Д. Заболотский, ЖЭТФ 141, 530 (2012).
- H. R. Schober and P. H. Dederichs, in: Landolt-Börnstein, Vol. 13A, Metals Springer, Berlin (1981), p. 1.
- 22. О. П. Морозов, Д. А. Мирзаев, М. М. Штейнберг, ФММ 32, 170 (1971).
- 23. K. Yu. Khromov, F. Soisson, A. Yu. Stroev, and V. G. Vaks, ЖЭΤΦ 139, 479 (2011).
- 24. В. М. Счастливцев, Д. А. Мирзаев, И. Л. Яковлева и др., Перлит в углеродистых сталях, ИФМ УрО РАН, Екатеринбург (2006), Гл. 2, с. 32.