СОБСТВЕННЫЕ НЕОДНОРОДНОСТИ СЛАБОЛЕГИРОВАННЫХ МАНГАНИТОВ ЛАНТАНА В ПАРАМАГНИТНОЙ ОБЛАСТИ ТЕМПЕРАТУР

Н. И. Солин*

Институт физики металлов Уральского отделения Российской академии наук 620199, Екатеринбург, Россия

Поступила в редакцию 28 апреля 2011 г.

Работа посвящена выяснению природы электросопротивления слаболегированных манганитов лантана. Электросопротивление описывается законом Эфроса – Шкловского ($\ln \rho \propto (T_0/T)^{-1/2}$, где $T_0 \propto 1/R_{ls}$) в интервале температур от $T^* \approx 300$ К $\approx T_C$ (T_C — температура Кюри проводящих манганитов) до их T_C и объясняется туннелированием носителей между локализованными состояниями. Магнитосопротивление объясняется изменением размера локализованных состояний R_{ls} в магнитном поле. Определенные из магнитотранспортных свойств закономерности изменения R_{ls} от температуры и напряженности магнитного поля удовлетворительно описываются в модели фазового расслоения на металлические капли малого радиуса в парамагнитной матрице. Путем магнитных измерений оценены размеры R_{ls} и зависимость их от температуры. Результаты подтверждают наличие фазы Гриффитса. Собственные неоднородности, вызванные термодинамическим фазовым расслоением, определяют электросопротивление и магнитосопротивление манганитов лантана.

1. ВВЕДЕНИЕ

Фазовые неоднородности и замороженный беспорядок в R_{1-x}A_xMnO₃ (где R — трехвалентный редкоземельный, А — двухвалентный щелочной металлы) определяют основные свойства манганитов [1-3]. Неизовалентное легирование, кроме появления ионов Mn⁴⁺, ферромагнитного металлического состояния при x = 1/3, приводит к структурным искажениям кислородного октаэдра (замороженному беспорядку) как следствие несоответствия размеров трех- и двухвалентных А-катионов. Замороженный беспорядок — не зависящие от температуры неоднородности на атомном уровне — производится беспорядком в потенциальной энергии, в обменном взаимодействии, концентрации электронов, вакансий и приводит к собственным неоднородностям [1–3]. Собственные неоднородности имеются даже в совершенных кристаллах манганитов и обусловливают эффект колоссального магнитосопротивления [4]. Когда концентрация носителей мала, x < 1/3, электроны могут локализоваться в некоторой области кристалла и создавать проводящие магнитные кластеры [5]. Такие кластеры обнаружены нейтронными методами в монокристаллах и поликристаллах $La_{1-x}A_xMnO_3$ (A \equiv Ca, Sr) с x = 0.05-0.12 в антиферромагнитной матрице [6–8].

Нейтронные исследования манганитов и кобальтитов обнаруживают в парамагнитной области размером 10-20 Å фазы с ближним порядком (short-range ordered (SRO) phase) [9, 10]. Магнитные, оптические и резонансные исследования [11] манганитов и кобальтитов свидетельствуют об их магнитной неоднородности и в парамагнитной области температур. Обнаруженные в $(La_{1-x}Y_x)_{2/3}Ca_{1/3}MnO_3$ нейтронными методами присутствие кластеров размером 10–12 Å, изменение их размеров в магнитном поле, аномалии парамагнитной восприимчивости χ_0 и коэффициента объемного расширения при $T \approx 300~{
m K} \gg T_C \approx 110~{
m K}$ показывают, что беспорядок и искажения в катионной подрешетке могут быть причиной фазовой неоднородности в парамагнитной области [9].

Модель фазового расслоения [5] допускает образование автолокализованных состояний электронов проводимости типа ферромагнитных капель (магнитных флуктуаций малого радиуса или «температурных ферронов») выше T_C [12]. Расчеты пока-

^{*}E-mail: solin@imp.uran.ru, solinni@mail.ru

зывают [4], что введение в систему замороженного беспорядка приводит к возникновению собственных неоднородностей, присущих и совершенным кристаллам, и к существованию обеих — проводящей и непроводящей — фаз не только в антиферромагнитной матрице, но и в парамагнитной области вплоть до T^* (аналога температуры Гриффитса [13]), где $T^* \sim T_C \ (T_C - \text{температура Кюри проводящих ман-}$ ганитов). В решетке, полностью занятой магнитными атомами, связанными ферромагнитной обменной связью между ближайшими соседями, магнитный переход наступает при температуре Гриффитса T_G . Если часть атомов отсутствует или случайным образом занята немагнитными атомами, то переход наступает при температуре $T_C < T_G$. В такой неупорядоченной разбавленной среде возможно возникновение магнитных кластеров (фазы Гриффитса) со свойствами неразбавленной среды. При увеличении размера кластеров свободная энергия и намагниченность при $T > T_C$ не имеют аналитического выражения в магнитном поле H = 0 [13]. Для фазы Гриффитса характерно сильное отклонение парамагнитной восприимчивости χ_0 от закона Кюри-Вейса в слабом магнитном поле при $T \approx T_G$.

Сильную зависимость χ_0 от H и дополнительный пик в спектре парамагнитного резонанса обычно объясняют существованием фазы Гриффитса. Однако такое поведение характерно и для химической неоднородной среды, содержащей магнитные кластеры больших размеров с более высокой T_C . В соединениях, в которых обнаруживают фазу Гриффитса, T_C зависит от состава при замещении одного иона другим. Вследствие этого существование фазы Гриффитса ставится под сомнение [14–17]. Предполагается, что причиной являются технологические процессы изготовления кристаллов и что невозможно отличить собственные неоднородности от внешних [15].

Исследования критического поведения намагниченности и магнитной восприимчивости манганитов с $x \approx 1/3$ также не дают однозначного ответа и, по-видимому, не позволяют отличить фазу Гриффитса от химической неоднородности [16]. Исследования магнитных свойств до T = 900 К в полях от 0.2 Э до 80 кЭ [17] не подтверждают наличие фазы Гриффитса в La_{0.7}Ca_{0.3}MnO₃.

Эксперименты показывают, теории предсказывают ют фазовую неоднородность легированных манганитов лантана в парамагнитной области температур. Природа этого явления в настоящее время до конца не ясна. Связано ли оно с технологическими (внешними) причинами или это внутреннее свойство кристалла и характерно и для совершенных кристаллов? Роли собственных и внешних неоднородностей должны сильно различаться. Собственные неоднородности возникают по термодинамическим причинам [5] и влияние на них магнитного поля, температуры и других факторов должно соответствовать теоретическим предсказаниям модели фазового расслоения. Внешние неоднородности должны проявлять отличные от собственных неоднородностей свойства.

Существование термодинамического фазового расслоения в манганитах при $T > T_C$ может быть установлено экспериментально и теоретически путем исследования влияния кластеров на их электрические свойства. Известны способы описания магнитно-неоднородных сред при фазовом разделении [12, 18, 19]. Изучение механизмов электрои магнитосопротивления манганитов, влияния на их свойства легирования, сравнение результатов эксперимента с выводами кластерной модели помогут привести к прогрессу в понимании природы неоднородного состояния при $T > T_C$. Развитию этой проблемы посвящена настоящая работа.

Здесь приведены результаты исследований магнитно-транспортных и магнитных свойств хорошо аттестованных слаболегированных манганитов лантана, нейтронные исследования которых [6,7] показывают наличие магнитных нанокластеров в скошенном антиферромагнитном состоянии. Наши исследования подтверждают существование в них собственных неоднородностей и в парамагнитной области. Закон Кюри-Вейса выполняется только при высоких температурах. Ниже $T \approx 300$ К значения эффективного момента μ_{eff} значительно превышают теоретические и увеличиваются с понижением температуры. Определенные из магнитотранспортных свойств закономерности изменения размера кластеров от температуры и напряженности магнитного поля хорошо описываются в модели [12, 18, 19] фазового расслоения на металлические капли (кластеры) малого радиуса в парамагнитной и антиферромагнитной матрицах. Парамагнитная восприимчивость исследованных образцов зависит от напряженности магнитного поля и имеет вид, характерный для парамагнитной среды при внедрении в нее магнитных частиц, и может быть описана ланжевеновской кривой намагничивания суперпарамагнетика. Из магнитных измерений в поле до 9 Тл оценены магнитные моменты и размеры кластеров. Обнаружено, что размеры кластеров растут при понижении температуры ниже $T^* \approx 300 \pm 30$ К и увеличении легирования.

Образец	Обозначение	$T_C (T_{CA}), \mathbf{K}$	Θ, K	Θ_{MR}, \mathbf{K}	$T_{OO'}$ $(T_{ST}), K$	$T_0, 10^3 {\rm K}$
${\rm La}_{0.92}{\rm Ca}_{0.08}{\rm MnO}_3$	Ca8	126 (122)	124	135 ± 6	570(175)	88, $400 > T > 175$ K;
						199, $T < 175 {\rm \ K}$
$\mathrm{La}_{0.9}\mathrm{Ca}_{0.10}\mathrm{MnO}_3$	Ca10	138 (112)	161	159 ± 2	500	$60, 300 > T > T_C;$
						$34, T < T_{CA}$
$La_{0.875}Ca_{0.125}MnO_3$	Ca12	155 (110)	_	_	345 (80-100)	_
$\mathrm{La}_{0.93}\mathrm{Sr}_{0.07}\mathrm{MnO}_{3}$	Sr7	122 (121)	145	157 ± 6	465	$73,7,330 > T > T_C$

Таблица. Ферромагнитная, антиферромагнитная и парамагнитная температуры Кюри (T_C , T_{CA} , Θ и Θ_{MR}), температура активации прыжка T_0 , температуры структурных переходов ($T_{OO'}$, T_{ST}) La_{0.92}Ca_{0.08}MnO₃, La_{0.90}Ca_{0.10}MnO₃, La_{0.875}Ca_{0.125}MnO₃ и La_{0.93}Sr_{0.07}MnO₃

2. ОБРАЗЦЫ

 $La_{0.92}Ca_{0.08}MnO_3^{(1)}$ Монокристаллы (Ca8), $La_{0.90}Ca_{0.10}MnO_3^{(1)}$ (Ca10), $La_{0.875}Ca_{0.125}MnO_3^{(1)}$ (Ca12) и La_{0.93}Sr_{0.07}MnO₃²⁾ (Sr7) выращены плавающим зонным методом. Некоторые их параметры приведены в таблице. Согласно нейтронным исследованиям [6,22], все кристаллы с понижением температуры становятся ферромагнетиками при Т_С, при дальнейшем охлаждении превращаются в скошенный антиферромагнетик при T_{CA} . При T > T_{OO'} происходит переход из орторомбической фазы с динамическим и статическим эффектом Яна-Теллера в псевдокубическую фазу с динамическим эффектом Яна-Теллера [6]. В Са12 ниже $T_B \approx 80{-}100 \text{ K}$ происходит возврат в псевдокубическую фазу. В Са
8 при $T~\approx~175~{\rm K}$ обнаружен фазовый переход неясной природы [6].

Нейтронные исследования слаболегированных манганитов $La_{1-x}A_xMnO_3$ ($A \equiv Ca, Sr$) при низких температурах [7] свидетельствуют об их сложной — модулированной скошенной антиферромагнитной — структуре. Обнаружение диффузного рассеяния нейтронов при x = 0.05-0.08, характерного для неоднородного ферромагнитного состояния, показывает существование электронного фазового разделения. Оценены размеры неоднородностей (капель): капли анизотропны, имеют форму эллипсоида размеры неоднородностей не определены, предполагается, что капли сращиваются. Для состава образцов с $0 < x \leq 0.125$ спиновая динамика показывает

существование спин-волновых ветвей с высокой и низкой энергией, что отражает одновременное сосуществование скошенного антиферромагнитного и неоднородного магнитного состояний [6,7]. Фазовое расслоение в $La_{0.93}Sr_{0.07}MnO_3$ исследовано методом упругого рассеяния нейтронов: определены T_C , T_{CA} и оценены размеры магнитных неоднородностей [22].

Измерения электросопротивления проведены 4-контактным методом в магнитном поле до 9 Тл в интервале температур 60–400 К. Контакты приготовлены из индия ультразвуковым паяльником. Магнитные и электрические исследования проведены на установках PPMS и на СКВИД-магнитометре MPMS-5XL в Центре магнитных исследований ИФМ.

3. РЕЗУЛЬТАТЫ

Исследования парамагнитной восприимчивости $\chi_0 \; \mathrm{Sr7} \; [23]$ и Ca10 [24] при высоких (до 600 K) температурах показывают сохранение ближнего магнитного порядка до $T \gg T_C$. Закон Кюри-Вейса для Ca10 выполняется только при T > 450 K $\approx T_{OO'}$ выше температуры перехода из орторомбической Pnmb-фазы в псевдокубическую. В квазикубической фазе значение эффективного момента μ_{eff} приблизительно соответствует концентрациям Mn³⁺ и Mn⁴⁺ [24]. На рис. 1 приведены температурные зависимости $\chi_0^{-1} = H/M$ монокристаллов Ca8, Ca10 в магнитном поле H = 1 Тл и Sr7 (нижняя вставка) в магнитном поле H = 0.01, 3 Тл ниже T = 350 К (в орторомбической фазе), где M — намагниченность. Значения $T_C = 121 \pm 1$ K, 125 ± 1 K, 134 ± 1 К соответственно для Sr7, Ca8 и Ca10, определенные по измерениям намагниченности в поле

¹⁾ Выращен Л. Пинсард (L. Pinsard) и др. [20] в лаборатории химии твердого тела Парижского университета.

²⁾ Выращен А. М. Балбашовым и др. [21] в Московском энергетическом институте.

Рис.1. Температурные зависимости обратной восприимчивости $(1/\chi_0 = H/M)$ La $_{0.92}$ Ca $_{0.08}$ MnO $_3$, La $_{0.90}$ Ca $_{0.10}$ MnO $_3$ и La $_{0.93}$ Sr $_{0.07}$ MnO $_3$ (нижняя вставка), штриховой линией показано ожидаемое поведение для фазы Гриффитса. Верхняя вставка — температурные зависимости эффективного момента образцов

0.01 Тл, близки к значениям T_C , определенным из нейтронных данных [6, 22]. Эффективный момент μ_{eff} в орторомбической фазе зависит от температуры, увеличивается при понижении температуры ниже $T \approx 250-270$ K $\approx 2T_C$ (верхняя вставка рис. 1) и значительно превышает теоретические значения μ_{eff} (4.83, 4.82 и 4.80 μ_B соответственно для Sr7, Ca8, и Ca10, μ_B — магнетон Бора). Увеличение μ_{eff} с понижением температуры и отклонение от закона Кюри-Вейса свидетельствуют об увеличении магнитной неоднородности. Значения χ_0 зависят от напряженности магнитного поля ниже $T \approx 270-300$ K (нижняя вставка рис. 1), но зависимость $\chi_0^{-1}(T)$ при $H \approx 0$ имеет вид, не характерный для фазы Гриффитса (штриховая линия).

Температурная зависимость электросопротивления $\rho(T) \propto \exp[\Delta E \rho(T)/kT]$ образцов имеет активационный характер с зависящей от температуры энергией активации ΔE_{ρ} [25]. На верхних вставках рис. 2 приведены температурные зависимости дифференциальной энергии активации ΔE_{ρ}^{diff} образцов, полученные дифференцированием экспериментальных значений $\ln \rho(1/T)$. Видно, что значение ΔE_{ρ}^{diff} зависит от температуры, резкие изменения его происходят вблизи T_{C} и в области температур T = 270–330 К. Изменения ΔE_{ρ} вблизи T_C характерны для манганитов. Для Ca12 высокотемпературная аномалия ΔE_{ρ}^{diff} при $T \approx 300$ К может быть объяснена близостью к температуре перехода $T_{OO'} = 310$ –345 К из орторомбической в квазикубическую структуру [6]. Для других образцов аномалии ΔE_{ρ}^{diff} наблюдаются вдали от температуры структурных и магнитных переходов $T \ll T_{OO'}$ (см. таблицу).

Изменения $\Delta E_{\rho}(T)$ в слаболегированных манганитах объясняются [26] действием закона проводимости Эфроса-Шкловского: $\ln \rho \propto T^{-1/2}$ [27, 28]. Для проверки выполнения этого закона проводимости на рис. 2 приведены температурные зависимости электросопротивления $\ln\rho\,\propto\,T^{-1/2}$ монокристаллов Sr7, Ca8, Ca10 и Ca12 при нескольких фиксированных значениях магнитного поля H = 0-9 Тл. Для Call и Sr7 при H = 0 линейная зависимость $\ln \rho \propto T^{-1/2}$ (показана символами) в парамагнитной области выполняется от $T^* \approx 300 \pm 30$ К (близкой к T_C манганитов с x = 1/3) до $T \approx T_C + (20-30)$ K, а в антиферромагнитной области ниже $T < T_{CA}$ (см. таблицу). В магнитном поле ниже T_{CA} зависимость $\ln \rho \propto T^{-1/2}$ выполняется, а в парамагнитной области — нет. Для Са8 при H = 0 линейная зависимость $\ln \rho \propto T^{-1/2}$ выполняется от T = 400 K до $T = 200 \text{ K} \approx T_{ST} + 20 \text{ K}$ и при T < 165 K.

Для Ca12 нельзя выделить достаточно широкую область изменения $\rho(T)$, где зависимость $\rho(T)$ может быть объяснена законом Эфроса–Шкловского. Одна из возможных причин — структурные и магнитные переходы происходят в непосредственной близости друг от друга. Электросопротивление $\rho(T)$ испытывает перегибы (отмечены стрелками) вблизи T = 300 К ($T_G \approx 300$ К, $T_{OO'} = 345$ К), вблизи $T \approx T_C = 155$ К, вблизи $T \approx T_{CA} = 110$ К и резко возрастает при $T \approx T_B = 80$ К. При T < 80-100 К в Ca12 происходит возврат от орторомбической структуры к квазикубической [6]. В La_{1-x}Sr_xMnO₃ с x = 1/8 возврат к квазикубической структуре сопровождается поляронным (зарядовым) упорядочением [29].

На нижних вставках рис. 2 приведены температурные зависимости магнитосопротивления $MR_H(T) = \rho(H = 0)/\rho(H)$, определенного как относительное изменение электросопротивления при фиксированных значениях H. Магнитосопротивление (MR) растет с увеличением напряженности магнитного поля и при понижении температуры. Такой характер магнитосопротивления для слаболегированных манганитов предсказывался в работах [19]. На всех образцах на зависимости

Рис.2. Температурные зависимости электросопротивления монокристаллов в магнитном поле H=0-9 Тл. Верхняя вставка — температурные зависимости дифференциальной энергии активации электросопротивления, нижняя вставка — температурные зависимости магнитосопротивления $MR_H=\rho(H=0)/\rho(H)$: a — La_{0.93}Sr_{0.07}MnO₃, δ — La_{0.92}Ca_{0.08}MnO₃, ϵ — La_{0.90}Ca_{0.10}MnO₃, ϵ — La_{0.875}Ca_{0.125}MnO₃

 $MR_H(T)$ вблизи T_C , T_{ST} или T_{CA} наблюдались небольшие аномалии — пик или провал MR. Уменьшение $\rho(H)$ (или отрицательное магнитосопротивление $MR_0 = [\rho(H) - \rho(H = 0)]/\rho(H = 0))$ наблюдалось на образцах Ca10 и Sr7 выше T_C при всех исследованных температурах вплоть до T = 400 K. В Ca8 при T > 300 K наблюдалось небольшое положительное MR_0 (увеличение ρ) при $H \leq 3$ Тл.

В Ca12 магнитосопротивление достигает максимума при $T \approx T_C = 155$ К и не увеличивается при понижении температуры, как в Ca10. Ниже 100 К величина ρ резко возрастает, а магнитосопротивление резко уменьшается при возвращении в квазикубическую структуру при $T < T_B \approx 80$ –100 К. Аналогичное поведение $\rho(T)$ и MR(T) наблюдалось в La_{1-x}Sr_xMnO₃ ($x \approx 0.1$ –0.12) [30] при переходе в зарядовое упорядоченное состояние.

Линейная зависимость $\ln \rho \propto T^{-1/2}$ наблюдалась в гранулярных композитах [31, 32], которые являются в определенном смысле аналогами фазово-расслоенных систем, и в компенсированных полупроводниках при низких температурах [27]. В гранулярных композитах, как и в магнитно-неоднородных манганитах, проводящие металлические гранулы (W, Co, Ni, Fe) размером несколько десятков ангстрем распределены в диэлектрической матрице (SiO_2, Al_2O_3) и изолированы друг от друга туннельным барьером толщиной s. Если объем металлической фракции большой, то гранулы (капли) касаются друг друга и проводимость металлическая. При малом объеме в гранулярных композитах, как и в магнитно-неоднородных манганитах, проводимость обусловлена туннелированием (прыжками) носителей между металлическими частицами, разделенными диэлектриком толщиной s. Энергия, необхо-

8 ЖЭТФ, вып.1

димая для образования электронно-дырочной пары, равна примерно энергии кулоновской блокады $E_C \sim e^2 / \varepsilon R_{gr}$, где R_{gr} — размер гранул. Если среда неупорядочена, а расстояние туннелирования сравнимо с размерами гранул, то существуют предпочтительные каналы и носители туннелируют не между ближайшими гранулами, а зависящими от температуры расстояниями *s* между гранулами с одинаковой энергией кулоновской блокады, т. е. с одинаковыми размерами. Тогда выражение для температурной зависимости электросопротивления имеет вид [32]

$$\rho(T) \propto \exp\left[2(C/k_B T)^{1/2}\right],\tag{1}$$

где $C \propto 1/R_{gr}$.

Расчеты показывают [33, 34], что в манганитах при некоторой магнитной неоднородности электрон-электронное взаимодействие может приводить к возникновению щели Эфроса – Шкловского в плотности состояний вблизи края подвижности. Ожидается [33], что электросопротивление манганитов в парамагнитной области может быть обусловлено прыжками переменной длины между локализованными состояниями и описывается законом Эфроса – Шкловского [27, 28]:

$$\rho(T) = \rho_0 \exp\left[(T_0/T)^{1/2}\right],$$
(2)

где $T_0 \approx e^2/\varepsilon R_{ls}$ — температура активации прыжка, R_{ls} — размер локализованного состояния, e заряд электрона, ε — диэлектрическая постоянная, ρ_0 слабо зависит от температуры. Уменьшение беспорядка в магнитном поле приводит к увеличению R_{ls} и к уменьшению электросопротивления в магнитном поле [33]. Значения T_0 и C в формулах (1) и (2) качественно характеризуют изменения R_{ls} с изменением легирования, компенсации, температуры, напряженности магнитного поля. В таблице приведены значения T_0 для трех монокристаллов.

На всех образцах (рис. 2) наблюдаются температурные зависимости $\rho(H)$ и MR, характерные для манганитов [35]: уменьшение ρ в магнитном поле до $T \approx 300-350$ К $\gg T_C$. Предсказывается [4], что собственные неоднородности определяют эффект колоссального магнитосопротивления. Не связано ли такое поведение MR в парамагнитной области с влиянием локализованных состояний? Из экспериментальных зависимостей $\ln \rho \propto T^{-1/2}$ нельзя определить размеры локализованных состояний (кластеров) вследствие неопределенности C и T_0 в формулах (1) и (2), но можно определить их относительное изменение из измерений $\rho(T, H)$ и MR_H(T) [26]:

$$\frac{\Delta R_{ls}}{R_{ls}^{0}} \equiv \frac{R_{ls}(T,H) - R_{ls}(T,H=0)}{R_{ls}(T,H=0)} = \left[1 - \left(\frac{T}{T_{0}}\right)^{1/2} \ln \mathrm{MR}_{H}\right]^{-2} - 1. \quad (3)$$

Значение T_0 определяется из $\rho(T, H = 0),$ $MR_H(T) \equiv \rho(H = 0)/\rho(H).$

Теория фазового расслоения [12] позволяет определить закономерности изменения размера локализованных состояний («температурных ферронов») в парамагнитной области. Если выше T_C возникает неоднородное состояние за счет автолокализации носителей в виде металлических капель (кластеров, флуктуаций малого радиуса), то изменение свободной энергии ΔF имеет вид [12]

$$\Delta F = tn \left(z - \frac{\pi^2 a^2}{R_{cl}^2} \right) + \frac{4\pi}{3} k_B T \left(\frac{R_{cl}}{a} \right)^3 n Ln(2S+1), \quad (4)$$

где t — интеграл переноса, z — число ближайших соседей, R_{cl} — радиус кластера, a — параметр решетки, $n(\approx x)$ — плотность носителей тока, S — спин магнитного иона, k_B — постоянная Больцмана. Минимизация свободной энергии ΔF (с учетом энергии Зеемана) дает следующее выражение для изменения размера кластеров («температурных ферронов») в магнитном поле H в парамагнитной диэлектрической матрице [12]:

$$\frac{\Delta R_{cl}}{R_{cl}^0} = \frac{MH}{5k_BTnLn(2S+1)} \,. \tag{5}$$

Здесь $R_{cl}(T, H = 0) \equiv R_{cl}^0 = a[t\pi/2k_BTLn(2S+1)]^{1/5}$. Размеры кластеров при H = 0 зависят от температуры и медленно растут с понижением температуры, $R_{cl}(T, H = 0) \propto T^{-1/5}$ [33]. При высоких температурах, $T > \Theta$, намагниченность определяется выражением $M = \chi_0 H = CH/(T - \Theta)$, где C — константа Кюри, Θ — температура Вейса. Тогда [26]

$$\frac{\Delta R_{cl}}{R_{cl}^0} = \frac{\chi_0 H^2}{5k_B T n L n (2S+1)} = \frac{b_{PM} H^2}{5T(T-\Theta)}, \quad (6)$$

где $b_{PM} = C_0 S(S + 1) da^3 / [n M_{mol} Ln(2S + 1)],$ $C_0 = Ng^2 \mu_B^2 / 3k_B^2, N -$ число Авогадро, g - g-фактор, M_{mol} и d — молярный вес и плотность соединения.

В парамагнитной области $\Delta R_{cl}/R_{cl}^0 \propto \chi_0 H^2$ при $T > \Theta$, т.е. при высоких температурах изменение размера кластера от напряженности магнитного поля пропорционально парамагнитной восприимчивости и квадрату напряженности магнитного поля. Такая зависимость была предсказана в работе [33].

Рис. 3. Полевые зависимости $\Delta R_{ls}T(T-\Theta)/R_{ls}^0 \propto M^2$, верхняя вставка — $\Delta R_{ls}/R_{ls}^0 \propto H^2$, нижняя вставка — $\Delta R_{ls}/R_{ls}^0 \propto H$ при фиксированных значениях температуры от 75 K до 345 K: $a - La_{0.90}Ca_{0.10}MnO_3$, $b - La_{0.93}Sr_{0.07}MnO_3$, $b - La_{0.92}Ca_{0.08}MnO_3$

В антиферромагнитном состоянии изменение размера магнитного кластера пропорционально напряженности магнитного поля [12]:

$$\frac{\Delta R_{cl}}{R_{cl}^0} = (1 - b^{AFM}H)^{-1/5} - 1 \approx \frac{b^{AFM}H}{5} \quad (7)$$

при $b^{AFM}H \ll 1$, где $R_{cl}^{AFM}(H=0) = a[\pi t/4I_{ff}S^2]^{1/5}$, $b^{AFM} = g\mu_B S/2I_{ff}S^2 n_{drob}z$, I_{ff} — интеграл антиферромагнитного обменного взаимодействия между локальными спинами на соседних узлах, z — число ближайших соседей, n_{drob} — концентрация капель (кластеров).

В выражении (6) все параметры модели известны и можно проверить, обусловлено ли магнитосопротивление исследованных образцов вкладом собственных локализованных состояний. На вставках рис. 3 приведены рассчитанные из выражения (3) полевые зависимости $\Delta R_{ls}/R_{ls}^0$ при нескольких фиксированных температурах по результатам измерений магнитосопротивления трех монокристаллов. Видно, что с понижением температуры квадратичные зависимости $\Delta R_{ls}/R_{ls}^0 \propto H^2$ в парамагнитной области (верхние вставки) плавно переходят в линейные зависимости $\Delta R_{ls}/R_{ls}^0 \propto H$ при $T < T_{CA}$ (нижние вставки). Такой характер изменения полевых зависимостей $\Delta R_{ls}/R_{ls}^0$ от магнитного состояния является качественным подтверждением модели термодинамического фазового расслоения [12,18,19] в парамагнитной и ферромагнитной областях температур.

Квадратичная зависимость $\Delta R_{ls}/R_{ls}^0 \propto H^2$ в Cal0 и Sr7 выполняется при T = 345-225 (200) К и перестает выполняться в больших полях при $T \leq 200-225$ К, т.е. при приближении к Θ . Хотя в Ca8 $\Theta \approx 124$ К, зависимость $\Delta R_{ls}/R_{ls}^0 \propto H^2$ выполняется только до T = 225 К при приближении к $T_{ST} \approx 175$ К. Ниже 250–300 К в исследованных образцах намагниченность зависит от напряженности магнитного поля (см. ниже рис. 5). При учете $\chi_0(H)$ в формуле (6) зависимость $\Delta R_{ls}/R_{ls}^0 \propto H^2$ сохраняется до температур, близких к Θ . Штриховыми линиями во вставках слева рис. 36 и 36 показаны зависимости $\Delta R_{ls}/R_{ls}^0 \propto H^2$ при T = 200 К для Sr7 и Ca8 при учете $\chi_0(H)$.

Если изменения $\Delta R_{ls}/R_{ls}^0$ обусловлены собственными процессами фазового расслоения, то выражение (8) не должно зависеть от температуры:

$$\Delta R_{ls}[5T(T-\Theta)]/R_{ls}^0 = b_{PM}H^2. \tag{8}$$

 Ha рис. 3 приведены значения $\Delta R_{ls}[T(T~-~\Theta)]/R_{ls}^0 \propto H^2$ для Ca10, Sr7 и Ca8 при T = 345-250(225) К. Видно, что для всех образцов выполняется хорошая квадратичная зависимость $\Delta R_{ls}[T(T-\Theta)]/R_{ls}^0 \propto H^2$ (за исключением области малых полей 1-2 Тл), значения их практически ложатся на одну прямую для всех температур, различающихся более чем на 100 К. Значения Θ, необходимые для описания магнитно-транспортных свойств в формуле (8), практически (с точностью ±5 К) совпадают со значениями, полученными из магнитных измерений. Рассчитанные из формулы (6) значения b_{PM} для Ca10 и Sr7 (g = 2, a = 4 Å, d = 6 г/см³, $M_{mol} = 232$ г, n = x, S = 2) близки экспериментальным значениям b_{PM} , определенным из наклона прямой на рис. 4. Для Ca8 значение b_{PM} примерно в 2 раза меньше расчетного значения. Это означает, что экспериментальное значение MR Ca8 меньше ожидаемого. Можно предположить влияние вклада положительного магнитосопротивления, обнаруженного в Са8, характерного, к примеру, для полупроводников [36]. Кроме того, в оценках

Рис. 4. Температурные зависимости $R_{ls}^0 H^2 / \Delta R_{ls} T$ при фиксированных значениях напряженности магнитного поля. Вставки — температурные зависимости обратной магнитной восприимчивости, полученные из измерений намагниченности — $1/\chi_0$ и измерений магнитно-транспортных свойств — $1/\chi_{MR}$: $a - \text{La}_{0.90}\text{Ca}_{0.10}\text{MnO}_3, \quad \delta - \text{La}_{0.93}\text{Sr}_{0.07}\text{MnO}_3, \quad \delta - \text{La}_{0.92}\text{Ca}_{0.08}\text{MnO}_3$

b_{pm} полагали концентрацию носителей n равной концентрации акцепторов. Они могут существенно различаться в зависимости от наличия вакансий в кристалле.

Если изменения $\Delta R_{ls}/R_{ls}^0$ обусловлены собственными процессами фазового расслоения, то выражение (9) при всех значениях H должно показывать одинаковую линейную зависимость от температуры:

$$\Delta R_{ls}^0 H^2 / \Delta R_{ls} T = 5(T - \Theta) / b_{PM}.$$
(9)

Видно (рис. 4), что наблюдается хорошая линейная зависимость $R_{ls}^0 H^2 / \Delta R_{ls} T$ от температуры при H = const для всех исследованных образцов. Определенные из выражения (9) экспериментальные значения Θ_{MR} практически совпадают с данными из магнитных измерений для образцов Ca10 и отличаются примерно на 5 % и 15–20 % для Sr7 и Ca8 (см. таблицу). Видна небольшая аномалия вблизи $T \approx 280$ –290 К для Ca10 и $T \approx 260$ –280 К для Sr7, уменьшающаяся с увеличением H. Из формулы (6) следует, что при этих температурах $R_{ls}^0/\Delta R_{ls}$ возрастает. Можно предположить, что вблизи этих температур, близких к T_C проводящих манганитов, происходит перестройка размера локализованных состояний.

Зависимость $R^0_{ls} H^2/[\Delta R_{ls} T]$ от H (рис. 4) и отклонения от H^2 в малых полях (рис. 3) могут быть объяснены [26] существованием полей размагничивания из-за анизотропии формы кластеров [12] или поля анизотропии Н_а [6]. Введением поля анизотропи
и $H_a~\approx~1$ Тл для Ca10 и $H_a~\approx~0.5$ Тл для Sr7 может быть исключена зависимость $R_{ls}^0 H^2 / [\Delta R_{ls} T]$ от H (рис. 4) и отклонения от H^2 в малых полях (рис. 3). Известно, что кластеры анизотропны при низких температурах [7]. Обнаруженные в кристаллах La_{0.93}Sr_{0.07}MnO₃ анизотропия коэффициента линейного расширения, а также зависимость ρ от направления тока к кристаллографическим осям при $T > T_C$ [37] также говорят об анизотропии кластеров. Значение $H_a \approx 1$ Тл согласуется с величиной щели в спектре спиновых волн и магнитной анизотропии $H_a = 0.19$ мэВ = 1.6 Тл La_{0.9}Ca_{0.1}MnO₃ [6].

Из измерений $\rho(T, H = 0)$ и $MR_H(H)$ при фиксированных температурах из формулы (6) можно оценить $\chi_0(T)$ [26]. На вставках рис. 4 приведены температурные зависимости парамагнитной восприимчивости $(1/\chi_0)$ монокристаллов Ca10, Sr7 и Са8, полученные из измерений намагниченности при *H* = 1 Тл и измерений магнитно-транспортных свойств $(1/\chi_{MR})$, приведенных на рис. 2. Для Ca10 значения $1/\chi_{MR}$ и Θ близки к значениям, определенным из магнитных измерений. Для Sr7 и Ca8 значения Θ близки, а значения $1/\chi_{MR}$ заметно отличаются от значений $1/\chi_0$, определенных из магнитных измерений. Это означает, что для Sr7 и Ca8 либо имеется вклад других механизмов магнитосопротивления, либо не все магнитные акцепторы участвуют в магнитосопротивлении. Можно предположить, что в кристалле присутствуют локализованные состояния разных размеров. Поскольку энергетически выгоднее прыжки между состояниями с одинаковой энергией кулоновской блокады, проводимость осуществляется прыжками (туннелированием) носителей между состояниями приблизительно одинакового размера. Вследствие этого часть локализованных состояний дает вклад в χ_0 , но не дает вклад в магнитосопротивление.

Рис.5. Полевые зависимости относительных значений парамагнитной восприимчивости $\chi_0(H)/\chi_0(H=0)$ и низкочастотной восприимчивости $\chi_{ac}(H)/\chi_{ac}(H=0)$ (на вставке — в малых полях) при разных температурах. Точки — эксперимент, линии — расчет. На вставках линии проведены только для ясности: $a = La_{0.92}Ca_{0.08}MnO_3$, $\delta = La_{0.90}Ca_{0.10}MnO_3$, $\epsilon = La_{0.875}Ca_{0.125}MnO_3$, $\epsilon = La_{0.93}Sr_{0.07}MnO_3$

Возникновением магнитных нанокластеров можно объяснить и особенности магнитных свойств (рис. 5) и в некоторых случаях оценить их размеры из магнитных измерений. В достаточно больших частицах силы анизотропии удерживают вектор намагниченности вдоль направления, соответствующего минимуму энергии. Когда размеры капель приближаются к межатомным и энергия капли K_{eff} V_{cl} (K_{eff} — эффективная энергия магнитной анизотропии, V_{cl} — объем кластера) становится меньше тепловой, а намагниченность насыщения и температура Кюри хотя и могут сохранить значения, характерные для сплошного вещества, вектор намагниченности становится неустойчивым и начинает совершать тепловые движения броуновского типа [38]. Зависимость намагниченности *I*_{cl} такого кластера (суперпарамагнитного) от температуры и напряженности магнитного поля описывается формулой Ланжевена, если $K_{eff} V_{cl} < k_B T$ [39]:

$$I_{cl} = NM_{cl}(\operatorname{cth} x - 1/x).$$
(10)

Вклад суперпарамагнитных частиц в низкочастотную дифференциальную магнитную проницаемость может быть записан в виде

$$\chi_{ac}^{cl} = dI_{cl}/dH = C \left(-1/\operatorname{sh}^2 x + x^{-2}\right), \qquad (11)$$

где $x = M_{cl}H/k_BT$, $M_{cl} = n_{cl}S$ — магнитный момент кластера, S — магнитный момент молекулы, n_{cl} — число молекул в кластере, N — число суперпарамагнитных частиц в единице объема образца. При больших значениях M_{cl} весь ход изменения $I_{cl}(H)$ и $\chi_{ac}(H)$ в суперпарамагнетиках даже при высоких температурах может проходить [39] в легко достижимых полях около 10^4 Э.

Для оценки размера локализованных состояний из (10) и (11) проведены измерения намагниченности и χ_{ac} Ca8, Ca10, Ca12 и Sr7 в магнитном поле до 9(5) Тл при нескольких фиксированных температурах от 175 K до 350–375 K — при T от 1.4 T_C до $(2.5-3)T_C$. На рис. 5 показаны символами полевые зависимости парамагнитной восприимчивости $\chi_0 = M/H$ монокристаллов Ca8 и Sr7 и магнитной проницаемости χ_{ac} на частоте 80 Гц относительно их значений в малых полях в монокристаллах Ca10, Ca12.

В малых полях (вставки рис. 5) зависимости $\chi_{ac}(H)$ и $\chi_0(H)$ для всех образцов имеют приблизительно одинаковый характер. Выше T = 300-350 К $\chi_{ac}(H)$ и $\chi_0(H)$ от поля H не зависят. При T < 300 К значения χ_{ac} при $H \approx 0.01-0.05$ Тл резко уменьшаются на 1–5 % (вставки на рис. 5a, 6) в зависимости от образца и температуры, до $H \approx 0.2-0.5$ Тл остаются почти постоянным. В малых полях (вставка на рис. 5c) зависимость $\chi_0(H)$ Sr7 имеет гистерезисный характер.

Изменения $\chi_{ac}(H)$ в малых полях очень грубо могут быть описаны выражением (11) при $M_{cl} \approx$ $\approx 10^5 \mu_B$, что соответствует в сферической модели кластеру с размером примерно 150 Å при S = 2 и расстоянии $R_{\rm Mn-Mn} = 4$ Å между ионами марганца. Из значения поля магнитной анизотропии в манганитах порядка $H_{eff} \approx 1$ к
Э [40] можно оценить, что $V_{cl}K_{eff} \gg kT$ при T = 200 К. Гистерезисный характер $\chi_0(H)$ (вставка рис. 5*г*) и приведенные выше оценки позволяют делать вывод, что эти капли (кластеры) крупные и, по-видимому, не являются суперпарамагнитными. Увеличение поля насыщения χ_{ac} с понижением температуры, которое видно на вставке рис. 5b, можно объяснить увеличением поля размагничивания капли $H_N = N_{dem}M$ при возрастании намагниченности с температурой (N_{dem} — размагничивающий фактор капли). Оценки из χ_0 и μ_{eff} показывают, что концентрация крупных частиц мала и расстояние между ними велико (более 10³ Å), чтобы наличием крупных кластеров объяснить изменения электрических свойств вблизи T = 300 К.

В больших полях (до 9(5) Тл) при T = 375 К влияние магнитного поля на значения χ_0 и χ_{ac} Ca8 и Sr7 не обнаружено (рис. 5). При более низких температурах 325–175 К значения χ_{ac} и χ_0 монотонно уменьшаются с повышением напряженности магнитного поля (более 2 раз при 200 К для Ca12), причем с уменьшением температуры или с увеличением концентрации Ca эта зависимость увеличивается. Наблюдаемые изменения χ_{ac} и χ_0 более чем на порядок больше, чем обусловленные изменением намагниченности парамагнитной матрицы. Для примера на рис. 5 мы пунктиром показали изменения $\chi_{ac}(H)$ и $\chi_0(H)$ при $T = 1.4T_C$, рассчитанные в модели молекулярного поля Вейса, выражая намагниченность через функцию Бриллюэна.

Рис. 6. Температурные зависимости магнитного момента и размера кластеров (вставка)

Для объяснения поведения χ_{ac} в больших магнитных полях нужно предположить, что кроме крупных (размером более 150 Å) частиц, имеются более мелкие кластеры. Изменения $\chi_{ac}(H)$ и $\chi_0(H)$ (изображенные символами) в больших полях при фиксированных температурах могут быть описаны соответствующими выражениями для $\chi_{ac}(H)/\chi_{ac}(H=0)$ и $\chi_{0}(H)/\chi_{0}(H=0)$ из (10) и (11), могут быть оценены значения M_{cl} . На рис. 5 показаны результаты расчетов влияния кластеров с магнитным моментом M_{cl} на зависимости $\chi_{ac}(H)/\chi_{ac}(H=0)$ и $\chi_{0}(H)/\chi_{0}(H=0)$ без учета (сплошные линии) и с учетом (штриховые линии) изменения $\chi_{ac}(H)$ и $\chi_0(H)$ парамагнитной матрицы в магнитном поле. На рис. 6 приведены температурные зависимости магнитных моментов кластеров, полученные из этих расчетов. Видно, что магнитные моменты кластеров растут монотонно с понижением температуры ниже $T \approx 300$ К и при увеличении концентрации Са. Зная M_{cl}, можно оценить размеры кластеров D_{cl} в сферической модели при S = 2 и a = 4 Å. Их температурная зависимость может быть приблизительно выражена степенной зависимостью вида $D_{cl}\,\propto\,T^{-n}$ при $n~=~0.5\,\pm\,0.1$ (вставка на рис. 6). Не характерный для фазы Гриффитса вид зависимости $\chi_0(T, H)$ при $H \approx 0$ (нижняя вставка на рис. 1) связан с малым значением магнитного момента и суперпарамагнетизмом нанокластеров.

4. ЗАКЛЮЧЕНИЕ

Исследованы электрические и магнитные свойства хорошо аттестованных нейтронными исследованиями монокристаллов слаболегированных манганитов лантана $La_{1-x}A_xMnO_3$ (A \equiv Ca, Sr, x == 0.07-0.12) в широкой области температур T = = 60-400 К и магнитных полей до H = 90 кЭ. Результаты исследований парамагнитной восприимчивости слаболегированных манганитов лантана (отклонения от закона Кюри-Вейса, высокие значения μ_{eff}) показывают возникновение магнитных неоднородностей при переходе из квазикубической в орторомбическую фазу и усиление его ниже $T \approx 300$ К. Температурные зависимости электросопротивления при x = 0.07 - 0.10 удовлетворительно описываются законом Эфроса–Шкловского $\ln \rho \propto (T_0/T)^{-1/2}$ от $T \approx 350 \pm 30$ К (порядка T_C проводящих манганитов) до T близких к их T_C и ниже температуры Нееля $T_N = T_{CA}$. Электросопротивление объясняется туннелированием носителей между локализованными состояниями, а магнитосопротивление — изменениями их размеров в магнитном поле [33]. Определенные из магнитно-транспортных свойств закономерности изменения размера локализованных состояний от температуры и напряженности магнитного поля удовлетворительно описываются в модели фазового расслоения на металлические капли (кластеры) малого радиуса в диэлектрической парамагнитной и антиферромагнитной матрице [12].

Измерения магнитных свойств в поле до 9 Тл показывают возникновение ниже $T^* \approx 300 \text{ K}$ крупных (более 150 Å) частиц и магнитной фазы с ближним порядком (размером кластеров 8–15 Å), размеры которой возрастают с понижением температуры и с увеличением концентрации акцепторов. Оценки из χ_0 и μ_{eff} показывают, что концентрация крупных частиц мала и расстояние между ними велико (более 10³ Å), чтобы крупными кластерами объяснить изменения электрических свойств вблизи 300 К. Туннелирование происходит между мелкими кластерами размером 8–15 Å. Для La_{0.875}Ca_{0.125}MnO₃ (x = 0.125) нельзя выделить достаточно широкую область изменения электросопротивления, где зависимость $\rho(T)$ может быть объяснена законом Эфроса-Шкловского. Результат может быть объяснен модификацией закона Эфроса-Шкловского вблизи температуры ряда структурных и фазовых переходов, происходящих в La_{0.875}Ca_{0.125}MnO₃ в узком температурном интервале 100-300 К. Результат может быть объяснен изменением характера проводимости и уменьшения энергии активации прыжка T₀ вследствие температурного изменения размера кластеров при концентрации акцепторов, близкой к порогу перколяции.

Результаты показывают существование аналога

фазы Гриффитса [4] — нанокластеров (областей с ближним магнитным порядком) при температурах порядка T_C проводящих манганитов. Не характерный для фазы Гриффитса вид зависимости $\chi_0(T, H)$ при $H \approx 0$ связан с малым значением магнитного момента и суперпарамагнетизмом нанокластеров. В обычных магнитных полупроводниках магнитные поляроны распадаются вблизи их T_C [12]. В чем причина сохранения ближнего магнитного порядка в манганитах до $T \approx 300$ K?

При замещении La⁺³ ионом двухвалентного металла в парамагнитной области лишний электрон локализуется на 8 ближайших ионах Mn, образуя полярон (элементарную ячейку кластера) с размером $D_{pol} = 1.7, a \approx 7$ Å. По-видимому, такие поляроны влияют на магнитные и электрические свойства при высоких температурах. Расчеты в модели двойного обмена [41] показывают существование упорядоченной магнитной фазы с ближним порядком при T = 0 и сохранение ее при $T > T_C$. Можно предположить, что переход в орторомбическую фазу низкой симметрии с искажениями Яна-Теллера способствует локализации носителей. Взаимодействие носителя заряда с магнитными моментами понижает энергию при параллельной ориентации их моментов, создавая вокруг носителя заряда «ферромагнитную» область — парамагнитный полярон. Вследствие этого электрон оказывается в потенциальной яме кулоновской блокады $E \propto 1/R_{cl}$, а эффективный момент парамагнитной восприимчивости становится выше, чем соответствующий момент ионов Mn^{3+} и Mn^{4+} [33].

Этими явлениями объясняются отклонение $\chi_0(T)$ от закона Кюри–Вейса и высокие значения μ_{eff} ниже $T_{OO'}$. При $x = 0.07 \pm 0.1$ среднее расстояние между акцепторами близко к размеру полярона D_{pol}. В парамагнитной области механизм локализации носителей, обусловленный сильной электрон-фононной связью [42], играет существенную роль в манганитах. Из-за выигрыша в обменной энергии и упругих напряжений в решетке несколько поляронов могут объединиться в более крупный — кластер. Вследствие этого ближний порядок или фазовое расслоение наступает при $T \approx T_C \approx 300$ К проводящих манганитов. Туннелирование носителей между локализованными состояниями определяет электросопротивление. В некоторой области концентраций акцепторов температурные зависимости электросопротивления могут быть описаны законом проводимости Эфроса-Шкловского.

Автор благодарен М. Аньон (М. Hennion) и А. М. Балбашову за предоставление монокристаллов, А. В. Королеву — за проведение измерений.

Работа выполнена при финансовой поддержке программы научного сотрудничества УрО РАН и ДВО РАН и программы ОФН РАН «Физика новых материалов и структур».

ЛИТЕРАТУРА

- A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).
- 2. E. Dagotto, New J. Phys. 7, 67 (2005).
- 3. Y. Tokura, Rep. Progr. Phys. 69, 797 (2006).
- J. Burgy, M. Mayr, V. Martin-Mayor et al., Phys. Rev. Lett. 87, 277202 (2001).
- 5. Э. Л. Нагаев, УФН 166, 833 (1996); Письма в ЖЭТФ 6, 484 (1967).
- F. Moussa, M. Hennion, G. Biotteauet et al., Phys. Rev. B 60, 12299 (1999); G. Biotteau, M. Hennion, F. Mussa et al., Phys. Rev. B 64, 104421 (2001).
- P. Kober-Lehouelleur, F. Moussa, M. Hennion et al., Phys. Rev. B 70, 144409 (2004).
- P. A. Algarabel, J. M. De Teresa, J. Blasco et al., Phys. Rev. B 67, 134402 (2003).
- J. M. De Teresa, M. R. Ibarra, P. A. Algarabel et al., Nature 386, 256 (1997); M. R. Ibarra, J. M. De Teresa, A. Algarabel et al., J. Magn. Magn. Mater. 177–181, 846 (1998).
- Pengcheng Dai, J. A. Fernandez-Baca, N. Wakabayashi et al., Phys. Rev. Lett. 85, 2553 (2000); J. Wu, J. W. Lynn, C. J. Glinka et al., Phys. Rev. Lett. 94, 037201 (2005); C. He, M. A. Torija, J. Wu et al., Phys. Rev. B 76, 014401 (2007); D. N. Argyriou, J. W. Lynn, R. Osborn et al., Phys. Rev. Lett. 89, 0336401 (2002).
- M. B. Salamon and S. H. Chun, Phys. Rev. B 68, 014401 (2003); H. A. Бабушкина, E. A. Чистотина, K. И. Кугель и др., ФТТ 45, 480 (2003); N. Rama, M. S. Ramachandra Rao, V. Sankaranarayanan et al., Phys. Rev. B 70, 224424 (2004); C. Magen, P. A. Algarabel, L. Morellon et al., Phys. Rev. Lett. 96, 167201 (2006); N. N. Loshkareva, E. V. Mostovshchikova, N. I. Solin et al., Europhys. Lett. 76, 933 (2006); J. Deisenhofer, D. Braak, H.-A. Krug von Nidda et al., Phys. Rev. Lett. 95, 257202 (2005).
- 12. М. Ю. Каган, К. И. Кугель, УФН 171, 577 (2001).
- 13. R. B. Griffits, Phys. Rev. Lett. 23, 17 (1969).

- E. Rozenberg, M. Auslender, A. I. Shames et al., Appl. Phys. Lett. 92, 222506 (2008); E. Rozenberg, M. Auslender, I. Felner et al., IEEE Trans. Magnetics 46, 1299 (2010).
- 15. B. I. Belevtsev, Low Temp. Phys. 30, 421 (2004).
- W. Jiang, X. Zhou, G. Williams et al., Phys. Rev. Lett. 99, 177203 (2007); W. Jiang, X. Zhou, G. Williams et al., Phys. Rev. B 77, 064424 (2008).
- 17. A. Souza, J. J. Neumeier, and Yi-Kuo Yu, Phys. Rev. B 78, 014436 (2008).
- 18. M. Yu. Kagan et al., J. Phys. A: Math. Gen. 36, 9155 (2003).
- A. L. Rakhmanov, K. I. Kugel, Ya. M. Blanter et al., Phys. Rev. B 63, 174424 (2001); A. O. Сбойчаков, A. Л. Рахманов, К. И. Кугель и др., ЖЭТФ 122, 869 (2002); К. И. Кугель, А. Л. Рахманов, А. О. Сбойчаков и др., ЖЭТФ 125, 648 (2004).
- 20. F. Mussa, M. Hennion, J. Rodriguez-Carvajal et al., Phys. Rev. B 54, 15149 (1996).
- 21. A. M. Balbashov, S. G. Karabashev, Ya. M. Mukovskii et al., J. Cryst. Growth. 167, 365 (1996).
- 22. С. Ф. Дубинин, В. Е. Архипов, С. Г. Теплоухов и др., ФТТ 43, 2192 (2003).
- 23. Н. Н. Лошкарева, А. В. Королев, Т. И. Арбузова и др., ФТТ 44, 1827 (2002).
- 24. Н. И. Солин, С. В. Наумов, Т. И. Арбузова и др., ФТТ 50, 1831 (2008).
- **25**. Н. И. Солин, ЖЭТФ **128**, 623 (2005).
- **26**. Н. И. Солин, Письма в ЖЭТФ **91**, 6275 (2010).
- Б. И. Шкловский, А. Л. Эфрос, Электронные свойства легированных полупроводников, Наука, Москва (1979).
- 28. J. Zhang and B. I. Shklovskii, Phys. Rev. B 70, 115317 (2004).
- H. Nojiri, K. Kaneko, and M. Motokawa, Phys. Rev. B 60, 4142 (1999); Y. Yamada, O. Hino, S. Nohdo et al., Phys. Rev. Lett. 77, 904 (1996).
- 30. R. Senis, V. Laukhin, B. Martínez et al., Phys. Rev. B
 57, 14680 (1998); Н. И. Солин, С. В. Наумов, ФТТ
 43, 460 (2003).
- P. Sheng, B. Abeles, and Y. Arie, Phys. Rev. Lett. 31, 44 (1973); S. Sankar, A. E. Berkowitz, and D. J. Smith, Phys. Rev. B 62, 14273 (2000).

- 32. J. S. Helman and B. Abeles, Phys. Rev. Lett. 37, 1429 (1976).
- 33. C. M. Varma, Phys. Rev. B 54, 7328 (1996).
- 34. L. Sheng, D. Y. Xing, D. N. Sheng et al., Phys. Rev. Lett. 79, 1710 (1997).
- 35. A. Urushibara, Y. Moritomo, T. Arima et al., Phys. Rev. B 51, 14103 (1995).
- **36**. Р. Смит, *Полупроводники*, Изд-во иностр. лит., Москва (1962), гл. 5.
- **37**. Н. И. Солин, В. А. Казанцев, С. В. Наумов и др. ФТТ **47**, 1826 (2005).

- 38. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30S, 120 (1959).
- **39**. С. В. Вонсовский, *Магнетизм*, Наука, Москва (1971), гл. 23.
- 40. A. V. Korolev, V. Ye. Arkhipov, V. S. Gaviko et al., J. Magn. Magn. Mater. 213, 63 (2000).
- 41. R. S. Fishman, F. Popescu, G. Alvarez et al., Phys. Rev. B 73, 140405R (2006).
- 42. A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).