# КИНЕТИЧЕСКИЕ УРАВНЕНИЯ ДЛЯ МАТРИЦЫ ПЛОТНОСТИ, ОПИСЫВАЮЩИЕ НЕЛИНЕЙНЫЕ ЭФФЕКТЫ В КРЫЛЬЯХ СПЕКТРАЛЬНЫХ ЛИНИЙ

А. И. Пархоменко<sup>\*</sup>, А. М. Шалагин<sup>\*\*</sup>

Институт автоматики и электрометрии Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 21 марта 2011 г.

Выведены квантовые кинетические уравнения для матрицы плотности с интегралами столкновений, описывающими нелинейные эффекты в крыльях спектральных линий. Показано, что из этих уравнений следует установленный ранее факт неравенства спектральных плотностей коэффициентов Эйнштейна для поглощения и вынужденного испускания излучения двухуровневой квантовой системой в далеком крыле спектральной линии в условиях частых столкновений. Установлена связь вероятностей поглощения и вынужденного испускания излучения и элементарного акта рассеяния.

### 1. ВВЕДЕНИЕ

Двухуровневая модель квантовой системы является одной из наиболее изученных в атомной спектроскопии. Давно укоренилось представление о том, что вследствие равенства вероятностей процессов поглощения и вынужденного испускания непрерывное излучение способно лишь выровнять заселенности уровней в двухуровневой системе, но никак не создать инверсию населенностей. Однако, как оказывается, влияние термостата на процессы взаимодействия квантовой системы с излучением может приводить к существенному дисбалансу между процессами испускания и поглощения излучения квантовой системой. В работах [1-10] было показано, что в крыле линии поглощения активных частиц газа при наличии частых столкновений с буферными частицами (термостат) вероятности поглощения и вынужденного испускания не равны друг другу.

В работах [7, 8] на основе общих термодинамических требований показано, что если монохроматическое излучение взаимодействует с атомами газа в сугубо нерезонансных условиях и они испытывают частые столкновения (например, находятся в атмосфере буферного газа), то спектральные плотности коэффициентов Эйнштейна для поглощения  $(b_{12}(\Omega))$  и вынужденного испускания  $(b_{21}(\Omega))$  связаны между собой соотношением

$$b_{21}(\Omega) = b_{12}(\Omega) \exp(-\hbar\Omega/k_B T), \qquad (1)$$

где  $\Omega = \omega - \omega_{21}$  — отстройка частоты излучения  $\omega$ по отношению к частоте перехода  $\omega_{21}$  между уровнями  $|2\rangle$  и  $|1\rangle$ ,  $\hbar$  — постоянная Планка,  $k_B$  — постоянная Больцмана, T — температура. Соотношение (1) сохраняет силу при любом знаке  $\Omega$ . В случае, когда  $\hbar |\Omega| \ll k_B T$ , из (1) следует каноническое равенство для вероятностей поглощения и индуцированного испускания.

Отметим, что необходимость введения множителя  $\exp(-\hbar\Omega/k_BT)$  для процессов поглощения и вынужденного испускания из термодинамических соображений впервые была отмечена еще в работах Галлагера с соавторами [1] (см. также [2]). Более того, из результатов [1, 2] следует и соотношение (1), хотя оно и не было явно приведено в этих работах.

В работах Старостина с соавторами [3–5] на основе метода кинетических функций Грина [11] построена обобщенная теория переноса резонансного излучения, справедливая для широких спектральных линий. В работах [3–5] строго обосновано появление

<sup>&</sup>lt;sup>\*</sup>E-mail: par@iae.nsk.su

<sup>\*\*</sup>E-mail: shalagin@iae.nsk.su

множителя  $\exp(-\hbar\Omega/k_BT)$  в уравнениях переноса излучения.

Ярким следствием соотношения (1) является формирование инверсии населенностей в двухуровневой системе при поглощении непрерывного лазерного излучения в «синем» крыле спектральной линии и при частых столкновениях (при больших давлениях буферного газа). Этот эффект зарегистрирован экспериментально в виде генерации когерентного излучения на резонансном переходе атомов натрия (*D*-линии) [6, 8–10]. В этих экспериментах лазерная генерация наблюдалась в режиме сверхсветимости (за один проход активной среды) в широком диапазоне положительных отстроек излучения накачки (до 400 см<sup>-1</sup> от центра *D*<sub>2</sub>-линии [10]) и только в присутствии буферного газа при достаточно высоком его давлении (более 200 Торр).

Обнаруженный эффект не описывается широко и повсеместно используемыми в настоящее время квантовыми кинетическими уравнениями для матрицы плотности (см., например, [12, 13]). Из этих уравнений не следует соотношение (1) и возможность возникновения инверсии населенностей в двухуровневой системе при нерезонансном оптическом возбуждении. Причина состоит в том, что при выводе этих уравнений предполагалось, что все радиационные процессы происходят в течение времени свободного пробега. Это допущение справедливо в области отстроек частоты излучения, не сильно выходящих за пределы ударной полуширины линии поглощения Г. При большой отстройке частоты

$$|\Omega| \gg \Gamma \tag{2}$$

и значительном ударном уширении (как в экспериментах [6, 8–10]) ситуация радикально меняется. Как показано в работах [14–16], в этих условиях радиационные переходы осуществляются в акте столкновений, а не на свободном пробеге (так называемые оптические столкновения). Учет этого обстоятельства должен привести к коррекции привычных кинетических уравнений для матрицы плотности, определенной в базисе невозмущенных атомных состояний. Влияние внешнего электромагнитного поля на интегралы столкновений в квантовых кинетических уравнениях рассматривалось ранее в ряде работ [15, 17–19]. Однако в этих работах не исследовался вопрос о необходимости введения множителя  $\exp(-\hbar\Omega/k_BT)$  для процессов поглощения и вынужденного испускания. Целью настоящей работы является обобщение квантовых кинетических уравнений для матрицы плотности с тем, чтобы в них естественным образом учитывался эффект неравенства

спектральных плотностей коэффициентов Эйнштейна для поглощения и вынужденного испускания (см. соотношение (1)).

#### 2. ПОСТАНОВКА ЗАДАЧИ

Остановимся подробнее на постановке задачи. Рассмотрим газ поглощающих излучение двухуровневых частиц (с основным уровнем |1) и возбужденным уровнем  $|2\rangle$ ), находящихся в смеси с буферным газом. Столкновениями между поглощающими частицами пренебрежем, полагая концентрацию буферного газа N<sub>b</sub> много большей концентрации поглощающего газа N. Полагаем, что при столкновениях внутренние состояния двухуровневых частиц не меняются (упругие столкновения). Пусть на поглощающие частицы воздействует монохроматическое поле  $\boldsymbol{\mathcal{E}} = \operatorname{Re} \mathbf{E} \exp(-i\omega t)$  с частотой  $\omega$ , близкой к частоте  $\omega_{21}$  перехода  $|2\rangle - |1\rangle$  между уровнями (здесь Е — напряженность электрического поля излучения). Будем рассматривать случай однородного уширения линии поглощения, когда доплеровская ширина мала по сравнению с ударной (случай достаточно высокого давления буферного газа). В резонансном приближении (отстройка частоты от резонанса мала по сравнению с частотой перехода, приближение вращающейся волны) взаимодействие излучения с частицами описывается следующими кинетическими уравнениями для элементов матрицы плотности, определенной в базисе невозмущенных атомных состояний [13]:

$$\frac{d}{dt}\rho_{22} = -A\rho_{22} - 2\operatorname{Re}\left(iG^*\rho_{21}\right) + \left(\frac{\partial\rho_{22}}{\partial t}\right)_{coll},$$

$$\frac{d}{dt}\rho_{11} = A\rho_{22} + 2\operatorname{Re}\left(iG^*\rho_{21}\right) + \left(\frac{\partial\rho_{11}}{\partial t}\right)_{coll},$$

$$\left(\frac{d}{dt} + \frac{A}{2} - i\Omega\right)\rho_{21} = iG(\rho_{11} - \rho_{22}) + \left(\frac{\partial\rho_{21}}{\partial t}\right)_{coll},$$
(3)

где

$$\Omega = \omega - \omega_{21}, \quad G = \frac{d_{21}E}{2\hbar}.$$
 (4)

Здесь  $\rho_{ii}$  — населенность уровня  $|i\rangle$  (i = 1, 2), A — скорость спонтанного распада возбужденного уровня  $|2\rangle, d_{21}$  — матричный элемент дипольного момента перехода  $|2\rangle - |1\rangle, (\partial \rho_{ij}/\partial t)_{coll}$  — интегралы столкновений, описывающие изменение элементов матрицы плотности за счет упругих столкновений с частицами буферного газа. Населенности уровней связаны с концентрацией N поглощающих частиц соотношением (условие нормировки)

$$\rho_{11} + \rho_{22} = N. \tag{5}$$

Для интегралов столкновений, входящих в уравнения (3), хорошо известны выражения через характеристики элементарного акта рассеяния (через амплитуды рассеяния), полученные в рамках ударного приближения (время столкновения значительно меньше времени свободного пробега) [13]. Эти выражения справедливы в предположении, что поле излучения не участвует в актах столкновений. Нашей задачей является нахождение интегралов столкновений  $(\partial \rho_{ij}/\partial t)_{coll}$  при большой отстройке частоты  $\Omega$ (в условиях (2)), когда радиационные переходы осуществляются в акте столкновения, а не на свободном пробеге (оптические столкновения).

Главной отличительной особенностью оптических столкновений является неразделимость акта столкновения и акта поглощения, испускания или рассеяния света [14-16]. В связи с этим будем решать столкновительную задачу на основе представлений о компаунд-системах «взаимодействующие атом + электромагнитное поле» (атом, «одетый» полем) [16, 20] как самостоятельном физическом объекте, характеризующемся своими уровнями энергии и с которым можно обращаться примерно так же, как и с обычной частицей (см., например, [19]). При таком подходе естественным образом учитывается участие поля излучения в актах столкновений «одетого» атома с буферными частицами. Если мы найдем изменение элементов матрицы плотности «одетого» атома за счет столкновений с частицами буферного газа, то, осуществляя переход от базиса «одетых» состояний к базису невозмущенных атомных состояний, получим искомые выражения для интегралов столкновений  $(\partial \rho_{ij}/\partial t)_{coll},$  входящих в уравнения (3).

# 3. ИНТЕГРАЛЫ СТОЛКНОВЕНИЙ В БАЗИСЕ «ОДЕТЫХ» СОСТОЯНИЙ

При квантовомеханическом рассмотрении «одетые» состояния атома характеризуются волновыми функциями [16, 20]

$$\begin{aligned} |\widetilde{\varphi}_{1}(n)\rangle &= b_{1}|1\rangle|n\rangle + b_{2}|2\rangle|n-1\rangle, \\ |\widetilde{\varphi}_{2}(n)\rangle &= b_{2}^{*}|1\rangle|n\rangle - b_{1}|2\rangle|n-1\rangle, \end{aligned}$$
(6)

где  $b_1$ ,  $b_2$  — коэффициенты разложения функций компаунд-системы по волновым функциям невзаимодействующих атома (состояния  $|1\rangle$ ,  $|2\rangle$ ) и поля (состояние  $|n\rangle$ , n — число фотонов в лазерном поле):

$$b_1 = \frac{1}{\sqrt{2}}\sqrt{1 - \frac{\Omega}{\Omega_R}}, \quad b_2 = \frac{G}{|G|}\frac{1}{\sqrt{2}}\sqrt{1 + \frac{\Omega}{\Omega_R}}, \quad (7)$$
$$\Omega_R = \sqrt{4|G|^2 + \Omega^2}.$$

Волновые функции (6) ортонормированы, т.е. удовлетворяют условию

$$\langle \widetilde{\varphi}_i(n) | \widetilde{\varphi}_j(k) \rangle = \delta_{ij} \delta_{nk}, \qquad (8)$$

где  $\delta_{ij}$  — символ Кронекера. Строго говоря, коэффициенты  $b_1$ ,  $b_2$  зависят от n. Однако мы пренебрегли их изменением в зависимости от n, полагая, что в квантовомеханическом состоянии лазерного поля неопределенность числа фотонов  $\Delta n$  много меньше среднего числа фотонов  $\overline{n}$ , которое считаем большим:

$$\Delta n \ll \overline{n}, \qquad \overline{n} \gg 1.$$
 (9)

Состояниям  $|\widetilde{\varphi}_i(n)\rangle$  «одетого» атома соответствуют энергии  $\widetilde{E}_i(n)$ , равные

$$\widetilde{E}_1(n) = E_1 + n\hbar\omega - \frac{\hbar(\Omega + \Omega_R)}{2}, \qquad (10)$$
$$\widetilde{E}_2(n) = \widetilde{E}_1(n) + \hbar\Omega_R,$$

где  $E_1$  — энергия атома в состоянии  $|1\rangle$ . Согласно (10) состояние  $|\tilde{\varphi}_2(n)\rangle$  «одетого» атома расположено выше состояния  $|\tilde{\varphi}_1(n)\rangle$  на величину обобщенной частоты Раби  $\Omega_R$  (в частотной шкале), а состояния  $|\tilde{\varphi}_i(n)\rangle$  и  $|\tilde{\varphi}_i(n\pm 1)\rangle$  отделены друг от друга на величину частоты поля излучения  $\omega$  (рис. 1).

Столкновительную релаксацию компаунд-системы «атом + поле» удобно рассматривать в рамках метода матрицы плотности. Элементы матрицы плотности компаунд-системы в базисе «одетых» состояний определяются выражением

$$\widetilde{\rho}_{in,jk} = \langle \widetilde{\varphi}_i(n) | \, \widetilde{\rho} \, | \widetilde{\varphi}_j(k) \rangle, \quad \widetilde{\rho}_{jk,in} = \widetilde{\rho}^*_{in,jk}, \qquad (11)$$

где  $\tilde{\rho}$  — оператор плотности, равный

$$\widetilde{\rho} = \sum_{injk} \widetilde{\rho}_{in,jk} |\widetilde{\varphi}_i(n)\rangle \langle \widetilde{\varphi}_j(k)|, \quad i, j = 1, 2.$$
(12)

Изменение элементов матрицы плотности «одетого» атома за счет столкновений с частицами буферного газа можно описывать уравнениями [15,19–21]

$$\left(\frac{\partial \tilde{\rho}_{2n,2k}}{\partial t}\right)_{coll} = -\tilde{\nu}_{21}\tilde{\rho}_{2n,2k} + \tilde{\nu}_{12}\tilde{\rho}_{1n,1k}, 
\left(\frac{\partial \tilde{\rho}_{1n,1k}}{\partial t}\right)_{coll} = -\tilde{\nu}_{12}\tilde{\rho}_{1n,1k} + \tilde{\nu}_{21}\tilde{\rho}_{2n,2k}, \qquad (13) 
\left(\frac{\partial \tilde{\rho}_{2n,1k}}{\partial t}\right)_{coll} = -\tilde{\nu}\tilde{\rho}_{2n,1k},$$



Рис.1. Схема уровней и столкновительных переходов в «одетом» атоме

где  $\tilde{\nu}_{21}$ ,  $\tilde{\nu}_{12}$ ,  $\tilde{\nu}$  — частоты столкновений. Их изменением с изменением *n*, в рамках условия (9), можно пренебречь. Уравнения (13) справедливы при выполнении условия разделенности уровней «одетого» атома:

$$\Omega_R \gg \widetilde{\nu}_{21}, \widetilde{\nu}_{12}, |\widetilde{\nu}|, A. \tag{14}$$

Это условие позволяет пренебречь столкновительной связью между элементами матрицы плотности, эволюционирующих на различных частотах (секулярное приближение [13, 22]). Заметим, что условие (14) заведомо выполнено при интересующих нас больших отстройках частоты |Ω| ≫ Г (см. (2)).

При k = n уравнения (13) описывают столкновительные переходы между уровнями  $|\tilde{\varphi}_1(n)\rangle$  и  $|\tilde{\varphi}_2(n)\rangle$ (эти переходы показаны на рис. 1 изогнутыми стрелками) и релаксацию низкочастотной когерентности  $\tilde{\rho}_{2n,1n}$  между состояниями  $|\tilde{\varphi}_2(n)\rangle$  и  $|\tilde{\varphi}_1(n)\rangle$ . Частоты столкновений в уравнениях (13) не меняются с изменением n, поэтому представленная картина столкновительной релаксации позволяет свести задачу к эффективной двухуровневой модели «одетых» атомов (с двумя уровнями  $|\tilde{\varphi}_1(n)\rangle$  и  $|\tilde{\varphi}_2(n)\rangle$ , рис. 2). Мы можем утверждать, что частоты переходов  $\tilde{\nu}_{21}$  и  $\tilde{\nu}_{12}$ 



Рис.2. Эффективная двухуровневая модель «одетых» атомов для релаксационной задачи

вещественные и в силу принципа детального равновесия связаны между собой соотношением (см., например, [23])

$$\widetilde{\nu}_{12} \\
\widetilde{\nu}_{21} \equiv \xi = \exp\left(-\frac{\hbar\Omega_R}{k_BT}\right).$$
(15)

В работах [15, 19–21] рассматривался случай  $\hbar\Omega_R \ll \& k_B T$  и поэтому полагалось  $\tilde{\nu}_{12} = \tilde{\nu}_{21}$ . Для рассматриваемой нами задачи принципиально важно наличие экспоненциального фактора в (15), так как обусловленное им различие частот  $\tilde{\nu}_{12}$  и  $\tilde{\nu}_{21}$  приводит, как мы увидим далее, к существенному дисбалансу между процессами испускания и поглощения излучения квантовой системой.

### 4. ЧАСТОТЫ СТОЛКНОВЕНИЙ

Концепция «одетых» атомов позволяет «автоматически», естественным образом учитывать в столкновительной задаче то обстоятельство, что при большой отстройке частоты излучения поле участвует в актах столкновений «одетого» атома с буферными частицами. Для эффективной двухуровневой модели «одетых» атомов (рис. 2) можно использовать уже известные выражения для интегралов столкновений [13], полученные в рамках ударного приближения (это приближение означает, что время столкновения значительно меньше времени свободного пробега). Предполагая, что активные и буферные частицы имеют равновесное (максвелловское) распределение по скоростям, для частот столкновений из формул, приведенных в работе [13], можно получить следующие выражения через характеристики элементарного акта рассеяния (через амплитуды рассеяния):

$$\begin{split} \widetilde{\nu}_{12} &= \frac{2N_b}{\left(\sqrt{\pi \,\overline{u}\,}\right)^3} \int d\mathbf{u} \, d\mathbf{u}_1 \exp\left(-\frac{\mathbf{u}^2}{\overline{u}^2}\right) \times \\ &\times |f_{21}\left(\mathbf{u}_1|\mathbf{u}\right)|^2 \delta\left[\mathbf{u}_1^2 - \mathbf{u}^2 + \frac{2\hbar\Omega_R}{\mu}\right], \\ \widetilde{\nu}_{21} &= \frac{2N_b}{\left(\sqrt{\pi \,\overline{u}\,}\right)^3} \int d\mathbf{u} \, d\mathbf{u}_1 \exp\left(-\frac{\mathbf{u}^2}{\overline{u}^2}\right) \times \\ &\times |f_{12}\left(\mathbf{u}_1|\mathbf{u}\right)|^2 \delta\left[\mathbf{u}_1^2 - \mathbf{u}^2 - \frac{2\hbar\Omega_R}{\mu}\right], \\ \widetilde{\nu} &= \frac{2N_b}{\left(\sqrt{\pi \,\overline{u}\,}\right)^3} \int d\mathbf{u} \exp\left(-\frac{\mathbf{u}^2}{\overline{u}^2}\right) \times \\ &\times \left\{\frac{\pi\hbar}{i\mu} \left[f_{22}\left(\mathbf{u}|\mathbf{u}\right) - f_{11}^*\left(\mathbf{u}|\mathbf{u}\right)\right] - \\ &- \int d\mathbf{u}_1 f_{22}\left(\mathbf{u}_1|\mathbf{u}\right) f_{11}^*\left(\mathbf{u}_1|\mathbf{u}\right) \delta\left(\mathbf{u}_1^2 - \mathbf{u}^2\right)\right\}, \\ &\overline{u} = \sqrt{\frac{2k_BT}{\mu}}, \end{split}$$
(16)

где **u** и **u**<sub>1</sub> — относительные скорости сталкивающихся частиц соответственно до и после столкновения,  $\mu$  — приведенная масса сталкивающихся частиц,  $\delta(x)$  — дельта-функция,  $f_{ji}(\mathbf{u}_1|\mathbf{u})$  — амплитуды рассеяния «одетого» атома на бесструктурной буферной частице, индексами *i* и *j* (*i*, *j* = 1, 2) обозначена совокупность квантовых чисел соответственно начального и конечного состояний «одетого» атома (индексу «1» соответствует состояние  $|\tilde{\varphi}_1(n)\rangle$  с энергией  $\tilde{E}_1(n)$ , индексу «2» — состояние  $|\tilde{\varphi}_2(n)\rangle$  с энергией  $\tilde{E}_2(n)$ , см. рис. 2).

Из выражений (16) нетрудно получить соотношение (15) для частот переходов  $\tilde{\nu}_{12}$  и  $\tilde{\nu}_{21}$ . Сделаем в формуле для  $\tilde{\nu}_{12}$  в (16) замену переменных интегрирования

$$\mathbf{u} \to -\mathbf{u}_1, \quad \mathbf{u}_1 \to -\mathbf{u}.$$
 (17)

Тогда получим

$$\widetilde{\nu}_{12} = \frac{2N_b}{\left(\sqrt{\pi\,\overline{u}\,}\right)^3} \int d\mathbf{u} \, d\mathbf{u}_1 \, \exp\left(-\frac{\mathbf{u}_1^2}{\overline{u}^2}\right) \times \\ \times |f_{21}\left(-\mathbf{u}|-\mathbf{u}_1\right)|^2 \delta\left[\mathbf{u}_1^2 - \mathbf{u}^2 - \frac{2\hbar\Omega_R}{\mu}\right]. \quad (18)$$

Используя теорему взаимности для амплитуд прямого и обратного процессов [13, 24],

$$f_{21}(-\mathbf{u} | -\mathbf{u}_1) = f_{12}(\mathbf{u}_1 | \mathbf{u}), \tag{19}$$

формулу (18) можно преобразовать к виду

$$\widetilde{\nu}_{12} = \frac{2N_b}{\left(\sqrt{\pi}\,\overline{u}\,\right)^3} \exp\left(-\frac{2\hbar\Omega_R}{\mu\overline{u}^2}\right) \times \\ \times \int d\mathbf{u} \, d\mathbf{u}_1 \exp\left(-\frac{\mathbf{u}^2}{\overline{u}^2}\right) \times \\ \times |f_{12}\left(\mathbf{u}_1|\mathbf{u}\right)|^2 \,\delta\left[\mathbf{u}_1^2 - \mathbf{u}^2 - \frac{2\hbar\Omega_R}{\mu}\right]. \quad (20)$$

Сравнивая формулу (20) с формулой (16) для  $\tilde{\nu}_{21}$ , получаем соотношение (15) с экспоненциальным фактором для отношения частот переходов  $\tilde{\nu}_{12}$  и  $\tilde{\nu}_{21}$ .

С помощью оптической теоремы [13, 24],

$$\operatorname{Im} f_{ii}\left(\mathbf{u}|\mathbf{u}\right) = \frac{\mu}{2\pi\hbar} \sum_{j} \int d\mathbf{u}_{1} |f_{ji}\left(\mathbf{u}_{1}|\mathbf{u}\right)|^{2} \times \delta \left[\mathbf{u}_{1}^{2} - \mathbf{u}^{2} - \frac{2\hbar\Omega_{R}}{\mu}\operatorname{sign}(i-j)\right], \quad i, j = 1, 2, \quad (21)$$

из формул (16) также легко извлечь соотношение

$$2\operatorname{Re}\widetilde{\nu} = \widetilde{\nu}_{12} + \widetilde{\nu}_{21} + \frac{2N_b}{\left(\sqrt{\pi \,\overline{u}\,}\right)^3} \int d\mathbf{u} \, d\mathbf{u}_1 \exp\left(-\frac{\mathbf{u}^2}{\overline{u}^2}\right) \times |f_{11}\left(\mathbf{u}_1|\mathbf{u}\right) - f_{22}\left(\mathbf{u}_1|\mathbf{u}\right)|^2 \,\delta\left(\mathbf{u}_1^2 - \mathbf{u}^2\right). \quad (22)$$

Отсюда следует неравенство

$$2\operatorname{Re}\widetilde{\nu} \ge \widetilde{\nu}_{12} + \widetilde{\nu}_{21},\tag{23}$$

переходящее в равенство лишь в случае одинакового рассеяния в состояниях 1 и 2 (при  $f_{11}(\mathbf{u}_1|\mathbf{u}) = f_{22}(\mathbf{u}_1|\mathbf{u})$ ).

Расчет амплитуд рассеяния, входящих в формулы (16), в общем случае является сложной задачей и трудоемкость вычислений требует применения различных приближенных методов. При рассеянии быстрых частиц, когда длина волны де Бройля много меньше характерного радиуса взаимодействия  $\rho_W$  и модуль потенциала взаимодействия  $U(\mathbf{r})$  значительно меньше кинетической энергии сталкивающихся частиц,

$$\frac{\hbar}{\mu u} \ll \rho_W, \quad |U(\mathbf{r})| \ll \frac{\mu u^2}{2}, \tag{24}$$

применимо приближение эйконала [13, 24]. В этом приближении для амплитуд рассеяния справедливо выражение [13]

$$f_{fi} \left( \mathbf{u}_{f} | \mathbf{u}_{i} \right) = i \frac{\mu u_{f}}{2\pi\hbar} \int \left[ \delta_{fi} - S_{fi}(\boldsymbol{\rho}) \right] \times \\ \times \exp \left[ i \frac{\mu u_{f}}{\hbar} \left( \widehat{\mathbf{u}}_{i} - \widehat{\mathbf{u}}_{f} \right) \boldsymbol{\rho} \right] d\boldsymbol{\rho}, \\ \widehat{\mathbf{u}}_{i} \equiv \frac{\mathbf{u}_{i}}{u_{i}}, \quad \widehat{\mathbf{u}}_{f} \equiv \frac{\mathbf{u}_{f}}{u_{f}}, \\ u_{f}^{2} = u_{i}^{2} + \frac{2\hbar\Omega_{R}}{\mu} \operatorname{sign}(i - f), \quad i, f = 1, 2, \end{cases}$$

$$(25)$$

 $4^{*}$ 

где функции  $S_{fi}(\boldsymbol{\rho})$  (вектор  $\boldsymbol{\rho}$  — проекция радиуса-вектора  $\boldsymbol{r}$  на плоскость, перпендикулярную к скорости  $\mathbf{u}_i$ ) определяются из уравнений

$$\left(\widehat{\mathbf{u}}_{i}\nabla + i\frac{\widetilde{U}_{ff}}{\hbar u_{f}}\right)S_{fi} = \\ = -\frac{i}{\hbar u_{f}}\sum_{j\neq f}\widetilde{U}_{fj}S_{ji}\exp\left[i\frac{\mu}{\hbar}\left(u_{j}-u_{f}\right)\mathbf{r}\cdot\widehat{\mathbf{u}}_{i}\right], \quad ^{(26)}$$
$$\widetilde{U}_{fi} = \langle\widetilde{\varphi}_{f}(n)|U(\mathbf{r})|\widetilde{\varphi}_{i}(n)\rangle, \quad i, j, f = 1, 2.$$

Матричные элементы  $\widetilde{U}_{ii}$  потенциала взаимодействия  $U(\mathbf{r})$  в базисе «одетых» состояний характеризуют столкновительные сдвиги уровней  $|\widetilde{\varphi}_i(n)\rangle$  компаунд-системы, матричные элементы  $\widetilde{U}_{ij}$   $(i \neq j)$ характеризуют столкновительные переходы между уровнями  $|\widetilde{\varphi}_i(n)\rangle$  и  $|\widetilde{\varphi}_j(n)\rangle$  компаунд-системы (i, j = 1, 2).

Принимая во внимание соотношения (6), для матричных элементов  $\tilde{U}_{ij}$  получаем следующие выражения через матричные элементы  $U_{ii}$  потенциала взаимодействия в базисе невозмущенных состояний атома (полагаем, что между уровнями активной частицы столкновительных переходов нет, поэтому  $U_{12} = U_{21} = 0$ ) [6, 14, 16]:

$$\widetilde{U}_{11} = \frac{U_{11} + U_{22}}{2} - \frac{\Omega}{2\Omega_R} (U_{11} - U_{22}), 
\widetilde{U}_{22} = \frac{U_{11} + U_{22}}{2} + \frac{\Omega}{2\Omega_R} (U_{11} - U_{22}), 
\widetilde{U}_{12} = \frac{G^*}{\Omega_R} (U_{11} - U_{22}), \quad \widetilde{U}_{21} = \widetilde{U}_{12}^*, 
U_{ii} = \langle i | U(\mathbf{r}) | i \rangle \quad i = 1, 2.$$
(27)

Матричные элементы U<sub>ii</sub> характеризуют сдвиги уровней  $|i\rangle$  активной частицы за счет столкновений. Заметим, что матричные элементы  $\widetilde{U}_{ij}$  содержат в себе как параметры исходного потенциала взаимодействия сталкивающихся частиц, так и параметры излучения. Это значит, что в акте столкновения участвует квант поля излучения. В базисе невозмущенных состояний атома столкновения не приводят к переходам между состояниями  $|1\rangle$  и  $|2\rangle$  ( $U_{12} = 0$ ) и в этом смысле являются «упругими». Ненулевая интенсивность излучения ( $G \neq 0$ ) приводит к появлению столкновительных переходов между уровнями  $|\widetilde{\varphi}_1(n)\rangle$  и  $|\widetilde{\varphi}_2(n)\rangle$  «одетого» атома  $(U_{12} \neq 0)$ , т.е. столкновения приобретают неупругий канал с энергетическим «зазором»  $\hbar\Omega_R$ . Происходит изменение и упругого канала рассеяния.

Конкретный расчет частот столкновений по приведенным выше формулам выходит за рамки нашего анализа и может быть предметом отдельной работы.

### 5. ИНТЕГРАЛЫ СТОЛКНОВЕНИЙ В БАЗИСЕ НЕВОЗМУЩЕННЫХ АТОМНЫХ СОСТОЯНИЙ

Найдем теперь искомые выражения для интегралов столкновений  $(\partial \rho_{ij}/\partial t)_{coll}$  в уравнениях (3), исходя из уравнений (13), описывающих изменение элементов матрицы плотности «одетого» атома за счет столкновений с частицами буферного газа. Для этого необходимо найти связь между элементами матрицы плотности в различных базисах.

Приведем здесь некоторые соотношения, необходимые в дальнейшем для расчетов. Элементы матрицы плотности  $\rho_{in,jk}$  в базисе состояний «невзаимодействующие атом + поле» определяются выражением

$$\rho_{in,jk} = \langle i | \langle n | \, \widetilde{\rho} \, | j \rangle | k \rangle, \quad \rho_{jk,in} = \rho_{in,jk}^*. \tag{28}$$

Индексы i, j относятся к стационарным состояниям свободного атома (i, j = 1, 2), а индексы n, k — числа фотонов в поле. Из (28) следует, что оператор плотности  $\tilde{\rho}$  (12) можно записать также в виде

$$\widetilde{\rho} = \sum_{injk} \rho_{in,jk} \left( |i\rangle\langle j| \right) \left( |n\rangle\langle k| \right).$$
(29)

Состояние атомной подсистемы описывает приведенный (редуцированный) оператор плотности  $\rho$ :

$$\rho = \sum_{n} \langle n | \tilde{\rho} | n \rangle = \sum_{inj} \rho_{in,jn} | i \rangle \langle j |.$$
 (30)

Отсюда находим элементы матрицы плотности  $\rho_{ij}$  в атомном базисе:

$$\rho_{ij} \equiv \langle i|\rho|j\rangle = \sum_{n} \rho_{in,jn}, \quad \rho_{ji} = \rho_{ij}^*.$$
(31)

Выразим матричные элементы  $\rho_{in,jk}$  через  $\tilde{\rho}_{in,jk}$ , используя формулы (28), (12) и (6):

$$\rho_{1n,1k} = b_1^2 \widetilde{\rho}_{1n,1k} + |b_2|^2 \widetilde{\rho}_{2n,2k} + b_1 b_2 \widetilde{\rho}_{1n,2k} + + b_1 b_2^* \widetilde{\rho}_{2n,1k}, \rho_{2n,2k} = |b_2|^2 \widetilde{\rho}_{1n+1,1k+1} + b_1^2 \widetilde{\rho}_{2n+1,2k+1} - - b_1 b_2 \widetilde{\rho}_{1n+1,2k+1} - b_1 b_2^* \widetilde{\rho}_{2n+1,1k+1}, \rho_{2n,1k} = b_1 b_2 (\widetilde{\rho}_{1n+1,1k} - \widetilde{\rho}_{2n+1,2k}) + + b_2^2 \widetilde{\rho}_{1n+1,2k} - b_1^2 \widetilde{\rho}_{2n+1,1k}.$$
(32)

Обратное преобразование с использованием формул (11), (29) и (6) приводит к соотношениям

$$\widetilde{\rho}_{1n,1k} = b_1^2 \rho_{1n,1k} + |b_2|^2 \rho_{2n-1,2k-1} + + b_1 b_2 \rho_{1n,2k-1} + b_1 b_2^* \rho_{2n-1,1k}, \widetilde{\rho}_{2n,2k} = |b_2|^2 \rho_{1n,1k} + b_1^2 \rho_{2n-1,2k-1} - - b_1 b_2 \rho_{1n,2k-1} - b_1 b_2^* \rho_{2n-1,1k}, \widetilde{\rho}_{2n,1k} = b_1 b_2 (\rho_{1n,1k} - \rho_{2n-1,2k-1}) + + b_2^2 \rho_{1n,2k-1} - b_1^2 \rho_{2n-1,1k}.$$
(33)

Найдем связь между интегралами столкновений в различных базисах. На основе уравнений (32) с учетом соотношения  $b_1b_2 = G/\Omega_R$  получаем выражения для интегралов столкновений, определенных в базисе состояний «невзаимодействующие атом + поле», через интегралы столкновений, определенные в базисе «одетых» состояний:

$$\left(\frac{\partial \rho_{1n,1n}}{\partial t}\right)_{coll} = b_1^2 \left(\frac{\partial \tilde{\rho}_{1n,1n}}{\partial t}\right)_{coll} + \\ + |b_2|^2 \left(\frac{\partial \tilde{\rho}_{2n,2n}}{\partial t}\right)_{coll} + \\ + \frac{2}{\Omega_R} \operatorname{Re} \left[G^* \left(\frac{\partial \tilde{\rho}_{2n,1n}}{\partial t}\right)_{coll}\right], \quad (34)$$

$$\begin{split} \left(\frac{\partial\rho_{2n,1n}}{\partial t}\right)_{coll} &= \frac{G}{\Omega_R} \left[ \left(\frac{\partial\tilde{\rho}_{1n+1,1n}}{\partial t}\right)_{coll} - \\ &- \left(\frac{\partial\tilde{\rho}_{2n+1,2n}}{\partial t}\right)_{coll} \right] + \\ &+ b_2^2 \left(\frac{\partial\tilde{\rho}_{1n+1,2n}}{\partial t}\right)_{coll} - b_1^2 \left(\frac{\partial\tilde{\rho}_{2n+1,1n}}{\partial t}\right)_{coll}. \end{split}$$
(35)

Преобразуем правые части этих выражений к базису состояний «невзаимодействующие атом + поле». Выражение (34) с помощью соотношений (13) и (33) преобразуется к следующему виду (величина  $\xi$  экспоненциальный фактор (15)):

$$\left(\frac{\partial\rho_{1n,1n}}{\partial t}\right)_{coll} = \frac{\Omega}{\Omega_R} \tilde{\nu}_{21} \left[ \left(\xi b_1^2 - |b_2|^2\right) \rho_{1n,1n} + \left(\xi |b_2|^2 - b_1^2\right) \rho_{2n-1,2n-1} + \frac{2(1+\xi)}{\Omega_R} \operatorname{Re} \left(G^* \rho_{2n-1,1n}\right) \right] + \frac{2}{\Omega_R} \operatorname{Re} \left[ \tilde{\nu} \left( b_1^2 G^* \rho_{2n-1,1n} - |b_2|^2 G \rho_{1n,2n-1} \right) \right] - \frac{2|G|^2 \operatorname{Re} \tilde{\nu}}{\Omega_R^2} \left( \rho_{1n,1n} - \rho_{2n-1,2n-1} \right).$$
(36)

Аналогично, уравнение (35) преобразуется к виду

$$\left(\frac{\partial \rho_{2n,1n}}{\partial t}\right)_{coll} = = -\left[\tilde{\nu}b_1^4 + \tilde{\nu}^* |b_2|^4 + \frac{2(1+\xi)|G|^2 \tilde{\nu}_{21}}{\Omega_R^2}\right] \rho_{2n,1n} + + \frac{G}{\Omega_R} \left[(2\tilde{\nu}_{21} - \tilde{\nu}^*) |b_2|^2 - (2\xi\tilde{\nu}_{21} - \tilde{\nu}) b_1^2\right] \rho_{1n+1,1n} + + \frac{G}{\Omega_R} \left[(2\tilde{\nu}_{21} - \tilde{\nu}) b_1^2 - (2\xi\tilde{\nu}_{21} - \tilde{\nu}^*) |b_2|^2\right] \rho_{2n,2n-1} + + \frac{2G^2}{\Omega_R^2} \left[\operatorname{Re}\tilde{\nu} - (1+\xi)\tilde{\nu}_{21}\right] \rho_{1n+1,2n-1}.$$
(37)

Чтобы получить искомые выражения для интегралов столкновений  $(\partial \rho_{ij}/\partial t)_{coll}$  в базисе невозмущенных атомных состояний, нам нужно, согласно (31), просуммировать по *n* выражения (36), (37). При выполнении суммирования в правых частях выражений (36), (37) в силу условия (9) можно полагать

$$\rho_{in,jn\pm 1} \approx \rho_{in,jn}, \quad \rho_{in,jn\pm 2} \approx \rho_{in,jn}.$$
(38)

В результате для интегралов столкновений, входящих в уравнения (3), получаем следующие выражения:

$$\left(\frac{\partial\rho_{11}}{\partial t}\right)_{coll} = \frac{\Omega}{\Omega_R} \,\widetilde{\nu}_{21} \left[ \left(\xi b_1^2 - |b_2|^2\right) \rho_{11} + \left(\xi |b_2|^2 - b_1^2\right) \rho_{22} \right] - \frac{2|G|^2 \,\widetilde{\nu}'}{\Omega_R^2} \left(\rho_{11} - \rho_{22}\right) + \frac{2\widetilde{\nu}''}{\Omega_R} \times \\ \times \operatorname{Re} \left(iG^*\rho_{21}\right) + \frac{2\Omega}{\Omega_R^2} \left[ (1+\xi)\widetilde{\nu}_{21} - \widetilde{\nu}' \right] \operatorname{Re} \left(G^*\rho_{21}\right), \quad (39)$$

$$\begin{pmatrix} \frac{\partial \rho_{21}}{\partial t} \end{pmatrix}_{coll} = -\left[ \left( 1 + \frac{\Omega^2}{\Omega_R^2} \right) \frac{\widetilde{\nu}'}{2} - i \frac{\Omega}{\Omega_R} \widetilde{\nu}'' \right] \rho_{21} + \\ + \frac{G}{\Omega_R} \left( i \widetilde{\nu}'' - \frac{\Omega}{\Omega_R} \widetilde{\nu}' \right) \left( \rho_{11} - \rho_{22} \right) - \\ - \frac{2G \widetilde{\nu}_{21}}{\Omega_R} \left[ \left( \xi b_1^2 - |b_2|^2 \right) \rho_{11} + \left( \xi |b_2|^2 - b_1^2 \right) \rho_{22} \right] + \\ + \frac{2G^2 \widetilde{\nu}'}{\Omega_R^2} \rho_{21}^* - \frac{4(1 + \xi)G \widetilde{\nu}_{21}}{\Omega_R^2} \operatorname{Re} \left( G^* \rho_{21} \right).$$
(40)

Здесь  $\tilde{\nu}'$  и  $\tilde{\nu}''$  обозначают соответственно действительную и мнимую части комплексной величины  $\tilde{\nu}$ . Интеграл столкновений  $(\partial \rho_{22}/\partial t)_{coll}$  определяется правой частью формулы (39) с обратным знаком, так как из суммы первых двух уравнений в (3) при N = const следует соотношение

$$\left(\frac{\partial\rho_{22}}{\partial t}\right)_{coll} = -\left(\frac{\partial\rho_{11}}{\partial t}\right)_{coll}.$$
 (41)

### 6. КИНЕТИЧЕСКИЕ УРАВНЕНИЯ ДЛЯ МАТРИЦЫ ПЛОТНОСТИ

С учетом интегралов столкновений (39)-(41) при условии (14) кинетические уравнения (3) для матрицы плотности принимают следующий вид (второе уравнение в (3) исключаем, принимая во внимание условие нормировки (5)):

$$\begin{pmatrix} \frac{d}{dt} + A \end{pmatrix} \rho_{22} = -2 \operatorname{Re} \left( iG^* \rho_{21} \right) - \\ - \frac{2\Omega}{\Omega_R^2} \left[ (1+\xi) \tilde{\nu}_{21} - \tilde{\nu}' \right] \operatorname{Re} \left( G^* \rho_{21} \right) + \\ + \frac{\Omega}{\Omega_R} \tilde{\nu}_{21} \left[ \left( |b_2|^2 - \xi b_1^2 \right) \rho_{11} + \left( b_1^2 - \xi |b_2|^2 \right) \rho_{22} \right] + \\ + \frac{2|G|^2 \tilde{\nu}'}{\Omega_R^2} \left( \rho_{11} - \rho_{22} \right), \\ \left[ \frac{d}{dt} + \frac{A}{2} + \left( 1 + \frac{\Omega^2}{\Omega_R^2} \right) \frac{\tilde{\nu}'}{2} - \\ - i \frac{\Omega}{\Omega_R} \tilde{\nu}'' - i\Omega \right] \rho_{21} = G \left( i - \frac{\Omega \tilde{\nu}'}{\Omega_R^2} \right) \left( \rho_{11} - \rho_{22} \right) + \\ + \frac{2G \tilde{\nu}_{21}}{\Omega_R} \left[ \left( |b_2|^2 - \xi b_1^2 \right) \rho_{11} + \left( b_1^2 - \xi |b_2|^2 \right) \rho_{22} \right] + \\ + \frac{2G^2 \tilde{\nu}'}{\Omega_R^2} \rho_{21}^* - \frac{4(1 + \xi) G \tilde{\nu}_{21}}{\Omega_R^2} \operatorname{Re} (G^* \rho_{21}).$$

ЖЭТФ, том **140**, вып. 5 (11), 2011

Уравнения (42) заметно упрощаются при не слишком высокой интенсивности излучения, такой что

$$|G| \ll |\Omega|. \tag{43}$$

При этом в уравнениях (42) можно полагать, что

$$\Omega_R = |\Omega|, \quad b_1 = \begin{cases} 0, & \Omega > 0, \\ 1, & \Omega < 0, \end{cases}$$

$$|b_2| = \begin{cases} 1, & \Omega > 0, \\ 0, & \Omega < 0, \end{cases}$$
(44)

и тогда они принимают вид

$$\left(\frac{d}{dt} + A\right)\rho_{22} = P_{pol} + P_{oc},$$

$$\left[\frac{d}{dt} + \frac{A}{2} + \tilde{\nu}' - i\tilde{\nu}'' \operatorname{sign} \Omega - i\Omega\right]\rho_{21} = (45)$$

$$= G\left(i - \frac{\tilde{\nu}'}{\Omega}\right)(\rho_{11} - \rho_{22}) + \frac{2G}{\Omega}P_{oc}.$$

Здесь введены обозначения

пробеге), как и должно быть.

$$P_{pol} = -2 \operatorname{Re}(iG^*\rho_{21}) - \frac{2}{\Omega} \left[ (1+\xi)\tilde{\nu}_{21} - \tilde{\nu}' \right] \operatorname{Re}(G^*\rho_{21}),$$

$$P_{oc} = \begin{cases} \tilde{\nu}_{21}(\rho_{11} - \xi\rho_{22}), & \Omega > 0, \\ \tilde{\nu}_{21}(\xi\rho_{11} - \rho_{22}), & \Omega < 0, \end{cases} \quad \xi = \exp\left(-\frac{\hbar|\Omega|}{k_BT}\right).$$
(46)

Сумма  $P_{pol} + P_{oc}$  есть вероятность поглощения излучения в единицу времени атомом. Величина  $P_{oc}$ есть вероятность поглощения излучения, обусловленная неупругими столкновительными переходами между уровнями «одетого» атома ( $P_{oc}$  отлична от нуля только при  $\tilde{\nu}_{21} \neq 0$ ).

В стационарном случае из второго уравнения (45) получаем

$$P_{pol} = \frac{2|G|^2}{\Omega^2} \times \left\{ \left[ \frac{A}{2} + (1+\xi)\tilde{\nu}_{21} - \tilde{\nu}' \right] (\rho_{11} - \rho_{22}) + 2P_{oc} \right\}.$$
 (47)

Из формул (46), (47) видно, что при не слишком низком давлении буферного газа, таком что

$$\widetilde{\nu}_{21} \gg \frac{|G|^2}{\Omega^2} A,\tag{48}$$

имеет место соотношение

Оно означает, что при большой отстройке частоты излучения и при не слишком низком давлении буферного газа (в условиях (14), (43) и (48)) поглощение излучения практически целиком обусловлено оптическими столкновениями (поглощение излучения происходит в акте столкновения, а не на свободном

 $P_{oc} \gg P_{pol}$ .

Соотношение (49), полученное для стационарных условий, сохраняется и при импульсном режиме взаимодействия излучения с атомами, если характерная частота релаксации когерентности «одетого» атома  $\tilde{\nu}'$  велика по сравнению с обратным временем длительности импульса излучения  $\tau_{muls}^{-1}$ ,

$$\tilde{\nu}' \gg \tau_{puls}^{-1}.$$
 (50)

(49)

В этом случае кинетические уравнения (45) для матрицы плотности сводятся к одному балансному уравнению для населенностей уровней:

$$\left(\frac{d}{dt} + A\right)\rho_{22} = \begin{cases} \tilde{\nu}_{21}(\rho_{11} - \xi\rho_{22}), & \Omega > 0, \\ \tilde{\nu}_{21}(\xi\rho_{11} - \rho_{22}), & \Omega < 0. \end{cases}$$
(51)

Это уравнение полностью совпадает с уравнением баланса для населенностей уровней, полученным ранее [7, 8, 10] на основе соотношения (1) для спектральных плотностей коэффициентов Эйнштейна, если частоту столкновений  $\tilde{\nu}_{21}$  в (51) представить, следуя работам [14–16], в виде

$$\widetilde{\nu}_{21} = \frac{2|G|^2}{\Omega^2} \Gamma_{oc}(\Omega). \tag{52}$$

Величина  $\Gamma_{oc}(\Omega)$  входит в модифицированную формулу Лоренца [15,16], описывающую весь контур спектральной линии, включая далекие крылья. В общем случае  $\Gamma_{oc}(\Omega)$  зависит от отстройки частоты  $\Omega$  и интенсивности излучения (от параметра |G|). В случае (43) не слишком сильного поля зависимость величины  $\Gamma_{oc}(\Omega)$  от интенсивности излучения пропадает, остается зависимость только от отстройки частоты [16]. При небольшой отстройке частоты излучения ( $|\Omega| \ll \Omega_W$ , где  $\Omega_W$  – вайскопфовская частота [16]) величина  $\Gamma_{oc}(\Omega)$  равна ударной полуширине линии поглощения Г [16]. При большой отстройке частоты ( $|\Omega| \gg \Omega_W$ ) величина  $\Gamma_{oc}(\Omega)$  может быть как существенно больше, так и существенно меньше Г [16]. Частота столкновений  $\tilde{\nu}_{21}$  уменьшается с ростом модуля отстройки |Ω| [16].

В стационарных условиях из уравнения (51) с учетом соотношения (52) и условия нормировки (5) получаем известное выражение [10, 25] для разности населенностей возбужденного |2> и основного |1> уровней:

$$\rho_{22} - \rho_{11} = N \frac{\varkappa (1-\xi) \operatorname{sign} \Omega - 1}{1+(1+\xi)\varkappa},$$
  
$$\varkappa = \frac{2|G|^2 \Gamma_{oc}(\Omega)}{A\Omega^2}.$$
 (53)

Величина  $\varkappa$  имеет смысл параметра насыщения для перехода  $|2\rangle -|1\rangle$  (при  $|\Omega| \gg \Gamma$ ). Из формулы (53) следует, что при достаточно высокой интенсивности возбуждающего излучения (при  $\varkappa > 1$ ) и при положительной отстройке частоты излучения ( $\Omega > 0$ ) на переходе  $|2\rangle -|1\rangle$  возникает инверсия населенностей. Как уже говорилось во Введении, этот эффект зарегистрирован экспериментально в виде генерации когерентного излучения на резонансном переходе атомов натрия при воздействии излучения накачки на «синее» крыло линии поглощения [6, 8–10].

Отметим еще одно обстоятельство, вытекающее из уравнения (51). В работах [3–5], посвященных построению обобщенной теории переноса резонансного излучения, сделан вывод о том, что в спектре испускания в «красном» крыле линии (при  $\Omega < 0$ ) может наблюдаться сильно нерезонансный длинноволновый максимум из-за наличия экспоненциального множителя  $\exp(-\hbar\Omega/k_BT)$  в уравнениях переноса излучения. Фактически этот вывод означает, что в «красном» крыле линии скорость спонтанной релаксации возбужденного состояния должна быть больше, чем скорость релаксации этого состояния в вакууме. В то же время из уравнения (51) (мы рассматриваем стационарные условия) видно, что нерезонансный максимум в «красном» крыле линии появляться не должен, так как экспоненциальный фактор  $\xi$  и частота столкновений  $\widetilde{\nu}_{21}$  уменьшаются с ростом отстройки. Причина расхождения выводов формально связана с тем, что правая часть уравнения (51) описывается двумя разными формулами в зависимости от знака отстройки частоты  $\Omega$ , в то время как в работах [3–5] уравнение переноса излучения описывается единой формулой при любом знаке отстройки частоты.

Уравнения (51), выведенные строгим путем, легко могут быть получены из простых физических соображений. Обратимся к формулам (6), связывающим состояния  $|\tilde{\varphi}_i(n)\rangle$  «одетого» атома с состояниями свободного атома и поля. При не слишком высокой интенсивности излучения накачки (43) и в случае положительных отстроек частоты излучения ( $\Omega > 0$ ) из формул (6) с учетом (44) имеем

$$|\widetilde{\varphi}_1(n)\rangle \approx \frac{G}{|G|}|2\rangle|n-1\rangle, \quad |\widetilde{\varphi}_2(n)\rangle \approx \frac{G^*}{|G|}|1\rangle|n\rangle, \quad (54)$$

т. е. нижний уровень  $|\widetilde{\varphi}_1(n)\rangle$  компаунд-системы отвечает верхнему уровню  $|2\rangle$  атома, а верхний уровень  $|\widetilde{\varphi}_2(n)\rangle$  компаунд-системы отвечает нижнему уровню  $|1\rangle$  атома. Из рис. 2 с учетом соотношений (54) понятно, что изменение населенности верхнего уровня  $|2\rangle$  атома за счет столкновений с частицами буферного газа описывается балансным уравнением

$$\left(\frac{\partial\rho_{22}}{\partial t}\right)_{coll} = \tilde{\nu}_{21}\rho_{11} - \tilde{\nu}_{12}\rho_{22}, \quad \Omega > 0, \tag{55}$$

правая часть которого совпадает с правой частью уравнения (51) при  $\Omega > 0$  (напомним, что правая часть уравнения (51) равна интегралу столкновений  $(\partial \rho_{22}/\partial t)_{coll}$ ).

В случае отрицательных отстроек частоты излучения ( $\Omega < 0$ ) в условиях (43) имеем

$$|\widetilde{\varphi}_1(n)\rangle \approx |1\rangle|n\rangle, \quad |\widetilde{\varphi}_2(n)\rangle \approx -|2\rangle|n-1\rangle.$$
 (56)

В этом случае порядок расположения в шкале энергии уровней компаунд-системы и уровней атома одинаков: нижнему уровню компаунд-системы отвечает нижний уровень атома, а верхнему уровню компаунд-системы — верхний уровень атома. Изменение населенности верхнего уровня  $|2\rangle$  атома за счет столкновений с частицами буферного газа описывается теперь другим балансным уравнением:

$$\left(\frac{\partial\rho_{22}}{\partial t}\right)_{coll} = \tilde{\nu}_{12}\rho_{11} - \tilde{\nu}_{21}\rho_{22}, \quad \Omega < 0.$$
 (57)

Правая часть этого уравнения совпадает с правой частью уравнения (51) при  $\Omega < 0$ .

Как видим, зависимость правой части уравнения (51) от знака отстройки  $\Omega$  имеет простое и ясное физическое толкование. Учитывая то обстоятельство, что частота столкновительных переходов  $\tilde{\nu}_{21}$  уменьшается с ростом модуля отстройки  $|\Omega|$  [16], таким же физически прозрачным становится и вывод об отсутствии в спектре испускания нерезонансного максимума как в «красном», так и в «синем» крыльях линии.

# 7. ЗАКЛЮЧЕНИЕ

В настоящей работе получены квантовые кинетические уравнения для матрицы плотности с интегралами столкновений, описывающими нелинейные эффекты в крыльях спектральных линий. При выводе этих уравнений основной задачей являлось нахождение интегралов столкновений, описывающих изменение элементов матрицы плотности за счет упругих столкновений с частицами буферного газа при большой отстройке  $\Omega$  частоты излучения, когда радиационные переходы осуществляются в акте столкновения, а не на свободном пробеге (так называемые оптические столкновения).

Столкновительная задача решалась на основе представлений о компаунд-системах «взаимодействующие атом + поле» (атом, «одетый» полем) [16, 20] как самостоятельном физическом объекте, с которым можно обращаться примерно так же, как и с обычной частицей. При таком подходе естественным образом учитывается участие поля излучения в актах столкновений «одетого» атома с буферными частицами. При не слишком высокой интенсивности излучения, такой что  $|G| \ll |\Omega|$ , кинетические уравнения для матрицы плотности существенно упрощаются и сводятся к балансному уравнению (51) для населенностей уровней. Это уравнение полностью совпадает с уравнением баланса для населенностей уровней, полученном ранее [7, 8, 10] на основе соотношения (1) для спектральных плотностей коэффициентов Эйнштейна. В полученных уравнениях для матрицы плотности естественным образом содержится эффект неравенства спектральных плотностей коэффициентов Эйнштейна для поглощения и вынужденного испускания (см. соотношение (1)).

Итоговые кинетические уравнения оказались достаточно простыми. Они могут быть получены и на основе общефизических соображений (см. конец предыдущего раздела), однако при этом феноменологически введенные константы (частоты столкновений) остаются неопределенными. Один из основных результатов работы — установление связи этих констант с характеристиками излучения и элементарного акта рассеяния. При этом задача их вычисления сводится к стандартной задаче вычисления частот столкновений при известном потенциале взаимодействия сталкивающихся частиц. Второй важный результат работы — установление факта отсутствия роста интенсивности испускания как в «красном», так и в «синем» крыльях спектральной линии.

Авторы признательны Л. В. Ильичёву за полезные обсуждения.

Работа выполнена при финансовой поддержке программы ОФН РАН «Фундаментальная оптическая спектроскопия и ее приложения» (проект 9.5) и государственной программы поддержки ведущих научных школ РФ (№ НШ-4339.2010.2).

# ЛИТЕРАТУРА

- R. E. M. Hedges, D. L. Drummond, and A. Gallagher, Phys. Rev. A 6, 1519 (1972).
- А. Галлагер, в кн. Эксимерные лазеры, под ред. Ч. Роудза, Мир, Москва (1981), с. 173.
- Ю. К. Земцов, А. Н. Старостин, ЖЭТФ 103, 345 (1993).
- Ю. К. Земцов, А. Ю. Сечин, А. Н. Старостин, ЖЭТФ 110, 1654 (1996).
- 5. Ю. К. Земцов, А. Ю. Сечин, А. Н. Старостин, ЖЭТФ 114, 135 (1998).

- 6. Р. В. Марков, А. И. Плеханов, А. М. Шалагин, ЖЭТФ 120, 1185 (2001).
- 7. А. М. Шалагин, Письма в ЖЭТФ 75, 301 (2002).
- R. V. Markov, A. I. Plekhanov, and A. M. Shalagin, Phys. Rev. Lett. 88, 213601 (2002).
- R. V. Markov, A. I. Plekhanov, and A. M. Shalagin, Acta Phys. Polon. A 101, 77 (2002).
- 10. Р. В. Марков, А. И. Пархоменко, А. И. Плеханов, А. М. Шалагин, ЖЭТФ 136, 211 (2009).
- Е. М. Лифшиц, Л. П. Питаевский, Физическая кинетика, Наука, Москва (1979).
- В. А. Алексеев, Т. Л. Андреева, И. И. Собельман, ЖЭТФ 62, 614 (1972).
- 13. С. Г. Раутиан, Г. И. Смирнов, А. М. Шалагин, Нелинейные резонансы в спектрах атомов и молекул, Наука, Новосибирск (1979).
- **14**. В. С. Лисица, С. И. Яковленко, ЖЭТФ **68**, 479 (1975).
- Д. С. Бакаев, Ю. А. Вдовин, В. М. Ермаченко, С. И. Яковленко, ЖЭТФ 83, 1297 (1982).

- 16. С. И. Яковленко, УФН 136, 593 (1982).
- **17**. Э. Г. Пестов, С. Г. Раутиан, ЖЭТФ **64**, 2032 (1973).
- 18. Э. Г. Пестов, ЖЭТФ 86, 1643 (1984).
- **19**. Д. С. Бакаев, Ю. А. Вдовин, В. М. Ермаченко, С. И. Яковленко, КЭ **12**, 126 (1985).
- 20. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions: Basic Processes and Applications, WILEY-VCH Verlag, Weinheim (2004).
- S. Reynaud and C. Cohen-Tannoudji, J. Physique 43, 1021 (1982).
- **22**. К. Блум, *Теория матрицы плотности и ее прило*жения, Мир, Москва (1983).
- 23. Д. Н. Зубарев, в кн. Физическая энциклопедия, т. 1, Большая Российская энциклопедия, Москва (1988), с. 585.
- **24**. Л. Д. Ландау, Е. М. Лифшиц, *Квантовая механика*, Наука, Москва (1989).
- **25**. А. И. Пархоменко, А. М. Шалагин, КЭ **39**, 1143 (2009).