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The moment coupling of an interacting ion and atom with a 3d-electron shell is analyzed for the ground state
of identical atoms and ions where resonant charge exchange proceeds with transition of a 4s-electron. The
interaction of the ion charge with the atom quadrupole moment is important for this system along with the
exchange interactions and spin-orbital interactions inside an isolated atom and ion. The quadrupole moment
for 3d-atoms in the ground states is evaluated. The hierarchy of interactions in a molecular ion is analyzed
depending on ion—atom distances and is compared with the standard Hund scheme. The resonant charge ex-
change proceeds effectively at separations corresponding to an intermediate case between cases “a” and “c” of

the Hund coupling scheme.

1. INTRODUCTION

The coupling of electron moments in atoms, ions,
and molecules determines their quantum numbers,
which are responsible for the behavior of these atomic
particles in various processes of their interactions and
collisions. General principles of moment coupling are
based on spectroscopic data and were formulated for
atoms [1] and molecules [2, 3] at the stage of creation
of the quantum mechanics. Our understanding of these
problems has expanded with an increase in our experi-
ence in atomic physics. In particular, the study of reso-
nant charge exchange of light atoms and their ions with
filling p-shells [4-7] allows revising the Hund scheme of
moment coupling in molecules. In this paper, we ana-
lyze coupling in molecular ions of elements of the iron
period, being guided by distances between an ion and
the parent atom that are responsible for the resonant
charge exchange process.

It is important that the moment coupling for weakly
interacting ion and atom also determines the cross sec-
tion of this process. We demonstrate this with a sim-
ple example. As follows from Table 1, the configura-
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tion of electron shells for a 3d-atom and ion differs by
the addition of one s-electron to the ion in most cases.
It may seem that the charge exchange process can be
considered in this case as the s-electron transition be-
tween two structureless cores. But this takes place if
the ion—atom exchange interaction significantly exceeds
the quadrupole ion—atom interaction at distances that
give the main contribution to the cross section of res-
onant charge exchange. For different relative strengths
of these two interactions, the cross section may be less
by an order of magnitude.

This requires analyzing the hierarchy of ion—-atom
interactions. In the absence of nuclear motion, we have
three types of interactions for the ion and atom with
a given orbital moment and spin: the molecular ion
consisting of an ion and the parent atom, with spin-
orbital interaction of the atomic ion and the atom,
the quadrupole interaction of the ion charge with the
atom, and the ion—atom exchange interaction at large
separations. It can be seen that the classical Hund
scheme [2, 3] is not suitable in this case because we
have two types of electrostatic interaction (quadrupole
and exchange ones). Below, we therefore analyze the
hierarchy of interactions for an ion and the parent atom
for the iron period elements.
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Table 1.

Electron shells and electron terms for atoms and ions with a filled 3d-electron shell in the ground states, and

the ionization potential as the electron binding energy with ion formation in the ground state [8, 9]. The asterisk marks

electronically excited states of an atom or ion

Element Element Atom Transferred Atom Ton I, em ! B.em ! b em!
number shell electron term term
21 Sc 3d4s? s ’D 3D 52922 36 174+04
21 Sc 3d*4s d A 3D 41402 7.50+0.02| 174+04
22 Ti 3d?4s> s 3p a 55000 27.9+0.3 18.8 £0.1
22 Ti 3d34s d SE* D 48443 10.4+0.2 18.8 +0.1
23 A% 3d34s> s D SE* 56964 27.1+0.4 20.3+0.3
24 Cr 3d°4s s 783 65’5/2 54570 0 0
24 Cr 3d°4s d 7S 6D 66512 0 23.0+0.6
25 Mn 3d°4s> s 65'5/2 7S5 59959 0 0
26 Fe 3d54s> s 5D 6D 63740 —50+1 —46.5+ 0.7
27 Co 3d"4s> s ‘P SE* 66751 —89+3 —57.0£0.8
28 Ni 3d%4s> s F D 61600 -162+4 —50.2
29 Cu 3d'%4s s 251/2 LS, 62317 0 0
29 Cu 3d'%4s d 25’1/2 3D* 84246 0 —153

2. MOMENT COUPLING IN ATOMS AND
IONS WITH THE 3d-ELECTRON SHELL

The interaction between an ion and the parent atom
at large separations can be divided into three types —
spin—orbit, quadrupole, and exchange interactions —
and our task is to construct the hierarchy of these in-
teractions in each particular case and to determine the
quantum numbers of the molecular ion under these con-
ditions. Because the spin-orbital interaction for the ion
and atom inside the molecular ion is the same as when
the ion and atom are separated, we use the spectro-
scopic data [8, 9] for spin-orbital interactions in these
atoms and ions. In principle, these atoms and ions are
many-electron systems, where electrons are located in
the Coulomb field of the nucleus. Based on the one-
electron approximation, where electrons are located in
a self-consistent field of the nucleus and other electrons,
and using the Pauli principle, we can reduce the charac-
ter of the electron distribution in the nucleus Coulomb
field to the shell atom scheme [10, 11]. Below, we con-
sider atoms and ions with 4s*3d" atomic shells.

The next approximation in this analysis is the sum-
mation of the moments of individual electrons of this
electron shell into the total orbital moment L of elect-
rons and the total electron spin S, which are quantum
numbers of atoms (or ions) [10, 11]. These quantum
numbers may be applicable if the relativistic interac-
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tions are ignored. If the relativistic interactions are
taken into account, then in addition to the above quan-
tum numbers L and S, the total moment .J is also an
atom quantum number, and hence L, S, .J, M are the
atom quantum numbers (M is the projection of the
total atom moment onto a given direction).

Table 1 contains the spectroscopic energy data for
the ground state quantum numbers of atoms and ions of
the iron period elements [8, 9]. We introduce the atom
ionization potential I with ion formation in a given
state as

I:IO—EJ+Ej, (2.1)

where I is the atom ionization potential for the lo-
west-energy values of the atom, J and ion j total mo-
ments at given electron shells and quantum numbers
LSls, and E; and Ej; are the excitation energies for the
indicated values of the atom and ion moments. The
atom ionization potential I characterizes the binding
energy of a transferred electron if we regard charge ex-
change resulting from the electron transition from one
core to another one as a resonant process. The parame-
ters of atom and ion spectra in formula (2.1) are taken
from [8, 9]. The excitation energies E; and E; of an
atom and ion with the total moments J and j can be
approximated as [12]
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E;=BJ(J+1) = BJy(Jo + 1),
(2.2)
Ej=1bj(j +1) = bjo(jo + 1),

where Jy and jy are the total moments for the ground
atom and ion states. The values of the parameters B
and b and their accuracy follow from the spectroscopic
data [8, 9].

The data in Table 1 justify the Hund rules [1, 12],
according to which the ground state of an atom or ion
with a given electron shell is characterized by the max-
imum spin due to the exchange interaction between
electrons, and among the states with the maximum
spin, the maximum orbital number corresponds to the
atom or ion ground state. As regards the total mo-
ment, it is minimal if the shell is less than half-filled
and maximal if the filling is above one half. We note
that just the analysis of atoms and ions of the iron
group of the periodical system of elements (from scan-
dium to nickel) allowed Hund [1] to formulate the rules
for the hierarchy of atom and ion energy levels. One
more aspect of the Hund rules relates to the sequence
of fine levels according to which excitation of fine levels
corresponds to an increase in the total moment if the
electron shell is less than half-filled, and to a decrease
in the total momentum otherwise.

Table 2 gives the lowest electron levels for the vana-
dium atom and ion and also for the cobalt atom and
ion [8, 9, 13] as examples of atoms and ions with filling
d-shells. The analysis of these data exhibits the validity
of the LS scheme of moment coupling because the en-
ergy difference for states with the same value of the or-
bital and spin moments is small compared to the energy
distance between the neighboring levels of different L
and S. Next, there is competition between 3d- and
4s-states. For this reason, the states of a given atom or
ion with a different number of 4s- and 3d-electrons are
alternated. Moreover, there is a mixing of states with
different electron shells in the case of an excited vana-
dium ion, as well as for more excited states of other
atoms and ions. This competition is important for the
resonant charge exchange process.

Table 2 also exhibits that the exchange interac-
tion between s- and d-shells in the cases considered
is 4000-6000 cm ™! and is small compared to the split-
ting energy for states of this d-shell. This exchange
interaction is characterized by the energy difference for
the states of an atom or ion with one 4s-electron and
different total spins at the same total moment of the
d-electron shell.
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3. INTERACTION BETWEEN AN ION AND
THE PARENT ATOM WITH A 3d-SHELL

Our goal is to analyze the character of moment
coupling for molecular ions consisting of an ion of the
iron group and the parent atom at large distances be-
tween them. We are guided by distances that deter-
mine the cross section of resonant charge exchange in
collisions of these ions and atoms. This process occurs
at large distances between the ion and the atom com-
pared to atomic sizes, where the ion—atom interaction
is weak. This allows separating various types of inter-
actions and constructing a hierarchy of interactions in
this molecular ion.

In view of the hierarchy of the interaction poten-
tials for an atom and its ion if the distance R between
them is large, we represent the ionization potential
of a transferred electron based on formula (2.1),

1
+-A
2

eqm

I(R):I:IO—EJ+E]'+ "3

(R), (3.1)
where Io(LSIs) is the atom ionization potential if the
atom and ion are separated and are in the states with
the given values of the atom moment L and spin S and
the same quantum numbers [s for the ion; the energies
Ej and Ej correspond to excitation of the atom with
the total moment J and the ion with the total moment
j with respect to the lowest-energy states with the to-
tal moments .Jy and jo for the isolated atom and ion;
qum is the atom quadrupole moment if M is the atom
orbital moment; and A(R) is the ion-atom exchange
interaction potential resulting from the electron transi-
tion from one atomic core to another, with the + sign
corresponding to an even state of the molecular ion, and
the — sign corresponding to an odd state with respect
to reflection of electrons with respect to the symme-
try plane that is perpendicular to the molecular axis
and bisects it. In this consideration, we restrict our-
selves to the exchange interaction inside the atom and
ion, and therefore LS and Is (the orbital moments and
spins of the atom and ion) are their quantum num-
bers, and the orbital moments and spins are summed
into the total moments J and j of the atom and ion
in the framework of the LS-coupling scheme. There-
fore, formula (3.1) corresponds to a certain hierarchy of
molecular energies. Practically, I(R) is the molecular
ion energy at large ion—atom separations, and we count
this energy from the ground state of two noninteracting
atomic particles.

In formula (3.1), the interaction of the ion charge
with the atom quadrupole moment is the basic electro-
static ion—atom interaction at large separations. We
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Table 2. Positions of the lowest levels for vanadium and cobalt atoms and ions. .J is the value of the total momentum

of the atomic particle, n; is the number of such states, E is the excitation energy of the lowest state from the group with
a given LS, AFE is the difference between the energies of the lowest and highest states of this group

Atom, ion Configuration Term J njy E,cm! AE, cm™!
VI 3d34s> a*F 3/2-9/2 4 0 553
3d*(°D)4s a®D 1/2-9/2 5 2112 313
3d*(°D)4s a*D 1/2-7/2 4 8413 304
3d34s> a*P 1/2-5/2 3 9544 280
3d34s> a’G 7/2-9/2 2 10892 208
3d4s? a’P 3/2-1/2 2 13801 9.4
3d4s? a’D 3/2-5/2 2 14515 34
3d*(*H)4s a*H 7/2-13/2 4 14910 163
VII 3d* a®D 0-4 5 0 339
3d®(*F)4s a®F 1-5 5 2605 558
3d°(*F)4s a*F 2-4 3 8640 458
3d* a®P 0-2 3 11296 613
3d* a*H 4-6 3 12545 161
3d* VF 2-4 3 13491 118
3d®(*P)4s a®D 1-3 3 13512 230
3d* + 343 (2Q)4s a*G 3-5 3 14462 194
Col 3d"4s> a*F 3/2-9/2 4 0 1809
3d®(®F)4s b F 9/2-3/2 4 3483 1593
3d®(*F)4s a’F 7/2-5/2 2 7442 1018
3d"4s? a*P 5/2-1/2 3 13796 604
3d3(3P)4s vt P 5/2-1/2 3 15184 111
3d"4s> a’G 9/2-7/2 2 16468 766
3d%('D)4s a’D 3/2-5/2 2 16471 309
3d®(*P)4s a’P 3/2-1/2 2 18390 385
CoII 3d8 a*F 4-2 3 0 1597
3d7(*F)4s a®F 5-1 5 3351 1854
3d"(*F)4s b F 4-2 3 9813 1509
3d8 a'D 2 1 11651 -
3d8 a®P 2-0 3 13261 333
3d"(*P)4s a’P 3-1 3 17772 567
3d® a'G 4 1 19190 -
3d"(?G)4s a*G 5-3 3 21625 790

derive this part of the interaction potential from a ge-
neral formula that allows finding the expression for the
atom quadrupole moment. If an ion that is rerarded
as a charge +e locate at the ion point, and the atom
valence electrons are at large separations R, then their

interaction potential is given by
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where r; is the coordinate of ith valence electron, 6;
is the angle of the radius vector of this electron with
respect to the axis joining the charge and the atom
nucleus, and k is the number of valence electrons. Ex-
panding this formula in the reciprocal ion—atom dis-
tances R, we can represent the second term of this in-
teraction, the ion—atom quadrupole interaction, in the
form

(3.2)

where the quadrupole moment operator is [14]

k

q= Z r? Py (cos;). (3.3)

We note that because the quadrupole moment operator
is independent of the spin coordinate in the framework
of the LS coupling scheme of the atom, it depends on
the quantum numbers LM (the orbital moment and
its projection onto the molecular axis). Assuming the
atom quadrupole moment to be determined by valence
electrons, we have its matrix elements

(LM|QILM"y = qpmbnnrs qum = (LM|G|LM),

and

qrm = 4rL,—M-

Because the atom is isotropic on average, we have the
relation

(3.4)

L
Z qrm = 0.
M=—L

Accordingly, the quadrupole moment is zero for an
atom with L = 0.

The total number of valence electrons for an atom
with a completed electron shell having the moment [
is n = 2(2 4+ 1). We can compare the quadrupole mo-
ments for an atom with a given electron shell and an
atom with the same number k of electrons and holes,
i.e., for the atoms with & and 2(2] + 1) — k electrons.
We have

qrm (k) = —qr v (4l +2 — k).

If a valence electron is in the field of a structureless
core, formula (3.3) gives [14]

3m?2 —1(l+1)

6 /2 _
Qim = 2(r*Py cosf) = 2(2l— D@i13)

r2,  (3.5)

where [ and m are the electron moment and its projec-
tion onto the axis and r2 is the average square of the
electron orbit radius. Hence, because the quadrupole
moment operator for the electron shell is

k
=G
i=1
where ¢; is the quadrupole moment operator for the

ith electron, formula (3.5) gives the atom quadrupole
moment in the one-electron approximation [14] as

3m?—1(1+1) -
_2 2
ZZZ—I 2l-|-3)

(3.6)
in the case where the electron shell contains k valence
electrons with an orbital moment [. This formula holds
only in the case where the atom electrons are charac-
terized by a certain combination of the moment pro-
jections m;, such that the atom wave function consists
of only one coordinate wave function rather than their
combination [12].

It is convenient to introduce the reduced quadrupole
moment (Qp s using the relation

2r2

qrLm =

Below, we apply this formula to an atom with valence
d-electrons, where

27‘2
qLm = QLM (3.8)
and in the one-electron approximation,
k
Qv =Y _(3m? —6). (3.9)

i=1

The reduced quadrupole moment also satisfies the re-
lations

Qv = Qr,—m, Z Qrm =0. (3.10)
M

In addition, we can relate the quadrupole moment for
any momentum projection to that at the projection
momentum coincident with the moment, namely, [12]

3M2 — L(L+1)

Qrv =Qrr TOL-1)

(3.11)

We are based on the one-electron approximation,
and therefore the wave function for valence electrons is
a combination of Slater determinants [11, 15-17], which
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include the one-electron wave functions of valence elec-
trons. Then formula (3.9) holds if the electron wave
function for valence electrons is determined by a single
Slater determinant. This pertains to quadrupole mo-
ments 7,7, if an atom has the maximum projection of
the total orbital moment or spin if these projections
of moments have the maximum possible values. For
the states d>(*F), d*(1G), and d®*(*F), QL1 takes the
respective values 3, 12, and 3. In particular, for the
electron shell d®(*F), we use formula (3.9) to obtain
the atom quadrupole moment

Q33 - 37 Q32 - 07
Q31 =-9/5, Q30 = —12/5.

These values satisfy relations (3.10).
If the wave function of valence electrons in the

(3.12)

one-electron approximation cannot be represented as
a single Slater determinant, then finding the atom
quadrupole moment becomes complicated. It may seem
that because the quadrupole moment operator in (3.3)
is the sum of one-electron operators, it is convenient to
use the parentage scheme for the wave function of va-
lence electrons by representing it in the form [11,19-21]
=P 3 GE.k),
l,my,s,ms, 1,0

Vi

L S

My

le 1

‘I’LSMLMS (1727 “e.
Ky mg MS

X \I’lsmzms(lv s 7k - 1)¢le%uo’(1)7

where k is the number of a valence electron, the ope-
rator P permutes positions and spins of a test va-
lence electron and other valence electrons, LSM Mg
are atom quantum numbers (the atom angular mo-
ment, the atom spin and projections of these moments
onto a quantizations axis), lsm,ms are similar quan-
tum numbers of an atomic core, le%7 po are the indi-
cated quantum numbers of an extracted valence elect-
ron, and GLS(l., k) is the fractional parentage coeffi-
cient or the Racah coefficient [19], which is responsible
for electron coupling with the atomic core in forming
the atom. Because of the permutation of electrons,
the quadrupole moment due to a given electron is the
sum of the quadrupole moment of an extracted electron
and of the atomic core. In this case, the requirement is
that because of the Pauli principle, the wave function
of the core electron must not coincide with that of an
extracted electron, and this complicates evaluation of
the atom quadrupole moment and makes this scheme

Q o=
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Table 3.
atoms with the 3d>-electron shell

The reduced quadrupole moments Q1. for

Electron
M=0\M=1\M=2\M=3|M=4
term

(3d2)'S | 0 - - - -
(3d?)*P | 42/5|-21/5| - - -
(3d2)1D 18/7 9/7|—-18/7 — —
(3d2)3F —-12/5| =9/5 0 —
(3d2)1G —60/7 | —=51/7|—24/7 12

nonproductive. It is more pragmatic to construct the
wave function of valence electrons as a combination of
Slater determinants, and this is a complicated opera-
tion.

We use the above formulas for atoms with two va-
lence d-electrons (or holes), i.e., in the case where the
atom has the d?-electron shell. We can then separate
space and spin coordinates because the quadrupole mo-
ment is independent of spin coordinates. Then the
space wave function ¥y gp(1,2) of this atom is given

by
where the arguments of the wave functions indicate the
numbers of electrons. From this, we obtain the reduced

quadrupole moment of the two-electron atoms with d
valence electrons as

2 2 L
m M-—-m M

X ¢2m(1)¢2,(M7m) (2)7

X

‘I’LM=Z

m

(3.13)

Qum =Y _(6m> +3M* — 6mM — 12) x

m
d

Table 3 contains the quadrupole moments of atoms
with the d?-valence electron shell. We note that be-
cause the two-electron wave function changes sign as a
result of an exchange of electrons, the electron states
with an even total orbital moment L are characterized
by the spin S = 0, and correspond to odd orbital mo-
ments L S = 1. Next, the quadrupole moment is an
even function of M, and therefore we restrict ourself
below to the case M > 0. Of course, the values in Tab-
le 3 satisfy relations (3.10) and (3.11). We note that
the reduced quadrupole moments Qs for the 3d(*F)
and 3d?(*P) states under consideration coincide.

2 2 L

(3.14)
m M-m M
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Table 4.
atoms with 3d-valence electrons for the lowest electron
states given in Table 1

The reduced quadrupole moments Q1. for

Avom, shell, o 00 1| Qs | P/a
electron term

Sc (3d4s)(?D) 6 3 -6 | — ] 162

Sc (3d?4s)(*F) 6 3 -6 | — | 213

Ti (3d?4s*)(3F) | —-12/5|-9/5| 0 | 3 | 14.2

Ti (3d®4s)(°F) | —12/5|-9/5| 0 | 3 | 16.8

V (3d34s2)(*F) | —12/5|-9/5| 0 | 3 | 12.8

Cr (3d°4s)("S3) 0 - | =1 -=1130

Mn (3d°4s*)(®S52) | 0 - | =] =1]110

Fe (3d%4s%)(°D) -6 | -3 6 | —| 99

Co (3d"4s*)(*F) |-12/5|-9/5| 0 | 3 | 88

Ni (3d%4s®)(*F) | —-12/5|-9/5| 0 | 3 | 9.8

Cu (3d'%45)(*S1 ) 0 - - | = 9.5

The above results give the values for the atom
quadrupole moments for the ground states listed in
Table 1. The quadrupole moments of the ground states
of atoms of the iron group of the periodical system are
represented in Table 4. We take into account that the
addition of an s-electron to a d"-shell does not change
the atom quadrupole moment, and the values 2 in Tab-
le 4 are taken from [18].

4. HIERARCHY OF ION-ATOM
INTERACTIONS AT LARGE SEPARATIONS

The above analysis is applicable if the quadrupole
ion—atom interaction significantly exceeds the fine split-
ting of atom levels that corresponds to the quantum
numbers

LMSJlsjm; (4.1)

of the weakly interacting ion and atom, where L, M,
S, and J are the atom orbital moment its projection on
the molecular axis, the atom spin, and the total atom
moment and [, s, j, and m; are the ion orbital moment
the ion spin, the total atom moment and its projection
onto the molecular axis. If the ion—-atom quadrupole
interaction is relatively small, then the quantum num-

bers are
LSJMJlSjm]', (42)

where M ; and m; are the projections onto the molecu-
lar axis for the total atom and ion moments. The re-

425

Table 5. The reduced quadrupole moments Qrssus,
for atoms with the 3d*-electron shell
Ms\J 3/2 5/2 7/2 9/2
1/2 —36/25 | —198/175 | —10/7 | —2
3/2 36/25 —99/350 —6/7 | —3/2
5/2 - 99/70 2/7 1/2
7/2 — — 2 1
9/2 — — — 3

duced atom quadrupole moments in the basis LS.JM
can be related to those in the basis LM SJ as [12]

R

We note that the reduced quadrupole moment in ba-
sis (4.2) has the identical symmetry properties as the
moment in (3.10),

L S J

2
M M,—M M, Quym

(4.3)

Qrsim,

Quim, = Qu—m,, ZQJMJ =0.

My

(4.4)

The quadrupole moments in basis (4.2) are related
as [12]

3M2— J(J+1)

QJJ—(QJ_l)

Qrm; = (4.5)

In addition, the maximum moment projections in
bases (4.2) and (4.1) are related as
3N2A-1)—-2J(J+1)L(L+1)
(J+1)(2J+3)L(2L—1)
[J(J+1)+L(L+1)-S(S+1)]/2.

QJ,J = QL,L
(JL) =

(4.6)
=

Table 5 lists the reduced quadrupole moments of
an atom with the 3d®-electron shell in basis (4.2). The
validity of this formula can be verified for any value in
Table 5

We now construct the hierarchy of energy levels for
an ion interacting with its parent atom. The quasi-
molecule states can be divided into groups such that
each group is characterized by certain quantum num-
bers LSIs. This means that according to the behavior
of energy levels for atoms and ions of the iron group
of the periodical system of elements [8, 9], the ener-
gy difference for the states with different values of the
quantum numbers LS[s is large compared to the states
with different quantum numbers Jj for the same va-
lues LSls. The fine splitting of atom and ion levels
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U, cm™? J, M
j=1 j=2 j=3 j=4 j=5

3/2,0

58400 | 5;270

= 3/2,1

58200 L Z 521

7/2.0

= = 721

58000 _ = 9/2,0

= _ 3/2,2

_ - = _ 9/21

57800 L _ = - — 5/2,2

= — = = 7?2,2

- _ = — 9722

57600 L B = — — - 323

== = - o

00 L = 2 - ok
57200 L — T -

57000 L —
Fig.1. Electron terms (ionization potentials) for the

quasimolecule V (3d%4s2,* F)+V*+(3d®("F)4s°F) ex-
pressed in cm ™! at the ion—atom separation R = 10ao
in accordance with formula (3.1). Electron terms are
given in basis (4.1), and the sequence of valid quantum
numbers for energy levels for electron terms is given
on the right, and energies of some levels coincide; the
splitting due to the exchange ion—atom interaction is
ignored

may be comparable with the quadrupole ion—atom in-
teraction in the range of ion—atom separations under
consideration. Figures 1 and 2 contain the positions
of electron terms for vanadium ions and their parent
atoms for the ground ion and atom states at distances
R = 10ap and R = 20ap. In Figs. 1 and 2, we give
the spectra of the interacting vanadium atom and ion
in the case where the atom electron shell results from
joining an s-electron to the ion electron shell. Then
L =1and S = s+ 1/2. At the separation R = 10ag
in Fig. 1, the scheme of quantum numbers in (4.1)
is realized, and Fig. 2 with the separation R = 20ag
corresponds to scheme (4.2), where the quadrupole
ion—atom interaction potential is small compared to the
fine level splitting for the ion and atom. In intermedi-
ate cases where the spin—orbit interaction is comparable
to the quadrupole ion—atom interaction, the positions
of the molecular levels may be found by the standard
method [12] of solving the secular equation that in-
cludes the quadrupole and spin—orbit interactions. We
previously used this operation for oxygen and nitro-
gen [6, 7], where the atom quadrupole moment is de-
termined by valence p-electrons.

Restricting to the case of the vanadium ion and
atom in Figs. 1, 2, we analyze the transition from

U, et J, My
59000 [j=1 j=2 j=3 j 12545 172
58800 | 3;2,3;2
— = 5/2.1/2
58600 | _ _ g;;ﬂg;g
58400 | _ T = _ ~ T21/2
58200 F — = - — 7/2,3/2
= - —_ 7/2,5/2
58000 — - = 7/2,7/2
- — — — 9/2,1/2
57800 | — - = B 912 372
57600 | = 9/2,5/2
— 9/2.7/2
57400 [ — 9/2,9/2
57200 |- —
57000 | _ _
56800 [ =
56600 [ — =

Fig.2. Electron terms (ionization potentials) for the
quasimolecule V(3d%4s2,* F)+ V1 (3d®("F)4s°F) ex-
pressed in cm ™! at the ion—atom separation R = 20ao
in accordance with formula (3.1). Electron terms are
given in the basis (4.2), and the sequence of valid quan-
tum numbers for energy levels for electron terms is
given on the right, and energies of some levels coincide;
the splitting due to the exchange ion—atom interaction
is ignored

scheme (4.1) to (4.2). For definiteness, we compare
the energy gaps between energy levels for states with
the quantum numbers JM (J is the atom total moment
and M is the orbital moment projection onto the molec-
ular axis) for neighboring values of J and M. The en-
ergy gap between levels with quantum numbers 9/2,3
and 9/2, 2is equal to the energy gap between levels with
quantum numbers 9/2,3 and 7/2,3 at the separation
R = 14aq. Separations of this order of magnitude char-
acterize the transition from quantum numbers (4.1) to
quantum numbers (4.2) for vanadium, as R increases
from approximately R = 10ag to R = 20ag. We also
note that at R = 10a (Fig. 3), the second upper level
is coupled to the third one, and the forth upper level
is coupled to the fifth one, but this does not affect the
general form of the spectra. In addition, levels with
neighboring values of LSIs are almost uncoupled.

5. COUPLING OF ELECTRON MOMENTS IN
RESONANT CHARGE EXCHANGE

Our goal is to construct the interaction potential
of an ion and its parent atom at large distances bet-
ween these particles, in the case where these distances
determine the cross section of the resonant charge ex-
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Fig.3. The asymptotic coefficient A for a 4s-electron

of the vanadium atom. As can be seen, as a result of

approximating the numerical wave function by asymp-

totic expression (5.2) in the region (6--12)ao, we obtain
A =1.304+0.02

change process in slow ion-atom collisions. Then to-
gether with the electrostatic interaction between these
particles, which is determined mostly by the ion inter-
action with the quadrupole atom moment, we take the
exchange ion—atom interaction into account, which is
determined by electron transfer from one atomic core
to another. This exchange interaction is responsible for
the resonant charge exchange whose nature consists in
the interference of even and odd states of the molecular
ion consisting of an ion and an atom [22]. Then the ex-
change ion—atom interaction potential A(R) at a given
separation R is the energy difference for the even and
odd states with respect to reflection of all electrons at
this separation with respect to the symmetry plane that
bisects the axis joining the nuclei and is perpendicular
to this axis.

We focus on the interaction of the ion and atom
in the ground state for elements of the iron group of
the periodical system, where the ion and atom elect-
ron shells differ by one 4s-electron (see Table 1). This
results from competition between 3d- and 4s-electron
shells for atoms and ions of this group and simplifies
our analysis. Therefore, restricting ourselves to the in-
teraction of atoms and ions in the ground states with
3d-electron shells, we obtain that the exchange inter-
action potential is determined by the transition of an
s-electron and is given by a formula in [23] for struc-
tureless cores,

Ag(R) = A2R* "L exp(—Ry — 1/7), (5.1)
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where we use the atomic units for simplicity, the pa-
rameter v is related to the atom ionization potential
I as I = 4%/2, and the parameter A characterizes the
asymptotic behavior of the wave function for a valence
electron. As a function of the distance r from the core,
the electron radial wave function R(r), if it is normali-
zed to unity, is equal to

R(r) = Ar'/7  exp(—rv) (5.2)

far from the core. We note that formula (5.1) is iden-
tical for atoms with 4s- and 4s2-electron shells.

Formula (5.1) describes the case where the atom
and ion states differ by one s-electron. According to
Table 1, this applies to almost all elements of the iron
group of the periodical system except the cases with a
d3-electron shell (or a d®-hole shell). In this case, the
ion—atom exchange interaction is zero in the framework
of transitions of one electron, and the cross section of
resonant charge exchange is small compared to that re-
sulting from transitions of one electron. But the lowest
excited state of an ion with a low excitation energy,
as follows from Table 1, permits the one-electron ex-
change interaction, and just such transitions are taken
into account in the ion—atom exchange interaction.

Table 6 contains the parameters of formula (5.1)
that are of interest for the resonant charge exchange
process involving atoms and ions with 3d-electron shells
in the ground states, where the exchange process results
from transition of a 4s-electron. We obtain the values of
the asymptotic coefficient A for the transferred s-elect-
ron using the standard method [23, 24] of matching
asymptotic wave function (5.2) with that obtained from
a numerical solution of the Schrédinger equation [25].
An example of this matching for the vanadium atom
is given in Fig. 3. We here define the asymptotic coef-
ficient A(r) in accordance with formula (5.2), and the
accuracy for the average value of this parameter is de-
termined by its values in the range from r = 4/ to
8/7.

We can calculate the cross section of resonant
charge exchange using the asymptotic formula that has
the following form in the two-state approximation for
the transition of an s-electron between two structure-
less cores [22—24]:

e C

T RO
2 ’

2 i

A(Ro)

v

ﬂ'R()

UT‘GS -

(5.3)

2y

and we use the atomic units. We assume the parame-
ters of the cores to be identical in this process. Table 6
contains the values of the parameter Ry according to
formula (5.3) the ion energy of 1 eV for a motionless
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Table 6. Parameters of a transferred s-electron in the resonant charge exchange process for atoms and ions with
3d-electron valence shells
Element Element Atom Atom Ton N 4 Rojao | A(Ro), em™!
number shell state state
21 Sc 3d4s? ’D 3D 0.694 | 1.31+0.02 22 10.3
22 Ti 3d?4s* 3F i 0.708 | 1.28 +0.01 21 10.4
23 A% 3d34s> ‘ir SE* 0.720 | 1.30+0.02 20 104
24 Cr 3d°4s 7S, 655/ 0.705 | 1.16 £ 0.02 22 9.7
25 Mn 3d°4s> 6552 7S 0.694 | 1.32+0.02 22 9.4
26 Fe 3d4s? °D 6D 0.762 | 1.3940.02 19 10.5
27 Co 3d"4s? ‘ir SE* 0.780 | 1.50+0.02 18 10.6
28 Ni 3d84s? 3F 2D 0.749 | 1.28+0.02 19 10.1
29 Cu 3d'%4s 251 /2 1S, 0.754 | 1.29+0.02 19 9.8
Table 7. The cases of Hund coupling [2, 3, 12] n is the unit vector along the molecular axis, K is the
rotation moment of the nuclei, A is the projection of
Hund case Relation Quantum numbers the angular momentum of electrons onto the molecular
o |VerdpVel ASS ot the moteoator i, S is he projoution of he
b Ve > Vot > 0y A,S, Sy electron spin onto the molecular axis, and Ly, Sy, and
c |H>Ve> Vg e oF he maclows atation mementum M. Below, we take
d Viot > Ve > 0y L,S,Ly,SN this scheme as a basis for our analysis.
We now reduce the character of interaction in-
€ Veor > 05 > Ve . In side molecular ions under consideration to the Hund

atom. The value of the ion—atom exchange interaction
A(Ryp) at this distance between the nuclei characterizes
the character of moment coupling in the molecular ions
at such separations.

Now, guided by the standard Hund scheme given
in Table 7, we analyze the character of moment cou-
pling in molecular ions. The standard scheme for a hi-
erarchy of interaction energies in a diatomic molecule
includes the Hund cases of moment coupling [2, 3, 12]
and is based on three types of interaction: the electro-
static interaction potential V., the fine level splitting
or spin—orbital interaction d¢, and the rotational energy
Vot due to relative motion of the nuclei in a diatomic
molecule. There are six Hund cases of moment coupling
depending on the relation between these interactions,
and they are represented in Table 7.

The Table shows the quantum numbers of diatomic
molecules in the framework of the Hund coupling
scheme [2, 3, 12]. There, L is the total electron angu-
lar momentum of the molecule, S is the total electron
spin, J is the total electron moment of the molecule,
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scheme. We introduce the rotation energy in an ion—
atom collision as

Voot = o (5.4)
where v is the relative ion—atom velocity and Ry is the
separation that determines the cross section of reso-
nant charge exchange (5.3) for structureless cores. We
compare the rotation energy V,,: with the exchange
ion—atom interaction potential A(Rp) given by (5.3):

their ratio is equal to

2
= 0.28\/;/73,0 =0.22\/7Ro.  (5.5)

V;”ot (RO) B

A(Ro)

Because YRy ~ 10 under thermal and eV-energies, it
follows that the rotation energy and the exchange inter-
action potential are comparable for ion—atom distances
that determine the cross section of resonant charge ex-
change. In addition, the rotation energy is small com-
pared to other interaction potentials Ups, 6;, and d,,
and this determines the character of moment coupling
in this case. Indeed, for the vanadium case with the d°
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electron shell, the distance between neighboring states
with quantum numbers (4.1) or (4.2) is ~ 100 ecm~!,
while A(Rg) ~ Vot ~ 10 em™!. We note that from the
standpoint of the standard scheme of moment coupling
given in Table 7, the conditions in Fig. 1 pertain to
case “a” of Hund coupling, whereas Fig. 2 corresponds
to case “c” of Hund coupling.

Based on the above analysis, we can construct a hi-
erarchy of interactions for a quasimolecule consisting
of an ion of the iron group of the periodical system of
elements and its parent atom at typical distances Ry
between them that determine the cross section of reso-
nant charge exchange in the range of collision energies
0.1-10 eV. As a result, we have the following hierarchy
of interactions, which is more or less satisfied for all
these cases:

Vee > 01,80 > U > Vior, A(Ro). (5.6)

Here, V., is a typical exchange interaction potential in-
side a separated atom and ion, which determines quan-
tum numbers LS and [s for the atom and the ion, §;
and ¢, are spin—orbit interactions in the atom and ion
that lead to the quantum numbers J and j of the atom
and the ion, and U is the interaction potential for the
ion charge with the atom quadrupole moment. The
hierarchy of interactions (5.6) is based on the data in
Table 1 and the above analysis; it pertains to case “c”
of Hund coupling.

We now analyze the above hierarchy of interactions
for a molecular ion consisting of the identical ion and
atom from the standpoint of the resonant charge ex-
change in collisions of ions and parent atoms with va-
lence 3d-electrons in ground states. In the notation of
formula (4.2), the process of resonant charge exchange
is accompanied by the following change of the ion and
atom quantum numbers:

LSJMjlsjmj — LSJ' Mjlsj'm!. (5.7)

Because the electron transfer proceeds at low rotation
of the molecular axis, the transition of an s-electron
leads to the following relations between momentum
projections of the colliding atom and ion:

m’. =

My =M;£1/2, m}

mj+1/2.  (5.8)

For an effective transfer of the s-electron, the res-
onance is required between the initial and final states
with the accuracy of the ion—atom exchange interac-
tion potential A(R) if this transition occurs at a sepa-
ration R. A(Rp) is approximately 10 em ™! according
to the data in Table 6, where Ry is determined by for-
mula (5.3) and characterizes the cross section of res-
onant charge exchange for structureless cores. We see
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that A(Rp) < Ae, where Ac is the energy difference for
neighboring energy levels with different .J and j. Hence,
the cross section of resonant charge exchange in colli-
sions of ions and parent atoms with valence 3d-elect-
rons in ground states is less than the cross section in
the case of structureless cores and the same parame-
ters of the transferring s-electron. Evidently, the cross
section of resonant charge exchange involving ions and
atoms under consideration is given by the formula

TR}
2 b
and according to Table 1, Ae = (20-40) cm ™! for 3d-

atoms and ions in the ground states. Hence, because
A(R) ~ exp(—v)R according to formula (5.1), we have

Ro - R1 = (]. - 2)@0. (510)

A(Ry) =~ Ae, (5.9)

Ores =

This difference may be found more accurately for a cer-
tain case of electron transfer. As can be seen, even in
the simple case of an s-electron transition, the charge
exchange process requires taking some details of this
process into account. In addition, the resonant charge
exchange process pertains to the following hierarchy of
interactions in the molecular ions instead of (5.6):

Véz > 6i75a7U7A(R1) > Vrot~ (511)

Interaction hierarchy (5.6) corresponds to case “c” of
Hund coupling, whereas (5.11) is related to the cases
of Hund coupling intermediate between “a” and “c”.

In considering the resonant charge exchange pro-
cess that involves ions and parent atoms with valence
3d-electrons, we obtain that this process proceeds ef-
fectively at separations where the coupling of the elec-
tron momenta due to spin—orbit interaction inside the
colliding ion and atom is comparable to the exchange
interaction potential due to transfer a 4s-electron be-
tween atomic cores. This shows that the ion—atom ex-
change interaction becomes important for the moment
coupling at small and moderate distances between the
ion and the parent atom where this exchange inter-
action is comparable to the quadrupole ion—atom in-
teraction. From this, it also follows that the scheme
of moment coupling in molecular ions under consider-
ation must be revised by accounting for the ion-atom
exchange interaction at low separations, where the ion—
atom quadrupole interaction exceeds the spin—orbit in-
teraction inside the atom and ion.

6. CONCLUSION

As a result of the above analysis, we can construct
a hierarchy of ion—atom interactions in a quasimolecule
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at large ion—atom separations R that determine the
cross section of resonant charge exchange. In this case,
atoms and ions contain valence 3d-electrons, and reso-
nant charge exchange results from transfer of a 4s-elect-
ron, as is the case for most atoms and ions with not
completed 3d-shells in accordance with Table 1. At
large separations, the hierarchy of interactions is given
by formulas (5.6) and (5.11), according to which the
interactions in the quasimolecule can be divided into
three blocks. The strongest interaction is the exchange
interaction inside an isolated atom and an ion, which
involves electrons of the 3d- and 4s-electron shells. This
interaction along with the structure of the electron shell
for a given state gives the orbital moments and spins for
the interacting atom and ion as the quantum numbers
of these particles. In these cases, the quasimolecule
quantum numbers for the ion and atom electron shells
are LSls (the orbital moment and spin of the atom and
the same quantum numbers for the ion).

The second block of interactions includes the fine
splitting of atom J, and ion ¢; levels, as well as the
long-range charge—quadrupole interaction U between
an ion and an atom. The charge—quadrupole interac-
tion potential U may be arbitrary in comparison with
the spin—orbit interaction inside the ion d; and atom d,
depending on the ion-atom separation. The quantum
numbers for these two blocks of interaction are JMj
or JMj (J and j are the total atom and ion moments
and M and M, are the projections of the atom or-
bital and total moments onto the quasimolecule axis)
depending on the ion—atom separations.

The rotational energy V., is small compared with
the above interactions, and we deal with cases “a” or “c”
of Hund coupling according to Table 7. The ion-atom
exchange interaction potential A(R) may be small or
comparable with the spin—orbit and quadrupole inter-
actions depending on the ion-atom separation R. The
electron transition proceeds effectively where these in-
teractions are comparable. We note that even in the
simple case of the ground ion and atom states, where
resonant charge exchange results from the transfer of
an s-electron, the accurate evaluation of the cross sec-
tion of this process becomes cumbersome.
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