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BLACK HOLE EVAPORATION IN A NONCOMMUTATIVECHARGED VAIDYA MODELM. Sharif *, W. JavedDepartment of Mathemati
s, University of the Punjab54590, Lahore, PakistanRe
eived O
tober 25, 2011We study the bla
k hole evaporation and Hawking radiation for a non
ommutative 
harged Vaidya bla
k hole.For this purpose, we determine a spheri
ally symmetri
 
harged Vaidya model and then formulate a non
ommu-tative Reissner�Nordström-like solution of this model, whi
h leads to an exa
t (t� r)-dependent metri
. Thebehavior of the temporal 
omponent of this metri
 and the 
orresponding Hawking temperature are investigated.The results are shown in the form of graphs. Further, we examine the tunneling pro
ess of 
harged massiveparti
les through the quantum horizon. We �nd that the tunneling amplitude is modi�ed due to non
ommuta-tivity. Also, it turns out that the bla
k hole evaporates 
ompletely in the limits of large time and horizon radius.The e�e
t of 
harge is to redu
e the temperature from a maximum value to zero. We note that the �nal stageof bla
k hole evaporation is a naked singularity.1. INTRODUCTIONThe 
lassi
 
on
ept of a smooth spa
etime man-ifold breaks down at short distan
es. Non
ommuta-tive geometry o�ers an impressive framework to in-vestigate the short-distan
e spa
etime dynami
s. Inthis framework, a universal minimal length s
ale p�exists (equivalent to the Plan
k length). In generalrelativity, the e�e
ts of the non
ommutativity 
an betaken into a

ount by keeping the standard form ofthe Einstein tensor and using the altered form of theenergy�momentum tensor in the �eld equations. Thisinvolves a distribution of point-like stru
tures in fa-vor of smeared obje
ts1). Non
ommutative bla
k holes(BH) require an appropriate framework in whi
h thenon
ommutativity 
orresponds to the general relativi-ty. Bla
k hole evaporation leads to 
omprehensive andstraightforward predi
tions for the distribution of emit-ted parti
les. However, its �nal phase is unsatisfa
toryand 
annot be resolved due to the semi
lassi
al repre-sentation of the Hawking pro
ess. Bla
k hole evapo-*E-mail: msharif.math�pu.edu.pk1) An obje
t 
onstru
ted by means of a generalized fun
tion�(t; r) is smeared in spa
e and is known as a smeared obje
t.These obje
ts are nonlo
al. Smearing 
annot 
hange the physi-
al nature of the obje
t but the spatial stru
ture of the obje
t is
hanged, being smeared in a 
ertain region determined by p�.

ration 
an be explored in 
urved spa
etime by quan-tum �eld theory but the BH itself is des
ribed by a
lassi
al ba
kground geometry. On the other hand,the �nal stage of BH de
ay requires quantum grav-ity 
orre
tions while the semi
lassi
al model is in
a-pable to dis
uss evaporation. Non
ommutative quan-tum �eld theory (based on the 
oordinate 
oherentstates) treats the short-distan
e behavior of point-likestru
tures, where mass and 
harge are distributed overa region of size p�.Hawking [1℄ suggested that the radiation spe
trumof an evaporating BH is just like a purely thermalbla
k-body spe
trum, i. e., the BH 
an radiate ther-mally. Consequently, a mis
on
eption [2℄ was develo-ped with respe
t to the information loss from a BH,leading to the nonunitary of the quantum evolution2).A

ordingly, when a BH evaporates 
ompletely, all theinformation related to matter that has fallen inside theBH is lost. Gibbons and Hawking [3℄ proposed a for-mulation to visualize radiation as tunneling of 
hargedparti
les. In this formulation, radiation 
orresponds toele
tron�positron pair 
reation in a 
onstant ele
tri
�eld, with the energy of a parti
le 
hanging sign as it2) Nonunitary quantum evolution is one of the interpretationsof the information paradox to modify quantum me
hani
s. In aunitary evolution, the entropy is 
onstant with the usual S-mat-rix, whereas it is not 
onstant in a nonunitary quantum evolution.1071
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rosses the horizon. The total energy of a pair 
re-ated just inside or outside the horizon is zero when onemember of the pair tunnels to the opposite side. Parikhand Wil
zek [4℄ derived Hawking radiation as a tunne-ling through the quantum horizon on the basis of nullgeodesi
s. In this framework, the BH radiation spe
-trum 
orre
ted due to ba
k-rea
tion e�e
ts is obtained.This tunneling pro
ess shows that the extended radia-tion spe
trum is not exa
tly thermal yielding a unitaryquantum evolution.There are two di�erent semi
lassi
al tunnelingmethods to 
al
ulate the tunneling amplitude, whi
hlead to the Hawking temperature. The �rst method,
alled the null geodesi
 method, gives the same tem-perature as the Hawking temperature. The se
ondmethod, 
alled the 
anoni
ally invariant tunneling,leads to a 
anoni
ally invariant tunneling amplitudeand hen
e the 
orresponding temperature whi
h ishigher than the Hawking temperature by a fa
tor of2 [5℄. It was argued in [6℄ that a parti
ular 
oordinatetransformation resolves this problem in the semi
lassi-
al pi
ture.Bla
k hole evaporation spe
tra in the Einstein�di-laton�Gauss�Bonnet four dimensional string gravitymodel was dis
ussed in [7℄ using the radial null geodesi
method. It was shown that BHs should not disappearand be
ome reli
s at the end of the evaporation pro-
ess. The authors of [7℄ numeri
ally investigated thepossibility of experimental dete
tion of su
h remnantBHs and dis
ussed the mass loss rate in analyti
 form.These primordial BH reli
s 
ould form a part of thenonbaryoni
 dark matter in our universe.Various non
ommutative models in terms of 
oordi-nate 
oherent states that satisfy the Lorentz invarian
e,unitarity, and UV �niteness of quantum �eld theorywere found in [8℄. A generalized non
ommutative met-ri
 that does not allow a BH to de
ay below a min-imal nonzero mass M0, i. e., the BH remnant mass,was derived in [9℄. The e�e
ts of non
ommutative BHshave been studied [10, 11℄ and 
onsistent results werefound. The evaporation pro
ess stops when a BH ap-proa
hes a Plan
k-size remnant with zero temperature.Also, it does not diverge but rather rea
hes a maxi-mum value before shrinking to the absolute zero tem-perature, whi
h is an intrinsi
 property of the manifold.Some other authors [12℄ also explored information lossproblem during BH evaporation.Quantum 
orre
tions to the thermodynami
alquantities for a Bardeen 
harged regular BH wereinvestigated in [13℄ using the quantum tunnelingapproa
h over semi
lassi
al approximations. In are
ent work [14℄, the e�e
ts of non
ommutativity on

the thermodynami
s of this BH were dis
ussed. Thetunneling of massive parti
les through the quantumhorizon of the non
ommutative S
hwarzs
hild BH wasanalyzed in [15℄ and the modi�ed Hawking radiation,thermodynami
al quantities, and emission rate wasderived. Stable BH remnants and the information lossissues were also dis
ussed there. The e�e
ts of smearedmass were studied in [17℄ with the 
on
lusion thatinformation might be saved by a stable BH remnantduring the evaporation pro
ess. In [17℄, this work wasextended to a non
ommutative Reissner�Nordström(RN) BH and the emission rate 
onsistent with a uni-tary theory was determined. The same author [18℄ alsoformulated a non
ommutative S
hwarzs
hild-like met-ri
 for a Vaidya solution and analyzed three possible
ausal stru
tures of the BH initial and remnant mass.He also studied the tunneling of 
harged parti
lesthrough the quantum horizon of the S
hwarzs
hild-likeVaidya BH and evaluated the 
orresponding entropy.The purpose of this paper is two-fold. First, weformulate a non
ommutative RN-like solution of thespheri
ally symmetri
 
harged Vaidya model. Se
ond,we investigate some of its features. In parti
ular, weexplore the BH evaporation and Parikh�Wil
zek tun-neling pro
ess. The paper is organized as follows. InSe
. 2, we solve the 
oupled �eld equations for thespheri
ally symmetri
 
harged Vaidya model. The ef-fe
t of the non
ommutative form of this model is inves-tigated in the framework of 
oordinate 
oherent statesin Se
. 3. Here, an exa
t (t� r)-dependent RN-like BHsolution is obtained. In Se
. 4, we �nd the behaviorof the temporal 
omponent of this solution and alsodis
uss the BH evaporation in the limits of large timeand 
harge. In Se
. 5, we study the Parikh�Wil
zektunneling for su
h a Vaidya solution and the Hawkingtemperature in the presen
e of a 
harge. The tunnelingamplitude at whi
h massless parti
les tunnel throughthe event horizon is 
omputed. Finally, the 
on
lusionsare given in the last se
tion. Throughout the paper, weset ~ = 
 = G = 1.2. CHARGED VAIDYA MODELThis se
tion is devoted to the formulation of aspheri
ally symmetri
 
harged Vaidya model in theRN-like form using the pro
edure given in [19℄. Weskip the details of the pro
edure be
ause they are al-ready available and use only the required results. Thespheri
ally symmetri
 Vaidya-form metri
 is given byEq. (2.34) in [19℄:ds2 = �e�(t;r)dt2 + e�(t;r)dr2 + r2d
2; (1)1072



ÆÝÒÔ, òîì 141, âûï. 6, 2012 Bla
k hole evaporation in a non
ommutative 
harged Vaidya modelwheree�(t;r) =  _M�(M)!2 e��; e��(t;r) = 1� 2Mr ;d
2 = d�2 + sin2 �d�2;M(t; r) is a slowly varying mass fun
tion, and �(M)depends on the details of the radiation. The 
orre-sponding �eld equations are [19℄�0 = 8�rTrr + 1� e�r ; (2)�0 = 8�re���Ttt � 1� e�r ; (3)_� = 8�rTtr; (4)1� e�� + 12re��(�0 � �0)� 12r2R(0) == 8�T�� = 8�T��sin2 � ; (5)whereR(0) = �8�T aa = � 2r2 (1� e��) + e�(�+�)=2 �� h( _�e(���)=2)� � (�0e(���)=2)0i : (6)The dot and prime respe
tively denote derivatives withrespe
t to time and r. We note that Eqs. (2) and (4)represent the respe
tive Hamiltonian and momentum
onstraints [20℄. Equations (2) and (3) lead to12(�0 � �0) = 1� e�r (7)while Eqs. (5) and (6) yieldTrr = e(���)Ttt: (8)For the spheri
ally symmetri
 Vaidya metri
 ofform (1), we de�ne e��(t;r) by adding 
harge Q(t; r)as follows:e��(t;r) = 1� 2M(t; r)r + Q2(t; r)r2 : (9)Using the pro
edure in [19℄, we 
an dedu
e from the�eld equations thatT tre(���)=2 + T tt = 0: (10)Also, using Eqs. (2), (4), (8) and (10), we obtain�0 + e� � 1r + _�e(���)=2 = 0: (11)

Inserting the value of e� from Eq. (9) givese�(t;r) =  2Q _Q=r � 2 _M2M 0 � 2QQ0=r +Q2=r2!2 ���1� 2Mr + Q2r2 ��1 : (12)The 
orresponding form of the Vaidya solution [21℄ thenbe
omesds2 = � 2Q _Q=r � 2 _M2M 0 � 2QQ0=r +Q2=r2!2 ���1� 2Mr + Q2r2 ��1 dt2 ++�1� 2Mr + Q2r2 ��1 dr2 + r2d
2: (13)This is the spheri
ally symmetri
 
harged Vaidyamodel.We now transform this metri
 to the RN-like form.For this, we write Eq. (12) in the forme(���)=2 = r(2Q _Q� 2r _M)2r2M 0 � 2rQQ0 +Q2 : (14)Di�erentiating Eq. (14) with respe
t to r and usingEq. (7) yields2Mr�Q2r2�2Mr+Q2 [(Q _Q�r _M )(2r2M 0�2rQQ0+Q2)℄ == (2r2M 0�2rQQ0+Q2)(rQ _Q0+rQ0 _Q+Q _Q�r2 _M 0��2 _Mr)�(2rQ _Q�2r2 _M)(r2M 00+2M 0r�rQQ00�rQ02)whi
h 
an also be written as��2M 0 � 2QQ0r + Q2r2 ��1� 2Mr + Q2r2 �����2M 0 � 2QQ0r + Q2r2 ��1� 2Mr + Q2r2 ��0 == �2M � Q2r ���2M � Q2r �0 : (15)This has the solution�2M 0 � 2QQ0r + Q2r2 ��1� 2Mr + Q2r2 � == �(M;Q); (16)4 ÆÝÒÔ, âûï. 6 1073
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an write Eq. (12) ase�(t;r) = e2	(t;r)�1� 2M(t; r)r + Q2(t; r)r2 � ; (17)where e2	(t;r) =  �2Q _Q=r + 2 _M�(M;Q) !2 :Consequently, the line element in (1) be
omesds2 = �e2	(t;r)�1� 2M(t; r)r + Q2(t; r)r2 � dt2 ++�1� 2M(t; r)r + Q2(t; r)r2 ��1 dr2 + r2d
2: (18)This is the required spheri
ally symmetri
 
hargedVaidya model in the RN-like form. For a spe
i�
 
hoi
e�(M;Q) = � �2Q _Qr + 2 _M! ;	(t; r) vanishes and hen
e (18) redu
es to the simpleRN-like formds2 = �F (t; r) dt2 + F�1(t; r) dr2 + r2d
2; (19)where F = 1� 2M(t; r)r + Q2(t; r)r2 :3. NONCOMMUTATIVE BLACK HOLEHere, we develop a non
ommutative form of theRN-like Vaidya metri
 in (19) by using the formalismof 
oordinate 
oherent states [18℄. The mass/energyand 
harge distribution 
an be written as the followingsmeared delta fun
tions � [17, 18℄:�matt(t; r) = M(4��)3=2 e�r2=4� ; (20)�el(t; r) = Q(4��)3=2 e�r2=4� ; (21)where � is the non
ommutative fa
tor. The energy�momentum tensor for self-gravitating and anisotropi
�uid sour
e is given byTab = 0BBBB� Ttt Ttr 0 0Trt Trr 0 00 0 T�� 00 0 0 T�� 1CCCCA : (22)

Here, we takeTtt = �(�matt + �el) = Trr:The 
orresponding �eld equations be
omeF 0r + F + 8�r2(�matt + �el)� 1 = 0; (23)_F � 8�rF 2Ttr = 0; (24)rF 00F 3�2r _F 2+r �FF+2F 3F 0�16�rF 3T�� = 0; (25)Ttr = Trt; T�� = T��: (26)The 
onservation of the energy�momentum tensor,Tab;b = 0;yields�tTtt + �rTrr + 12gtt�rgtt(Trr � Ttt)�� 12grr�tgrr(Trr � Ttt) ++ g���rg��(Trr � T��) = 0whi
h leads to�tTtt + �rTtt + g���rg��(Ttt � T��) = 0:Substituting, we obtainT�� = (�matt + �el)�� �r( _M + _Q+M 0 +Q0)2(M +Q) + r24� � 1! : (27)We now 
onsider the perfe
t �uid 
ondition atlarge distan
es to determine the mass and 
harge fun
-tions. For this, we take isotropi
 pressure terms, i. e.,Trr = T��, and the above equation then yieldsM +Q = C exp� t24� + t(r � t)2� � ; (28)where C(r� t) is an integration fun
tion, whi
h 
an bede�ned asC(r � t) = MI ��Q2I �"2�r � t2p� �� 1p� �r � tp2�� "�r � tp2����� �2r �"�r � t2p� ��1 + t22��� rp�� �� exp�� (r � t)24� ��1 + tr����1 : (29)1074
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k hole evaporation in a non
ommutative 
harged Vaidya modelHere, MI and QI are the initial BH mass and 
harge,and the Gauss error fun
tion is de�ned as"(x) � 2p� xZ0 e�p2dp:Using Eq. (28) in (23), we obtainF (t; r) = 1� 2M�(t; r)r + Q2�(t; r)r2 ; (30)where the Gaussian smeared mass and 
harge distribu-tions areM�(t; r) =MI 2664"�r � t2p���1 + t22�� �� r exp�� (r � t)24� �p�� �1 + tr�3775 ;Q�(t; r) = QI �"2�r � t2p� � �� 1p� �r � tp2�� "�r � tp2���1=2 :
(31)

This is the non
ommutative form of (19).The asymptoti
 form of (30) redu
es to the RN met-ri
 for large distan
es at t = 0. Metri
 (30) 
hara
-terizes the geometry of a non
ommutativity-inspiredRN-like Vaidya BH. The radiating behavior of su
h amodi�ed BH 
an now be investigated by plotting gttfor di�erent values ofMI and QI . The 
oordinate non-
ommutativity leads to the existen
e of di�erent 
ausalstru
tures, i. e., a nonextremal BH (with two horizons),an extremal BH (with one horizon), and 
harged mas-sive droplet (with no horizon). Thus the non
ommuta-tive BH 
an shrink to the minimal nonzero mass withthe minimal nonzero horizon radius.4. HORIZON RADIUS AND BLACK HOLEEVAPORATIONHere, we investigate some features of the non
om-mutative metri
 in (30). First, we analyse the tempo-ral 
omponent gtt = F (t; r) in the form of graphs ver-sus the horizon radius r=p�. The Table [18℄ providesvalues of the minimal nonzero mass as well as hori-zon radius with in
reasing time for an extremal BH.This shows that the minimal nonzero mass de
reaseswhereas the minimal nonzero horizon radius in
reases

Table. Extremal bla
k holeTime, t Minimalnonzeromass, M0 (appr.) Minimalnonzerohorizon radius,r0 (appr.)0 1:90p� 3:02p�1:00p� 1:68p� 4:49p�2:00p� 0:99p� 5:34p�3:00p� 0:62p� 6:14p�4:00p� 0:43p� 7:18p�5:00p� 0:32p� 8:32p�10:00p� 0:13p� 13:27p�100:00p� 0:01p� 105:05p�!1 ! 0 !1with time, indi
ating that a mi
ro BH evaporates 
om-pletely, i. e., M0 ! 0 for t=p� � 1. Consequently, the
on
ept of a BH remnant does not exist. The graphs ofF are drawn for the following three 
ases: MI > M0,MI =M0, MI < M0.In the �rst 
ase, the graphs of F are shown in Fig. 1.There, we 
hoose di�erent values of time t=p� withMI > M0 and �xed MI=p� (i. e., MI = 3:00p�). The
urves are marked from top down on the right side fort = 0, 1:00p�, 2:00p�, 3:00p�, and 4:00p�. Thisdemonstrates that the distan
e between the horizonsin
reases with time. When t ! 1, we have two dif-ferent horizons for the three possibilities of the initialmass and initial 
harge, i. e.,QIp� < MIp� ; QIp� = MIp� ; QIp� > MIp� :Figure 2 shows the graphs of F when MI = M0. Theserepresent the possibility of an extremum stru
ture withone degenerate event horizon in the presen
e of 
harge.The possibilities for MI=p� and QI=p� are given asfollows.1) For QI=p� < MI=p�, it is possible to have onedegenerate event horizon (extremal BH) for all t.2) For QI=p� = MI=p�, there is one degenerateevent horizon for t > 2.3) For QI=p� > MI=p�, it is impossible to have adegenerate event horizon for all t.Figure 3 shows graphs of F in the 
ase MI < M0 withMI = 0:40p�. For all the three possibilities of the1075 4*
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Fig. 1. a � QI = 1:00p� < MI = 3:00p�; b �QI = 3:00p� = MI ; 
 � QI = 5:00p� > MI == 3:00p�initial mass and 
harge, 
urves do not show any eventhorizon with the passage of time.At t = 0, F in Eq. (30) takes the formF (r) = 1� 2MIr �"� r2p��� rp�� e�r2=4��++ QI2r2 �"2� r2p��� 1p� � rp2�� "� rp2��� : (32)
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Fig. 2. a � QI = 0:40p� < MI = M0; b � QI ==MI =M0; 
 � QI = 3:00p� > MI =M0In the 
ommutative limit, i. e., as � ! 0, we have"(x)! 1, and hen
e F redu
es toF (r) = 1� 2MIr + QI2r2 : (33)The non
ommutative form in Eq. (30) has a 
oor-dinate singularity at the event horizon rH su
h thatrH = M�(t; rH ) +pM2�(t; rH )�Q2�(t; rH): (34)The analyti
 solution of this equation is not possible,but we 
an analyze the results graphi
ally. For this,1076
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 �QI = 2:00p� > MIwe substitute the values of M� and Q� from Eq. (31)in (34) and obtainr2H � 2rHMI �"�rH � t2p� ��1 + t22�� �� rHp�� exp�� (rH � t)24� ��1 + trH �� == �Q2I �"2�rH � t2p� �� rH � tp2�� "�rH � tp2� �� : (35)The graphi
al representation of this equation, shown in

Fig. 4, is 
onsistent with the Table. The initial mass(greater than the remnant mass) yields three possible
ausal stru
tures depending on di�erent values of theinitial 
harge and the horizon radius with the passageof time.We 
an summarize the behavior as follows.1) For QI=p� < MI=p�, MI=p� ! 0 asQI=p� !1 and rH=p� !1.In this 
ase, �gures show the stable phase of theBH. As times pases, the BH starts evaporation (due to
harge), its mass redu
es and approa
hes to zero for allhorizon radii.2) For QI=p� = MI=p�, MI=p� ! 0 for allrH=p� and QI=p� at large times.Here, we see the initial stage of the BH evaporationin the �gures. The bla
k hole mass exhibits 
onstantbehavior (with the passage of time) for a small rangeof the horizon radius indi
ating no e�e
t of 
harge. Forlarge radius, due to e�e
t of 
harge, the BH mass tendsto zero for all horizon radii.3) For QI=p� > MIp� , MI=p� ! 0 as QI=p� ! 0and rH=p� !1.This 
ase yields the �nal stage of the BH evaporation.As time progresses, the BH evaporates 
ompletely, i. e.,its mass and hen
e temperature tend to zero for allhorizon radii.These results imply the BH evaporation, whi
h in-di
ates the instability of the BH due to 
harge, andhen
e the BH must in
lude a naked singularity. Thetotal evaporation of the BH is possible when we 
on-sider a time-dependent BH mass [1, 22℄.5. HAWKING RADIATION AS TUNNELINGIn this se
tion, we examine the radiation spe
trumof an RN-like non
ommutative BH by quantum tunnel-ing [4℄. The tunneling is a pro
ess where a 
harged par-ti
le moves in dynami
al geometry and passes throughthe horizon without any singularity. It provides theemission rate of tunneled parti
le and depends on thekey idea of energy 
onservation. The mass of the BHde
reases appropriately when the virtual parti
le isemitted. This leads to a nonzero tunneling amplitude,whi
h satis�es the original Hawking 
al
ulation [23℄.In this pro
ess, the 
oordinate system used to elimi-nate 
oordinate singularity at the horizon is known asthe Painlevé 
oordinate system [24℄. The Painlevé time
oordinate transformation is de�ned asdt! dt� p1� F (t; r)F (t; r) dr: (36)1077
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------Fig. 4Using this transformation, the 
orresponding spa
etimein Eq. (19) 
an be written asds2 = �F (t; r) dt2 + 2p1� F (t; r)dt dr ++ dr2 + r2d
2;ds2 = ��1� 2M�(t; r)r + Q2�(t; r)r2 � dt2 ++ 2r2M�(t; r)r �Q2�(t; r)r2 dt dr+dr2+r2d
2: (37)The outgoing motion (radial null geodesi
s, ds2 == d
2 = 0) of massless parti
les takes the formdrdt = 1�p1� F (t; r): (38)For an approximate value of F (t; r) (short distan
es ina neighborhood of the BH horizon), we expand F (t; r)

up to the �rst order using the Taylor series, i. e.,F (t; r)jt = F (t; rH )jt + F 0(t; rH )jt(r � rH) ++O((r � rH)2)jt: (39)Consequently, Eq. (38) be
omesdrdt � 12F 0(t; rH)(r � rH) � �(MI ; QI)(r � rH); (40)where �(MI ; QI) � 12F 0(t; rH)is the surfa
e gravity.We now 
al
ulate the Hawking temperature of theRN-like BH. There are semi
lassi
al methods to derivethe Hawking temperature for the Vaidya BH [25℄. FromTH = �2� = 14�F 0(t; rH )jt;1079



M. Sharif, W. Javed ÆÝÒÔ, òîì 141, âûï. 6, 2012it follows thatTH = 14� �� 2664�2M8>><>>:�1 + t22��0BB�exp�� (rH � t)24� �rHp�� �� "�rH � t2p� �r2H 1CCA� exp�� (rH � t)24� �p�� 0BB�� tr2H �� rH � t2rH2� 1CCA9>>=>>;+Q28>>>><>>>>:0BB�2 exp�� (rH � t)24� �r2Hp�� �� "�rH � t2p� �� 2r3H "2�rH � t2p� �� �� 1p2�� 0BBBB�� 1rH � tr2H � s2 exp�� (rH � t)24� �p�� +
+ "�rH � tp2� ��� 1r2H � 2tr3H �1CCCCA9>>>>=>>>>;377775 : (41)For t = 0 = QI , this redu
es to the Hawking tem-perature of the non
ommutative S
hwarzs
hild 
ase [9℄.Figure 5 shows the behavior of the Hawking tem-perature THp� versus horizon radius rH=p� for �xedMI = 3:00p�. When the BH evaporates, there is noradiation and hen
e the temperature tends to zero. Thegraphs turn out to be smooth at the �nal stage of theBH evaporation. This 
an also be explained as fol-lows. After the temperature rea
hes a maximum de�-nite value at the minimal nonzero value of the horizonradius r0, then it starts de
reasing to the absolute zeroand results in the mass tending to zero. For all thethree possibilities of MI=p� and QI=p�, i. e.,QIp� < MIp� ; QIp� = MIp� ; QIp� > MIp� ;the graphs of the Hawking temperature give the follo-wing behavior.1) For QI=p� < MI=p�, the behavior of 
urves isthe same as in the S
hwarzs
hild 
ase [18℄.2) ForQI=p� =MI=p�, the temperature in
reasesat the minimal horizon radius.

2 4 6 1412108
QIp� < MIp� à

0:010:020:030:040:05THp�
rHp�

QIp� > MIp�
2 4 6 rHp�1412108
QIp� = MIp� b0:050:040:030:020:01

THp�

2 4 6 rHp�1412108

0:050:040:030:020:01

THp�

Fig. 5. a � QI = 2:00p� < MI ; b � QI =MI ; 
 �QI = 5:00p� > MI3) For QI=p� > MI=p�, the horizon radius
hanges its position with in
reasing temperature.We next dis
uss the e�e
t of an ele
tromagneti
�eld on the emission rate of 
harged parti
les tunne-ling through the quantum horizon of the BH. Here, weassume that an ele
tromagneti
 �eld is present outsidethe BH. The Lagrangian fun
tion for su
h a Maxwellgravity system 
an be de�ned as1080
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ommutative 
harged Vaidya modelL = Lmatt + Lel; (42)where Lel = �14FabF abis the Maxwell Lagrangian fun
tion and F ab is theMaxwell �eld tensor given byF ab = �a�b � �b�a; (43)where �a = (�; 0; 0; 0) is the ele
tromagneti
 4-poten-tial. The a
tion and the rate of emission of a parti
lein the tunneling pro
ess are de�ned as [17℄I = toutZtin (Lmatt � p� _�) dt; � / exp(�2 Im I); (44)where p� is the 
anoni
al momentum 
onjugate to�. In the tunneling pro
ess, the imaginary part ofthe amplitude for an s-wave, representing the outgoingpositive-energy parti
les that 
ross the horizon outwardfrom rin to rout, is given byIm I = Im routZrin  pr � p� _�_r ! dr == Im routZrin 264 (pr;p�)Z(0;0) dp0r � _�_r dp0�375 dr: (45)The Hamilton equations of motion,drdt = dHdpr ����(r;�;p�) = d(M �E)dpr = � dEdpr ;d�dt = dHdp� ����(�;r;pr) = ��(Q� q) dqdp� ; (46)provide the following relation of momentum and en-ergy:Im I = Im routZrin 264 (H;q)Z(0;0) dH 0_r + �(Q� q0)_r dq0375 dr: (47)In this pro
ess, parti
les and antiparti
les 
an be re-spe
tively des
ribed as a positive and negative-energysolution of the wave equation. The BH a

retes a smallnegative energy, whi
h de
reases its mass. Repla
ingMI with MI � E, QI with QI � q, and substitutingEq. (40) in (47), we obtainIm I = � Im routZrin 264 (E;q)Z(0;0) dE0�(MI�E0; QI�q0)(r�rH) �� �(Q� q0) dq0�(MI �E0; QI � q0)(r � rH)� dr: (48)

This integral has a pole at the horizon rH . To avoidthis pole, we perform 
ontour integration with the 
on-dition rin > rout and obtainIm I = � Im264 (E;q)Z(0;0) dE0�(MI �E0; QI � q0) �� �(Q� q0) dq0�(MI �E0; QI � q0)375�� routZrin drr � rH == � 264 (E;q)Z(0;0) dE0�(MI �E0; QI � q0) �� �(Q� q0) dq0�(MI �E0; QI � q0)375 : (49)This shows that the parti
le emission rate is propor-tional to the surfa
e gravity.Using the �rst law of BH thermodynami
s,dM = T dS � � dQ;we write the imaginary part of the a
tion Im I as [26℄Im I = �12 SNC(M�E;Q�q)ZSNC(M;Q) dS = �12�SNC ; (50)where SNC is the entropy of the non
ommutative BHand �SNC is the di�eren
e in BH entropies beforeand after the emission. At high energies, the tunnel-ing amplitude (emission rate) depends on the �nal andinitial number of mi
rostates available to the system[27�30℄, implying that the emission rate is proportionalto exp(�SNC), i. e.,� / exp(Sfinal)exp(Sinitial) = exp(�SNC) == exp [SNC(MI �E;QI � q)� SNC(MI ; QI)℄ : (51)It follows that the emission spe
trum 
annot be pre-
isely thermal. The modi�ed non
ommutative tunnel-ing amplitude � 
an be 
omputed if we know the ana-lyti
 form of exp(�SNC).1081
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ording to quantum theory, a BH is neither anabsolute stationary state nor even a relative stationarystate; it is an ex
ited state of gravity. The va
uumstate (ex
ited state) generates spontaneous emission ofvirtual parti
les. The emission of 
harged parti
les bya BH is therefore physi
ally equivalent to the sponta-neous emission by an ex
ited state [31℄.6. SUMMARYIn this paper, we have derived a spheri
ally symmet-ri
 
harged Vaidya metri
 in the RN-like form and itsnon
ommutative version. Non
ommutativity implies aminimal nonzero mass that allows the existen
e of anevent horizon. In order to investigate the BH horizonradius depending on time, mass, and 
harge, we haveexamined the behavior of F (t; r) in the form of graphs,shown in Figs. 1�3 for three possible stru
tures:MI > M0; MI = M0; MI < M0:These have further been dis
ussed for three possibilitiesof the initial mass and the initial 
harge, i. e.,QIp� < MIp� ; QIp� = MIp� ; QIp� > MIp� :The �rst 
ase provides two di�erent possible horizons.The se
ond 
ase represents the possibility of an ex-tremum stru
ture with one degenerate event horizonwith time in the presen
e of a 
harge. In the last 
ase,the 
urves do not indi
ate any event horizon.In Fig. 4, the e�e
ts of 
harge on the BH evap-oration are shown. The relations between mass and
harge indi
ate three di�erent stages of the BH massand 
harge, whi
h lead to the BH evaporation. Usingthe Table, we have found that the BH mass tends tozero as the horizon radius tends to in�nity with time.This shows that the stru
ture of a stable BH rem-nant having the 
apability of storing information is vio-lated and information would disappear from our world.Hen
e, this leads to the evaporation of the BH andthe �nal phase is a naked singularity. We have foundthat the BH evaporates 
ompletely in the large-timelimit. We also see from these �gures that the 
asesQI=p� < MI=p� and QI=p� > MI=p� indi
ate mu-tually reverse behavior.The analysis of the Hawking temperature (Fig. 5)shows a behavior similar to that of the S
hwarzs
hildspa
etime. In the presen
e of a 
harge, the temperatureattains a maximum position at the minimal nonzerohorizon radius. As the horizon radius in
reases, thetemperature vanishes, whi
h 
orresponds to the BH

evaporation, i. e., the mass tends to zero. Finally,we have dis
ussed the Hawking radiation by using theParikh�Wil
zek tunneling pro
ess through the quan-tum horizon. The emission rate has been found 
on-sistent with the unitary theory. We have extended thisanalysis to 
ompute the tunneling amplitude of 
hargedmassive parti
les from the RN-like Vaidya BH. It ismentioned here that 
orre
tions due to non
ommuta-tivity 
an be 
onsidered before the BH mass approa
hesthe Plan
k mass.It would be interesting to extend this work to thedyadosphere of the RN solution and the regular BHsolutions in the non
ommutative spa
e. It would alsobe worthwhile to examine the behavior of thermody-nami
 quantities, evaporation of the BH remnant, andHawking radiation as tunneling for these solutions.We thank the Higher Edu
ation Commission, Is-lamabad, Pakistan for its �nan
ial support through theIndigenous Ph. D. 5000 Fellowship Program Bat
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