ZKIT®, 2011, rom 140, Boim. 3 (9), crp. 567-573

© 2011

THE MULTIPLE QUANTUM NMR DYNAMICS IN SYSTEMS OF
EQUIVALENT SPINS WITH A DIPOLAR ORDERED INITIAL STATE

S. I. Doronin, E. B. Fel’dman, A. I. Zenchuk”

Institute of Problems of Chemical Physics, Russian Academy of Sciences
142432, Chernogolovka, Moscow Region, Russia

Received March 3, 2011

The multiple quantum (MQ) NMR dynamics in the system of equivalent spins with the dipolar ordered initial
state is considered. The high symmetry of the Hamiltonian responsible for the MQ NMR dynamics (the MQ
Hamiltonian) is used to develop analytic and numerical methods for the investigation of the MQ NMR dynamics
in systems consisting of hundreds of spins from the “first principles”. We obtain the dependence of the intensities
of the MQ NMR coherences on their orders (profiles of the MQ NMR coherences) for systems of 200-600 spins.
It is shown that these profiles may be well approximated by exponential distribution functions. We also compare
the MQ NMR dynamics in the systems of equivalent spins having two different initial states, the dipolar ordered
state and the thermal equilibrium state in a strong external magnetic field.

1. INTRODUCTION

The multiple quantum (MQ) NMR dynamics in
solids [1] is extremely useful for investigating solid
structures and dynamical processes therein, for coun-
ting the number of spins in impurity clusters [2, 3], and
for simplifying the standard NMR spectra [4]. The MQ
NMR experiments typically deal with samples where
the nuclear spin system is initially prepared in the ther-
mal equilibrium in a strong external magnetic field [1].
But the MQ NMR experiments can be carried out with
samples prepared in different initial states [5]. In par-
ticular, a spin system can be prepared in the dipolar
ordered state [6] using either the adiabatic demagneti-
zation method in a rotating reference frame [6, 7] or the
two-pulse Broekaert—Jeener sequence [6, 8]. The MQ
NMR dynamics with this initial state in small spin sys-
tems have been simulated in Refs. [9, 10]. Using the
dipolar ordered initial state in the MQ NMR, experi-
ment, we should expect an earlier appearance of mul-
tiple spin clusters and correlations in comparison with
the MQ NMR experiment with the thermal equilibrium
initial state in a strong external magnetic field. In fact,
the analysis of MQ NMR experiments with six—eight
spin systems [9, 10] demonstrates that the six—eight
order MQ coherences appear earlier in the experiment
with the dipolar ordered initial state.

*E-mail: zenchuk@itp.ac.ru

One of the basic problems in the theoretical de-
scription of the MQ NMR experiments is an exponen-
tial increase in the density matrix size with the num-
ber of spins. Therefore, modern numerical methods
have been developed for simulation of the MQ NMR
dynamics based on either the Chebyshev polynomial
expansion [11] or quantum parallelism [12]. However,
these methods allow studying the MQ NMR dynamics
in systems of no more than several dozen of spins. A
significant progress in this direction has been achieved
in simulation of the MQ NMR, dynamics in the system
of equivalent spins [13-15], which can be prepared, for
instance, by filling a closed nanopore with the gas of
spin-carring molecules (or atoms). Because of the spe-
cial symmetry of the Hamiltonian governing the dy-
namics in such a spin system, it becomes possible to
study the MQ NMR dynamics in systems of hundreds
of spins and even more [15,16]. The nature of the
above-mentioned symmetry can be clarified as follows.
As long as the characteristic time between two succes-
sive collisions with the nanopore walls is several orders
less than the time of mutual flip-flops of any two nu-
clear spins (which is defined by their dipole-dipole in-
teraction (DDI)) [13, 14], it seems reasonable to use the
averaged DDI, which can be obtained by averaging over
the spin positions in a nanopore [13]. This means that
the constant of the averaged DDI remains the same
for any pair of spins in the nanopore [13], and hence
the nuclear spins become equivalent. For this reason,
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Fig. 1. The basic scheme of the four-period MQ NMR experiment

the Hamiltonian of the nuclear spin DDI in a nanopore
commutes with the operator of the squared total spin
angular momentum I? [15, 16]. It then becomes possi-
ble to use the basis of common eigenfunctions for the
operator of the squared total spin momentum 72 and of
its projection I, on the direction of the external mag-
netic field instead of the standard multiplicative basis
of the eigenfunctions of I, which yields an exponential
increase in the Hilbert space dimensionality with the
number of spins [15, 16]. As a result, we simplify the
calculations and hence succeed in both the investiga-
tion of the MQ NMR dynamics in systems of 200600
spin-1/2 particles [15] and the study of the dependence
of the coherence relaxation time on the MQ NMR. co-
herence order and the number of spins [17]. We em-
phasize that the nuclear spin system with the thermo-
dynamic equilibrium initial state in a strong external
magnetic field was used in Refs. [15-17].

The MQ NMR dynamics in a large system of equi-
valent spins with the dipolar ordered initial state is
studied in the present paper. The theory of MQ NMR,
dynamics of equivalent spins with this initial state is
given in Sec. 2. The dependence of the MQ NMR. co-
herence intensities on the coherence orders (the profiles
of MQ NMR coherence intensities) for systems of 200
600 spins is studied in Sec. 3. The MQ NMR dynamics
in systems with the dipolar ordered initial state is com-
pared with the dynamics in systems with the thermal
equilibrium initial state in a strong external magnetic
field in Sec. 4. The basic results are collected in Sec. 5.

2. THE MQ NMR COHERENCE INTENSITIES
IN SYSTEMS OF EQUIVALENT SPINS
PREPARED IN THE DIPOLAR ORDERED
INITIAL STATE

We consider the system of equivalent spin-1/2 par-
ticles with the DDI in a strong external magnetic field.
The secular part of the DDI Hamiltonian [6] is

Hy. = Dir(liTke = LiaTew — IiyTiy), (1)
j<k

Ao
Detection
Mixing, 7
where oy
Y 2
Djr = 7= (1 —3cos” Oj)
erk

is the DDI constant, v is the gyromagnetic ratio, 7
is the distance between the jth and kth spins, 6, is
the angle between the internuclear vector r;; and the
external magnetic field By, and [;, (o = z,y,2) is
the jth spin projection operator on the axis a. Using
either the adiabatic demagnetization in a rotating re-
ference frame [6, 7] or the Broekaert—Jeener two-pulse
sequence [6, 8], the spin system can be prepared in the
dipolar ordered initial state with the density matrix

1 1
p(0) = 7 exp(—fHg4.) = Q_N(l - BH,.), (2)
where = h/kT is the inverse spin temperature,

Z = Trexp(—fBHgy.) is the partition function, and N
is the number of spins.

If the system under consideration consists of
spin-carring molecules (atoms) in a closed nanopore,
then the DDI is averaged (incompletely) by the fast
molecular diffusion such that the DDI constants for any
spin pair become equal to each other, D;, = D [13, 14].
As a result, Hamiltonian (1) can be written as [14]

— D
Hi. =5 (31 - 1), 3)

where I, = Y| Iiq and I? = I2+12+12 is the square
of the spin angular momentum. It is important to jus-
tify that the high-temperature approximation in (2) is
applicable to the system of equivalent spins. The sim-
ple analysis [18] demonstrates that approximation (2)
for the system with Hamiltonian (3) is valid if

BDN < 1. (4)

The systems considered in our work have N = 200-600,
and hence condition (4) is satisfied.

The MQ NMR experiment consists of four basic pe-
riods shown in Fig. 1: the preparation period 7, the
evolution period ¢, the mixing period 7, and the detec-
tion. The MQ NMR coherences are generated in the
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preparation period due to irradiation of the sample by
a multiple eight-pulse sequence of resonance pulses [1].
We express the MQ NMR coherences in terms of the
density matrix of the preparation period. For this, we
note that the averaged Hamiltonian Hy (nonsecular
two-spin/two-quantum Hamiltonian [1]) describing the
MQ dynamics in the system of equivalent spins during
the preparation period in a rotating reference frame can
be written as [15, 16]

3 _ D, —\2

Huq =-{U7)"+T7)7} (5)
where I™ and I~ are the raising and lowering operators
(I* = I, £ il,). To investigate the MQ) NMR dyna-
mics, we have to find the density matrix p(7) for the
spin system by solving the Liouville equation [6]

dp

— =

L = [Huq.p();

(6)
with the initial condition p(0) = Hy,. This initial con-
dition is obtained from Eqs. (2) and (3) by dropping
both the unit operator and the factor —3/2~, which
are not significant for the MQ NMR dynamics. With
the Hamiltonians for the different periods of the MQ
NMR experiment (which are shown in Fig. 1), we can
write the expression for the dipolar energy (Hg.)(7,t)
after the mixing period of the M@Q NMR experiment
(Fig. 1) as

<Hdz>(T7 t) =
_ MU (n)e AU Hi U (1)U () Has ) _
= Tr{HZ.} -
_ Tr{e A plr)e A p(r))
_ e

where p(1) = U(1)H4.U* (1) is the solution of Eq. (6)
and U(7) = exp(—iHyg7). It is convenient to repre-
sent the solution of Eq. (6) as the series [19]

p(r) = pilr), (8)
k

where pg(7) obeys the relation [I., pr(7)] = kpr(7),
which can be considered the definition of pj(7) (in other
words, pr(7) collects those entries of the density matrix

p(7) that are responsible for the kth order MQ NMR
coherence). Then Eq. (7) becomes

—ikAt TI"{Pk (T)ip—k (T)} —
Tr{H,}

_ ZefikAth(T)’ (9)
k

(Au)(r) =3 e

k
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where the kth-order MQ NMR. coherence intensity Jg
is defined as [19]

_ Telp(r)ps(n)}

0= ")

(10)
This formula is used in the numerical analysis of the
MQ NMR coherences in Sec. 3.

It is easy to write the explicit expression for
Tr{H2,}. First, using Eq. (3), we can write

Tr{H? —D—2T 312 —1%)? =
(A3} = T TEE -1 =

D2
= TTlr{glr;} -3 + I*(I? - 31%)} =

D? D?
= 3Tﬂ{31§ - I’1*} = STTI‘{I;l —I217}. (11
Here, we use that
Te{I*(I = 3I2)} =0, Te{IJI2} =Te{I;I2}. (12)

Next, it is simple to obtain explicit expressions for
Tr{I?} and Tr{I2I}:

Te{I!} =2V =N(3N - 2),

13
Te{I?1?} = 2N 4N2, (13)

Finally, Eqs. (11)—(13) yield the result
Tr{H32,} = 3N(N — 1)2N¥ D2, (14)

Taking the structure of the MQ Hamiltonian H ¢ into
account, it can be readily shown that only even-order
MQ NMR. coherences appear in our numerical experi-
ment and the coherence order cannot exceed the num-
ber of spins N [1, 19].

It is obvious that MQ Hamiltonian (5) commutes
with the square of the total spin momentum opera-
tor I? [15-17]. Because [I*,I.] = 0, it is possible to
use the basis of common eigenfunctions of the oper-
ators 12 and I, for the description of the MQ NMR
dynamics. Just this fact allows avoiding the prob-
lem of the exponential increase in the matrix size with
the number of spins, which occurs in the traditional
multiplicative basis [1] of the eigenfunctions of I,. In
the new basis, the MQ Hamiltonian Hsq consists of
blocks H J?/IQ corresponding to the different values of
the total spin momentum S ($% = S(S + 1), § =
= N/2,N/2 -1,N/2 —2,... ,N/2 — [N/2], where [i]
is the integer part of 7):

Hugq = diag { Ao, Hy5 ™", Hg ™M (15)
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Since the Hamiltonian Hy., in (3) is diagonal in the ba-
sis of common eigenfunctions of I and I, the density
matrix p(0) can also be split into diagonal blocks p°(0)

)

Consequently, the matrix p(7) also has the diagonal
block structure with blocks p°(7). The problem is thus
separated into a set of independent problems for each
(25 +1) x (28 + 1)-dimensional block p®(7), which is a
solution of Liouville equation (6) with the Hamiltonian
H f,[Q. Of course, expansion (8) can be applied to each
block p°. The contribution Jj s from the block p° to
the intensity Jj of the kth-order coherence is defined
by the obvious formula [15]

S(HVoS (1
o) = ST,

N

S = 5

—1,=—2,...

NN N
2°2 02

2

(16)

where p7 (7) is the contribution from the matrix p° to
the kth-order coherence. We must take into account
that each block p¥(7) is degenerated with the multi-
plicity ny(S) [15,20]:

As a result, the observable intensities Jy (1) (—N < k
< N) are given by [15, 16]

<

Ji(T) ZZHN(S)Jk75(T). (18)
S

We recall that the size of each block H ]‘\S/IQ of the MQ
NMR Hamiltonian Hprg is 25 + 1. Taking the block
degeneration into account, we obtain the correct value
for the matrix dimensionality of both the Hamiltonian
Hyo and the density matrix p [15]:

> nn(S)(2S +1) =2", (19)
S

which is valid for the system of NV interacting spin-1/2
particles.

Numerical algorithms describing the MQ NMR, dy-
namics in the systems of equivalent spins with a ther-
mal equilibrium initial state in the strong external mag-
netic field have been developed in [15-17]. With minor
corrections, these algorithms can be used for simulating
the dynamics of the M@Q NMR coherences in the spin
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system with the dipolar ordered initial state. In par-
ticular, the integral of motion related to the MQ NMR
Hamiltonian invariance under the rotation through the
angle m around the z axis [21] is also present. There-
fore, for odd N, it suffices to solve the problem for the
MQ NMR Hamiltonians with the matrix size two times
lower and then double the resulting intensities [21]. We
use spin systems with odd N in all numerical calcula-
tions in the next section.

3. NUMERICAL ANALYSIS OF THE MQ NMR
PROFILES

Using the method developed in the preceding sec-
tion, we investigate the profiles of MQ NMR, coher-
ences. Because all spins are “nearest neighbors” in the
system of equivalent spins, an N-spin cluster appears
already after the time interval 7 ~ 1/D. However,
some rearrangement of this cluster is required for the
MQ coherence formation [15]. The analysis of the MQ
NMR coherence dynamics demonstrates that the qua-
sistationary profile of the MQ NMR coherences is cre-
ated during 7 ~ 2 (7 = Dr is the dimensionless time
hereafter) and remains fast oscillating for 7 > 2. Be-
cause of these oscillations, it is convenient to use the
averaged intensities J; [15] instead of the intensities
Ji themselves. We estimate the dimensionless aver-
aging time interval as T' ~ 2m/[\J5"| ~ 7.255, where
/\g”2” \/5/ 2 is the minimal eigenvalue of the Hamil-
tonian [15, 16]. For convenience, we take T' = 8, and
hence

~
~

2+T
Jo==

T / Ji (T) d7.

2

(20)

It can be observed that the J; do not significantly vary
with an increase in T', and hence the definition of the
averaged intensities in Eq. (20) is valid. Although the
dynamics of all coherences has been found in numeri-
cal simulations, the intensities of the higher-order co-
herences are negligible, and we therefore represent the
intensities of the MQ NMR, coherences up to the 50th
order in the figures below. The profiles of MQ NMR
coherence intensities for systems of 201, 401, and 601
spins with a dipolar ordered initial state are shown in
Fig. 2. These profiles are similar to those that have
been found for the systems with a thermal equilibrium
initial state in a strong external magnetic field [15, 16].
Similarly to Refs. [15, 16], the averaged intensities of
MQ NMR coherences are separated into two families:
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Fig.2. Profiles of the coherence intensities .J,, for spin

systems with N = 201 (e), 401 (o), 601 (*). The inset

demonstrates that the zeroth-order coherence belongs

to neither I’y nor I'2. Only intensities of positive-order
coherences are presented

[y = {Jap—2, k=0,£1,£2 ...},

- (21)
= {J4k7 k = :I:l,:l:Q, . .}7
with the zeroth-order coherence intensity Jy not corre-
sponding to any of these families. Each family can be
approximated by a smooth distribution function as

<1+Z axi(2/k])’ ) o2l
k=41,43,...,
Jgk ~ (22)
<1+Z azi (2/K])’ ) ekl
k=42 44, ...,

\

where the parameters A;, a;;, and «; for spin systems
with N = 201, 401, and 601 are collected in the Table.
The algorithm to determine the approximation param-
eters is similar to that suggested in Ref. [15].

Similarly to the profiles of the MQ NMR coherence
intensities obtained for systems of equivalent spin-1/2
particles with a thermal equilibrium initial state in a
strong external magnetic field [15], the profiles for the
systems with the dipolar ordered initial state seem to
be exponential. This conclusion agrees with results ob-
tained during an elaboration of numerous MQ NMR
spectra [22] and contradicts the phenomenological the-
ory [1] that predicts the Gaussian profiles of the MQ
NMR coherence intensities.
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Liouville equation (6) and formulas (10) for the MQ
NMR coherence intensities yield the conservation law
for the sum of the coherence intensities [23]:

ij(T):
k

This law and approximating formula (22) allow finding
a good approximation to the zeroth-order coherence
intensity. We compare the calculated values of .J (see
Eq. (10)) with the values

(23)

appr

1—22J2k

found using the above conservation law and distribu-
tion function (22):

2519101, N =201,
Jo=1{ 2417-107, N =401,
2.361-10~", N = 601,

(24)
2.501-10~!, N =201,
JgPPT =< 2.381-1071, N =401,
2.387-1071, N = 601.

Some discrepancy between Jy and J3*7" appears be-

cause we take only coherences up to the 50th order
into account in constructing distribution function (22),
while contributions from the higher-order coherences
are missing.

4. COMPARISON OF THE MQ NMR
DYNAMICS IN SPIN SYSTEMS WITH TWO
DIFFERENT INITIAL STATES

The preparation of the system in a dipolar ordered
initial state means that the two-spin correlations ap-
pear already at the initial time, unlike in the standard
MQ NMR experiment, where the thermal equilibrium
initial state is determined by the one-spin Zeemann in-
teraction with the external magnetic field [9, 10]. This
statement is justified by Fig. 3, where the formation
times 77(n) of different-order coherences for both ini-
tial states are represented. Here, by the formation time
7r(n) of the nth coherence, we mean the instant when
the nth coherence intensity .J,,(7) reaches the value .J,
for the first time. We see that the MQ NMR coherences
in the system with the dipolar ordered initial state (the
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Table. The parameters A;, a;j, and «; of the distribution function given by Eq. (22) for N = 201, 401, and 601

N Ay a1 12 13 14 aq
201 8.498 - 1072 3.133-107! 8.025-1072 6.109- 1073 2.739-10~* 24371071
401 4.546 - 1072 1.694 - 10! 3.357-1072 1.649 - 103 5.739- 1075 1.638 - 10!
601 3.546 - 1072 1.456 - 107! 2.471-1072 1.028 - 1073 2.855-107° 1.342-107!
N A a21 22 23 24 25
201 2.217 4.029-1071 7.522-1072 7.638-1073 4.624-10* 1.562- 1077
401 1.411 3.587-107! 5.648 - 1072 4.616-1073 2.116-10* 5.136- 1076
601 1.210 3.441-1071 5.123-1072 3.924-1073 1.664-10* 3.686-1076
N 26 Qo
201 2.510 - 1077 3.039-10!
401 5.533-1078 2.183-107¢
601 3.512-1078 1.940- 107!
Tf J_n
1.0 T T T T T T J. . _
_ 0.06 - n o - T
=1 . 02 7 F;
- J, ® p(0)=Ha.
\ ; 0.04 L . 0.1F * p(0)=1.
-‘:' : .
0.02 -
0

Fig.4. The MQ NMR profiles for the systems of equiv-

Fig.3. Coherence formation time 7y versus the coher-

ence number for the dynamics of equivalent spins with

the dipolar ordered and the thermal equilibrium in the
strong external field initial states

lower solid line) appear much earlier. This result agrees
with that obtained in [9] for the MQ NMR in systems
with a small number of spin-1/2 particles.

The profiles of the MQ NMR, coherence intensities
for the system of N = 201 spins with both the dipolar
ordered and the thermal equilibrium in a strong mag-
netic field initial states are compared in Fig. 4. This
figure demonstrates that the discrepancy between the
two families of MQ NMR, coherences, T’y and Ty, is
larger for n < 10 and smaller for n > 10 in the case
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alent spins with the dipolar ordered and thermal equilib-

rium in the strong external magnetic field initial states,

N = 201; the inset demonstrates that .Jp and .J; are es-

sentially larger in the case of the dipolar ordered initial
state

of the dipolar ordered initial state. The inset shows
that Jy and J; are essentially larger in the case of the
dipolar ordered initial state.

Thus, similarly to the usual NMR, experiments in
solids [6], the MQ NMR experiment in the systems of
equivalent spins with the dipolar ordered initial state
can be useful in supplementing the MQ NMR. expe-
riment with the thermal equilibrium initial state in a
strong external magnetic field.
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5. CONCLUSIONS

We have studied the MQ NMR, dynamics in systems
of equivalent spin-1/2 particles with the dipolar ordered
initial state. For this, we modified the method devel-
oped in Ref. [15] for the system of equivalent spin-1/2
particles with the thermal equilibrium initial state in a
strong external magnetic field. Similarly to Ref. [15],
the high symmetry of such systems allows investigat-
ing the dynamics in large spin systems containing hun-
dreds of interacting spins. We obtain the dependence
of the MQ NMR coherence intensities on their order
(the profiles of the MQ NMR coherence intensities) in
systems of 200600 spins and demonstrate that these
profiles can be well approximated by exponential dis-
tribution functions. Because similar results have been
obtained in Refs. [15, 16] for systems with the thermal
equilibrium initial state in a strong external magnetic
field, we may suppose that the exponential profiles of
the MQ NMR coherence intensities are a fundamental
fact in the MQ NMR dynamics. The theoretical results
obtained in Refs. [24, 25] confirm this conclusion.

We demonstrate that the MQ NMR. coherences ap-
pear faster in the spin systems with the dipolar ordered
initial state. The MQ NMR experiments with the dipo-
lar ordered initial states extend the possibilities of MQ
NMR spectroscopy in the study of the structures of
solids and the dynamical processes therein.

All numerical simulations have been performed
using the resources of the Joint Supercomputer Cen-
ter (JSCC) of the Russian Academy of Sciences.

The work was supported by the Program of the
Presidium of the Russian Academy of Sciences No. 21
“Foundations of Fundamental Investigations of Nano-
technologies and Nanomaterials”.
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