СЕГНЕТОЭЛЕКТРИЧЕСКАЯ И СТРУКТУРНАЯ НЕУСТОЙЧИВОСТИ В ДВОЙНЫХ ПЕРОВСКИТАХ $Me^{1+}Bi^{3+}Me^{3+}Nb^{5+}O_{6}$ ($Me^{1+} = Na, K, Rb; Me^{3+} = Sc, Ga, In, Lu$)

В. И. Зиненко^{*}, Н. Г. Замкова, В. С. Жандун, М. С. Павловский

Институт физики им. Л. В. Киренского Сибирского отделения Российской академии наук 660036, Красноярск, Россия

Поступила в редакцию 27 июля 2011 г.

В рамках обобщенной модели Гордона – Кима с учетом поляризуемостей ионов рассчитаны постоянные решетки, высокочастотная диэлектрическая проницаемость, динамические заряды Борна и частоты колебаний кристаллической решетки двойных перовскитов ${\rm Me}^{1+}{\rm Bi}^{3+}{\rm Me}^{3+}{\rm Nb}^{5+}{\rm O}_6$, упорядоченных по катионам. В спектре колебаний всех исследуемых соединений имеются два типа нестабильностей: неустойчивость, связанная с «поворотом» кислородного октаэдра, и сегнетоэлектрическая. Различные комбинации искажений по «поворотной» моде приводят к пяти наиболее энергетически выгодным искаженным фазам. Обсуждаются симметрия и энергетика этих фаз. В четырех из рассмотренных фаз искажения, связанные с поворотом кислородного октаэдра, приводят к полярным фазам, что позволяет говорить о несобственном сегнетоэлектричестве в этих соединениях. Одна фаза оказывается неполярной, но в ней сохраняются нестабильные полярные моды, при смещении по собственным векторам которых в кристалле возникает поляризация.

1. ВВЕДЕНИЕ

Сегнетоэлектрики ABO₃ со структурой перовскита изучаются уже в течение нескольких десятков лет. В последние годы особенно интенсивно изучаются сложные соединения, синтезированные на основе окислов ABO₃. Сегнетоэлектрические свойства этих соединений существенно зависят от химического состава и наряду с простыми окислами со структурой перовскита находят свое применение в технологии электронных устройств, таких как сегнетоэлектрическая память, пьезоэлектрические сенсоры, пироэлектрические приборы и т. п.

С другой стороны, изучение этих соединений представляет интерес и с фундаментальной точки зрения, с целью понимания микроскопических причин их разнообразных, а иногда и уникальных физических свойств. Как правило, и в простых, и в сложных перовскитоподобных окислах вне зависимости от того, упорядочены или не упорядочены последние по катионам, имеются два типа нестабильности решетки в высокосимметричной (кубической или тетрагональной) фазе: сегнетоэлектрическая и так называемая антиферродисторсионная нестабильность, связанная с поворотом октаэдра BO₆.

Сегнетоэлектрическая нестабильность зависит от тонкого баланса между дальнодействующими диполь-дипольными и короткодействующими взаимодействиями. Благодаря высокой поляризуемости ионов кислорода и особенности структуры перовскита, большие диполь-дипольные взаимодействия притяжения способствуют полярным искажениям структуры, а короткодействующие взаимодействия отталкивания стабилизируют высокосимметричную фазу.

Антиферродисторсионная нестабильность также зависит от баланса между короткодействующими силами отталкивания, которые, наоборот, способствуют искажениям, связанным с поворотом октаэдра и с дальнодействующими кулоновскими взаимодействиями точечных зарядов, которые препятствуют этим искажениям. Дальнодействующие диполь-дипольные взаимодействия не играют существенной роли в антиферродисторсионной нестабильности. Обсуждению этих двух типов нестабильностей в простых и сложных окислах со структурой перовскита посвящено большое число работ (см. недавние обзоры [1] и ссылки там).

^{*}E-mail: zvi@iph.krasn.ru

Химический состав соединений, степень катионного упорядочения в сложных окислах также существенно влияют как на сегнетоэлектрическую, так и на антиферродисторсионную неустойчивость. Таким образом, исследование динамики кристаллической решетки и выяснение деталей отмеченного выше баланса между дальнодействующими и короткодействующими взаимодействиями, как уже известных, так и еще не синтезированных соединений, представляет интерес.

В данной работе рассматриваются практически не изученные соединения $Me^{1+}Bi^{3+}Me^{3+}Nb^{5+}O_6$ $(Me^{1+} = Na, K, Rb; Me^{3+} = Sc, Ga, In, Lu)$. B pafoте [2] сообщается о синтезе соединения NaBiScNbO₆ и предположительные сведения о его структуре с пространственной группой Рпта и с параметрами элементарной ячейки a = b = 5.631 Å, c = 7.963 Å. Сведений об исследовании физических свойств этого соединения и о синтезе других соединений из перечисленного выше ряда мы в литературе не нашли. В работе [3] методом функционала плотности с использованием пакета «QUANTUM ESPRESSO» исследовано влияние иона Me^{1+} (Me^{1+} = Na, K, Rb) в $Me^{1+}BiScNbO_6$ на полярное поведение этих соединений. Авторы работы [3] рассматривали 40-атомную ячейку с упорядочением по обоим катионам типа NaCl, релаксировали структуру и в релаксированной структуре вычисляли углы поворота октаэдра NbO₆, спонтанную поляризацию и эффективные заряды Борна. Вычисление динамики решетки в работе [3] не проводилось.

Целью настоящей работы являются неэмпирический расчет равновесных параметров ячейки, высокочастотной диэлектрической проницаемости, эффективных зарядов Борна, упругих постоянных и динамики решетки соединений $Me^{1+}BiMe^{3+}NbO_6$ ($Me^{1+} = Na, K, Rb; Me^{3+} = Sc, Ga, In, Lu$) в кубической, упорядоченной по катионам (Me^{1+}, Bi) и (Me^{3+}, Nb) вдоль направления [111] структуры перовскита, исследование структур и энергетики фаз с полярными и антиферродисторсионными искажениями и расчет величины спонтанной поляризации в искаженных фазах.

2. МЕТОД РАСЧЕТА

Расчет проводился методом функционала плотности в рамках модели ионного кристалла Гордона-Кима с поляризуемыми ионами. Детали модели описаны в обзоре [4]. Расчет параметров элементарной ячейки, упругих постоянных, диэлектрической

Рис. 1. Структура кубической фазы упорядоченного по катионам соединения $\mathrm{Me}^{1+}\mathrm{Bi}\mathrm{Me}^{3+}\mathrm{Nb}\mathrm{O}_6$

константы, эффективных зарядов Борна и спектра частот колебаний решетки был проведен для ГЦК-решетки с пространственной группой F-43m (T2d) с одной молекулой $Me^{1+}BiMe^{3+}NbO_6$ в элементарной ячейке, как это показано на рис. 1. При этом ионы занимают следующие позиции:

$$Me^{1+} \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right), Bi \left(\frac{3}{2}, \frac{3}{2}, \frac{3}{2}\right),$$

$$Me^{3+}(0, 0, 0), Nb(1, 1, 1), O \left(\frac{1}{2}, \frac{1}{2}, z\right).$$

Расчет динамики решетки, углов поворота октаэдра NbO₆, величины спонтанной поляризации в искаженных фазах проводился для 40-атомной простой кубической ячейки с удвоенным параметром ячейки перовскита.

Величины смещений ионов из их положений в кубической фазе вычислялись следующим образом: на первом этапе проводились смещения ионов по собственным векторам поворотных мод колебаний и соответствующие углы поворота находились из минимизации полной энергии кристалла по амплитуде этих смещений. Затем проводилась релаксация структуры методом итераций. Для этого на каждом ионе вычислялись силы

$$f_j^{\alpha} = \frac{\partial E^{tot}}{\partial r_i^{\alpha}}$$

 E^{tot} — полная энергия кристалла, представляющая собой сумму вкладов, $E^{tot} = E^{coul} + E^{short} + E^{dip}$.

Следует отметить, что все вклады в полную энергию кристалла в используемой нами модели имеют аналитические выражения (см. обзор [4]) и, таким образом, первая производная от энергии вычислялась не численным дифференцированием, а для нее также записывались аналитические выражения, которые можно легко получить из выражения для полной энергии, приведенной в обзоре [4]. Далее каждый ион смещался по направлению действующей на него силы, после этого опять вычислялись действующие на ионы силы, и процедура повторялась до тех пор, пока силы на каждом ионе не превышали величины $\delta = 2$ мэB/A. После релаксации проводился расчет предельных частот колебаний 40-атомной релаксированной решетки кристалла. Если в спектре колебаний релаксированной структуры имелись мнимые частоты, то структура искажалась по собственным векторам этих нестабильных полярных мод и снова проводилась процедура релаксации.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Динамика кристаллической решетки

В табл. 1 представлены вычисленные величины параметров ячейки, модулей упругости, высокочастотной диэлектрической проницаемости для всех рассматриваемых соединений в кубической фазе. Там же приведен параметр ячейки кристалла NaBiScNbO₆, пересчитанный из экспериментальных данных для ромбической фазы [2]. (Следует отметить, что, судя по приведенной пространственной группе и величинам параметров ячейки, в работе [2] исследовано полностью разупорядоченное по катионам Na, Bi и Sc, Nb соединение.) Как видно, вычисленный параметр элементарной ячейки на 1.5 % меньше экспериментального. Как и следовало ожидать, по мере увеличения радиуса ионов Me¹⁺ и Ме³⁺ параметр ячейки возрастает. В то же время, как это следует из табл. 1, величина диэлектрической проницаемости практически не меняется при замене Na \rightarrow K \rightarrow Rb и существенно изменяется при замене Sc \rightarrow Ga \rightarrow In \rightarrow Lu. На рис. 2 показан спектр колебаний кристаллической решетки для NaBiScNbO₆ (для остальных соединений спектры мало отличаются от приведенного и они здесь не даны). Как видно на рис. 2, в спектре колебаний имеются два типа нестабильных мод в центре зоны Бриллюэна: наиболее нестабильная трехкратновырожденная неполярная мода и менее нестабильная трехкратновырожденная полярная мода. (На рис. 2 показан фононный спектр с учетом макроско-

Рис. 2. Фононный спектр соединения NaBiScNbO₆. Мнимые частоты показаны отрицательными значениями

пического поля в LO-колебаниях.) Также видно, что неполярная нестабильная мода занимает весь объем фазового пространства, а полярная мода нестабильна в большей части этого пространства.

Разложение механического представления рассматриваемых соединений по неприводимым представлениям центра зоны Бриллюэна ГЦК-решетки имеет вид

$$T = A_1 + E + 2F_1 + 7F_2$$

Величины наиболее нестабильных мод колебаний решетки в центре и в граничной точке X зоны Бриллюэна для кубической фазы всех соединений приведены в табл. 2. Собственные векторы этих мод показаны на рис. 3.

Собственные векторы трехкратновырожденной моды F_1 (q = 0) и однократной моды X_2 (q = $=\frac{2\pi}{c}(1,0,0))$ соответствуют антиферродисторсионному искажению структуры. Однако собственные векторы этих мод отличаются от случаев простых перовскитов (модам F₁ и X₂ в этом случае соответствуют моды R_{25} в граничной точке $R~(q = \frac{\pi}{2}(1,1,1))$ и M_3 в граничной точке M $(q = \frac{\pi}{a}(1,1,0))$ структуры перовскита) и двойных перовскитов состава Ме₂АВО₆ со структурой эльпасолита (модам F_1 и X_2 в этом случае соответствуют моды Γ_{1g} (q = 0) и X_3 $(q = \frac{2\pi}{a}(1,0,0))).$ В собственных векторах мод F_1 и X_2 кроме смещений ионов кислорода, соответствующих чистому повороту октаэдров NbO_6 и $Me^{3+}O_6$, имеются смещения тех же ионов кислорода, соответствующих «изгибу»

	$a, \mathrm{\AA}$	O: $[1/2; 1/2; z]$	$C_{11}, \Gamma \Pi a$	$C_{12},$ ГПа	$C_{44},$ ГПа	ε_{∞}
${ m NaBiScNbO_6}$	7.83	0.74	249.22	82.25	80.14	6.65
${ m NaBiGaNbO_6}$	7.89	0.74	244.37	78.64	76.82	5.43
${ m NaBiInNbO_6}$	8.05	0.735	244.00	68.78	66.51	5.34
${ m NaBiLuNbO_6}$	8.13	0.735	245.24	64.47	62.23	4.26
${ m KBiScNbO_6}$	7.87	0.74	244.47	84.63	82.67	6.54
${ m KBiGaNbO_6}$	7.92	0.74	241.15	81.23	79.36	5.49
${ m KBiInNbO_6}$	8.08	0.735	239.95	70.88	68.80	5.33
${ m KBiLuNbO_6}$	8.16	0.735	240.69	66.35	64.41	4.33
${ m RbBiScNbO_6}$	7.91	0.74	238.38	86.11	84.32	6.52
${ m RbBiGaNbO_6}$	7.96	0.74	234.88	82.63	81.01	5.57
$RbBiInNbO_6$	8.11	0.735	233.24	72.03	70.37	5.33
RbBiLuNbO ₆	8.19	0.735	235.33	67.69	65.99	4.43

Таблица 1. Параметры ячейки, свободная координата кислорода, модули упругости и высокочастотная диэлектрическая проницаемость соединений ${\rm Me}^{+1}{\rm BiMe}^{+3}{
m NbO}_6$ в кубической фазе

Таблица 2. Мнимые частоты колебаний (см⁻¹) соединений $Me^{+1}BiMe^{+3}NbO_6$ в кубической фазе в центре и в граничной точке зоны Бриллюэна

	Γ (q = 0	$\begin{array}{c} X\\ (q=2\pi/a(1;0;0))\end{array}$
	$C \Im (F_2)$	$А\PhiД(F_1)$	ΑΦД
$NaBiScNbO_6$	132i	188i	183i
$NaBiGaNbO_6$	127i	192i	186i
NaBiInNbO ₆	134i	215i	209i
$NaBiLuNbO_6$	133i	221i	215i
${ m KBiScNbO_6}$	134i	182i	174i
${ m KBiGaNbO_6}$	128i	186i	178i
KBiInNbO ₆	134i	210i	202i
KBiLuNbO ₆	133i	216i	208i
$RbBiScNbO_6$	136i	177i	168i
$RbBiGaNbO_6$	129i	182i	171 <i>i</i>
RbBiInNbO ₆	134i	206i	196i
RbBiLuNbO ₆	132i	213i	202i

связей Nb–O–Me³⁺ (амплитуда изгибных смещений примерно в 2 раза меньше амплитуд смещений, соответствующих повороту кислородного октаэдра), как это видно на рис. За и Зб. В дальнейшем искажения, связанные с модами F_1 (q = 0) и X_2 ($q = \frac{2\pi}{a}(1,0,0)$), Y_2 ($q = \frac{2\pi}{a}(0,1,0)$), Z_2 ($q = \frac{2\pi}{a}(0,0,1)$) мы будем обозначать соответственно φ и ψ .

Трехкратновырожденная нестабильная мода F_2 (q = 0) полярна, одна компонента ее собственного вектора показана на рис. 3e. Здесь также имеется существенное отличие от структур перовскита и эльпасолита. Кроме «чистых» смещений ионов вдоль одной декартовой координаты имеются еще смещения части кислородов в плоскости, перпендикулярной этому направлению, соответствующие «схлопыванию» октаэдра NbO₆. Необходимо отметить, что в нестабильной полярной моде F_2 наибольшие смещения испытывают ионы Bi³⁺ и часть кислородов, как это показано на рис. 3e. В дальнейшем полярные искажения мы будем обозначать p.

В табл. 3 приведены значения динамических зарядов Борна для всех рассматриваемых соединений. Из нее следует, что динамические заряды иона висмута и компоненты заряда кислорода O_⊥ перпендикулярной связи Nb–O–Me³⁺ нечувствительны как к изменению щелочного металла, так и к изменению трехвалентного иона в октаэдре Me³⁺O₆. В то

же время динамический заряд самого иона Me^{3+} и, соответственно, компоненты динамического заряда кислорода O_{\parallel} , параллельной связи Nb–O–Me³⁺, существенно уменьшается по мере увеличения номера трехвалентного иона в Периодической таблице. Физическая причина такого резкого изменения динамических зарядов Me^{3+} и O_{\parallel} может быть в следующем. В используемой здесь модели ионных кристаллов с поляризуемыми ионами высокочастотная диэлектрическая проницаемость и динамические заряды Борна представляются в виде [5]

$$\varepsilon_{\infty} = 1 + \frac{4\pi}{\Omega} \alpha_{eff} \left(1 - \frac{4\pi}{3\Omega} \alpha_{eff} \right)^{-1}$$
$$Z_{din}(i) = \frac{\varepsilon_{\infty} + 2}{3} Z_{eff}(i),$$

где $Z_{eff}^{\alpha\beta}(i)$ и $\alpha_{eff}^{\alpha\beta}$ — соответственно эффективные заряд и поляризуемость иона в кристалле:

$$\alpha_{eff,ij}^{\alpha\beta} = \alpha_j \left[\delta_{\alpha\beta} + \alpha_i \left(\gamma_{ij}^{\alpha\beta} + \Gamma_{ij}^{\alpha\beta} \right) \right]^{-1}$$

$$Z_{eff}^{\alpha\beta}(i) = Z_{ion}(i)\delta_{\alpha\beta} - \sum_{j,\gamma} \alpha_{eff,ij}^{\alpha\gamma} \left(T_{ji}^{\gamma\beta} - \left(\frac{4\pi}{3\Omega}\delta_{\gamma\beta} - \gamma_{ji}^{\gamma\beta}\right) Z_{ion}(j) \right).$$

Здесь $\gamma_{ij}^{\alpha\beta}$ характеризует отличие внутреннего поля на ионе от поля Лоренца, а матрицы $\hat{\Gamma}$ и \hat{T} описывают короткодействующие взаимодействия соответственно между протяженными диполями и между протяженными диполями и сферическими распределениями заряда иона. Величины динамических зарядов катионов в октаэдре и компоненты O_{\parallel} определяются конкуренцией между этими вкладами. В окислах с перовскитоподобными структурами из-за высокой поляризуемости иона кислорода и особенности структуры значения нелоренцевых констант $\gamma_{ij}^{\alpha\beta}$ велики в направлениях связи Nb–O–Me³⁺, что

Рис. 3. Смещения ионов по собственным векторам нестабильных мод: a) одна компонента трехкратновырожденной моды F_1 ($\varphi 00$ -искажение); b) мода X_2 ($\psi 00$ -искажение); b) одна компонента трехкратновырожденной моды F_2 (00p-искажение). Относительные смещения ионов условно показаны величиной стрелок. Для полярной моды смещения ионов Me^1 и Me^{3+} не показаны из-за их пренебрежимо малой величины

	Z^A_{din}	$Z^{A'}_{din}$	Z^B_{din}	$Z^{B^\prime}_{din}$	$Z_{din}^{\mathcal{O}_{\parallel}}$	$Z_{din}^{\mathrm{O}_{\perp}}$
${ m NaBiScNbO_6}$	1.20	4.32	5.66	6.95	-6.23	-1.42
$NaBiGaNbO_6$	1.18	4.15	3.01	5.93	-3.99	-1.57
$NaBiInNbO_6$	1.21	4.19	2.66	6.41	-3.83	-1.70
$NaBiLuNbO_6$	1.19	4.01	1.37	5.35	-2.32	-1.82
${ m KBiScNbO_6}$	1.36	4.38	5.56	6.87	-6.15	-1.46
${ m KBiGaNbO_6}$	1.30	4.22	3.12	5.95	-4.08	-1.61
${ m KBiInNbO_6}$	1.33	4.24	2.82	6.37	-3.90	-1.74
${ m KBiLuNbO_6}$	1.27	4.07	1.57	5.38	-2.43	-1.86
${ m RbBiScNbO_6}$	1.28	4.46	5.48	6.78	-6.11	-1.44
${ m RbBiGaNbO_6}$	1.22	4.31	3.23	5.95	-4.16	-1.60
$RbBiInNbO_6$	1.29	4.30	2.97	6.30	-3.97	-1.73
RbBiLuNbO ₆	1.22	4.14	1.76	5.38	-2.54	-1.86

Таблица 3. Динамические заряды Борна (в единицах заряда электрона) соединений Me⁺¹BiMe⁺³NbO₆ в кубической фазе

приводит к увеличению эффективной поляризуемости иона кислорода и, соответственно, к большим значениям динамических зарядов. Короткодействующее диполь-дипольное взаимодействие также способствует увеличению динамических зарядов. Однако короткодействующие взаимодействия между протяженными диполями и сферически распределенной плотностью заряда ионов существенно уменьшают величины зарядов Борна (например, численные оценки различных вкладов в динамические заряды для окислов со структурой эльпасолита приведены в работе [6]).

В рассматриваемых здесь соединениях на величину динамического заряда Me^{3+} влияние оказывают как дальнодействующие, так и короткодействующие взаимодействия. С одной стороны, малые величины дипольных поляризуемостей ионов Ga^{3+} (примерно 0.1 Å^3) и Lu^{3+} (примерно 0.06 Å^3) по сравнению с дипольной поляризуемостью ионов Sc^{3+} и In^{3+} (примерно 0.3 Å^3) существенно ослабляют диполь-дипольные вклады в эффективный заряд на ионах Ga^{3+} и Lu^{3+} по сравнению с этими вкладами на ионах Sc^{3+} и In^{3+} . Дальнодействующие диполь-дипольные взаимодействия также ослабляют с увеличением параметра ячейки при замене $Sc \rightarrow Ga \rightarrow In \rightarrow Lu$. С другой стороны, короткодей-

ствующие диполь-зарядовые взаимодействия кислорода с трехвалентным металлом, ослабляющие величину динамического заряда, нарастают с увеличением номера Me^{3+} в Периодической таблице. Например, если при одинаковых значениях параметра ячейки и поляризуемостей ионов Sc^{3+} и In^{3+} динамические заряды (в единицах заряда электрона) на них с учетом всех взаимодействий составляют соответственно 5.2 и 2.3, то при выключенном коротко-действующем диполь-зарядовом взаимодействии пары O-Sc (In) эти величины равны соответственно 14.4 и 15.7.

3.2. Структура и энергетика искаженных фаз

Как следует из табл. 2, наиболее нестабильными модами для всех рассматриваемых соединений являются трехкратновырожденные моды с собственными векторами (рис. 3a, 3b), соответствующими антиферродисторсионным искажениям, обозначенных выше φ и ψ . Полная энергия кристалла с 40-атомной элементарной ячейкой минимизировалась по амплитудам смещений ионов кислорода для различных комбинаций φ - и ψ -искажений. В табл. 4 приведены значения смещений ионов кислорода (выраженных в величинах угла поворота октаэдра NbO₆) только для таких комбинаций φ - и ψ -искажений, которые приводят к наиболее низкоэнергетическим искаженным фазам. Видно (см. табл. 4), что обсуждаемые здесь искаженные фазы, за исключением фазы с искажением $\varphi \psi \psi$, полярны. Полный анализ симметрии искаженных фаз для соединений Me^IMe^{II}Me^{III}Me^{IV}O₆ с упорядочением катионов вдоль направления [111] структуры перовскита проведен в работе [7].

После минимизации энергии кристалла по комбинациям искажений φ и ψ проводилась релаксация структуры, описанная в разд. 2, и в релаксированных структурах вычислялись частоты колебаний решетки. В структурах с искажениями $\varphi\varphi\varphi$, $\varphi\varphi\psi$, $0\varphi\psi$ все моды колебаний оказались жесткими, а в полярной структуре $\varphi\varphi 0$ и в неполярной структуре $\varphi\psi\psi$ оставались нестабильные полярные моды. Поэтому для нахождения стабильного состояния для данных структур проводилась минимизация полной энергии по амплитудам смещений ионов с собственным вектором этой полярной моды. Энергии полученных стабильных искаженных фаз для рассматриваемых соединений приведены в табл. 5. Следует

Таблица 4. Угол «поворота» (градусы) октаэдра $\rm NbO_6$ в разных искаженных фазах соединений $\rm Me^{+1}BiMe^{+3}NbO_6$ (z — число молекул в элементарной ячейке)

Тип иска- жения	Группа симметрии		Sc	Ga	In	Lu
$\varphi \varphi \varphi$	R3(z = 1)	Na K Rb	6.0 5.2 5.2	6.2 5.4 5.5	$6.9 \\ 6.5 \\ 6.1$	7.1 6.7 6.7
$arphi arphi \psi$	Pc(z=2)	Na K Rb	6.0 5.2 5.2	6.2 5.4 5.5	$6.9 \\ 6.5 \\ 6.1$	7.1 6.7 7.0
arphi arphi 0	Cm(z=1)	Na K Rb	7.3 6.9 6.5	7.36.96.5	8.2 7.7 6.1	8.4 8.0 7.9
$0 arphi \psi$	C2(z = 2)	Na K Rb	7.3 6.9 6.5	7.37.26.8	8.4 8.0 7.7	8.6 8.3 8.3
$arphi\psi\psi$	P-4(z=4)	Na K Rb	6.0 5.2 5.2	6.2 5.9 5.5	6.9 6.5 6.1	7.1 6.7 6.7

Таблица 5.	Разница	энергий	(эВ)	между
кубической и и	скаженнымі	л фазами	coe	динений
$Me^{+1}BiMe^{+3}Nb$	\mathcal{D}_6 (z — чи	сло молек	ул в	элемен-
т	арной ячейн	(e)		

Тип	Группа					
иска-	симмет-		Sc	Ga	In	Lu
жения	рии					
	R3	Na	-0.405	-0.453	-0.760	-0.953
$\varphi \varphi \varphi$	(z = 1)	Κ	-0.376	-0.411	-0.696	-0.858
		Rb	-0.377	-0.406	-0.683	-0.831
	Pc	Na	-0.393	-0.448	-0.749	-0.950
$arphi arphi \psi$	(z = 2)	Κ	-0.334	-0.382	-0.665	-0.831
		Rb	-0.308	-0.354	-0.629	-0.776
$\varphi \varphi 0 +$	Cm	Na	-0.341	-0.399	-0.668	-0.840
+Seg	(z=1)	Κ	-0.303	-0.341	-0.604	-0.813
		Rb	-0.287	-0.304	-0.578	-0.721
	C2	Na	-0.343	-0.396	-0.670	-0.843
$0 arphi \psi$	(z = 2)	K	-0.291	-0.337	-0.601	-0.767
		Rb	-0.276	-0.312	-0.569	-0.722
$\varphi\psi\psi+$	<i>P</i> -4	Na	-0.320	-0.365	-0.617	-0.687
+Seg	(z = 4)	K	-0.251	-0.297	-0.657	-0.677
		Rb	-0.327	-0.357	-0.484	-0.684

отметить, что наибольший вклад (равный примерно 68-70%) в разность энергий кубической и искаженной фаз вносят смещения ионов, связанные с φ - и (или) ψ -искажениями.

Величины компонент поляризации на одну структурную единицу кристалла в стабильных полярных фазах приведены в табл. 6, из которой следует, что для всех рассматриваемых соединений наиболее энергетически выгодной оказывается ромбоэдрическая фаза с одной молекулой в элементарной ячейке и направлением поляризации вдоль пространственной диагонали исходной кубической фазы. Величина поляризации при этом составляет примерно 40 мКл/см². (Отметим, что вычисленная здесь величина поляризации существенно отличается от вычисленного в работе [3] значения поляризации для скандиевых соединений, равного примерно 70-80 мКл/см².) Однако очень близко по энергии к ромбоэдрической фазе находится полярная моноклинная фаза $\varphi \varphi \psi$ с двумя молекулами на элементарную ячейку с поляризацией в плоскости, при этом величина поляризации в этой фазе существенно меньше величины поляризации в ромбоэдрической фазе (см. табл. 6). Остальные три рассмотренные полярные фазы (две моноклинные и одна триклинная) менее выгодны по энергии, хотя в некоторых соединениях разница между энергиями этих фаз и энергиями фаз $\varphi\varphi\varphi$ и $\varphi\varphi\psi$ составляет 300–500 К и они могут реализоваться при высоких температурах.

4. ЗАКЛЮЧЕНИЕ

В заключение перечислим основные результаты работы.

В рамках неэмпирической модели ионного кристалла вычислены спектры колебаний решетки, диэлектрическая проницаемость, упругие модули и динамические заряды Борна соединений

Тип	Группа													
иска-	симмет-		\mathbf{Sc}		Ga		In			Lu				
жения	рии													
			P_x	P_y	P_z	P_x	P_y	P_z	P_x	P_y	P_z	P_x	P_y	P_z
	R3	Na	23	23	23	21	21	21	23	23	23	23	23	23
$\varphi \varphi \varphi$	(z = 1)	Κ	24	24	24	22	22	22	24	24	24	24	24	24
		Rb	27	27	27	25	25	25	26	26	26	26	26	26
	Pc	Na	8	8	0	5	5	3	6	6	4	15	0	0
$arphi arphi \psi$	(z=2)	Κ	9	9	0	24	0	0	7	7	2	9	3	3
		Rb	11	11	0	8	8	0	9	9	0	6	6	3
$\varphi \varphi 0 +$	P1	Na	23	0	0	19	0	0	19	0	0	18	0	0
+Seg	(z = 1)	Κ	24	0	0	23	3	0	23	0	0	23	0	0
		Rb	31	0	0	30	0	0	12	12	0	24	0	0
	C2	Na	20	0	0	16	0	0	18	0	0	17	0	0
$0arphi\psi$	(z=2)	Κ	22	0	0	17	0	0	19	0	0	18	0	0
		Rb	36	0	0	21	0	0	21	0	0	20	0	0
$\varphi\psi\psi+$	P2	Na	10	4	0	8	1	0	13	2	1	15	2	0
+Seg	(z = 4)	Κ	9	9	0	9	8	0	8	8	0	8	7	0
		Rb	16	0	0	7	0	0	23	0	0	27	0	0

Таблица 6. Величины компонент спонтанной поляризации (мкКл/см²) соединений Me⁺¹BiMe⁺³NbO₆ в искаженных фазах (*z* — число молекул в элементарной ячейке)

Ме¹⁺ВіМе³⁺NbO₆ (Ме¹⁺ = Na, K, Rb; Ме³⁺ = Sc, Ga, In, Lu) в кубической фазе. Во всех соединениях имеются два типа нестабильностей: антиферродисторсионная (трехкратновырожденная мода F_1 (q = 0) и однократная мода X_2 $(q = \frac{2\pi}{a}(1,0,0)))$ и сегнетоэлектрическая (трехкратновырожденная мода F_2 (q = 0)). При этом собственные векторы этих мод отличаются от собственных векторов соответствующих мод в перовскитах и эльпасолитах.

Установлена симметрия пяти наиболее энергетически выгодных искаженных фаз. Искажения по комбинациям смещений ионов кислорода по собственным векторам неполярных мод F_1 (q = 0), X_2 ($q = \frac{2\pi}{a}(1,0,0)$) и Y_2 ($q = \frac{2\pi}{a}(0,1,0)$) и последующей релаксации, полученных в результате смещений ионов кислорода структур, приводят, за одним исключением, к полярным фазам. Спонтанная поляризация в этих фазах связана, главным образом, со смещением ионов Bi³⁺ из симметричных положений в кубической фазе. Таким образом, в четырех из пя-

1100

ти обсуждаемых низкоэнергетических фаз поляризация кристалла появляется как вторичный эффект (несобственный сегнетоэлектрик).

Комбинация смещений ионов кислорода по одной компоненте моды F_1 и модам X_2 и Y_2 приводит к неполярной фазе, но при этом в спектре колебаний решетки для всех обсуждаемых соединений в этой фазе остается неустойчивая полярная мода колебаний. Последующие искажения структур по собственному вектору этой полярной моды приводят к полярной фазе со стабильными частотами колебаний решетки. Также сегнетоэлектрическая неустойчивость сохраняется в моноклинной полярной фазе, полученной в результате искажения кубической структуры по двум собственным векторам моды F_1 . В результате последующего искажения структуры этой фазы по собственному вектору неустойчивой полярной моды реализуется опять же моноклинная фаза с другим направлением вектора поляризации.

Полученные в данной работе результаты вычислений структурных и динамических свойств соединений $Me^{1+}BiMe^{3+}NbO_6$ в упорядоченной по катионам фазе показывают, что полярное поведение этих соединений существенно отличается от поведения известных простых и двойных окислов со структурой перовскита, поэтому представляют интерес экспериментальные исследования свойств уже синтезированных соединений NaBiScNbO₆ и еще не синтезированных соединений.

Работа выполнена при финансовой поддержке РФФИ (грант № 09-02-00067) и в рамках программы поддержки ведущих научных школ (НШ-4645.2010.2).

ЛИТЕРАТУРА

1. К. М. Рабе, Ч. Г. Ан, Ж.-М. Трискон, Физика сегне-

тоэлектриков: современный взгляд, Бином, Москва (2011).

- 2. Meghan C. Knapp, Ph. D. Dissertation, Ohio (2006).
- S. Takagi, A. Subedi, V. R. Cooper, and D. J. Singh, Phys. Rev. B 82, 134108 (2010).
- Е. Г. Максимов, В. И. Зиненко, Н. Г. Замкова, УФН 174, 1145 (2004).
- 5. О. Е. Квятковский, ФТТ 27, 2673 (1985); О. Kvyatkovskii, Ferroelectrics 153, 201 (1994).
- 6. В. И. Зиненко, Н. Г. Замкова, Е. Г. Максимов, С. Н. Софронова, ЖЭТФ **132**, 702 (2007).
- 7. Н. Тер-Оганесян, в сб. Тез. докл. 19 Всероссийской конференции по физике сегнетоэлектриков, Москва (2011).