ПОИСК ПРОЦЕССОВ $e^+e^- o f_0(600)\gamma$, $f_0(980)\gamma$, $f_0(1350)\gamma$ И $f_2(1270)\gamma$ В ОБЛАСТИ ЭНЕРГИИ ОТ 1.05 ДО 1.38 ГэВ

М. Н. Ачасов^{а,b}, К. И. Белобородов^{а,b}, А. В. Бердюгин^а, А. Г. Богданчиков^а,

Д. А. Букин^a, А. В. Васильев^{a,b}, В. Б. Голубев^{a,b}, Т. В. Димова^{a,b},

В. П. Дружинин^{а, b}, Л. В. Кардапольцев^{а, b*}, И. А. Кооп^{а, b}, А. А. Король^{а, b},

С. В. Кошуба^а, Е. В. Пахтусова^а, С. И. Середняков^{а,b}, З. К. Силагадзе^{а,b},

А. Н. Скринский^а, А. Г. Харламов^{а,b}, Ю. М. Шатунов^а

^а Институт ядерной физики им. Г. И. Будкера Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> ^b Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 4 февраля 2011 г.

В области энергии от 1.05 до 1.38 ГэВ установлены верхние пределы на сечения процессов $e^+e^- \rightarrow f_0(600)\gamma$, $f_0(980)\gamma$, $f_0(1350)\gamma$, $f_2(1270)\gamma \rightarrow \pi^0\pi^0\gamma$. Измерение проведено по статистике, набранной в эксперименте со сферическим нейтральным детектором (СНД) на e^+e^- -коллайдере ВЭПП-2М. Полученные верхние пределы варьируются в зависимости от энергии и модели от 6 до 42 пб.

1. ВВЕДЕНИЕ

В области энергии от 1.05 до 1.4 ГэВ доминирующим механизмом для процесса $e^+e^- \rightarrow \pi^0\pi^0\gamma$ является переход через промежуточное состояние $\omega\pi^0$ с распадом $\omega \rightarrow \pi^0\gamma$. Этот процесс подробно изучен в работах [1, 2]. Другие промежуточные состояния в этой области энергии пока не найдены. Основными кандидатами на их роль являются электрические дипольные распады широких резонансов $\rho(1450)$ и $\rho(1700)$ на $f_0(600)\gamma$, $f_0(980)\gamma$, $f_0(1350)\gamma$ и $f_2(1270)\gamma$.

Измерение электрических дипольных распадов $\rho(1450)$ и $\rho(1700)$ важно для понимания их кварковой структуры. Состояния $\rho(1450)$ и $\rho(1700)$ плохо изучены. Например, вопрос о структуре для $\rho(1700)$ до сих пор не имеет однозначного ответа [3, 4]. В работе [5] показано, что измерение ширин радиационных переходов является очень чувствительным способом исследования кварковой структуры. Так, для пары $q\bar{q}$ в состоянии 2S доминирующими каналами распада являются $f_2(1270)\gamma$ и $f_1(1285)\gamma$, а в состоянии $1D - f_1(1285)\gamma$ и $f_0(1350)\gamma$.

Также интересен поиск распадов $\rho(1450)$ и

 $\rho(1700)$ на $f_0(600)\gamma$ и $f_0(980)\gamma$. Природа состояний $f_0(600)$ и $f_0(980)$ до сих пор остается недостаточно изученной. Обнаружение какого-либо из этих распадов могло бы помочь выбрать наиболее подходящую модель для описания этих состояний.

В данной работе проводится поиск процессов

$$e^{+}e^{-} \rightarrow f_{0}(600)\gamma \rightarrow \pi^{0}\pi^{0}\gamma,$$

$$e^{+}e^{-} \rightarrow f_{0}(980)\gamma \rightarrow \pi^{0}\pi^{0}\gamma,$$

$$e^{+}e^{-} \rightarrow f_{0}(1350)\gamma \rightarrow \pi^{0}\pi^{0}\gamma,$$

$$e^{+}e^{-} \rightarrow f_{2}(1270)\gamma \rightarrow \pi^{0}\pi^{0}\gamma$$
(1)

в области энергии в системе центра масс e^+e^- -пары $(2E_0)$ от 1.05 до 1.38 ГэВ.

2. ДЕТЕКТОР И ЭКСПЕРИМЕНТ

Сферический нейтральный детектор (СНД) является универсальным немагнитным детектором [6]. Главная его часть — трехслойный электромагнитный калориметр, состоящий из 1630 кристаллов NaI(Tl). Полный телесный угол калориметра составляет 90 % от 4π . Энергетическое разрешение калориметра для фотонов имеет значение

^{*}E-mail: l.kardapoltsev@gmail.com

 $\sigma_E/E = 4.2 \%/ \sqrt[4]{E[\Gamma \ni B]}$, угловое разрешение — около 1.5°. Направление вылета заряженных частиц измерялось системой дрейфовых камер. Полный телесный угол трековой системы составляет 95% от 4π . Анализ, представленный в этой работе, основан на данных, собранных в 1997–99 гг. в области энергий 1.05–1.38 ГэВ. Исследуемая область сканировалась с шагом 10 МэВ. Интегральная светимость, набранная в этой области, составляет около 9 пб⁻¹. Светимость измерялась по процессам $e^+e^- \rightarrow \gamma\gamma$ и $e^+e^- \rightarrow e^+e^-$ с систематической ошибкой 3%.

3. УСЛОВИЯ ОТБОРА

Для первичного отбора событий процесса

$$e^+e^- \to \pi^0 \pi^0 \gamma \tag{2}$$

были использованы следующие условия:

 зарегистрировано пять фотонов и ни одного заряженного трека,

— полное энерговыделение в калориметре превышает $1.4E_0$,

— суммарный импульс всех частиц в событии меньше $0.3E_0/c$.

Для того чтобы подавить фон от электродинамических процессов

$$e^+e^- \to 2\gamma, 3\gamma, 4\gamma, 5\gamma,$$
 (3)

были использованы условия отбора

$$E_{min} > 35 \text{ M} \circ \text{B}, \quad 35^{\circ} < \theta_{min} < 145^{\circ}, \qquad (4)$$

где E_{min} и θ_{min} — энергия и угол самого мягкого фотона в событии.

Фоновым процессом с адронным промежуточным состоянием является

$$e^+e^- \to \omega \pi^0 \pi^0 \to \pi^0 \pi^0 \pi^0 \gamma \to 7\gamma.$$
 (5)

События этого процесса могут имитировать пятифотонные события, когда два лишних фотона не детектируются из-за попадания в нечувствительную область детектора или слияния с другими фотонами. События с энергичным фотоном, попавшим в нечувствительную область детектора, эффективно подавляются условиями на χ^2 кинематической реконструкции, о которых будет сказано ниже. Для подавления фона, возникающего за счет слияния фотонов, используется параметр χ^2_{γ} [7], характеризующий поперечные распределения энерговыделений в ливнях зарегистрированных фотонов. С помощью условия

$$\chi_{\gamma}^2 < 5 \tag{6}$$

фон от процесса (5) был уменьшен примерно в полтора раза.

Далее отобранные события проходили процедуру кинематической реконструкции. Проверялась совместимость кинематики события с гипотезой о его принадлежности к процессу $e^+e^- \rightarrow 5\gamma$. В результате кинематической реконструкции вычислялось значение функции χ^2 гипотезы $(\chi^2_{5\gamma})$. На параметр $\chi^2_{5\gamma}$ было наложено условие

$$\chi_{5\gamma}^2 < 20. \tag{7}$$

Затем отбирались события с двумя π^0 . Для этого была проведена кинематическая реконструкция в гипотезе $e^+e^- \rightarrow \pi^0\pi^0\gamma$. На функцию χ^2 этой гипотезы $(\chi^2_{\pi^0\pi^0\gamma})$ было наложено условие

$$\chi^2_{\pi^0 \pi^0 \gamma} - \chi^2_{5\gamma} < 10. \tag{8}$$

В результате применения описанных выше условий во всем диапазоне энергий было отобрано 2993 события. Оцененный по моделированию фон от процессов (3) и (5) составил 6 событий.

4. ОБРАБОТКА ОТОБРАННЫХ СОБЫТИЙ

Сечение каждого из процессов (1) определялось при помощи аппроксимации экспериментальных данных. Для этого амплитуда процесса $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$ была представлена в следующем виде:

$$A_{\pi^0\pi^0\gamma} = \alpha A_{\omega\pi^0} + \beta A_{f\gamma}, \qquad (9)$$

где α и β — комплексные числа, $A_{\omega\pi^0}$ и $A_{f\gamma}$ — соответственно амплитуды процесса $e^+e^- \rightarrow \omega\pi^0 \rightarrow$ $\rightarrow \pi^0\pi^0\gamma$ и одного из процессов (1). Выражение для $A_{\omega\pi^0}$ было взято из работы [8]. Амплитуда для процесса со скалярным мезоном $\gamma^* \rightarrow f_0\gamma$ была взята в виде

$$A(\gamma^* \to f_0 \gamma) = \frac{(e_{\gamma}^* e_v)(pk) - (e_{\gamma}^* k)(e_v p)}{M_f^2 - q^2 - iM_f \Gamma_f},$$
 (10)

где e_{γ}^*, e_v и k, p — соответственно векторы поляризации и четырех-импульсы реального и виртуального фотонов, $q^2 = (p-k)^2$ — квадрат инвариантной массы системы $\pi^0 \pi^0$. Для процесса $e^+e^- \rightarrow f_2(1270)\gamma$ было использовано выражение для амплитуды $A_{f\gamma}$, приведенное в статье [9]. Значения масс и ширин, использованные в анализе, приведены в табл. 1.

Таблица 1. Значения масс и ширин для $f_0(600)$, $f_0(980)$, $f_0(1350)$ и $f_2(1270)$, которые были использованы при моделировании

	$f_0(600)\gamma$	$f_0(980)\gamma$	$f_0(1350)\gamma$	$f_2(1270)\gamma$
$M, M \Im B$	600	980	1350	1270
Г, МэВ	400	100	300	185

Из амплитуды (9) можно получить следующее выражение для дифференциального сечения процесса $e^+e^- \rightarrow \pi^0 \pi^0 \gamma$:

$$\frac{d\sigma_{\pi^0\pi^0\gamma}}{dP} = |\alpha|^2 |A_{\omega\pi^0}(P)|^2 + 2|\alpha||\beta|\cos\phi\operatorname{Re}(A_{\omega\pi^0}(P)A_{f\gamma}^*(P)) - 2|\alpha||\beta|\sin\phi\operatorname{Im}(A_{\omega\pi^0}(P)A_{f\gamma}^*(P)) + |\beta|^2 |A_{f\gamma}(P)|^2, \quad (11)$$

где ϕ — разность фаз комплексных чисел α и β , P — набор кинематических переменных, описывающих фазовое пространство.

Для того чтобы привести выражение (11) к виду, удобному для аппроксимации экспериментальных данных, была учтена эффективность регистрации событий в детекторе, разная для разных слагаемых в формуле (11), и было добавлено слагаемое, соответствующее вкладу фоновых процессов (3) и (5). В результате получилось следующее выражение для распределения событий по фазовому пространству:

$$\frac{dN_{\pi^{0}\pi^{0}\gamma}}{dP} = N_{\omega\pi^{0}}F_{\omega\pi^{0}}(P) + \sqrt{N_{\omega\pi^{0}}N_{f\gamma}}F_{intr}(P)C_{re}\cos\phi - - \sqrt{N_{\omega\pi^{0}}N_{f\gamma}}F_{inti}(P)C_{im}\sin\phi + N_{f\gamma}F_{f\gamma}(P) + N_{bg}F_{bg}(P), \quad (12)$$

$$N_{\omega\pi^0} = |\alpha|^2 \varepsilon_{\omega\pi^0} \int |A_{\omega\pi^0}(P)|^2 dP,$$

$$N_{f\gamma} = |\beta|^2 \varepsilon_{f\gamma} \int |A_{f\gamma}(P)|^2 dP,$$

$$C_{re} = \frac{2\int \operatorname{Re}(A_{\omega\pi^{0}}(P)A_{f\gamma}^{*}(P))dP}{\sqrt{\int |A_{\omega\pi^{0}}(P)|^{2}dP\int |A_{f\gamma}(P)|^{2}dP}} \frac{\varepsilon_{intr}}{\sqrt{\varepsilon_{f\gamma}\varepsilon_{\omega\pi^{0}}}}$$

$$C_{im} = \frac{2\int \mathrm{Im}(A_{\omega\pi^{0}}(P)A_{f\gamma}^{*}(P))dP}{\sqrt{\int |A_{\omega\pi^{0}}(P)|^{2}dP\int |A_{f\gamma}(P)|^{2}dP}} \frac{\varepsilon_{inti}}{\sqrt{\varepsilon_{f\gamma}\varepsilon_{\omega\pi^{0}}}}$$

где $\varepsilon_{\omega\pi^0}, \varepsilon_{intr}, \varepsilon_{inti}$ и $\varepsilon_{f\gamma}$ — эффективности регистрации, отвечающие соответственно членам $|A_{\omega\pi^0}|^2$, $\operatorname{Re}(A_{\omega\pi^{0}}A_{f\gamma}^{*}), \operatorname{Im}(A_{\omega\pi^{0}}A_{f\gamma}^{*})$ и $|A_{f\gamma}|^{2}, \operatorname{a} F_{\omega\pi^{0}}, F_{intr},$ F_{inti} и $F_{f\gamma}$ — нормированные на единицу функции распределения. Они были получены следующим образом. В формуле для полного сечения (11) удерживалось одно из слагаемых и с таким дифференциальным сечением моделировались события. Полученное распределение событий по фазовому пространству аппроксимировалось с использованием метода непараметрической аппроксимации [10] и нормировалось на единицу. Функция F_{bg} была получена аналогичным образом, за исключением того, что для моделирования событий использовались генераторы процессов (3) и (5). Количество событий каждого из процессов (3), (5) было оценено исходя из их сечений, вычисленных для (3) или измеренных для (5), эффективностей регистрации, определенных при помощи моделирования, и интегральной светимости, накопленной в эксперименте.

В качестве кинематических переменных P использовались инвариантные массы систем $\pi^0 \pi^0$ $(m_{\pi^0 \pi^0})$ и $\pi^0 \gamma$ $(m_{\pi^0 \gamma})$. Для вычисления последней переменной из двух комбинаций $\pi^0 \gamma$ выбиралась комбинация с меньшим модулем разности массы ω мезона и инвариантной массы системы $\pi^0 \gamma$. Экспериментальное двумерное распределение событий по параметрам $m_{\pi^0\pi^0}$ и $m_{\pi^0\gamma}$ аппроксимировалось выражением (12) со свободными параметрами $N_{\omega\pi^0}$, $N_{f\gamma}$ и ϕ . Как видно из формул, приведенных выше, $N_{\omega\pi^0}$ и $N_{f\gamma}$ — это количества событий, соответствующих промежуточным состояниям $\omega\pi^0$ и $f\gamma$ без учета интерференции. Аппроксимация проводилась методом максимального правдоподобия.

Экспериментальные данные во всем исследуемом интервале энергий описываются процессом $e^+e^- \rightarrow \omega \pi^0$, т. е. моделью с $N_{f\gamma} = 0$. В качестве примера на рисунке приведено сравнение экспериментальных распределений событий по параметрам $m_{\pi^0\pi^0}$ и $m_{\pi^0\gamma}$ для интервала энергий $E_0 = 1.30$ –1.39 ГэВ с соответствующими распределениями для моделированных событий процесса $e^+e^- \rightarrow \omega \pi^0$. Моделированные распределения нормировались на число событий $N_{\omega\pi^0}$, полученное при аппроксимации двумерного экспериментального распределения по параметрам $m_{\pi^0\pi^0}$ и $m_{\pi^0\gamma}$.

Распределения по параметрам $m_{\pi^0\gamma}(a)$ и $m_{\pi^0\pi^0}(b)$ для интервала энергий 1.30–1.38 ГэВ. Точки с ошибками — экспериментальные данные. Гистограмма — события моделирования процесса $e^+e^- \rightarrow \omega \pi^0$

Таблица 2. Энергетический интервал, верхний предел для сечения процесса $e^+e^- \to \pi^0\pi^0\gamma$ с указанным промежуточным состоянием

	σ, пб (верхний предел				
$E_0, 1$ 9B	$f_0(600)\gamma$	$f_0(980)\gamma$	е достовер $f_0(1350)\gamma$	$f_2(1270)\gamma$	
1.30-1.38	30	19	26	6	
1.20-1.30	18	42	39	5	
1.05 - 1.20	28	33	24	28	

Поскольку модель с $N_{f\gamma} = 0$ хорошо описывает экспериментальные данные, мы можем установить только верхние пределы на сечения процессов (1). Исследуемая область энергий была разбита на три интервала, приведенных в первом столбце табл. 2. Для каждого из процессов (1) в каждом энергетическом интервале верхний предел вычислялся по формуле

$$\sigma = \frac{N_{f\gamma}^{up}}{\varepsilon_{f\gamma}L},\tag{13}$$

где $N_{f\gamma}^{up}$ — верхний предел для величины $N_{f\gamma}$, соответствующий 90 % уровню достоверности, а L — интегральная светимость в этом интервале по энергии. Систематическая неопределенность эффективности регистрации была оценена в работе [1] и не превышает 4 %. Полученные таким образом верхние пределы для сечений процессов (1) приведены в табл. 2.

Ожидается, что в области энергии от 1.30 до 1.38 ГэВ основной вклад в сечения процессов (1) обусловлен распадом $\rho(1450)$. В этом случае энергетическая зависимость сечения описывается как

$$\sigma_{\pi^{0}\pi^{0}\gamma}(E_{0}) = \frac{3\pi}{E_{0}^{2}} \frac{\Gamma_{\rho(1450)}^{2}}{(2E_{0} - M_{\rho(1450)})^{2} + \Gamma_{\rho(1450)}^{2}} \times B(\rho(1450) \to e^{+}e^{-})B(\rho(1450) \to f\gamma), \quad (14)$$

где $M_{\rho(1450)} = 1.465 \ \Gamma$ эВ и $\Gamma_{\rho(1450)} = 0.4 \ \Gamma$ эВ — масса и ширина $\rho(1450)$ [11]. Используя пределы сечений для интервала энергий 1.30–1.38 ГэВ, получаем следующие значения верхних пределов для произведений относительных вероятностей распадов $\rho(1450)$:

$$\begin{split} B(\rho(1450) \to e^+e^-) B(\rho(1450) \to f_0(600)\gamma) < \\ &< 4.0 \cdot 10^{-9}, \end{split}$$

$$B(\rho(1450) \to e^+e^-)B(\rho(1450) \to f_0(980)\gamma) < < 2.6 \cdot 10^{-9}.$$

$$B(\rho(1450) \to e^+ e^-) B(\rho(1450) \to f_0(1350)\gamma) < < 3.5 \cdot 10^{-9},$$

$$B(\rho(1450) \to e^+e^-)B(\rho(1450) \to f_2(1270)\gamma) <$$

< 0.8 \cdot 10^{-9}

на 90% уровне достоверности.

5. ЗАКЛЮЧЕНИЕ

В данной работе были установлены верхние пределы для сечений процессов (1) в интервале энергий 1.05–1.38 ГэВ. При измерении сечений был учтен вклад интерференции между амплитудами процессов $e^+e^- \to \omega \pi^0 \to \pi^0 \pi^0 \gamma$ и $e^+e^- \to f \gamma \to \pi^0 \pi^0 \gamma$. Полученные верхние пределы в несколько раз ниже аналогичных пределов, установленных на криогенном магнитном детекторе КМД-2 [2]. Их величина составляет (0.5–3.2) % от сечения процесса $e^+e^- \to \to \omega \pi^0 \to \pi^0 \pi^0 \gamma$ в исследуемой области энергий.

С использованием полученных верхних пределов для сечений были установлены верхние пределы произведений относительных вероятностей распадов $\rho(1450)$:

$$B(\rho(1450) \to e^+e^-)B(\rho(1450) \to f_0(600)\gamma),$$

$$B(\rho(1450) \to e^+e^-)B(\rho(1450) \to f_0(980)\gamma),$$

$$B(\rho(1450) \to e^+e^-)B(\rho(1450) \to f_0(1350)\gamma),$$

$$B(\rho(1450) \to e^+e^-)B(\rho(1450) \to f_2(1270)\gamma).$$

В работе [5] предсказывается, что ширина распада $\rho(1450)$ на $f_2(1270)\gamma$ больше, чем ширина распада $\rho(1450)$ на $\eta\gamma$, в семь раз. Это предсказание противоречит экспериментальным данным: табличное значение [11]

$$B(\rho(1450) \to e^+ e^-) B(\rho(1450) \to \eta \gamma) =$$

= (10.0 ± 2.2 ± 1.5) \cdot 10^{-9}

превышает установленный в данной работе верхний предел для

$$B(\rho(1450) \to e^+e^-)B(\rho(1450) \to f_2(1270)\gamma)$$

более, чем в 10 раз.

Поиск электрических дипольных распадов резонансов $\rho(1450)$ и $\rho(1700)$ будет продолжен в экспериментах с детектором СНД на e^+e^- -коллайдере ВЭПП-2000, имеющем максимальную энергию 2 ГэВ. В настоящее время ведется набор статистики в диапазоне энергий от 1 до 2 ГэВ.

Работа выполнена при частичной финансовой поддержке РФФИ (грант № 11-02-00276-а) и гранта Президента РФ № НШ-6943.2010.2.

ЛИТЕРАТУРА

- M. N. Achasov, K. I. Beloborodov, A. V. Berdyugin et al., Phys. Lett. B 486, 29 (2000).
- R. R. Akhmetshin, V. M. Aulchenko, V. Sh. Banzarov et al., Phys. Lett. B 562, 173 (2003).
- A. Donnachie and Yu. S. Kalashnikova, Phys. Rev. D 60, 114011 (1999).
- K. Kittimanapun, Y. Yan, K. Khosonthongkee et al., Phys. Rev. C 79, 025201 (2009).
- F. E. Close, A. Donnachie, and Yu. S. Kalashnikova, Phys. Rev. D 65, 092003 (2002).
- M. N. Achasov, V. M. Aulchenko, S. E. Baru et al., Nucl. Instr. Meth. A 449, 125 (2000).
- A. V. Bozhenok, V. N. Ivanchenko, and Z. K. Silagadze, Nucl. Instr. Meth. A 379, 507 (1996).
- M. N. Achasov, V. M. Aulchenko, A. V. Berdyugin et al., Nucl. Phys. B 569, 158 (2000).
- 9. Y. Oh and H. Kim, Phys. Rev. D 68, 094003 (2003).
- K. S. Cranmer, Comput. Phys. Commun. 136, 198 (2001).
- 11. K. Nakamura, K. Hagiwara, K. Hikasa et al. J. Phys. G 37, 075021 (2010).