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PROTON NMR STUDY OF THE ORGANIC METAL�-(BETS)2Mn[N(CN)2℄3O. M. Vyaselev a*, N. D. Kush
h b, E. B. Yagubskii baInstitute of Solid State Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiabInstitute of Problems of Chemi
al Physi
s, Russian A
ademy of S
ien
es142432, Chernogolovka, Mos
ow Region, RussiaRe
eived Mar
h 10, 2011Magneti
 properties of the organi
 
ondu
tor �-(BETS)2Mn[N(CN)2℄3 above and below the temperature of themetal�insulator transition that o

urs at TMI � 25 K are studied by 1H NMR. The proton spe
trum is shownto be determined by the stati
 dipolar �elds from Mn2+ lo
alized moments, while the 1H spin�latti
e relaxationis dominated by �u
tuating �elds from Mn2+ ele
trons. The NMR data, both stati
 (the spe
tra) and dynami
(the spin�latti
e relaxation), indi
ate the freezing of Mn2+ moments into a short-range or an in
ommensuratelong-range antiferromagneti
 order below TMI .1. INTRODUCTIONOne of the modern trends in the physi
s of or-gani
 
ondu
tors is manufa
turing of bifun
tionalmaterials by fusing the 
ondu
ting and magneti
properties within the same 
rystal latti
e. This
an be a
hieved, for instan
e, by synthesizing theradi
al 
ation salts of organi
 �-donors that pro-vide the quasi-two-dimensional 
ondu
tivity, withparamagneti
 metal 
omplex anions [1�5℄. In su
h
ompounds, intera
tion between the lo
alized spinsof d-ele
trons in insulating magneti
 layers anditinerant spins of the �-band ele
trons in 
ondu
-ting organi
 layers (the ��d intera
tion) gives riseto interesting phenomena like the �eld-indu
ed su-per
ondu
tivity observed in �-(BETS)2FeCl4 [6℄and �-(BETS)2FeBr4 [7℄, where BETS stands forC10S4Se4H8, bis(ethylenedithio)tetraselenafulvalene.The 
omplex �-(BETS)2Mn[N(CN)2℄3 addressed inthis paper is one of the newest members of this family.Its remarkable feature is an extremely pressure-sensitive metal�insulator (MI) transition [8℄. Thistransition that o

urs at the temperature TMI � 25 Kat ambient pressure 
an be suppressed by applyinga relatively low external pressure, yielding a super-
ondu
ting state with the maximum T
 = 5:75 K atP = 0:6�1:0 kbar [9℄.*E-mail: vyasel�issp.a
.ru

The question about the role of the intera
tion be-tween itinerant spins of the donor layers and lo
alizedspins of the insulating magneti
 layers in the forma-tion of the insulating ground state in the above 
om-pounds is still open. In �-(BETS)2FeCl4, where the MItransition 
oexists with the onset of the pronoun
edNéel-type antiferromagneti
 (AF) order [10�12℄, thelo
alization of �-ele
trons has been suggested to re-sult from magneti
 ordering within the Fe3+ subsys-tem [13℄. On the 
ontrary, the magneti
 properties of�-(BETS)2Mn[N(CN)2℄3 in the insulating state are notobvious enough to unambiguously 
laim the long-rangeAF order in the Mn2+ subsystem [8℄. This raises doubts
on
erning the above lo
alization s
enario for this 
om-pound, favoring the Mott lo
alization usual for quasi-two-dimensional organi
 
ompounds with the narrowhalf-�lled 
ondu
ting band [14℄.In this paper, we report the results of a 1H NMRstudy of �-(BETS)2Mn[N(CN)2℄3 undertaken to probeits magneti
 stru
ture below the MI transition and re-veal its possible role in the lo
alization of �-ele
trons.2. EXPERIMENTALThe 
rystal stru
ture of �-(BETS)2Mn[N(CN)2℄3 ismono
lini
 with the spa
e group P21/
 and the latti
e
onstants at 88 K given by a = 19:428Å, b = 8:379Å,
 = 11:869Å, � = 92:67Æ, and V = 1930:1Å3, with two9 ÆÝÒÔ, âûï. 5 (11) 961
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ell [9℄. The 
ondu
ting layersformed by BETS dimers in the b
 plane are sandwi
hedbetween the polymeri
 Mn[N(CN)2℄3 anion layers in thea dire
tion. The 
rystal growth pro
edure and detailsof the stru
ture have been des
ribed previously [8, 9℄.One single 
rystal of the size a� � b � 
 � 0:05 �� 3 � 1 mm3 (a� is the normal to the b
 plane) wasused for the measurements. The sample was atta
hedto a semi
ylinder quartz holder with a pin-tou
h ofsili
on grease. The b axis of the sample was alignedwith the holder axis. One end of the holder was �xedin a goniometer wheel perpendi
ular to the magneti
�eld dire
tion. No spurious 1H NMR signal from theempty holder with the grease was observed on the s
aleof the signal from the sample. NMR spe
tra werea
quired with Bruker MSL-300 spe
trometer in �elds1.40924 and 6.999 T (for brevity, referred to as 1.4and 7 T in what follows). A standard spin-e
ho se-quen
e �=2 � t � � � t was used, with the �-pulselength less or equal to 3�s, the t-delay of 15 �s, andthe re
y
le delay of 25 ms. To 
over the wide-rangespe
tra, the Fourier transforms of the a
quired spin-e
ho se
ond halves were 
olle
ted at intervals less orequal to 150 kHz and summed up. The nu
lear spin�latti
e relaxation rate was measured using the standardinversion-re
overy pulse sequen
e ��tr��=2�t���t.3. RESULTS AND DISCUSSION3.1. 1H NMR spe
trumThe angular evolution of 1H NMR peak positionsin �-(BETS)2Mn[N(CN)2℄3 measured at 74 K in the�eld H = 7 T rotated in the a�
 plane is presented inFig. 1a. The peak positions are given with respe
t to�0 = 
IH , where 
I = 42:5759 MHz/T is the protongyromagneti
 ratio. The example spe
tra measured atH k a� and at the angle � = 22Æ from a� are shown inFig. 1b. Depending on the �eld dire
tion, the spe
trum
ontains up to eight resonan
e peaks (shown by arrowson the spe
trum for � = 22Æ in Fig. 1b), in 
omplian
ewith the number of inequivalent 
rystallographi
 hy-drogen sites that belong to the ethylene groups at theterminals of BETS mole
ules.The evolution of the 1H NMR spe
trum (H = 1:4 Tparallel to a�) with temperature is shown in Fig. 2. As
an be seen, the frequen
y span of the spe
trum in-
reases with de
reasing temperature, while its shape ismaintained down to 20 K. At lower temperatures, thepeaks broaden rapidly, whi
h is more pronoun
ed onthe right-hand side of the spe
trum. Figure 3 showsthe temperature dependen
e of the half width at half

a� H[00�1℄�8A9B9A8B10B10A7B7A0 22Æ 30Æ 60Æ 90Æ� [00�1℄a��600�400�2000200400600� � �0; kHza

b � = 0�500 �250 0 250 500 750� � �0; kHz� = 22Æ
Fig. 1. (a) Angular evolution of the 1H NMR spe
trumin the a�
 plane. Cir
les are the measured peak posi-tions. Lines are the model 
al
ulations using Eqs. (1).The indi
es from 7A through 10B label the hydrogensites shown below in Fig. 5. (b) 1H NMR spe
tra in�-(BETS)2Mn[N(CN)2℄3 at T = 74 K in the �eldH = 7 T oriented parallel to a� (� = 0) and at � = 22Æfrom a� toward the [00�1℄ dire
tionheight, �1=2=2, for the leftmost and the rightmostpeaks in the 1H NMR spe
trum measured atH = 1:4 Tparallel to a�. As 
an be seen from Fig. 3, the linewidthis relatively �at above TMI = 25 K (espe
ially for theleftmost peak) and in
reases sharply below this tem-perature.To des
ribe the observed pe
uliarities of the 1HNMR spe
trum, we start with 
omparing the temper-ature dependen
e of the resonan
e peaks with that ofthe d
 magnetization. Figures 4a and 4b show tem-perature dependen
es of the molar d
 magnetizationnormalized to the applied �eld, M=H , and the fre-quen
y shift of the leftmost peak in the spe
trum nor-malized to the Larmour frequen
y, �=�0 � 1, measuredin the H k a� geometry in the �elds 1.4 and 7 T.Figure 4
 plots � � �0 as a fun
tion of the magneti-zation measured at the same temperatures and �elds.It has been shown in Ref. [15℄ that the d
 magnetiza-962
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Fig. 2. Temperature evolution of the 1H NMR spe
-trum measured at H = 1:4 T parallel to a�. Thepeaks are labeled a

ording to the spe
trum simulationin Fig. 1
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Fig. 3. Temperature dependen
e of the half-linewidthof the leftmost (�) and the rightmost (�) peaks (re-spe
tively 
orresponding to hydrogen sites 7A and 8A)at H = 1:4 T parallel to a�tion in �-(BETS)2Mn[N(CN)2℄3 is determined byMn2+(S = 5=2, L = 0) magneti
 moments. Therefore, thelinearity of the data in Fig. 4
 demonstrates that forthe whole temperature and �eld ranges 
overed in the
0 1 2 3 4M=NA�B

0:10:2
0:30:4
0:5 à

50 100 1500
�0:5�1:0

T; Kb
50 100 1500

0�=�0 � 1; %

T; K
0�1�2�3
� � �0; MHz

M=H; emu/mol �G

Fig. 4. Temperature dependen
es of the molar magne-tization (a) and the peak position (b) at H = 1:4 T(Æ) and H = 7 T (�) and the position of the leftmostpeak in the 1H NMR spe
trum in the �elds H = 1:4 T(Æ) and H = 7 T (�) parallel to a� for the temperaturerange 4�150 K as a fun
tion of the d
 magnetizationper Mn ion �Mn = M=NA measured at the same tem-peratures and �elds and expressed in terms of the Bohrmagneton (
)963 9*
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trum peak positions aredetermined by the magneti
 subsystem asso
iated withthe Mn2+ moments.Next, we pro
eed with modeling the spe
trum athigh temperatures to reprodu
e its angular behaviorshown in Fig. 1. To model the spe
trum, we need tosum up all possible hyper�ne and dipolar �elds at thenu
leus site and take into a

ount the Lorentz �eld hLorand the sample geometry resulting in a demagnetizing�eld hD [16℄. However, in the spe
i�
 
ase of 1H NMRin organi
 metals [16, 17℄, the hyper�ne �elds are negli-gible 
ompared to the dipolar �eld hdip from the Mn2+ele
troni
 spin. Therefore, for the magneti
 �eld in thea�
 plane, H = [H 
os �; 0; H sin �℄, we model the spe
-trum as � � �0 = 
I(hdip + hLor � hD); (1a)hdip = �MnXi 3 
os2 �i � 1r3i ; (1b)hLor = 4�3 �MnVMn ; hD = 4�N �MnVMn : (1
)Here, �Mn is the thermal average of the Mn2+ mag-neti
 moment proje
tion on the �eld dire
tion, ri isthe length of the position ve
tor from the proton siteto the Mn site i, �i is the angle between this ve
torand the �eld dire
tion, VMn is the unit 
ell volume perMn2+ ion, and N = N? 
os2 �+Nk sin2 � is the demag-netization fa
tor.Sin
e the d
 magnetization in�-(BETS)2Mn[N(CN)2℄3 is determined by Mn2+magneti
 moments, we put �Mn = M=NA in Eqs. (1),where M is the measured d
 magnetization per mole(3800 emu/mol at H = 7 T, T = 74 K) and NA is theAvogadro number. For our very thin plate sample, weassume the demagnetization fa
tors N? = 1, Nk = 0.Crystallographi
 positions of Mn and H atoms (Fig. 5)required to 
al
ulate Eq. (1b) are available online fromthe Cambridge Crystallographi
 Data Centre [18℄.The sum in Eq. (1b) has been taken over 200 Mn siteswithin �20Å to provide reasonable 
onvergen
e.The peak positions 
al
ulated using Eqs. (1) forea
h of the 8 
rystallographi
ally inequivalent hydro-gen sites are shown as fun
tions of the �eld polar angle� by solid lines in Fig. 1a. The indi
es (from 7A through10B) labeling hydrogen sites 
orrespond to those inRef. [18℄. The agreement between the 
al
ulated andthe measured spe
tra is 
learly reasonable despite theabsen
e of any �tting parameters used in the 
al
ula-tions.

a bH
M-typeMn0
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Fig. 5. Arrangement of Mn (large bla
k 
ir
les) andH (small bla
k 
ir
les) atoms within the unit 
ell.N[(CN)2℄ bridges are omitted. Hydrogen atoms are la-belled a

ording to Ref. [18℄; a � the BETS mole
ulesandMn, the a
-plane proje
tion; b � the b
-plane pro-je
tion. CH2 groups nearest to the anion (Mn) layerare only shown for simpli
ity. The O- and M-type CH2groups belong to the 
orresponding symmetry types ofBETS mole
ulesThis model 
al
ulation yields two important re-sults. First, the resonan
e peaks in the spe
trum arenow identi�ed with 
ertain hydrogen sites (see Fig. 5),whi
h are to be used in what follows. Se
ond, to-gether with the plot shown in Fig. 4, the 
al
ula-tion proves that 1H NMR spe
tral peak positions in�-(BETS)2Mn[N(CN)2℄3 are determined by the dipo-lar �elds from Mn2+ moments.To address the 1H NMR linewidth behavior shownin Fig. 3, we need a brief ex
ursion into the 
rystal-lography of �-(BETS)2Mn[N(CN)2℄3. From the mag-neti
 viewpoint, symmetry operations of the spa
egroup P21/
 divide the BETS mole
ules into two types.Mole
ules of the �rst type (hereafter referred to asO-type, with �O� for �original�) are those with the atompositions at the origin (x; y; z) and produ
ed by in-version (�x;�y;�z). The atoms of the se
ond-typemole
ules are in positions (�x; 1=2 + y; 1=2 � z) and(x; 1=2 � y; 1=2 + z) produ
ed by a 2-fold s
rew axiswith dire
tion [010℄ and a glide plane normal to [010℄.We note that the y-
omponent of the magneti
 �eld,Hy, appears for the se
ond-type mole
ules as �Hy.We therefore refer to this kind of mole
ules as M-type,with �M� for �mirror�. The arrangement of the ethy-lene groups belonging to the two symmetry types ofthe BETS mole
ules within the unit 
ell are shown inFig. 5.The above symmetry 
onsiderations show that onlyfor the �eld stri
tly in the a
 plane, ea
h of the 8
rystallographi
ally inequivalent hydrogen sites of the964
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 metal : : :BETS mole
ule is mapped to a single line in the NMRspe
trum, as shown in Fig. 1. The presen
e of a y 
om-ponent of the �eld (along the b axis) doubles the num-ber of magneti
ally inequivalent hydrogen sites, whi
hin turn splits the NMR peaks. A 
al
ulation usingEq. (1b) for the �eld in the a�b plane gives the se-paration �� [kHz℄ = 0:32M sin 2�between the peaks from H-sites 8A belonging to theO-type and M-type BETS mole
ules, where M is, asbefore, the magnetization (in emu/mol) and � is the�eld polar angle measured from the a� dire
tion. Sim-ilarly, the separation between the peaks from site 7Ais �� [kHz℄ = 0:014M sin 2�:This 
an be partially responsible for the di�eren
ein the linewidths of the peaks from H-sites 7A and 8Aobserved above 25 K (see Fig. 3) if we assume a smalltilt of the goniometer axis from the normal to the �elddire
tion, whi
h 
annot be ruled out. For example, a1Æ tilt would split the H-site 8A peak at 25 K, 1.4 T(M = 1960 emu/mol) by �11 kHz, and the 7A site by�0:5 kHz. However, the broadening of the peak fromsite 8A is observed instead of the splitting. To ex-plain this, we introdu
e a small random displa
ementof the hydrogen positions and 
al
ulate the resultingpeak positions using Eq. (1b). The 
al
ulations showthat �0:1 Å random displa
ement of hydrogen atomsfrom the listed 
rystallographi
 positions results in thestandard deviation�20 kHz of the peak positions for H-site 7A and �37 kHz for H-site 8A. Convolved with thesplitting from the 1Æ tilt, at T = 25 K, this gives the re-spe
tive peaks of 20 kHz and 45 kHz half-linewidth forH-sites 7A and 8A, whi
h is 
ompatible with the datain Fig. 3. The linewidth in the metalli
 state thereforearises from a small random displa
ement of the hydro-gen atom positions and a tilt � 1Æ of the goniometerwheel.Below TMI = 25 K, the NMR peak widths sharplyin
rease, indi
ating an enhan
ement of the lo
al �elds
atter at hydrogen sites, whi
h is no longer explainedby the sample positioning and the atomi
 displa
e-ments. One of the options yielding an additional lo-
al �eld s
atter below TMI is the AF order of �-ele
t-ron spins inferred from the magneti
 torque measure-ments [15℄. For instan
e, in �-(ET)2Cu[N(CN)2℄Cl, theAF ordering of �-ele
trons 
auses a �80 kHz splittingof the proton NMR peaks [19℄. This is 
ompatible withthe observed width of the peak from H-site 7A at 4 Kbut is mu
h smaller than the H-site 8A peak width (seeFig. 3). We therefore need to assume the ordering of

Mn2+ ele
tron spins, as has also been suggested fromd
 magnetization measurements [15℄.To roughly estimate the e�e
t of the ordering ofMn2+ moments on the proton linewidth, we have mod-eled two Mn sublatti
es with proje
tions of the mag-neti
 moment on the �eld dire
tion, (1 � Æ)�Mn, and
al
ulated the dipolar �eld at hydrogen sites belong-ing to the O- and M-type BETS mole
ules (see Fig. 5)using Eq. (1b). The 
al
ulation gives the s
atter of theproton frequen
es�� [kHz℄ = 0:04MÆfor H-site 7A and�� [kHz℄ = 0:48MÆfor H-site 8A. Taking M = 5600 emu/mol measured atH = 1:4 T and T = 4 K for Æ = 0:25, this respe
tivelyyields ��=2 = 30 kHz and ��=2 = 330 kHz for thes
atter of the proton frequen
es at H-sites 7A and 8A,whi
h is in a fair agreement with the measured half-linewidths.The large di�eren
e in sensitivity of the lo
al �elds
atter to the amplitude Æ of the modulation of theMn2+ moment proje
tion between H-sites 7A and 8A isgraphi
ally evident from the stru
ture shown in Fig. 5.The lo
al �eld at site 8A is strongly in�uen
ed by themagneti
 moment of its single nearest neighbor Mn. In
ontrast, the hydrogen atom at site 7A has two nearlysymmetri
 Mn neighbors. As a result, the di�eren
ein the magneti
 moment proje
tions of the neighboringMn be
omes essentially averaged at site 7A, whi
h isobserved as a mu
h narrower peak in experiment.Therefore, the in
rease of the linewidth below 25 Kis mainly due to enhan
ement of the s
atter of the stati
lo
al �eld indu
ed by an AF-type arrangement of theele
tron spins of Mn2+. The shape of the 1H NMRspe
trum below 25 K indi
ates a short- range or an in-
ommensurate (or exoti
) long-range AF order of Mn2+spins be
ause otherwise, in the 
ase of the long-range
ommensurate Néel order, the splitting would be ob-served instead of the broadening. The Néel order isprobably not favorable in this system be
ause man-ganese forms a triangular network in the anion layer.In su
h systems with the AF 
oupling, where the min-imization of pairwise intera
tions is geometri
ally frus-trated, exoti
 magneti
 stru
tures are often resolved inthe ground state [20℄.3.2. Spin�latti
e relaxationThe 1H spin�latti
e relaxation rate T�11 was mea-sured in �-(BETS)2Mn[N(CN)2℄3 for the spe
tral peak965
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Fig. 6. Temperature dependen
e of the 1H spin�latti
erelaxation rate for the spe
tral peak from H site 7Ameasured in H k a� geometry at 1:4 T (
ir
les) and7 T (squares). Open symbols: raw experimental data.Filled symbols: experimental data divided by the polar-ization fa
tor 1 � P 20 , P0 = M=M0. Dashed lines aresplines for the data at T > 50 Kfrom hydrogen site 7A in the H k a� geometry in�elds 1.4 and 7 T. The NMR signal re
overy af-ter the inverting pulse followed the single-exponential1�2 exp(�tr=T1) law. The measured values of T�11 areplotted by open symbols as a fun
tion of temperaturein Fig. 6.It is readily seen from Fig. 6 that the proton spin�latti
e relaxation in this system drasti
ally di�ers fromthat in organi
 
ompounds with nonmagneti
 anions(see, e. g., Ref. [19℄). First, it is 3 to 4 orders of magni-tude faster; se
ond, it is strongly �eld dependent. To
ope with the observed behavior of T�11 , we assumethat the main sour
e of the proton spin�latti
e relax-ation in �-(BETS)2Mn[N(CN)2℄3 is the �u
tuations ofthe lo
al �eld at the hydrogen site 
aused by the spin�latti
e relaxation pro
ess of the lo
alized ele
tron spinsof Mn2+. The well-known formula for the nu
lear spin�latti
e relaxation in this 
ase is [21℄T�11 = F �1 + (2���)2 (1� P 20 ); (2)where the prefa
tor F is determined by the mutual ar-rangement of the nu
lear and the ele
tron spins, � isthe ele
tron spin�latti
e relaxation time, � is the NMRfrequen
y, and P0 is the ele
tron polarization. Thereare two �eld-dependent quantities in Eq. (2). One isthe NMR frequen
y � � 
IH . The other one is P0,whi
h a

ounts for the line-up of the ele
tron moments
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T, KFig. 7. Temperature dependen
e of the Mn2+ ele
-tron spin�latti
e relaxation rate extra
ted from the pro-ton relaxation rate T�11 (see Fig. 6) using Eqs. (3)and (4)at high �elds (low temperatures), P0 = M=M0, whereM0 is the saturation value of the molar magnetizationM . For Mn2+ (g-fa
tor 2, J = S = 5=2 (L = 0)),M0 = NAg�BJ = 27912 emu/mol:The ele
tron polarization 
an be easily a

ountedfor by dividing the experimental data by the polariza-tion fa
tor 1� P 20 . The 
orre
ted valuesT�11;
orr = T�11;exp=(1� P 20 )are plotted by �lled symbols in Fig. 6. The ratio ofthe 
orre
ted T�11 values at 1.4 and 7 T gives a simpleequation quadrati
 in � :R = T�11;
orr;1:4TT�11;
orr;7T = 1 + (2���7T)21 + (2���1.4 T)2 ; (3)where �1.4T and �7T are the NMR frequen
es at 1.4and 7 T. Solving Eq. (3) for � , we obtain the ele
tronspin�latti
e relaxation time� =s 1�RR(2��1.4T)2 � (2��7T)2 : (4)Figure 7 shows the temperature dependen
e of theMn2+ ele
tron spin�latti
e relaxation rate ��1 ex-tra
ted from the proton relaxation rate T�11 usingEqs. (3) and (4). To redu
e the s
atter of the evaluateddata, the experimental values of T�11 above 50 K were966
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 metal : : :splined (as shown in Fig. 6 by a dashed line). At hightemperatures, ��1 is linear in T , whi
h is natural forthe phonon me
hanism of the ele
tron relaxation [22℄.At some temperature between 16 and 25 K (
lose toTMI), ��1 turns down from the linear behavior. Thisloss of ele
tron spin dynami
s apparently signi�es thefreezing of Mn2+ moments as the system enters the AFstate. 4. CONCLUSIONWe have performed a 1H NMR study of the organi

ondu
tor �-(BETS)2Mn[N(CN)2℄3 above and belowthe MI transition that o

urs at 25 K. The NMR spe
-tra measured at di�erent temperatures and magneti
�eld values and orientations agree very well with themodel that assumes a dipolar �eld from the Mn2+moments at hydrogen sites. Vast broadening of theresonan
e peaks below 25 K has been shown to resultmainly from a short-range or an in
ommensuratelong-range AF order in the network of Mn2+ ions.The 
ommensurate long-range order is apparentlyabsent be
ause Mn2+ forms a triangular latti
e, whi
his unfavorable for a Néel-type arrangement. Theproton spin�latti
e relaxation has been shown to bedominated by �u
tuations of the Mn2+ ele
tron spins.The ele
tron spin dynami
s evaluated from the protonT�11 data is essentially suppressed below TMI , whi
halso indi
ates the freezing of Mn2+ spin �u
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