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We study the black hole evaporation and Hawking radiation for a noncommutative charged Vaidya black hole.
For this purpose, we determine a spherically symmetric charged Vaidya model and then formulate a noncommu-
tative Reissner—Nordstrom-like solution of this model, which leads to an exact (¢ — r)-dependent metric. The
behavior of the temporal component of this metric and the corresponding Hawking temperature are investigated.
The results are shown in the form of graphs. Further, we examine the tunneling process of charged massive
particles through the quantum horizon. We find that the tunneling amplitude is modified due to noncommuta-
tivity. Also, it turns out that the black hole evaporates completely in the limits of large time and horizon radius.
The effect of charge is to reduce the temperature from a maximum value to zero. We note that the final stage

of black hole evaporation is a naked singularity.

1. INTRODUCTION

The classic concept of a smooth spacetime man-
ifold breaks down at short distances. Noncommuta-
tive geometry offers an impressive framework to in-
vestigate the short-distance spacetime dynamics. In
this framework, a universal minimal length scale /o
exists (equivalent to the Planck length). In general
relativity, the effects of the noncommutativity can be
taken into account by keeping the standard form of
the Einstein tensor and using the altered form of the
energy—momentum tensor in the field equations. This
involves a distribution of point-like structures in fa-
vor of smeared objects'). Noncommutative black holes
(BH) require an appropriate framework in which the
noncommutativity corresponds to the general relativi-
ty.

Black hole evaporation leads to comprehensive and
straightforward predictions for the distribution of emit-
ted particles. However, its final phase is unsatisfactory
and cannot be resolved due to the semiclassical repre-
sentation of the Hawking process. Black hole evapo-

*BE-mail: msharif.math@pu.edu.pk

1) An object constructed by means of a generalized function
p(t,r) is smeared in space and is known as a smeared object.
These objects are nonlocal. Smearing cannot change the physi-
cal nature of the object but the spatial structure of the object is
changed, being smeared in a certain region determined by /c.

ration can be explored in curved spacetime by quan-
tum field theory but the BH itself is described by a
classical background geometry. On the other hand,
the final stage of BH decay requires quantum grav-
ity corrections while the semiclassical model is inca-
pable to discuss evaporation. Noncommutative quan-
tum field theory (based on the coordinate coherent
states) treats the short-distance behavior of point-like
structures, where mass and charge are distributed over
a region of size /0.

Hawking [1] suggested that the radiation spectrum
of an evaporating BH is just like a purely thermal
black-body spectrum, i.e., the BH can radiate ther-
mally. Consequently, a misconception [2] was develo-
ped with respect to the information loss from a BH,
leading to the nonunitary of the quantum evolution?.
Accordingly, when a BH evaporates completely, all the
information related to matter that has fallen inside the
BH is lost. Gibbons and Hawking [3] proposed a for-
mulation to visualize radiation as tunneling of charged
particles. In this formulation, radiation corresponds to
electron—positron pair creation in a constant electric
field, with the energy of a particle changing sign as it

2) Nonunitary quantum evolution is one of the interpretations
of the information paradox to modify quantum mechanics. In a
unitary evolution, the entropy is constant with the usual S-mat-
rix, whereas it is not constant in a nonunitary quantum evolution.
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crosses the horizon. The total energy of a pair cre-
ated just inside or outside the horizon is zero when one
member of the pair tunnels to the opposite side. Parikh
and Wilezek [4] derived Hawking radiation as a tunne-
ling through the quantum horizon on the basis of null
geodesics. In this framework, the BH radiation spec-
trum corrected due to back-reaction effects is obtained.
This tunneling process shows that the extended radia-
tion spectrum is not exactly thermal yielding a unitary
quantum evolution.

There are two different semiclassical tunneling
methods to calculate the tunneling amplitude, which
lead to the Hawking temperature. The first method,
called the null geodesic method, gives the same tem-
perature as the Hawking temperature. The second
method, called the canonically invariant tunneling,
leads to a canonically invariant tunneling amplitude
and hence the corresponding temperature which is
higher than the Hawking temperature by a factor of
2 [5]. It was argued in [6] that a particular coordinate
transformation resolves this problem in the semiclassi-
cal picture.

Black hole evaporation spectra in the Einstein—di-
laton-Gauss—Bonnet four dimensional string gravity
model was discussed in [7] using the radial null geodesic
method. It was shown that BHs should not disappear
and become relics at the end of the evaporation pro-
cess. The authors of [7] numerically investigated the
possibility of experimental detection of such remnant
BHs and discussed the mass loss rate in analytic form.
These primordial BH relics could form a part of the
nonbaryonic dark matter in our universe.

Various noncommutative models in terms of coordi-
nate coherent states that satisfy the Lorentz invariance,
unitarity, and UV finiteness of quantum field theory
were found in [8]. A generalized noncommutative met-
ric that does not allow a BH to decay below a min-
imal nonzero mass My, i.e., the BH remnant mass,
was derived in [9]. The effects of noncommutative BHs
have been studied [10, 11] and consistent results were
found. The evaporation process stops when a BH ap-
proaches a Planck-size remnant with zero temperature.
Also, it does not diverge but rather reaches a maxi-
mum value before shrinking to the absolute zero tem-
perature, which is an intrinsic property of the manifold.
Some other authors [12] also explored information loss
problem during BH evaporation.

Quantum corrections to the thermodynamical
quantities for a Bardeen charged regular BH were
investigated in [13] using the quantum tunneling
approach over semiclassical approximations. In a
recent work [14], the effects of noncommutativity on

the thermodynamics of this BH were discussed. The
tunneling of massive particles through the quantum
horizon of the noncommutative Schwarzschild BH was
analyzed in [15] and the modified Hawking radiation,
thermodynamical quantities, and emission rate was
derived. Stable BH remnants and the information loss
issues were also discussed there. The effects of smeared
mass were studied in [17] with the conclusion that
information might be saved by a stable BH remnant
during the evaporation process. In [17], this work was
extended to a noncommutative Reissner—Nordstrom
(RN) BH and the emission rate consistent with a uni-
tary theory was determined. The same author [18] also
formulated a noncommutative Schwarzschild-like met-
ric for a Vaidya solution and analyzed three possible
causal structures of the BH initial and remnant mass.
He also studied the tunneling of charged particles
through the quantum horizon of the Schwarzschild-like
Vaidya BH and evaluated the corresponding entropy.

The purpose of this paper is two-fold. First, we
formulate a noncommutative RN-like solution of the
spherically symmetric charged Vaidya model. Second,
we investigate some of its features. In particular, we
explore the BH evaporation and Parikh-Wilczek tun-
neling process. The paper is organized as follows. In
Sec. 2, we solve the coupled field equations for the
spherically symmetric charged Vaidya model. The ef-
fect of the noncommutative form of this model is inves-
tigated in the framework of coordinate coherent states
in Sec. 3. Here, an exact (t —r)-dependent RN-like BH
solution is obtained. In Sec. 4, we find the behavior
of the temporal component of this solution and also
discuss the BH evaporation in the limits of large time
and charge. In Sec. 5, we study the Parikh—Wilczek
tunneling for such a Vaidya solution and the Hawking
temperature in the presence of a charge. The tunneling
amplitude at which massless particles tunnel through
the event horizon is computed. Finally, the conclusions
are given in the last section. Throughout the paper, we
set h=c=G = 1.

2. CHARGED VAIDYA MODEL

This section is devoted to the formulation of a
spherically symmetric charged Vaidya model in the
RN-like form using the procedure given in [19]. We
skip the details of the procedure because they are al-
ready available and use only the required results. The
spherically symmetric Vaidya-form metric is given by
Eq. (2.34) in [19]:

d82 = _e”(tﬂ")dt2 + eu(tﬂ“)dr2 + 7’2d927 (1)
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where

. 2
M 2M
v(tr) — —u —utr) — 1 _
e = e 5 e = )
(X(M)> r

dQ0? = dh* + sin? 0d¢?,
M(t,r) is a slowly varying mass function, and y (M)

depends on the details of the radiation. The corre-
sponding field equations are [19]
1 — e
p' = 8T + Te , (2)
1 _ ek
l/’ = 87T’I“6M_VTtt - ¢ s (3)
r
= 8mrTy, (4)
— I _ / ! 2 p(0)
1—e “-I-Ere P —v')y—=r*R\Y =
871'T¢¢
= 81Ty = , (5
o0 sin” (5)
where
(0) 2 >
RY = —8nT% = —=(1-e7") +e (Bt2)/2
r

(he=72) — (' elv=m/2)"1  (g)
The dot and prime respectively denote derivatives with
respect to time and r. We note that Eqs. (2) and (4)
represent the respective Hamiltonian and momentum
constraints [20]. Equations (2) and (3) lead to

1,, , l—er
5 == (7

p =)
while Egs. (5) and (6) yield
Ty = BTy, (8)

For the spherically symmetric Vaidya metric of
form (1), we define e #(*") by adding charge Q(¢,r)
as follows:

2M(t,r)

—n(t,r) — 1— . + .

Q(t,r) ()

Using the procedure in [19], we can deduce from the
field equations that

Tt.ev=m/2 L 7t = . (10)

Also, using Eqgs. (2), (4), (8) and (10), we obtain

w1

W+ < + e/ = 0. (11)

4 JKDOT®, Brim. 6

Inserting the value of e# from Eq. (9) gives

e (t,r) o QQQ/’I"_QM 2
o\ 2M7 —-2QQ" /r + Q2 /r?

The corresponding form of the Vaidya solution [21] then
becomes

d32:_< 2QQ/r — 2M )2
M — QQQI/T + QZ/TQ

2
(1—%+Q—> dt2+

2
(1—%+Q—> dr® +r2d0*.  (13)

This is the spherically symmetric charged Vaidya
model.

We now transform this metric to the RN-like form.
For this, we write Eq. (12) in the form

r(2QQ — 2rM)
22 M —2rQQ" + Q2

elv=m/2 — (14)

Differentiating Eq. (14) with respect to r and using

Eq. (7) yields

ey . .
7'22—]\;[]7\447"?-Q2 [(QQ—rM)(2r* M'-2rQQ'+Q")] =

= (2’ M'-2rQQ"+Q”)(rQQ'+rQ' Q+QQ—r> M'—
—2Mr)—(2rQQ—2r> M) (r> M" +2M'r—rQQ" —rQ"")

which can also be written as

(50 B) (5]

[(2M'——2QQI+Q—;) (1_%+Q—2 }
T r

<2M__

Rt .
)
r
This has the solution

(2M,_ 200" Qj) (1_M+Q_2> _
r r

=x(M,Q), (16)

2QQ'
r
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where x (M, Q) > 0. With the help of this equation, we
can write Eq. (12) as

2
ltr) _ 29 <1 B 2M£t,r) n Q g,ﬂ) . an

where

Q20 () —2QQ/r +2M ’
X(M, Q) '

Consequently, the line element in (1) becomes

2
ds? = _e2¥(tr) <1 _ 2M(t,r) + Q (tﬂ")> a2 +

r r2
2M 2
+ 1 _ (t7r) + Q (t7T)

r r2

-1
) dr® 4 r2dQ*.  (18)

This is the required spherically symmetric charged
Vaidya model in the RN-like form. For a specific choice

X(M,Q) = — (—ZQQ +2M> :

r

U(t,r) vanishes and hence (18) reduces to the simple
RN-like form

ds®* = —F(t,r)dt* + F~'(t,r)dr* + r2dQ*  (19)

where )
t
Fo1_ N Q (277“)‘
r r

3. NONCOMMUTATIVE BLACK HOLE

Here, we develop a noncommutative form of the
RN-like Vaidya metric in (19) by using the formalism
of coordinate coherent states [18]. The mass/energy
and charge distribution can be written as the following
smeared delta functions p [17, 18]:

M —r? /40

Pmate(t, ) = We d (20)
Q —r?/40

per(t,r) = COEE e, (21)

where o is the noncommutative factor. The energy—
momentum tensor for self-gravitating and anisotropic
fluid source is given by

' T, 0 0
! T,/ 0 0
0 0 T,Y o
0 0 0 T,

T.) = (22)

Here, we take
Ttt = _(pmatt + pel) = Trr-

The corresponding field equations become

F'r + F 4 81r* (pmatt + pet) — 1 =10, (23)
F —8rrF?T," =0, (24)
rF"F3—2r F24r FF+2F3F' —167rF3Ty? =0, (25)
T," =T, T, =T, (26)

The conservation of the energy—momentum tensor,
b
Tll b = 07

yields

KT +0,T," + %gttargtt(Trr - Ttt) -
- %grratgrr(Trr -T'+
+ 990,900 (T," — Tp?) = 0
which leads to
T, + 0 Ti' + g% 0rgoo (T — T,%) = 0.

Substituting, we obtain

T09 = (pmatt + pel) X

—r(M+Q+M+Q) 1
X< 2(M-|—Q) +E—1>. (27)

We now consider the perfect fluid condition at
large distances to determine the mass and charge func-
tions. For this, we take isotropic pressure terms, i.e.,
T,” = Ty%, and the above equation then yields
2 t(r— t)]

M+Q=Cexp{5+ Y

(28)

where C'(r —t) is an integration function, which can be
defined as

Clr—t)=M; —
a2 (57) - () (5
r—t t? r
Pl (E) (e5) -

o (LY ()]

<
I
~
N——
[ I
X

+
|
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Here, M; and @Q; are the initial BH mass and charge,
and the Gauss error function is defined as

Using Eq. (28) in (23), we obtain

2M,(t,7)  Q2(t,r)
+ 2
r r

F(t,r)=1- , (30)

where the Gaussian smeared mass and charge distribu-
tions are

M, (t,r) = M |e (;—\;9 (1+;> -

oy (51

- do )<1+;> R~

N

g (T —1
Qa(tvr) =Qr |:5 (2\/5) -
1 (r—t r—t\1"2
¢%(¢%>5<¢5>] '
This is the noncommutative form of (19).

The asymptotic form of (30) reduces to the RN met-
ric for large distances at t = 0. Metric (30) charac-
terizes the geometry of a noncommutativity-inspired
RN-like Vaidya BH. The radiating behavior of such a
modified BH can now be investigated by plotting g
for different values of M7 and ;. The coordinate non-
commutativity leads to the existence of different causal
structures, i. e., a nonextremal BH (with two horizons),
an extremal BH (with one horizon), and charged mas-
sive droplet (with no horizon). Thus the noncommuta-

tive BH can shrink to the minimal nonzero mass with
the minimal nonzero horizon radius.

4. HORIZON RADIUS AND BLACK HOLE
EVAPORATION

Here, we investigate some features of the noncom-
mutative metric in (30). First, we analyse the tempo-
ral component g = F(t,r) in the form of graphs ver-
sus the horizon radius r/y/c. The Table [18] provides
values of the minimal nonzero mass as well as hori-
zon radius with increasing time for an extremal BH.
This shows that the minimal nonzero mass decreases
whereas the minimal nonzero horizon radius increases

Table. Extremal black hole

o Minimal
Minimal
nonzero

Time, ¢ nonzero

horizon radius,
ro (appr.)
3.02\/c
4.49\/c
5.34\/c
6.14\/c
7.18\/c
8.32\/c

13.27/5
105.05\/c

mass, My (appr.)

0 1.90\/
100/ 1.68/c
2.00,/ 0.99,/c
3.00,/o 0.62/o
4,00/ 0.43,/o
5.00,/c 0.32\/o

10.00y/o 0.13\/o
100.00\/c 0.01y/o

— 00 —0

— 0

with time, indicating that a micro BH evaporates com-
pletely, i.e., My — 0 for t/\/o > 1. Consequently, the
concept of a BH remnant does not exist. The graphs of
F are drawn for the following three cases: M; > My,
Myp = My, M1 < M.

In the first case, the graphs of F" are shown in Fig. 1.
There, we choose different values of time ¢/\/oc with
Mp > My and fixed M;/+\/o (i.e., M; = 3.00,/0). The
curves are marked from top down on the right side for
t = 0, 1.00y/7, 2.00\/0, 3.00/0, and 4.00y/c. This
demonstrates that the distance between the horizons
increases with time. When ¢ — oo, we have two dif-
ferent horizons for the three possibilities of the initial
mass and initial charge, i.e.,

Q M Qr _ My Qr M

Ve SVE VBT VE Ve Ve
Figure 2 shows the graphs of F' when M7 = Mj. These
represent the possibility of an extremum structure with
one degenerate event, horizon in the presence of charge.
The possibilities for M;/\/o and Q;/\/o are given as
follows.

1) For Q;/v/o < M;/+/o, it is possible to have one
degenerate event horizon (extremal BH) for all ¢.

2) For Qr/\/o = M;/+/o, there is one degenerate
event horizon for ¢ > 2.

3) For Q;/\/o > M;/+/o, it is impossible to have a
degenerate event horizon for all ¢.
Figure 3 shows graphs of F' in the case M; < My with
M; = 0.40/o. For all the three possibilities of the
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Fig.1.

o — Qr = 1.00y/c < M; = 3.00y/5; b —
Q1 = 3.00/c = My; ¢ — Q1 = 5.00/0c > M; =
=3.00\/c

initial mass and charge, curves do not show any event
horizon with the passage of time.
At t =0, F in Eq. (30) takes the form

=12 ) ]
L)+ ()]

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25

200,

1.75
1.50
1.25
1.00
0.75
0.50
0.25

Flg2 a—Q1 :0.40\/E< M; = Mo; b—QI =
= M7 = Mo; C_QI:3.00\/E>M1:M0

In the commutative limit, i.e., as ¢ — 0, we have
e(2) — 1, and hence F' reduces to

2M 2
_ My, Qr (33)

F =1
(r) r r2

The noncommutative form in Eq. (30) has a coor-
dinate singularity at the event horizon rg such that

T :MU(t7TH)+\/Mg(t,TH)—Qg(t,TH). (34)

The analytic solution of this equation is not possible,
but we can analyze the results graphically. For this,
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F

Fig.3. a— Qr =0.10y/0 < M;; b— Q1 =
Qr =2.00y/c > M;

Myp: ¢c—

we substitute the values of M, and Q, from Eq. (31)
n (34) and obtain

- (37 (15)-
(22 1) -
t

——Q%{‘ <7’,2q\/—_t> rg —t <TH

e ()]

The graphical representation of this equation, shown in

Fig. 4, is consistent with the Table. The initial mass
(greater than the remnant mass) yields three possible
causal structures depending on different values of the
initial charge and the horizon radius with the passage
of time.

We can summarize the behavior as follows.

1) For Q;/\/o < M;/\Jo, Mi/\Jo — 0 as
Qr/\/o = 00 and rg/\/o — .
In this case, figures show the stable phase of the

BH. As times pases, the BH starts evaporation (due to
charge), its mass reduces and approaches to zero for all
horizon radii.

2) For Q;/\/o = M;/\/o, M;/\ /o — 0 for all
rip/v/o and Qr/\/o at large times.

Here, we see the initial stage of the BH evaporation
in the figures. The black hole mass exhibits constant
behavior (with the passage of time) for a small range
of the horizon radius indicating no effect of charge. For
large radius, due to effect of charge, the BH mass tends
to zero for all horizon radii

)FOI'Q[/\/_> M[/\/_%OaSQ]/\/_—)O
and rg/\/o = oo.
This case yields the final stage of the BH evaporation.
As time progresses, the BH evaporates completely, i. e.,
its mass and hence temperature tend to zero for all
horizon radii.

These results imply the BH evaporation, which in-
dicates the instability of the BH due to charge, and
hence the BH must include a naked singularity. The
total evaporation of the BH is possible when we con-
sider a time-dependent BH mass [1, 22].

5. HAWKING RADIATION AS TUNNELING

In this section, we examine the radiation spectrum
of an RN-like noncommutative BH by quantum tunnel-
ing [4]. The tunneling is a process where a charged par-
ticle moves in dynamical geometry and passes through
the horizon without any singularity. It provides the
emission rate of tunneled particle and depends on the
key idea of energy conservation. The mass of the BH
decreases appropriately when the virtual particle is
emitted. This leads to a nonzero tunneling amplitude,
which satisfies the original Hawking calculation [23].
In this process, the coordinate system used to elimi-
nate coordinate singularity at the horizon is known as
the Painlevé coordinate system [24]. The Painlevé time
coordinate transformation is defined as

1—F(t,r)

dt dt —
- F(t.r)

dr. (36)
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Fig. 4

Using this transformation, the corresponding spacetime
in Eq. (19) can be written as

ds® = —F(t,r) dt* + 2/1 — F(t,r)dt dr +

+dr? + r2dQ?,

2
d82 — _ (1 _ 2M0(t,1“) + Q0(§7T)> dt2 + (37)
r r
2M,(t,r) Q2(1, N,
+2\/ 1) Qor) gy gyt ar2 402 a02.
r r

The outgoing motion (radial null geodesics, ds?> =
= d0? = 0) of massless particles takes the form

%:1_m. (38)

For an approximate value of F(¢,r) (short distances in
a neighborhood of the BH horizon), we expand F(¢,r)

SRR LALEL
.::..:.:..’:.'::-.
AR
R R RRRL LA
e
e e S

2
2%

O e
() <222 AL RAALIR

10 R LA :
0 20 .

up to the first order using the Taylor series, i.e.,

F(t,r)l = F(t,ra)|e + F'(t,rm)|e(r —re) +
+ O((’I“ — TH)2 |t- (39)
Consequently, Eq. (38) becomes

@N_
dt ~ 2

[a—y

F't,rg)(r —ru) ~ (M1, Qr)(r —ru), (40)

where )
K(Mr1,Qr) = iFl(ter)

is the surface gravity.

We now calculate the Hawking temperature of the
RN-like BH. There are semiclassical methods to derive
the Hawking temperature for the Vaidya BH [25]. From

1
Th = — = 4_Fl(t77'H)|t7
vy
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it follows that

1
TH = E X
— )2
2 exp <— (TH4U ) )
—2M 1+ —
x ( * 20) THA/TO
- rg —t ox _(TH—t)2
B 2\/c B P 40 ot
r2 o 2
2 AR
rH_t_ 2exp<—(H ) >
rg +Q2 40 %
20 7"121[\/71'0
- rg —t _12 rg —t _
2/ r3 NG
2
2exp< (rm = 1) )
_ 1 (L _ L) o .
V2mo rH Ty Vo
rH —t 1 2t
+ € —_— = = 41
(2= (2-3) e

For t = 0 = @, this reduces to the Hawking tem-
perature of the noncommutative Schwarzschild case [9].

Figure 5 shows the behavior of the Hawking tem-
perature Tp\/o versus horizon radius rg /+/o for fixed
M = 3.00y/oc. When the BH evaporates, there is no
radiation and hence the temperature tends to zero. The
graphs turn out to be smooth at the final stage of the
BH evaporation. This can also be explained as fol-
lows. After the temperature reaches a maximum defi-
nite value at the minimal nonzero value of the horizon
radius rg, then it starts decreasing to the absolute zero
and results in the mass tending to zero. For all the

three possibilities of M;/\/o and Q1/+/7, i.e.,

@ M@ M@ M
the graphs of the Hawking temperature give the follo-
wing behavior.

1) For Q;/\/o < M;/\/a, the behavior of curves is
the same as in the Schwarzschild case [18].

2) For Q;/\/o = M;/+\/o, the temperature increases
at the minimal horizon radius.

0.05

0.04

0.03

0.02

0.01

0.05

0.04

0.03

0.02

0.01

14
TH

Nz

Fig.5. a — Qr =2.00y/0 < Mr; b— Qr = My; c —
Qr = 5.00(/7 > M;

3) For Qr/\/o > Mj/\/o, the horizon radius
changes its position with increasing temperature.

We next discuss the effect of an electromagnetic
field on the emission rate of charged particles tunne-
ling through the quantum horizon of the BH. Here, we
assume that an electromagnetic field is present outside
the BH. The Lagrangian function for such a Maxwell
gravity system can be defined as
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L= Lmatt + Lela (42)

where 1
Ldz—f%F“

is the Maxwell Lagrangian function and F®® is the
Maxwell field tensor given by
Fb = 9% — 9", (43)

where &, = (®,0,0,0) is the electromagnetic 4-poten-
tial. The action and the rate of emission of a particle
in the tunneling process are defined as [17]

tout
Iz/@mwm@mu

tin

[ xexp(—2ImI), (44)

where pg is the canonical momentum conjugate to
®. In the tunneling process, the imaginary part of
the amplitude for an s-wave, representing the outgoing
positive-energy particles that cross the horizon outward
from 7, t0O Tout, iS given by

ImI:Im/ <pr_p"+q’> dr =
r

Tin
Tout (pv‘ 7p<I>) .
/ @ /
=1Im dp,, — —dpg | dr. (45)
T
Tin (0,0)

The Hamilton equations of motion,

dr _ dH _dM-E) _ dE
dt—dpy |(10,p,) dpr %’ (46)
a® _ dH __a(Q-g- e

dt - dp@ (¢‘;7‘,Pr) - q dp@’

provide the following relation of momentum and en-
ergy:

rout | (H,q)
' $Q-d)

r 7

Im7 =Tm dq'| dr. (47)

rin |(0,0)

In this process, particles and antiparticles can be re-
spectively described as a positive and negative-energy
solution of the wave equation. The BH accretes a small
negative energy, which decreases its mass. Replacing
My with My — E, Q7 with Q; — ¢, and substituting
Eq. (40) in (47), we obtain

Tout (E',q) dE’
Im/=—-Im —
K(Mi—FE',Qr—q")(r—rm)
rin [(0,0)
_ ®(Q—q')dq'
K(Mr—E'\Qr—q)(r —ru)

dr. (48)

This integral has a pole at the horizon rgy. To avoid
this pole, we perform contour integration with the con-
dition 7, > 7w and obtain

(E,q) IE
Im/=—-Im —
k(Mr — E",Qr —¢')
(0,0)
%@ -q)dd
k(M;—E"Qr —q')
i dr
X =
r—ryg
(E,q)
dE'
=TT —
K(M;—E",Qr — ¢')
(0,0)

2@ -4q")d
K(Mp—E"\Qr—q')

(49)

This shows that the particle emission rate is propor-
tional to the surface gravity.

Using the first law of BH thermodynamics,
dM =TdS — ®dQ,
we write the imaginary part of the action Im I as [26]

) Sne(M—E,Q—q) .
ImI = —5 dS = —EASNc, (50)

Snc(M,Q)

where Sy¢ is the entropy of the noncommutative BH
and ASyc¢ is the difference in BH entropies before
and after the emission. At high energies, the tunnel-
ing amplitude (emission rate) depends on the final and
initial number of microstates available to the system
[27-30], implying that the emission rate is proportional
to exp(ASn¢), i.e.,

eXp(Sfinal)
exp(Sinitial)
=exp[Snvc(M; —E, Q1 —q) — Sne(Mr,Qr)] . (51)

= exp(ASnc) =

It follows that the emission spectrum cannot be pre-
cisely thermal. The modified noncommutative tunnel-
ing amplitude I' can be computed if we know the ana-
lytic form of exp(ASy¢).
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According to quantum theory, a BH is neither an
absolute stationary state nor even a relative stationary
state; it is an excited state of gravity. The vacuum
state (excited state) generates spontaneous emission of
virtual particles. The emission of charged particles by
a BH is therefore physically equivalent to the sponta-
neous emission by an excited state [31].

6. SUMMARY

In this paper, we have derived a spherically symmet-
ric charged Vaidya metric in the RN-like form and its
noncommutative version. Noncommutativity implies a
minimal nonzero mass that allows the existence of an
event horizon. In order to investigate the BH horizon
radius depending on time, mass, and charge, we have
examined the behavior of F'(¢,r) in the form of graphs,
shown in Figs. 1-3 for three possible structures:

Mp > My, M= DMy, M;< M.

These have further been discussed for three possibilities
of the initial mass and the initial charge, i.e.,

@ M @M @M
Vo TV o el Vol o

The first case provides two different possible horizons.

The second case represents the possibility of an ex-

tremum structure with one degenerate event horizon

with time in the presence of a charge. In the last case,

the curves do not indicate any event horizon.

In Fig. 4, the effects of charge on the BH evap-
oration are shown. The relations between mass and
charge indicate three different stages of the BH mass
and charge, which lead to the BH evaporation. Using
the Table, we have found that the BH mass tends to
zero as the horizon radius tends to infinity with time.
This shows that the structure of a stable BH rem-
nant having the capability of storing information is vio-
lated and information would disappear from our world.
Hence, this leads to the evaporation of the BH and
the final phase is a naked singularity. We have found
that the BH evaporates completely in the large-time
limit. We also see from these figures that the cases
Q1/vo < M/\/o and Qr/+/o > M;/\/o indicate mu-
tually reverse behavior.

The analysis of the Hawking temperature (Fig. 5)
shows a behavior similar to that of the Schwarzschild
spacetime. In the presence of a charge, the temperature
attains a maximum position at the minimal nonzero
horizon radius. As the horizon radius increases, the
temperature vanishes, which corresponds to the BH

evaporation, i.e., the mass tends to zero. Finally,
we have discussed the Hawking radiation by using the
Parikh—Wilczek tunneling process through the quan-
tum horizon. The emission rate has been found con-
sistent with the unitary theory. We have extended this
analysis to compute the tunneling amplitude of charged
massive particles from the RN-like Vaidya BH. It is
mentioned here that corrections due to noncommuta-
tivity can be considered before the BH mass approaches
the Planck mass.

It would be interesting to extend this work to the
dyadosphere of the RN solution and the regular BH
solutions in the noncommutative space. It would also
be worthwhile to examine the behavior of thermody-
namic quantities, evaporation of the BH remnant, and
Hawking radiation as tunneling for these solutions.

We thank the Higher Education Commission, Is-
lamabad, Pakistan for its financial support through the
Indigenous Ph. D. 5000 Fellowship Program Batch-IV.
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