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PASSIVE SCALAR TRANSPORT IN PERIPHERAL REGIONSOF RANDOM FLOWSA. Chernykh a;b*, V. Lebedev 
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s, Russian A
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ow Institute of Physi
s and Te
hnology14700, Mos
ow, RussiaRe
eived January 13, 2011We investigate statisti
al properties of the passive s
alar mixing in random (turbulent) �ows assuming itsdi�usion to be weak. Then at advan
ed stages of the passive s
alar de
ay, its unmixed residue is primarily
on
entrated in a narrow di�usive layer near the wall and its transport to the bulk goes through the peripheralregion (laminar sublayer of the �ow). We 
ondu
ted Lagrangian numeri
al simulations of the pro
ess for diffe-rent spa
e dimensions d and revealed stru
tures responsible for the transport, whi
h are passive s
alar tonguespulled from the di�usive boundary layer to the bulk. We investigated statisti
al properties of the passive s
alarand of the passive s
alar integrated along the wall. Moments of both obje
ts demonstrate s
aling behavioroutside the di�usive boundary layer. We propose an analyti
 s
heme for the passive s
alar statisti
s, explainingthe features observed numeri
ally.1. INTRODUCTIONSto
hasti
 dynami
s of s
alar �elds su
h as the tem-perature or 
on
entration of pollutants in random (tur-bulent) �ows is of great importan
e in di�erent phys-i
al 
ontexts, from 
osmology to mi
ro�uidi
s. If theba
k rea
tion of the �eld on the �ow is negligible, thenthe �eld is 
alled a passive s
alar. We 
onsider thepassive s
alar in random �ows, where the �ow velo
-ity varies randomly in time. Theoreti
al examinationof dynami
al and statisti
al properties of the passives
alar in random �ows goes ba
k to 
lassi
al works ofObukhov [1℄ and Corrsin [2℄, where a phenomenologyfor the passive s
alar statisti
s in turbulent �ows wasdeveloped in the spirit of the Kolmogorov s
heme [3℄.Modern understanding of the passive s
alar statisti
s inturbulent �ows is re�e
ted in Refs. [4�7℄ (see also [8�10℄). The mixing problem for the passive s
alar hasalso been investigated for 
haoti
 �ows [11℄. An inter-*E-mail: 
hernykh�iae.nsk.su

esting example of a random �ow is the so-
alled elasti
turbulen
e, dis
overed in polymer solutions in [12℄. Ob-servations of the passive s
alar statisti
s in the elasti
turbulen
e were reported in Ref. [13℄.In the 1990s, a series of theoreti
al works devotedto the passive s
alar statisti
s were done in the frame-work of the so-
alled Krai
hnan model, where the tur-bulent �ow is assumed to be short-
orrelated in timeand to have a de�nite s
aling. Those works revealedgeneral features of the passive s
alar statisti
s in tur-bulent �ows in
luding the so-
alled anomalous s
alingand intermitten
y [14�16℄ (see also reviews [17, 18℄).However, the approa
h implies spa
ial homogeneity ofthe �ow statisti
s and is therefore not dire
tly appli
a-ble to near-wall regions.In this paper, we investigate the passive s
alarstatisti
s in peripheral regions of a vessel where the de-veloped (high-Reynolds) turbulen
e is ex
ited. Speak-ing about the peripheral regions of turbulent �ows, weunderstand a laminar (vis
ous) sublayer formed nearwalls where the velo
ity �eld 
an be 
onsidered as13 ÆÝÒÔ, âûï. 2 (8) 401
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es of the order of thesublayer thi
kness). However, the velo
ity remainsa random fun
tion of time there. A 
ertain laminarboundary layer is also 
hara
teristi
 of the elasti
 tur-bulen
e [19℄. The passive s
alar statisti
s in the pe-ripheral region is determined by a 
ompli
ated inter-play of its di�usion and random adve
tion in the highlyanisotropi
 situation 
aused by the presen
e of walls.We are interested in advan
ed stages of the pas-sive s
alar de
ay under the assumption that the Pe
letor the S
hmidt number is large. In this 
ase, the un-mixed fra
tion of the passive s
alar is lo
ated mainly ina narrow di�usive layer near the wall, thinner than thethi
kness of the peripheral region [20℄. Then the pas-sive s
alar transport to the bulk goes through the pe-ripheral region outside the di�usive layer. Just this pe-ripheral region plays a 
ru
ial role in formation of sta-tisti
al 
hara
teristi
s of the passive s
alar transport.The same reasoning 
an be applied to a stationary 
aserelated, e. g., to a permanent heat �ow going from thewalls through the periphery region to the bulk. More-over, fast 
hemi
al rea
tions 
an be analyzed within thesame s
heme (see Ref. [21℄). A theoreti
al approa
h tothe problem was developed in [22℄, and prin
ipal pre-di
tions of the theory were 
on�rmed by experimentin [23℄.To 
he
k the theoreti
al predi
tions in detail, we
ondu
ted extensive numeri
al simulations of the prob-lem based on the Lagrangian dynami
s of parti
les rep-resenting the passive s
alar. To establish main qualita-tive properties of the passive s
alar transport in periph-eral regions, we fo
used on the two-dimensional 
ase(2d). However, a great advantage of the Lagrangians
heme is the possibility to extend the approa
h tohigher dimensions without major problems. We per-formed simulations for the spa
e dimension d = 3�5 toestablish the universality of the passive s
alar statisti-
al behavior in 2d and to reveal features 
hara
teristi
of higher dimensions. We used a s
heme with perma-nent inje
tion of parti
les near the wall, whi
h produ
esa passive s
alar statisti
ally homogeneous in time. Butour 
on
lusions are also valid for the de
aying 
ase be-
ause of the adiabati
ity: events responsible for thepassive s
alar transport to the bulk o

ur mu
h fasterthan the average passive s
alar de
ay.The obtained numeri
al data 
an be used to 
om-pute averages 
hara
terizing the passive s
alar statis-ti
s. First of all, we found moments of the passives
alar at di�erent separations from the wall. The datashow the existen
e of a well-pronoun
ed di�usive layerwhere the passive s
alar is mainly 
on
entrated, in a
-
ordan
e with the theoreti
al expe
tations formulated

in Ref. [22℄. Outside the di�usive layer, the passives
alar moments demonstrate s
aling behavior with theexponents deviating from those proposed in Ref. [22℄,where the di�usion was assumed to be negligible out-side the di�usive layer. We veri�ed that the deviationsare indeed related to di�usion. The situation resem-bles the passive s
alar statisti
s in the Bat
helor velo
-ity �eld on s
ales larger than the pumping length wheredi�usion appears to be relevant [24℄, whi
h 
orre
ts thedi�usionless behavior examined in Ref. [25℄. Next, weintrodu
ed the passive s
alar integrated along a surfa
eparallel to the wall. The di�usion along the wall dropsout from the equation for the obje
t. We demonstratednumeri
ally that as fun
tions of the separation from thewall, the moments of the integral passive s
alar have awell-pronoun
ed s
aling behavior outside the di�usivelayer. We found the 
orresponding s
aling exponentsfor the moments with degrees n = 1�6 in spa
e dimen-sions d = 2�5. The moments exhibit an anomalouss
aling signalling a strong intermitten
y of the passives
alar statisti
s.The simulations enabled us to reveal obje
ts un-derlying the intermitten
y. These are tongues of thepassive s
alar pulled from the di�usive layer towardsthe bulk. The tongue 
ross se
tion diminishes as theseparation from the wall in
reases (be
ause the velo
ity
omponent perpendi
ular to the wall in
reases). Thatexplains why di�usion 
an play an essential role evenin the region outside the di�usive layer. The subse-quent tongue evolution, in
luding tongue folds, pro-du
es long-lived stru
tures of 
omplex shape. Some-times, the tongues are pulled so strongly that they ir-reversibly push a passive s
alar portion away from thewall. Just this me
hanism is responsible for the passives
alar transport to the bulk, whi
h naturally explainsits strong intermitten
y.As an explanation of the passive s
alar statisti
s,we suggest a theoreti
al s
heme based on the smallnessof the passive s
alar 
orrelation length along the walloutside the di�usive layer. This s
heme allows �ndingexpli
it expressions for the s
aling exponents 
hara
-terizing di�erent obje
ts. A 
omparison of the theoret-i
al predi
tions with numeri
al results shows that theyagree satisfa
torily. Some preliminary results of ourwork were published in Ref. [26℄.The stru
ture of this paper is as follows. In Se
. 2,we present our theoreti
al approa
h to the passives
alar dynami
s and statisti
s in the peripheral regionand propose a s
heme yielding the s
aling exponents.In Se
. 3, we explain our 
omputational s
heme, present
omputed moments of the passive s
alar and integralpassive s
alar, des
ribe the passive s
alar tongues, and402
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ompare our numeri
al results with theory. In Con
lu-sion, we summarize our results and dis
uss their possi-ble appli
ations and dire
tions of future investigations.2. THEORETICAL DESCIPTIONWe 
onsider the passive s
alar statisti
s in periphe-ral regions of a random �ow, i.e., regions near bound-aries (walls). Our prin
ipal example is the vis
ous (la-minar) boundary layer of the developed high-Reynoldshydrodynami
 turbulen
e (see, e.g., book [8℄), but ourapproa
h 
an also be applied to other situations. Forexample, we 
an 
onsider the peripheral region of elas-ti
 turbulen
e [12℄. The only feature relevant for usis the smoothness of the �ow in the boundary layer,whereas the velo
ity varies randomly in time there.We let � denote the passive s
alar �eld. It 
an repre-sent both temperature variations or the 
on
entrationof pollutants. The passive s
alar evolution (de
ay) inan external �ow is des
ribed by the adve
tion�di�usionequation �t� + vr� = �r2�; (1)where v is the �ow velo
ity and � is the di�usion (ther-modi�usion) 
oe�
ient. Below, the �uid is assumedto be in
ompressible (that is, the �ow is divergent-less, rv = 0). Equation (1) implies that there areno sour
es of the passive s
alar in the bulk. However,we do not ex
lude a passive s
alar �ux from the vesselwalls.Equation (1) has to be supplemented by boundary
onditions at the wall. If � is the density of pollutantsand the wall is impenetrable for the pollutants, thenthe gradient of � in the dire
tion perpendi
ular to thewall is zero near the wall, whi
h 
orresponds to zeropollutant �ux to the boundary. In this 
ase, we dealwith the passive s
alar de
ay, leading ultimately to itshomogeneous distribution in spa
e. If � is the tempera-ture, then its gradient in the dire
tion perpendi
ular tothe wall 
an be nonzero, whi
h 
orresponds to a �niteheat �ux through the boundary (from the wall). If thewalls are made of a material that 
ondu
ts heat well,then the value of � (temperature) has to be regardedas �xed at the boundary.We assume that the Pe
let or S
hmidt number islarge (that is, the di�usion 
oe�
ient � is small in 
om-parison with the �uid kinemati
 vis
osity �). Then, aswas demonstrated in [22℄, the passive s
alar dynam-i
s in the peripheral region is slow in 
omparison withthe velo
ity dynami
s. Therefore, the passive s
alar israpidly mixed in the bulk (for a time that 
an be esti-mated as the inverse Lyapunov exponent of the �ow),

whi
h leads to a homogeneous spa
ial distribution ofthe passive s
alar, � = 
onst. The subsequent pas-sive s
alar evolution is related mainly to the peripheralregions, whi
h supply the bulk by passive s
alar �u
-tuations. We assume that the bulk 
an be treated asa big reservoir; then the bulk homogeneous value of �,�b, 
an be assumed to be independent of time. Below,we assume that the passive s
alar �eld is shifted by �b,whi
h leads to the 
ondition � ! 0 as we pass from theperiphery to the bulk.2.1. Correlation fun
tionsStatisti
al properties of the passive s
alar 
an bedes
ribed in terms of its 
orrelation fun
tionsFn(t; r1; : : : ; rn) = h�(t; r1) : : : �(t; rn)i; (2)where the angular bra
kets denote averaging over largetimes (larger than the velo
ity 
orrelation time). Be-
ause the velo
ity tends to zero in approa
hing the walland the mole
ular di�usion is assumed to be weak, thepassive s
alar dynami
s, determined by an interplay ofthe adve
tion and di�usion, is slower than the velo
-ity dynami
s in the peripheral region. Therefore, ininvestigating the passive s
alar dynami
s, the velo
ity
an be regarded as short-
orrelated in time, and 
losedequations 
an be derived for the passive s
alar 
orrela-tion fun
tions (see, e.g., [18, 22℄)�tFn = � nXm=1r2mFn ++ nXm;k=1X�� �m� [D��(rm; rk)�k�Fn℄ ; (3)where D�� is expressed in terms of the pair velo
ity
orrelation fun
tion asD��(r1; r2) = 1Z0 dt0hv�(t+ t0; r1)v�(0; r2)i: (4)Here, again, the angular bra
kets denote averaging overtimes larger than the velo
ity 
orrelation time.The stru
ture of Eq. (3) is quite transparent: theevolution of the passive s
alar 
orrelation fun
tions isdetermined by the mole
ular di�usion (the �rst termin the right-hand side) and by the eddy di�usion (these
ond term in the right-hand side). Therefore, thequantity D�� 
an be 
alled the eddy di�usion tensor,sin
e it des
ribes di�usion of the passive s
alar relatedto the random �ow. This e�e
t 
an be 
ompared tothe turbulent di�usion of the passive s
alar in turbu-lent �ows in the bulk on s
ales larger than the vis
ous403 13*
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ase, the eddy di�usion tensor D��is asso
iated with a smooth �ow, and 
an be used todes
ribe the passive s
alar dynami
s on s
ales smallerthan the turbulent vis
ous length.We assume that the walls of the vessel are smoothand that the boundary layer width is mu
h less than the
urvature radii of the wall. Then it 
an be treated as�at in the leading approximation. We introdu
e a ref-eren
e system with the z axis perpendi
ular to the walland assume that the �uid o

upies the region z > 0.The smoothness of the velo
ity leads to the propor-tionality laws vx; vy / z and vz / z2 for the velo
ity
omponents along and perpendi
ular to the wall. Thelaws are 
onsequen
es of the velo
ity smoothness, ofthe nonslipping boundary 
ondition v = 0 at the wall,and of the in
ompressibility 
ondition rv = 0.Below, we assume that the velo
ity statisti
s is ho-mogenous in time, and also assume its homogeneityalong the wall. Due to the assumed homogeneity, ve-lo
ity 
orrelation fun
tions depend on time di�eren
esand on the di�eren
es of the 
oordinates x and y. Forexample, eddy di�usion tensor (4) is independent oftime and does depend on the di�eren
es x1 � x2 andy1 � y2. However, it depends on both z1 and z2 dueto the strong inhomogeneity of the system in the di-re
tion perpendi
ular to the wall. The z-dependen
eof the eddy di�usion tensor 
omponents 
an be founddire
tly from the proportionality laws vx; vy / z andvz / z2. For example,Dzz(x; y; z1;x; y; z2) = �z21z22 ; (5)where � is a 
onstant 
hara
terizing the strength of thevelo
ity �u
tuations in the peripheral region.The equation for the �rst moment of � (the averagevalue of the passive s
alar �eld), h�i, is�th�i = �z ��z4�zh�i�+ ��2z h�i; (6)as follows from Eqs. (3) and (5). Comparing the ad-ve
tion and di�usion terms in Eq. (6), we �nd a 
har-a
teristi
 di�usion length rbl de�ned asrbl = (�=�)1=4: (7)This quantity determines the thi
kness of the di�usionboundary layer formed near the wall. Due to the small-ness of � (we re
all that the Pe
let or S
hmidt numberis assumed to be large), the di�usion length is mu
hless than the thi
kness of the peripheral region, wherethe law vz / z2 holds.We 
onsider an advan
ed stage of the passive s
alarde
ay or a statisti
ally stationary situation 
aused by apermanent passive s
alar �ux through the wall. Then

the passive s
alar � is nonzero primarily in the di�usiveboundary layer, at z . rbl. We re
all that we shiftedthe �eld � ! � � �b, where �b is its value in the bulk.After the shift, the �eld � 
ould be positive or nega-tive (depending on boundary 
onditions) and shouldtend to zero in the bulk, that is, as z ! 1. But weare mainly interested in the passive s
alar transportthrough the region z � rbl, where the passive s
alar is
arried from the di�usive boundary layer to the bulk.There, we may negle
t the mole
ular di�usion term inEq. (6), whi
h yields the proportionality lawh�i / z�3: (8)This gives the de
ay rate of h�i as z in
reases. We notethat the law in (8) 
orresponds to a 
onstant averagepassive s
alar �ow through the planes z = 
onst, thatis, the �ux is independent of z.It 
an be anti
ipated that at z � rbl, the higherpassive s
alar moments have some s
aling behavior ash�i has. We introdu
e the 
orresponding s
aling expo-nents h�ni / z��n : (9)If the mole
ular di�usion is irrelevant outside the dif-fusion boundary layer, then �n = 3 [22℄. However, ournumeri
al data imply that the mole
ular di�usion isrelevant even at z � rbl (we give an explanation ofthis phenomenon in what follows). Therefore, the ex-ponents �n are not equal to 3 and their values are asubje
t of spe
ial investigation.We turn to passive s
alar 
orrelation fun
tions (2).At z � rbl, their dependen
e on the 
oordinates alongthe wall are 
hara
terized by a 
orrelation length l that
an be found from the balan
e of the mole
ular andthe eddy di�usion along the wall. The eddy di�usivityterm in Eq. (3) 
an be estimated as �z2 (see Eq. (5);the z2 law follows from the z-dependen
e of the velo
ity
omponents). Comparing the mole
ular di�usion term� �=l2 and the eddy di�usion term in Eq. (3), we �ndl �p�=� z�1: (10)The quantity is of the order of rbl at z � rbl and de-
reases as z�1 as z in
reases.2.2. Integral passive s
alarTo ex
lude the e�e
ts of mole
ular di�usion, we in-trodu
e an integral of the passive s
alar �eld along asurfa
e parallel to the wall,�(t; z) = A�1 Z dx dy �(t; x; y; z); (11)404
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alar transport in peripheral regions : : :where A is the area of the surfa
e and z is its separationfrom the wall. We let�n(t; z1; : : : ; zn) = h�(t; z1) : : :�(t; zn)i (12)denote the 
orresponding 
orrelation fun
tions. Inte-grating Eq. (3) over xk and yk, we obtain�t�n = � nXm=1 �2mz�n + Z dx1 : : : dxndy1 : : : dyn ��8<: nXm;k=1�mz [Dzz�kzFn℄ ++ Xm 6=k �mz [(�kzDzz)Fn℄9=; ; (13)where Dzz = Dzz(rm; rk). In deriving Eq. (13), wetook some integrals by part and used the 
onstraint��xkDzx(rm; rk) + ��ykDzy(rm; rk) ++ ��zkDzz(rm; rk) = 0;whi
h is a 
onsequen
e of the in
ompressibility 
ondi-tion rv = 0.We expe
t a s
aling behavior of 
orrelation fun
-tions (12) at z � rbl. Then the last term in Eq. (13)
an be estimated as �z4�2z�. Consequently, the termwith the mole
ular di�usion � in Eq. (13) 
an be ne-gle
ted in the region. The argument is the same as theone used for the moment h�i, where the law (8) wasderived from Eq. (6). We also note that in the de
ay-ing 
ase, the time derivative in Eq. (13) 
an be esti-mated as �=r2bl = p��, a term that is mu
h less than�z4�2z � �z2 at z � rbl. Therefore, the term with thetime derivative 
an be negle
ted in the region as well,and we obtain quasistationary equations for �n. Thisre�e
ts the adiabati
ity of the passive s
alar statisti
s.It is reasonable to assume that the 
orrelation fun
-tion Fn(t; r1; : : : ; rn) is 
orrelated along the xy plane ondistan
es of the order of the 
orrelation length l in (10),whi
h is mu
h smaller than the 
hara
teristi
 velo
itylength (the width of the peripheral region). Then Dzzin Eq. (13) 
an be repla
ed by �z2mz2k, and we obtain
losed equations for the 
orrelation fun
tions�t�n(t; z1; : : : ; zn) = � nXm;k=1 ��zm �z2mz2k ��zk�n�++ 2� Xm 6=k ��zm �z2mzk�n� ; (14)

where we omitted the mole
ular di�usion term (see theabove argumentation).Equations (14) lead to the following 
losed equa-tions for the moments of the integral passive s
alar:�th�ni = � �z4�2z+4nz3�z+4n(n�1)z2� h�ni: (15)In the stationary (or quasistationary) 
ase (where�th�ni is negligible), we obtain a homogeneous di�er-ential equation for the nth moment, whi
h admits apower solution h�ni / z��n : (16)The exponents �n 
an be easily found from Eq. (15) as�n = 2n� 1=2 +p2n+ 1=4 : (17)We have 
hosen the positive sign of the square rootleading to the referen
e value �1 = 3, as it should bein a

ordan
e with Eq. (8). We observe an anoma-lous s
aling, that is, a nonlinear dependen
e of �n onn, whi
h 
an be 
ompared to the anomalous s
aling ofthe passive s
alar in the Krai
hnan model [14�16℄.A natural 
onje
ture that allows relating the mo-ments of the passive s
alar � and those of the integralpassive s
alar � is that the passive s
alar 
orrelationlength l 
an be used as a re
al
ulation fa
tor. We thenobtain the estimateh�ni � l(d�1)(n�1)An�1 h�ni; (18)where d is the spa
e dimension, whi
h is equal to 3 inreal �ows but 
an be arbitrary in numeri
al simulations.Estimate (18) and Eq. (10) lead to the relation�n = �n � (n� 1)(d� 1); (19)between the exponents introdu
ed in Eqs. (9) and (16).3. SIMULATIONSWe 
ondu
ted Lagrangian simulations where thedynami
s of a large number of parti
les subje
ted to�ow adve
tion and Langevin for
es (produ
ing di�u-sion) was examined. A set of parti
les was used insteadof the passive s
alar �eld �, whi
h 
an be interpreted asthe density of the parti
les. A major advantage of ourapproa
h is its appli
ability to di�erent spa
e dimen-sions d. Indeed, the number of variables (
oordinatesof parti
les) in the s
heme grows not exponentially butas a power of d (at a �xed number of the parti
les).To establish prin
ipal qualitative features of thepassive s
alar transport, we mainly performed 2d sim-ulations. The setup is periodi
 in x (the 
oordinate405
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Fig. 1. An example of the telegraph pro
essalong the wall) with a period L. In the majority ofsimulations, the velo
ity �eld was 
hosen to bevx = z��1 
os 2�xL + �2 sin 2�xL � L� ; (20)vz = z2��1 sin 2�xL � �2 
os 2�xL � ; (21)where �1 and �2 are independent random fun
tionsof time. We emphasize that the velo
ity �eld in (20)and (21) satis�es the in
ompressibility 
ondition�xvx + �zvz = 0 for any fun
tions �1(t) and �2(t). Ifthese are 
hosen to have identi
al Gaussian probabilitydistributions, then the statisti
s of velo
ity �eld (20)and (21) is homogeneous in x (along the wall). In oursimulations, we have 
hosen L = 10.In reality, the proportionality laws vx / z andvz / z2 are satis�ed inside the laminar boundary layer,but in our setup, the expressions for the velo
ity 
om-ponents like (20) and (21) are formally used at all z,whi
h means that the bulk 
orresponds to z = 1.However, the law vz / z2 implies that the parti
lesmay rea
h the z-in�nity in a �nite time. This ensuresa �nite parti
le �ux to the bulk sin
e a �nite numberof parti
les sometimes pass there. Hen
e, the passives
alar transport to the bulk is well de�ned in our setup.Be
ause the velo
ity 
orrelation time in the periph-eral region is mu
h less than the passive s
alar mix-ing time, we should regard �1(t) and �2(t) as whitenoises. But zero 
orrelation time 
annot be realized in
omputer simulations. We model the fun
tions by tele-graph pro
esses, where both �1 and �2 remain 
onstantsinside time slots of a small duration � , and the values of�1 and �2 inside the slots are 
hosen to be random vari-ables with identi
al normal distributions. An exampleof su
h a telegraph pro
ess is plotted in Fig. 1. In our

simulations, the averages were h�21i = h�22i = 1 and dif-ferent slot sizes were used, � = 0:001, 0.002, and 0.004.Then, in a

ordan
e with de�nition (5), � = �=2.In our s
heme, a parti
le traje
tory %(t) obeys theequation �t% = v(t;%) + �(t); (22)where the �rst term represents the parti
le adve
tionand the se
ond term represents the Langevin for
e. Weemphasize that the variables � pertaining to di�erentparti
les are independent, whereas the variables �1 and�2 are identi
al for all parti
les, a

ording to the phys-i
al meaning of the variables. The Langevin for
e �is also modeled by a telegraph pro
ess with the sametime slot duration � and with normal distributions ofthe values in the slots. To ensure a given value of thedi�usion 
oe�
ient �, we 
hooseh�2xi = h�2z i = 2�=�: (23)In a majority of simulations, we 
hose � = �=2, andtherefore the di�usive length was rbl = 1, in a

ordan
ewith de�nition (7).Inside a time slot, all the variables �1, �2, and �are time-independent 
onstants and Eq. (22) be
omesan autonomous ordinary di�erential equation. It wassolved as follows. A time slot was divided into a num-ber of time intervals and the equation was solved (with-out the Langevin for
e) using the se
ond-order Runge�Kutta method. The number of intervals is z-dependent,being proportional to z at z > 2:5. For z > 12, wesolved equations for 1=%z instead of %z. Both featuresare motivated by the strong dependen
e of the velo
ityon z, vz / z2. After solving the equation inside a slot, aterm produ
ed by the Langevin for
e was added. To ex-amine the role of di�usion outside the di�usive bound-ary layer, we swit
hed o� the di�usion (the Langevinfor
es) in some simulations at distan
es z > zd (withzd 
hosen di�erently in di�erent 
ases).The parti
les are permanently inje
ted near the wallin random positions at the beginning of ea
h timeslot. The simulations were performed in the stripe0 < z < 100; the parti
les 
rossing the lines z = 0and z = 100 were ex
luded from the set. The numberof parti
les leaving the region 0 < z < 100 through thewall is mu
h larger than the number of parti
les es
ap-ing through the line z = 100. Those last ones 
orre-spond to the passive s
alar transport to the bulk. Abalan
e between the parti
le inje
tion and losses leadsto a statisti
al equilibrium a
hieved gradually in thesimulation. Hen
e, our simulations 
over the statis-ti
ally stationary passive s
alar transport. It 
orre-406
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8642 10Fig. 2. An example of a passive s
alar stru
ture formed near the wall in a 2d random �ow. Di�erent parti
les are designatedby small 
rossessponds both to a steady temperature distribution sup-ported by a 
onstant heat �ux from the wall and toa de
ay of the 
on
entration of pollutants that 
an betreated adiabati
ally.An extension of our s
heme to higher dimensions,d > 2, is straightforward. We use the same equa-tion (22) where all quantities have d 
omponents. TheLangevin for
es � are determined by the same re-lations (23) and a generalization of expressions (20)and (21) is as follows. The velo
ity v is determined bya set of 2(d� 1)2 random variables �1ij and �2ij :vi = z n�1Xj=1 ��1ij 
os 2�xjL + �2ij sin 2�xjL � L� ; (24)vz = z2 n�1Xj=1 ��1jj sin 2�xjL � �2jj 
os 2�xjL � ; (25)where the subs
ripts i, j label the �rst d� 1 spa
e 
o-ordinates and the last dth 
oordinate is z. Here, all�, �1ij , and �2ij are again telegraph pro
esses with thesame statisti
al properties as above, and we use these
ond-order Runge�Kutta s
heme inside a time slot.In terms of the parti
les, the passive s
alar �eld �is de�ned as the number of parti
les per unit volume.The 
orresponden
e is 
orre
t if � is positive. If � is ne-gative, then the parti
le density represents ��, whi
h

satis�es the same equation (1) as � does. Thus, in oursimulations, we should treat � as the number of parti-
les inside a box divided by the box volume. Of 
ourse,the de�nition works well if the box is small (in 
ompar-ison with all 
hara
teristi
 s
ales of the problem) andthe number of parti
les inside the box is large. To sat-isfy these 
ontradi
tory 
onditions, we must deal with asu�
iently large total number of parti
les. That is whythe inje
tion rate in our simulations is 
hosen to pro-du
e a large number of parti
les, 105�106, in statisti
alequilibrium. 3.1. TonguesOur simulations show that the passive s
alar trans-port to the bulk is related to spe
i�
 stru
tures ofthe passive s
alar. The passive s
alar is 
on
entratedmainly in the narrow di�usive layer near the wall. How-ever, a �uid jet is sometimes generated that 
arries thepassive s
alar from the wall towards the bulk and pro-du
es a passive s
alar tongue with the width (
rossse
tion) de
reasing as z in
reases. This property isa 
onsequen
e of the law vz / z2 implying that thez-
omponent of the tongue velo
ity in
reases as z in-
reases. We thus 
ome to a geometri
 interpretation ofthe passive s
alar 
orrelation length l: it is the 
har-a
teristi
 size of the tongue 
ross se
tion (taken alongthe wall). The 
ross se
tion behavior 
orresponds to407
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Fig. 3. Histograms of the passive s
alar �ux at di�er-ent separations from the wall. The root-mean-square�u
tuations are mu
h larger than the average value andthe histograms are pra
ti
ally symmetri
. At z = 0, theprobability distribution is Gaussian, whereas at z > rbl,it has exponential tailsthe expe
ted de
rease of the 
orrelation length as z in-
reases. We stress that in a

ordan
e with Eq. (10),the 
hara
teristi
 tongue 
ross se
tion depends on thedi�usion 
oe�
ient �.A tongue is typi
ally pulled from a �bump� of thepassive s
alar distribution. After some time, the tongueis tilted and then pressed ba
k to the di�usive layer.Then next tongue is pulled, usually from the bump re-maining at the bottom of the previous tongue, and is inturn pressed ba
k to the di�usive layer. As a result, a
ompli
ated multifold stru
ture is formed, an exampleof whi
h is shown in Fig. 2, whi
h represents a snapshotgenerated in our simulations.Sometimes the tongue is pulled up to the z-in�nity,and then a portion of the passive s
alar (a number ofparti
les) is pushed to the bulk. After that, the tongueis tilted and the passive s
alar 
urrent to the bulk stops.This implies that the passive s
alar �ux, R dx �vz in 2d,is a highly intermittent quantity at z > rbl. This 
on-
lusion is 
on�rmed by the �ux histograms drawn inFig. 3 for di�erent z. In the simulations, the passives
alar �ux was measured as the number of parti
les
rossing the plain z = 
onst in a time interval � . Atz = 0, the �ux probability distribution is pra
ti
allyGaussian, being formed by a balan
e between the ran-dom inje
tion of the parti
les and their leaving the wall.But the distribution be
omes less and less Gaussianas z in
reases. The histograms in Fig. 3 are pra
ti-
ally symmetri
. The property is be
ause only a smallamount of parti
les in the tongue are pulled to the bulk,
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Fig. 4. Log�log plot of the moments h�nÆ i times z3,for Æ = 0:03125 and n = 1�6. The graph re�e
tssimulations where di�usion o

urs everywhere, and isswit
hed o� at z = 3 or z = 12the majority of the parti
les returns, produ
ing pra
-ti
ally equal �uxes to the bulk and towards the wall.This explains why the root-mean-square �u
tuation ofthe �ux at z � rbl is mu
h larger than its average value.3.2. MomentsBased on numeri
al data, we 
an 
ompute momentsand 
orrelation fun
tions of di�erent quantities 
hara
-terizing the passive s
alar statisti
s. We 
an 
onsiderboth lo
al fun
tions and integral obje
ts. All the quan-tities are 
omputed as time averages.We introdu
e an obje
t �Æ that is the number ofparti
les inside a square box of size Æ divided by itsarea Æ2 (in 2d). The quantity �Æ is 
lose to � if thenumber of parti
les is large and the size of the box issu�
iently small. The moments Mn = h�nÆ i of �Æ are
omputed for n = 1�6 as averages over time intervals106�107� with Æ = 0:03125. The results are presentedin Fig. 4, where the moments multiplied by z3 are plot-ted in log�log 
oordinates (solid 
urves). We see thatthe predi
tion for the �rst moment in (8) is perfe
tlysupported, whereas higher moments deviate stronglyfrom the di�usionless law / z�3. We 
on
lude that thedi�usion is indeed relevant at z > rbl.To verify this 
on
lusion, we repeated the simula-tions swit
hing the di�usion o� at z > 3 and at z > 12.The results are shown in Fig. 4 with dashed 
urves. Wesee the appearan
e of plateaus, starting just from z = 3or z = 12 and 
orresponding to the law/ z�3, in a

or-dan
e with Ref. [22℄. The plateaus are observed in re-stri
ted regions of separations from the wall z, slightlydiminishing as n in
reases. An explanation is that 
ut-408
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Fig. 5. Log�log plot of the moments h�nÆ i times z3, forÆ = 0:03125 and n = 1�6 in the 
ase where di�usion issubstituted by a 
onstant velo
ity 
arrying the parti
lesaway from the wallo�s of the plateaus are observed where Æ be
omes ofthe order of the passive s
alar 
orrelation length (alongthe wall). To 
he
k this, we repeated the simulationsfor larger values of Æ and observed that the plateausshrink as Æ in
reases. This 
on�rms our explanation.To be absolutely sure that the di�usion is relevant,we performed simulations without di�usion but witha 
onstant velo
ity V added that 
arries the parti
lesaway from the wall. The results are presented in Fig. 5,where the moments h�nÆ i times z3 are plotted. We seethe plateaus signalling that outside the boundary layer,the passive s
alar moments behave in a

ordan
e withthe di�usionless predi
tion.The next obje
t of our investigation is the integralquantity � that is the passive s
alar integrated alongthe wall, see de�nition (11). Numeri
ally, it is deter-mined by the number of parti
les in a sli
e of thi
knessÆ, parallel to the wall, divided by its volume (area);we let the ratio be denoted by �Æ. In our 2d setup,the area is equal to LÆ, where Æ is 
hosen to be mu
hless than z. The moments h�nÆ i are 
omputed by timeaveraging over a long time � 107� . To 
he
k the ro-bustness of the results, we performed 
omputations fordi�erent time slots � = 0:001, 0.002, and 0.004 andfor four di�erent values of the di�usion 
oe�
ient �.Figure 6 demonstrates that the values of ea
h moment
ollapse to a single 
urve in the logarithmi
 
oordinatesln(z=rbl) and ln(h�ni=Cn), where the fa
torsCn are the
orresponding moments near the wall.It 
an be veri�ed that in a

ordan
e with our theo-reti
al expe
tations, the moments of �Æ are insensitive
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Fig. 6. Moments of �Æ in log�log 
oordinates,n = 1�6. In the region z > rbl, the results 
ollapseonto single 
urves for three times � = 0:001, 0:002,and 0:004 and four di�erent values of the di�usion 
o-e�
ient
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432Fig. 7. Moments of �Æ in logarithmi
 
oordinates,n = 1�6. The results are obtained for two 
ases wherethe di�usion o

urs everywhere and where it is swit
hedo� at z > 3, and also for two di�erent velo
ity �elds:with two and four harmoni
sto di�usion. In Fig. 7, to illustrate this assertion, wepresent the moments of �Æ 
omputed at � = 0:002 intwo 
ases: in the �rst 
ase, the di�usion o

urs every-where and in the se
ond 
ase, it is swit
hed o� at z > 3.We 
an observe no di�eren
e between the data. An al-ternative to the velo
ity �eld in (20), (21) 
an also beused. In Fig. 7, we plot two sets of data: those 
orre-sponding to velo
ity (20), (21) and to the velo
ity withfour random fa
tors409
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Fig. 8. Exponents of the moments h�nÆ i, for n = 1�6and spa
e dimensions d = 2�5. For 
omparison, thetheoreti
al 
urve �n = 2n � 1=2 +p2n + 1=4 is plot-ted (solid line)�vxLz = �1 
os 2�xL + �2 sin 2�xL ++ �3 
os 4�xL + �4 sin 4�xL ; (26)vzz2 = �1 sin 2�xL � �2 
os 2�xL ++ 2�3 sin 4�xL � 2�4 
os 4�xL : (27)Again, there is no visible di�eren
e between these setsof data.We observe that the moments of � are de
reas-ing fun
tions of z that are power-like in the regionz > rbl. Extra
ting the s
aling exponents �n (see def-inition (17)) for n = 1�6 in 2d, we obtain values thatare presented in Fig. 8 as the lower set of points (asmooth 
urve is drawn through the points to guide theeye). We 
ondu
ted analogous simulations for higherdimensions, up to d = 5. The results are also depi
tedin Fig. 8. We see that the exponents �n depend on d,but for d � 3, they are 
lose to theoreti
al values (17)represented by a solid line.It 
an be assumed that the deviations from theo-reti
al values (17) are related to the existen
e of addi-tional passive s
alar (relatively long) 
orrelations alongthe wall that 
an be produ
ed by the multifold stru
-tures of the type shown in Fig. 2. The long 
orrela-tions should lead to in
reasing moments of the passives
alar in 
omparison with the short-
orrelated 
ase. Itis natural to expe
t that the fold e�e
t be
omes lesspronoun
ed in higher dimensions. Indeed, Fig. 8 shows
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Fig. 9. Exponents of the moments h�nÆ i, for n = 1�6and spa
e dimension d = 2 for two di�erent velo
i-ty �elds: 
ontaining only the �rst harmoni
 (dashedline) and three (9th, 10th, and 11th) harmoni
s (dot-ted line). For 
omparison, the theoreti
al 
urve �n == 2n � 1=2 +p2n+ 1=4 is plotted (solid line)that the deviations from the values in (17) de
rease asthe spa
e dimensionality d in
reases. This 
on�rms ourexplanation.To 
he
k our 
onje
ture, we 
ondu
ted simula-tions for the velo
ity �eld, similar to expressions (26)and (27), 
ontaining a set of harmoni
s in terms of theperiod L: the 9th, 10th, and 11th ones. In su
h a ve-lo
ity �eld, 
orrelations related to the multifold tonguestru
tures must be suppressed, and, 
onsequently, theexponents �n must be 
lose to theoreti
al values (17).This expe
tation is 
on�rmed by our simulations; theresults are presented in Fig. 9, where the measured ex-ponents are plotted. We see a good agreement of themeasured and theoreti
al exponents.The exponents �n of the moments of �Æ, see de�ni-tion (9), as well as �n, 
an be extra
ted from our nu-meri
al data. It is interesting to 
he
k theoreti
al pre-di
tion (19). For this, we plotted the di�eren
e �n��nas a fun
tion of n (see Fig. 10). For 
omparison, thetheoreti
al straight line n�1 (
orre
t in 2d) is drawn inthe same �gure. We see a good agreement, 
on�rmingthe s
aling (10) of the passive s
alar 
orrelation lengthl(z) along the wall.4. CONCLUSIONWe performed extensive numeri
al simulations ofthe passive s
alar mixing in peripheral regions of ran-410
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Fig. 10. The di�eren
e of the s
aling exponents of mo-ments for the integral passive s
alar and for the passives
alar, �n � �n, 
omputed at Æ = 0:03125 in 2d. For
omparison, the theoreti
al predi
tion n�1 is drawndom �ows su
h as high-Reynolds turbulen
e. The sim-ulations 
on�rm earlier theoreti
al expe
tations and re-veal numerous new details. At advan
ed stages of thepassive s
alar mixing, passive s
alar �u
tuations are
on
entrated mainly in a narrow di�usive layer near theboundary if the Pe
let or the S
hmidt number is large.We found that the passive s
alar transport from thedi�usive boundary layer to the bulk is related to pas-sive s
alar tongues formed by jets dire
ted to the bulk.The tongues are obje
ts responsible for the strong inter-mitten
y 
hara
teristi
 of the passive s
alar transportthrough the peripheral region.We examined the passive s
alar statisti
s outsidethe di�usive boundary layer and realized that the mo-ments of both the passive s
alar � and the passive s
alarintegrated along the wall, �, exhibit well-pronoun
eds
aling in terms of the separation from the wall z. We
ompared the 
orresponding exponents extra
ted fromour simulations with our theoreti
al s
heme and estab-lished their agreement. However, 
are must be takenbe
ause our theoreti
al predi
tions are 
orre
t for anin�nite vessel and 
an be violated in simulations wherethe velo
ity 
orrelation length along the wall 
oin
ideswith the velo
ity period. We also found an agreementbetween the theoreti
al predi
tion for the tongue 
rossse
tion dependen
e on z and our simulations. There-fore, the simulations 
on�rm our theoreti
al predi
-tions.There remain some problems to be solved in future.We will extend our 
onsideration to in
orporate average�ows (like in pipes) that are shear-like near the wall.

Another natural extension of our approa
h is related to
hemi
al rea
tions in random �ows. We also note poly-mer solutions, where the polymer elongation is verysensitive to the 
hara
ter of the �ow. The problem issigni�
ant, e.g., for the elasti
 turbulen
e. However, along-time memory 
hara
teristi
 of the polymer solu-tions 
ould modify our results. We 
onsidered smoothwalls in our work. There is a set of questions relatedto the wall roughness, possible 
orners, 
averns andpeaks. All these may modify our 
on
lusions, and thisis a subje
t of spe
ial investigation.Our results agree qualitatively with the data knownfrom investigations of turbulent plumes in turbulent�ows, where a 
ompli
ated spa
e stru
ture of thepassive s
alar �u
tuations is observed [27�31℄. Webelieve that statisti
al properties of the stru
ture
an be explained on the basis of our results implyingprodu
tion of the passive s
alar tongues pushing tothe bulk. The explanation requires generalizing ours
heme to the 
ase where turbulent velo
ity �u
tua-tions in the bulk are in
luded.We thank M. Chertkov, I. Kolokolov, V. Steinberg,and K. Turitsyn for the numerous helpful dis
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