ПОИСК ПРОЦЕССА $e^+e^- o K^\pm K_S \pi^\mp$ НА e^+e^- -КОЛЛАЙДЕРЕ ВЭПП-2М

М. Н. Ачасов, К. И. Белобородов, А. В. Бердюгин, А. Г. Богданчиков, Д. А. Букин,

А. В. Васильев, В. Б. Голубев, Т. В. Димова, В. П. Дружинин, И. А. Кооп,

А. А. Король, С. В. Кошуба, Е. В. Пахтусова, С. И. Середняков,

3. К. Силагадзе, А. Н. Скринский, Ю. М. Шатунов

Институт ядерной физики им. Г. И. Будкера Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

> Новосибирский государственный университет 630090, Новосибирск, Россия

Поступила в редакцию 17 февраля 2011 г.

Представлены результаты поиска процесса $e^+e^- \to K^\pm K_S \pi^\mp$. Анализировались данные с интегральной светимостью 1.36 пб⁻¹, накопленные в эксперименте со сферическим нейтральным детектором (СНД) на коллайдере ВЭПП-2М в диапазоне энергии 1.36–1.38 ГэВ. Установлен верхний предел сечения искомого процесса $\sigma < 150$ пб для энергии 1.37 ГэВ на уровне достоверности 90 %.

В данной работе представлены результаты изучения процесса

$$e^+e^- \to K^\pm K_S \pi^\mp \tag{1}$$

с последующим распадом $K_S \to \pi^+ \pi^-$ в экспериментах со сферическим нейтральным детектором (СНД) на $e^+ e^-$ -коллайдере ВЭПП-2М.

Немагнитный детектор общего назначения СНД [1] был создан для экспериментов на e^+e^- -коллайдере ВЭПП-2М. Эксперименты проводились в 1995–2000 гг. в области энергии $2E_{beam} =$ = 0.38-1.38 ГэВ. Набор статистики осуществлялся методом многократного сканирования энергетического диапазона с переменным шагом. Интегральная светимость измерялась по процессам упругого e^+e^- -рассеяния и двухквантовой аннигиляции с точностью 2%. В настоящем анализе использовались данные с интегральной светимостью 1.36 пб⁻¹, накопленные в эксперименте с детектором СНД на коллайдере ВЭПП-2М в диапазоне энергии 1.36–1.38 ГэВ.

Выделение событий изучаемого процесса (1) проводилось в несколько этапов. На первом этапе отбирались события с четырьмя или более заряженными треками и энерговыделением в калориметре не более $1.4E_{beam}$. Для подавления фона от событий, в которых заряженные треки возникают от рассеяния электрон-позитронных пучков на атомах остаточного газа, требовалось, чтобы у двух заряженных частиц с наибольшим энерговыделением в калориметре полярный угол был более 36° .

Для искомого процесса основным фоном является процесс

$$e^+e^- \to \pi^+\pi^+\pi^-\pi^-,$$
 (2)

в конечном состоянии которого также наблюдается четыре заряженные частицы.

Благодаря наличию в конечном состоянии четырех заряженных частиц становится возможным восстановление их энергий по измеренным углам вылета частиц в случае, если их массы известны. Кроме того, на основе ионизационных потерь в дрейфовых камерах, энерговыделения в калориметре и восстановленных энергий частиц, аналогично описанному в работе [2] параметру e/π разделения, был введен параметр K/π разделения, который применялся для подавления фона от процесса (2). Поэтому на следующем этапе отбирались события, в которых для одной из частиц параметр K/π разделения соответствует выбору K-мезона.

Для анализа отбирались события, в которых энергия восстановленного заряженного *K*-мезона со-

^{*}E-mail: berdugin@inp.nsk.su

⁶ ЖЭТФ, вып.3(9)

Рис. 1. Распределение по энергии восстановленного заряженного *К*-мезона: *a* — эксперимент, *б* — моделирование процесса (2), *в* — моделирование процесса (1)

Рис.2. Распределения по инвариантной массе двух π-мезонов в событии, имеющих наибольшее (*a*), наибольшее и наименьшее (*б*), наименьшее (*b*) энерговыделение в калориметре. Гистограмма — моделирование процесса (2), точки — эксперимент, затененная гистограмма — моделирование процесса (1)

ставила $E_{K^{\pm}} < 600$ МэВ (рис. 1). Далее для событий, прошедших окончательный отбор, проводилась аппроксимация спектра инвариантных масс всех пар π -мезонов в событии (рис. 2) суммой распределений для сигнала (1) и фона (2). Полученное для экспериментальных событий распределение (рис. 2) хорошо описывается вкладом только фонового процесса $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$. Событий искомого процесса не обнаружено. Поэтому для энергии 1.37 ГэВ на уровне достоверности 90% был установлен верхний предел сечения процесса $\sigma(e^+e^- \rightarrow K^{\pm}K_S\pi^{\mp}) < 150$ пб.

Наиболее точные измерения сечения процесса (1) 107 ± 54 пб для диапазона энергий 1.36–1.38 ГэВ были сделаны в работе группы BABAR [3]. Теоретические предсказания [4] для сечения процесса (1) в данном энергетическом диапазоне дают величину 35–46 пб.

Полученная в данной работе величина верхнего предела не противоречит предыдущим измерениям и теоретическим предсказаниям. В дальнейших экспериментах с СНД на ВЭПП-2000 [5] при измерениях может быть набрана существенно бо́льшая статистика в диапазоне энергий до 2 ГэВ, что позволит измерить сечение процесса $e^+e^- \rightarrow K^{\pm}K_S\pi^{\mp}$ в данном диапазоне энергий.

Работа выполнена при частичной финансовой поддержке программы Президента РФ (грант НШ-5655.2008.2) и РФФИ (грант № 11-02-00276-а).

ЛИТЕРАТУРА

- M. N. Achasov et al., Nucl. Instr. Meth. A 449, 125 (2000).
- 2. M. N. Achasov et al., Phys. Lett. B 474, 188 (2000).
- 3. B. Aubert et al., Phys. Rev. D 77, 092002 (2008).
- E. A. Kuraev and Z. K. Silagadze, Phys. Atom. Nucl. 58, 1589 (1995).
- 5. S. I. Serednyakov, Nucl. Phys. B 126, 369 (2004).