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MAGNETIC FIELD CORRELATIONS IN A RANDOM FLOWWITH STRONG STEADY SHEARI. V. Kolokolov, V. V. Lebedev *, G. A. SizovLandau Institute for Theoreti
al Physi
s, Russian A
ademy of S
ien
es119334, Mos
ow, RussiaMos
ow Institute of Physi
s and Te
hnology141700, Dolgoprudnyi, Mos
ow Region, RussiaRe
eived O
tober 28, 2011We analyze the magneti
 kinemati
 dynamo in a 
ondu
ting �uid where a stationary shear �ow is a

ompaniedby relatively weak random velo
ity �u
tuations. The di�usionless and di�usion regimes are des
ribed. Thegrowth rates of the magneti
 �eld moments are related to the statisti
al 
hara
teristi
s of the �ow des
ribingdivergen
e of the Lagrangian traje
tories. The magneti
 �eld 
orrelation fun
tions are examined, and theirgrowth rates and s
aling behavior are established. General assertions are illustrated by the expli
it solution of amodel where the velo
ity �eld is short-
orrelated in time.1. INTRODUCTIONThe subje
t of the paper is the magneti
 dynamo,that is, the magneti
 �eld generation by hydrodynami
motions in a 
ondu
ting medium. We theoreti
ally in-vestigate the e�e
t in a 
ondu
ting �uid (plasma, ele
t-rolyte) where a random hydrodynami
 �ow is ex
ited.The prin
ipal example of su
h a �ow is hydrodynami
turbulen
e (see, e.g., Refs. [1, 2℄) responsible for themagneti
 �eld generation in di�erent geophysi
al andastrophysi
al phenomena [3�10℄. We 
onsider the 
asewhere the magneti
 �eld grows from small initial �u
tu-ations and examine the evolution stage of a su�
ientlyweak magneti
 �eld, whi
h allows negle
ting the feed-ba
k from the magneti
 �eld to the �ow. The stagewhere the �ow is independent of the magneti
 �eld is
alled kinemati
. The kinemati
 approa
h be
omes in-valid when the in
reasing magneti
 �eld begins to a�e
tthe �uid motion essentially. In this 
ase, the velo
ity�eld is strongly in�uen
ed by the Lorentz for
e, andhen
e the indu
tion dynami
s is no longer linear. Inmost 
ases, this leads to saturation of the magneti
 �eld�u
tuations maintained by the hydrodynami
 �ow. Al-though the magneti
 �eld 
annot be des
ribed by alinear equation in this regime, the kinemati
 stage pro-du
es magneti
 stru
tures similar to those o

urring atthe saturation state (see, e.g., Ref. [11℄). A possible ex-*E-mail: lwlebede�gmail.
om

planation of this fa
t is related to strong intermitten
yof the magneti
 �eld, whi
h implies that the feedba
kis 
on
entrated in restri
ted spa
e regions where themagneti
 �eld is anomalously strong.We assume that the random �ow ex
iting the dy-namo is statisti
ally homogeneous in spa
e and time.Usually, it is assumed in addition that the �ow is statis-ti
ally isotropi
. If the velo
ity �eld is short-
orrelatedin time, then it is possible to derive 
losed equations forthe magneti
 indu
tion 
orrelation fun
tions [12℄. The
orresponding pair 
orrelation fun
tion has been ana-lyzed in Refs. [13, 14℄. The 
omplete statisti
al des
rip-tion of the magneti
 �eld for a short-
orrelated smoothstatisti
ally isotropi
 �ow was given in Ref. [15℄, wherethe growth rates and the stru
ture of spatial 
orre-lation fun
tions were found. However, it is interest-ing to 
onsider random �ows with an average shear�ow, whi
h are widespread in astrophysi
al appli
a-tions. Su
h �ows are statisti
ally anisotropi
 and needa spe
ial analysis. Here, we examine the 
ase wherea steady shear �ow is 
omplemented by a relativelyweak random 
omponent. We fo
us on the analysis ofgrowth rates of moments of the magneti
 �eld (mag-neti
 indu
tion), the degree of its anisotropy, and thestru
ture of the magneti
 �eld 
orrelation fun
tions.Our goal is to relate the magneti
 statisti
al 
hara
-teristi
s to those of the �ow, thus revealing the mostuniversal features of the dynamo e�e
t. The general387 12*
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-ity �eld is short-
orrelated in time and 
an be solvedanalyti
ally.An additional motivation for our resear
h 
omesfrom dynami
s of polymer solutions that is in manyrespe
ts similar to magnetohydrodynami
s [16�18℄. Inparti
ular, we have in mind the so-
alled 
oil�stret
htransition [19℄ (see also Refs. [20, 21℄) that is an ana-log of the dynamo e�e
t in polymer solutions. Ade
ade ago, the elasti
 turbulen
e was dis
overed [22�24℄, whi
h is a 
haoti
 hydrodynami
 motion of polymersolutions that 
an be realized even at small Reynoldsnumbers, in 
ontrast to the traditional hydrodynami
turbulen
e. Elasti
 turbulen
e is a natural frameworkfor applying an extension of the dynamo theory to poly-mer solutions.The behavior of the magneti
 �eld moments at thekinemati
 stage in the presen
e of a strong shear �owwas established in Ref. [25℄. But to examine the spatialstru
ture of the magneti
 �eld, we must know its 
orre-lation fun
tions, and these are studied in this paper inthe framework of the general s
heme used in Ref. [25℄.To verify our general predi
tions, we examine the dy-namo e�e
t in the framework of an analyti
ally solvablemodel where random �ow a short-
orrelated in time isex
ited on the ba
kground of a strong stationary shear�ow.The stru
ture of this paper is as follows. In Se
. 2,we introdu
e basi
 relations needed to analyze the mag-neti
 �eld 
orrelations and dynami
s. We present thegeneral dynami
 equation, give its formally exa
t solu-tion, and dis
uss statisti
al properties of the quantitiesentering this solution. In Se
. 3, moments and 
orre-lation fun
tions of the magneti
 �eld are investigated.We relate its growth rates to the growth rates of theseparation between two 
lose �uid parti
les and estab-lish the prin
ipal spatial stru
ture of the 
orrelationfun
tions. Se
tion 4 is devoted to the model where the�u
tuating 
omponent of the �ow is short-
orrelatedin time. We establish the growth rates for the modeland analyze the pair 
orrelation fun
tion in detail. Theobtained results are in agreement with our general as-sertions. In Se
. 5, we outline our main results anddis
uss their possible appli
ations and extensions.2. BASIC RELATIONSWe 
onsider the magneti
 �eld evolution in a 
on-du
ting �uid (plasma or ele
trolyte) where hydrody-nami
 motions are ex
ited. Then the magneti
 �elddynami
s is governed by the equation [26℄

�tB = (B �r)v � (v �r)B+ �r2B; (2.1)where B is the magneti
 indu
tion, v is the �ow ve-lo
ity, and � is the magnetodi�usion 
oe�
ient, in-versely proportional to the ele
tri
al 
ondu
tivity ofthe medium. The �ow is assumed to be in
ompress-ible, r � v = 0. We also assume that the magnetodif-fusion term in Eq. (2.1) is small in 
omparison withthose related to the �ow. We 
onsider the 
ase wherethe magneti
 �eld is relatively weak and therefore itsfeedba
k to the �ow is negligible. Then relation (2.1) isa linear equation determining the magneti
 �eld evolu-tion in a pres
ribed velo
ity �eld; this regime is 
alledkinemati
.The hydrodynami
 motion ex
ited in the �uid is as-sumed to be random (turbulent) and the velo
ity statis-ti
s is assumed to be homogeneous in spa
e and time.We examine the magneti
 �eld growth from initial weak�u
tuations distributed statisti
ally homogeneously inspa
e at the initial instant t = 0. The 
orrelation lengthof the initial �u
tuations l is assumed to be smallerthan the velo
ity 
orrelation length �. If we 
onsiderhydrodynami
 turbulen
e, then the role of the velo
ity
orrelation length is played by the Kolmogorov s
ale.At s
ales less than �, the velo
ity �eld v 
an be 
onsi-dered smooth. The magneti
 growth (dynamo) 
an be
hara
terized by moments of the magneti
 indu
tionthat exponentially in
rease with time t:DjB(t)j2nE / exp (
nt) : (2.2)Here, angular bra
kets denote averaging over spa
e.Exponential laws (2.2) are 
hara
teristi
 of the kine-mati
 dynamo be
ause Eq. (2.1) is linear in the mag-neti
 indu
tion B in this 
ase.One of our goals is to express the growth rates 
n inEq. (2.2) via statisti
al 
hara
teristi
s of the �ow. Thenatural measure for the growth rates 
n is the so-
alledLyapunov exponent of the �ow, �, equal to the averagelogarithmi
 divergen
e rate of 
lose �uid parti
les. Aspe
ial question 
on
erns the n dependen
e of 
n. If themagneti
 indu
tion statisti
s is Gaussian, then 
n / n.Deviations from the linear law signal the intermitten
yof the magneti
 �eld. The intermitten
y implies thathigh moments of the magneti
 �eld are determined byrare strong �u
tuations.There are two di�erent regimes of the kinemati
magneti
 �eld growth. The �rst regime is realized ifall 
hara
teristi
 s
ales of the magneti
 �eld are mu
hlarger than the magneti
 di�usion length rd = p�=�.The assumed smallness of the di�usion 
oe�
ient im-plies the inequality � � rd. We also assume thatl � rd; then the di�usion term in Eq. (2.1) is negligible388
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Fig. 1. Sket
h of typi
al magneti
 blobs during thedi�usive kinemati
 stageat the �rst stage of the magneti
 evolution, whi
h we
all di�usionless. The magneti
 �eld lines are deformedby the �ow without re
onne
tions in this regime. Butdistortions of the magneti
 �eld by the �ow inevitablylead to produ
ing order-rd s
ales in the �eld. Afterthat, the magneti
 di�usion is swit
hed on and re
on-ne
tions 
an o

ur. This se
ond (di�usion) stage is
hara
terized by the growth rates di�erent from thosedes
ribing the di�usionless regime.We present a qualitative pi
ture explaining themagneti
 �eld evolution at the kinemati
 stage. Theinitial magneti
 �eld distribution in spa
e 
an be re-garded as an ensemble of blobs of sizes of the orderof l. Then the blobs are distorted by the �ow, beingstret
hed in one dire
tion and 
ompressed in anotherdire
tion. In the isotropi
 
ase, the stret
hing and 
om-pression dire
tions vary 
haoti
ally in spa
e and time,but in our 
ase, they are atta
hed to the shear �ow: theblobs are stret
hed mainly along the shear velo
ity andare 
ompressed in the dire
tion of the shear velo
itygradient. At the �rst (di�usionless) stage, the blobs aredeformed without interse
tions and the magneti
 �eldindu
tion grows as the separation between 
lose �uidparti
les be
ause Eq. (2.1) at � = 0 
oin
ides with theequation for the separations.The di�usionless stage terminates when the 
hara
-teristi
 blob width de
reased to the di�usion length rd.Then the di�usion is swit
hed on, whi
h leads to twoe�e
ts. First, the di�usion prevents further shrinkingthe blob widths, whi
h therefore remain of the orderof rd, whereas the blobs 
ontinue to be stret
hed inthe dire
tion of the shear velo
ity. Se
ond, due to re-
onne
tions of the magneti
 �eld lines allowed by dif-fusion, the blobs start to overlap. As a result, newblobs of a 
hara
teristi
 longitudinal size � are formed(Fig. 1). The magneti
 indu
tion in su
h blobs 
an befound by averaging the indu
tion of a large number N

of initial blobs, with the number N in
reasing expo-nentially with time. Averaging over a large number ofrandom variables leads to the appearan
e of an expo-nentially small fa
tor about 1=pN in the amplitude ofthe magneti
 indu
tion. In addition, the amplitudes ofthe initial blobs 
ontinue to in
rease with time as theseparation between �uid parti
les. We 
on
lude that atthis se
ond (di�usive) stage, the magneti
 �eld is stillin
reasing exponentially with time, but slower than atthe �rst stage.We 
onsider the 
ase where the steady shear 
on-stituent of the �ow is mu
h stronger than the randomone. Quantitatively, the 
ondition is written as the in-equality s � �, where s is the shear rate. Indeed, theLyapunov exponent in a pure shear �ow is zero, and itsnonzero value is asso
iated with the presen
e of a rel-atively weak random 
onstituent of the �ow. The dis-torted magneti
 blobs are elongated mainly along theshear velo
ity. However, they are tilted with respe
tto the velo
ity dire
tion due to presen
e of the randomvelo
ity 
omponent (see Fig. 1). The tilt exhibits thesame dynami
s as the dire
tion of the polymer stret
h-ing in the same �ow [21℄. Therefore, the tilt angle �(see Fig. 1) 
an be estimated as � � �=s. The tilt angledetermines the typi
al ratio of the magneti
 �eld 
om-ponents By=Bx � �=s� 1, where the x axis is dire
tedalong the shear velo
ity, whi
h varies along the y axis.Thus, the ratio s=� 
hara
terizes the anisotropy degreeof the magneti
 �eld.2.1. Lagrangian dynami
sTo analyze moments and 
orrelation fun
tions ofthe magneti
 indu
tion, we need a solution of magne-todynami
 equation (2.1) for the indu
tion �eld B(t)in terms of its initial valueB,B = B(0). We here usea generalization of the s
heme proposed in Ref. [27℄and elaborated in Ref. [25℄, whi
h uses the Lagrangianapproa
h to �uid dynami
s.First, instead of solving Eq. (2.1) with the se
ond-order Lapla
e operator, it is 
onvenient to pass to the�rst-order equation�tB = (B �r)v � (v �r)B+ (� �r)B; (2.3)where �(t) are white noises (Langevin for
es) mimi
-king the magneti
 di�usion. The means of the � arezero and their pair 
orrelation fun
tion isb�i(t1)�j(t2)
 = 2�ÆijÆ(t1 � t2); (2.4)where �b: : : 
� mean averaging over the � statisti
s and� is the same di�usion 
oe�
ient as in Eq. (2.1). The389
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s for anyvelo
ity �eld v(t; r).To prove the assertion, we �nd the in
rement of themagneti
 �eld indu
tion during a small time interval �.A formal solution of Eq. (2.3) isB(t) = Texp8<: tZt�� dt0 h�̂� vr+ �(t0)ri9=;B(t� �);where Texp is the 
hronologi
ally ordered exponen-tial and �̂ is the matrix of the velo
ity gradients,�ji = �ivj . Expanding the exponent and averaging theresult over the � statisti
s in a

ordan
e with Eq. (2.4),we �nd the in
rementB(t)�B(t� �) = �(B �r)v � �(v �r)B+ ��r2Bin the �rst order in �. We note that 
ross terms areabsent in this approximation be
ause the averages of �are zero. The above in
rement is equivalent to the oneobtained dire
tly from Eq. (2.1).Se
ond, we solve Eq. (2.3) by the method of 
har-a
teristi
s. The equation for the 
hara
teristi
 R is�tR = v(t;R) + �: (2.5)This equation des
ribes a Lagrangian traje
tory dis-turbed by Langevin for
es. If the magneti
 indu
tion iswritten as B(t; r) = b(t;R), then the quantity b satis-�es the equation �tbj = �jibi, where �̂(t) is the velo
itygradients matrix, �ji = �ivj , taken at the time t andat the spatial point R(t). A solution of the equation
an be written as b(t) = Ŵ (t)b(0), where the matrixŴ (t) is the 
hronologi
ally ordered exponentialŴ (t) = T exp8<: tZ0 dt0 �̂(t0)9=; : (2.6)The matrix Ŵ , whi
h we 
all the evolution matrix, 
anbe treated as a solution of the equation �tŴ = �̂Ŵwith the initial 
ondition Ŵ (0) = 1.Finally, we �nd the formally exa
t solution ofEq. (2.1), B(t; r) = jŴ (t)B[R(0)℄k ; (2.7)where, again, �b: : : 
� mean averaging over the � statis-ti
s determined by Eq. (2.4). To �nd R(0), we mustsolve Eq. (2.5) on the time interval (0; t) with theboundary 
ondition R(t) = r posed at the �nal time.In other words, we should tra
k the magneti
 �eld ba
k

in time along the disturbed Lagrangian traje
tories andin
lude the fa
tor Ŵ a

umulated along the traje
tory.The evolution matrix Ŵ has some general proper-ties that follow from de�nition (2.6). The determinantof Ŵ is equal to unity be
ause the velo
ity gradientmatrix �̂ is tra
eless, tr �̂ = 0, whi
h is in turn a 
on-sequen
e of the in
ompressibility 
ondition r � v = 0.We introdu
e the symmetri
 matrix Ŵ Ŵ T (where thesupers
ript �T � denotes transposition) and denote itseigenvalues as W 21 , W 22 , W 23 , where all the quantitiesW1, W2, W3 are positive. Be
ause the determinant ofŴ is equal to unity, we have W1W2W3 = 1. We or-der the eigenvalues as W1 > W2 > W3, then W1 > 1and W3 < 1. At times t � ��1 we are interestedin, typi
al values of lnW1 and lnW3 
an be estimatedas ��t, and therefore W1 is exponentially large andW3 is exponentially small. The estimation for W2 de-pends on the details of the �ow statisti
s. In any 
ase,W1 �W2 �W3 at times t� ��1.In the framework of the proposed formalism, 
or-relation fun
tions of the magneti
 �eld B are to be
al
ulated by averaging produ
ts of fa
tors (2.7) takenat the respe
tive points over the statisti
s of the noise�, in addition to averaging over spa
e. Thus, say, theone-time 
orrelation fun
tionF2n;i:::j(r1; : : : ; r2n) = hBi(r1) : : : Bj(r2n)i ; (2.8)has to be 
al
ulated in two steps. First, we substituteexpression (2.7) in the right-hand side of (2.8) and thenaverage the resulting produ
t over the � statisti
s de-termined by Eq. (2.4); this averaging 
at
hes the mag-neti
 di�usion. We emphasize that the �elds � haveto be treated as independent for all the 2n fa
tors inthe produ
t. Se
ond, we average the result over spa
e.Averaging over s
ales less than or of the order of �(tra
ed ba
k to the initial time) gives statisti
s of theinitial magneti
 �eld �u
tuations, and averaging overs
ales more than or of the order of � 
ounts di�erentrealizations of �̂. Therefore, the latter is equivalent toaveraging over the velo
ity statisti
s. This logi
 wasrealized for the isotropi
 random �ow in Ref. [15℄.In the di�usionless regime, realized at t �� ��1 ln(l=rd), we 
an negle
t the di�usion e�e
ts.Then in 
al
ulating the moment hjBj2ni, we 
an takethe produ
t of identi
al fa
tors (2.7), where R issimply a Lagrangian traje
tory terminated at thepoint r at time t. ThenjB(r)j2n �W 2n1 jBj2n;where B is taken at the origin of the Lagrangian tra-je
tory. Here, just the fa
torW 2n1 is responsible for the390



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Magneti
 �eld 
orrelations in a random �ow : : :exponential growth of the moments, and therefore we
an restri
t ourselves to the estimationbjB(r)j2n
 �W 2n1 B2n0 ;whereB0 is the 
hara
teristi
 value of the initial mag-neti
 �eld �u
tuations. In the di�usion regime, realizedat t � ��1 ln(l=rd), the situation is somewhat more
ompli
ated.We �rst 
onsider the se
ond moment. Then wedeal with two traje
tories, R and R0, terminating atthe same point r at time t, but 
hara
terized by inde-pendent noises � and �0. The se
ond moment 
an bewritten as the average,h(B)2i = DjBT [R(0)℄Ŵ T Ŵ 0B[R0(0)℄kE : (2.9)An appre
iable 
ontribution to the se
ond moment isasso
iated with the traje
tories with jR(0)�R0(0)j . l.Be
ause jR(0)�R0(0)j � � and jR(t)�R0(t)j = 0, thedi�eren
e �R = R �R0 remains mu
h less than � atany time from the interval (0; t) for su
h an event. FromEq. (2.5), expanding the velo
ity up to terms linear in�R, we then obtain�t�R = �̂�R+ � � �0; (2.10)where �̂ 
an be taken at any of the points R or R0.The solution of Eq. (2.10) that is equal to zero at t0 = tis written as�R(t0) == �Ŵ (t0) tZt0 dt1Ŵ�1(t1)[�(t1)� �0(t1)℄: (2.11)To 
al
ulate the se
ond moment, we should knowthe �R(0) statisti
s. Be
ause the separation �R(0) isa linear 
ombination of � and �0, it should be treatedas a Gaussian variable in averaging over the � statis-ti
s, and then its probability distribution fun
tion is
ompletely determined by the matrix M̂ :Mij = b�Ri(0)�Rj(0)
 = 4� tZ0 dt1W�1ik W�1jk : (2.12)The expression for M̂ is derived from Eqs. (2.4)and (2.11). The matrix M̂ is symmetri
, and its eigen-values are positive. We let the eigenvalues be denotedby m21, m22, m23 and order the m as m1 > m2 > m3; theinequalities be
ome strong, m1 � m2 � m3, if �t� 1.We emphasize that the dire
tions of the eigenve
tors ofM̂ are �frozen� at �t � 1 [28�31℄. Then the integral

determining m1 is dominated by t� t1 � ��1, and wearrive at the estimation m1 � rdW�13 . The integral de-termining m3 is dominated by t1 � ��1, and thereforem3 � rd. An estimation for m2 depends on the timedependen
e of W2. If W2 in
reases, then m2 remainsof the order of rd, but it grows like m2 � rdW�12 if W2de
reases.We now �nd the probability that �R(0) is less thanl in the di�usion regime, when t � ��1 ln(l=rd). We
an think in terms of the 
omponents of �R(0) inthe basis atta
hed to the eigenve
tors of M̂ . Be
ausem1 � l, the probability that the �rst 
omponent of�R(0) is less than l is estimated as l=m1 � (l=rd)W3.If W2 in
reases with time, then both m2 and m3 areof the order of rd and therefore the probability thatthe se
ond and the third 
omponents of �R(0) are lessthan l is 
lose to unity. From Eq. (2.9), we then �ndbjBj2
 �B20(l=rd)W1W�12 ; (2.13)where we used the relation W1W2W3 = 1.The situation with a de
reasing W2 is slightly dif-ferent. In this 
ase, m2 � l at the di�usive stage, andthere appears an additional small probability that these
ond 
omponent �R(0) is less than l. This proba-bility 
an be estimated as l=m2 � (l=rd)W2. We thenobtain hjBj2i � B20W1(l=rd)2 instead of Eq. (2.13).But the integration over spa
e (at the next step of av-eraging) kills the leading term due to the solenoidalnature of the magneti
 �eld B. Therefore, we have totake the next term in the probability distribution of�R2(0) into a

ount, whi
h 
ontributes an extra smallfa
tor (l=m2)2 to the probability. Thus, we arrive atbjBj2
 �B20(l=rd)4W1W 22 : (2.14)We note that expressions (2.13) and (2.14) areequivalent to those obtained in the Fourier representa-tion for the statisti
ally isotropi
 
ase in Ref. [15℄. Butexpressions (2.13) and (2.14), written for real spa
e,are also 
orre
t for the anisotropi
 problem (whi
h weare investigating), and are in fa
t more suitable for theproblem.We turn to higher moments. It 
an be seen thatthe prin
ipal 
ontribution to the average bjBj2n
 is pro-du
ed by 
on�gurations where the 2n points R�(0) aredivided into n pairs with separations less than or of theorder of l in ea
h pair. Be
ause of the independen
e ofthe white noises ��, the probability of this event 
an beestimated as the produ
t of probabilities for the se
ondmoment, that is, bjBj2n
 � bjBj2
n; (2.15)391
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ond moment is given by Eq. (2.13) orEq. (2.14). We have ignored a 
ombinatorial fa
tor inEq. (2.15) be
ause we are interested in the time depen-den
e of the moments.2.2. Evolution matrixThe next step in �nding the magneti
 �eld momentsis averaging over the velo
ity statisti
s. Before do-ing this, we should establish statisti
al properties ofevolution matrix (2.6). Some universal properties ofsu
h matri
es, whi
h 
an be treated as produ
ts of alarge number of random matri
es, are well established[28�31℄; the properties are revealed at t � ��1. Butwe examine a strongly anisotropi
 
ase, with the steadyshear �ow dominating. This requires modifying the
onsideration in Ref. [15℄, where the isotropi
 
ase (sta-tisti
ally isotropi
 �ow) was investigated.For the anisotropi
 problem, it is 
onvenient to usethe Gaussian de
omposition of the evolution matrixŴ = T̂L�̂T̂R, where T̂L and T̂R are the triangle matri-
es T̂L = 0B� 1 � �10 1 �20 0 1 1CA ;T̂R = 0B� 1 0 0�1 1 0�2 �3 1 1CA (2.16)
and �̂ is a diagonal matrix. Be
ause both triangle ma-tri
es, T̂L and T̂R, have unit determinants, the deter-minant of �̂ is also equal to unity.The matri
es are written in the referen
e frame at-ta
hed to the shear �ow: the axis x is dire
ted alongthe shear velo
ity and the axis y is dire
ted along theshear velo
ity gradient. Therefore, the shear velo
ityis written as vx = sy, where s is the shear rate. Forour �ow, whi
h is 
omposed of a steady shear �ow anda random 
omponent, the matrix of the velo
ity gra-dients �ji = �ivj is a sum of two terms related to theshear and the random 
omponents of the �ow:�ji(t) = sÆjxÆiy + �ji(t): (2.17)The randommatrix �ji is zero on average and should be
hara
terized in terms of its 
orrelation fun
tions. Thetra
e of the matrix is zero, tr �̂ = 0 (due to the �owin
ompressibility). We re
all that the Lyapunov expo-nent � of a purely shear �ow is equal to zero. Therefore� is sensitive to �̂, although the random �ow is weakerthan the steady one.

Substituting the de
omposition Ŵ = T̂L�̂T̂R in theevolution equation �tŴ = �̂Ŵ , we �ndT̂�1L �̂T̂L = T̂�1L �tT̂L + �t�̂�̂�1 ++ �̂�tT̂RT̂�1R �̂�1: (2.18)The respe
tive terms in the right-hand side ofEq. (2.18) are a left o�-diagonal matrix, a diagonalmatrix, and a right o�-diagonal matrix. Therefore, weobtain a 
losed (nonlinear) equation for the matrix T̂Lthat leads to a homogeneous-in-time statisti
s of thematrix. Next, for 
omponents of the diagonal matrix�t�̂�̂�1, we obtain expressions that are random vari-ables with statisti
s homogeneous in time. Therefore,the 
entral limit theorem applies to ln�1, ln�2, andln�3 (where �i are eigenvalues of �̂). Typi
ally, thevariables are linear in time t with the 
oe�
ients ofthe order of �. The situation with the matrix T̂R isslightly more 
ompli
ated be
ause of the exponentialfa
tors in the last term in Eq. (2.18). Therefore, some
omponents of T̂R behave exponentially with time likethe fa
tors.From Eq. (2.18) for T̂L, based on the leading role ofthe shear term in expression (2.17), we obtain a hierar-
hy � � �1 � �2. Therefore, in the leading approxi-mation in �=s, the only 
omponent �yx is relevant andthe equation for the matrix T̂L is redu
ed to a singleequation for the 
omponent �,�t� = s� �2�; (2.19)where � � �yx. We 
on
lude that the variable � hasa statisti
s homogeneous in time, in a

ordan
e withour general expe
tations. We note that � � s=
 � 1,as follows from Eq. (2.19). Keeping the leading-in-�
ontributions to the diagonal terms in Eq. (2.18), weobtain diag (�t�̂�̂�1) = (���; ��; 0). Therefore, inthis approximation,diag� = (e��; e�; 1); �t� = ��: (2.20)If t� ��1, then typi
ally � � �t� 1.We 
on
lude from the equations for �1, �2, and �3following from Eq. (2.18) that at �t � 1, the variable�1 is �frozen� at an order-of-unity level, whereas thevariables �2 and �3 in
rease exponentially and 
an beestimated as e�. However, the 
ombination �1�3 � �2,entering T̂�1R , is �frozen� at an order-of-unity level aswell as �1.Based on the results obtained for the matri
es T̂L,�̂, and T̂R we �nd eigenvalues of the matrix Ŵ . Inthe leading approximation in �=s, we obtain W1 � e�,392
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orrelations in a random �ow : : :W2 � 1, and W3 � e��. These expressions, togetherwith Eq. (2.20), lead to the relation� � h�t�i = h��i; (2.21)where averaging is performed over the velo
ity statis-ti
s.Be
ause � is given by an integral over time of a ran-dom quantity whose statisti
s is homogeneous in time(see Eqs. (2.19) and (2.20)), the � statisti
s has someuniversal features at �t � 1. Namely, the probabilitydistribution fun
tion (PDF) of � 
an be written in aself-similar form [32℄P (�) / exp[�tS(�=t)℄; (2.22)where S is the so-
alled Kramer fun
tion (or entropyfun
tion). Expression (2.22) is a manifestation of PDFsfor the so-
alled intensive variables (see, e.g., [33℄). Ex-pression (2.22) implies that relative �u
tuations of �de
rease as t in
reases.We 
onsider moments of the divergen
e of 
lose La-grangian traje
tories in our random �ow. The equa-tion governing the separation �R between the traje
-tories is �t�Rj = �ji�Ri; it 
an be obtained fromEq. (2.10) by letting � ! 0. A solution of the equa-tion is �R(t) = Ŵ�R(0). Therefore, at t � ��1, wearrive at the estimation �R(t) � �R(0)e�. Then themoments of �R 
an be 
al
ulated in the saddle-pointapproximation (justi�ed by the inequality �t� 1):hj�Rjni = Z d� P (�)j�Rjn / exp(�nt); (2.23)�n = �S( n) + n n; where S0( n) = n: (2.24)Thus, the exponents �n are determined by statisti
alproperties of the Lagrangian traje
tories. We note thatthe Lyapunov exponent � 
an be formally expressed via�n as � = (d�n=dn)n=0.General statisti
al properties of the separation �Rfor the random �ow with strong average shear wereestablished in Ref. [21℄, in the 
ontext of the single-polymer dynami
s in su
h a �ow. A strong intermit-ten
y of �R(t) is expe
ted, whi
h is revealed in a large-n growth of �n that is faster than linear, be
ause thelinear law �n / n is 
hara
teristi
 of the Gaussianstatisti
s of �R(t).3. CORRELATION FUNCTIONSTo �nd the time dependen
e of the magneti
 �eldmoments, we have to additionally average expres-sion (2.15) over spa
e, whi
h is equivalent to averaging

over the � statisti
s and the statisti
s of initial mag-neti
 �u
tuations. The 2nth moment of the magneti
�eld indu
tion is then written as
B2n(t)� = Z d� P (�) �B2n(t)� : (3.1)In our approximation,W1 � e� andW2 � 1, and there-fore B(t) � e�B0 in the di�usionless regime, whereasbjBj2
 � B20(l=rd)e� in the di�usion regime, as fol-lows from Eq. (2.13). Substituting the expressions inEq. (3.1) and integrating over � (in the saddle-pointapproximation), we �nd 
n = �2n for the di�usionlessregime and 
n = �n for the di�usion regime. Thus, wehave related the dynamo growth rates introdu
ed inEq. (2.2) to the statisti
al properties of the �ow. Ourresults 
an be summarized in terms of the estimationshjB(t)j2ni �� 8>>><>>>: exp(�2nt)B2n0 ; t < ��1 ln lrd ;� lrd�n exp(�nt)B2n0 ; t > ��1 ln lrd : (3.2)The main 
ontribution to the moments 
B2n(t)� isasso
iated with the 
omponent Bx of the magneti
 in-du
tion dire
ted along the velo
ity of the shear �ow(see Fig. 1). We turn to moments of the 
omponent Bydire
ted along the gradient of the shear �ow, hB2ny i.The moments are mu
h smaller than the moments
B2n(t)�, the smallness being 
aused by the strongshear �ow. It follows from Eqs. (2.16) and (2.20) thatbB2x(t)
 = �2bB2y(t)
. Hen
e, the variable � is a mea-sure of the magneti
 �eld anisotropy, ��1 determinesthe tilt angle � of the magneti
 blobs to the shear velo
-ity (see Fig. 1). Be
ause the variable � has a statisti
shomogeneous in time, the fa
tor ��2 does not produ
ea di�eren
e in the growth rates, and hen
e both mo-ments hB2nx i and hB2ny i are proportional to the sameexponential exp(
nt). But the prefa
tors at the expo-nentials are di�erent. To �nd the di�eren
e in the pref-a
tors, is not enough to know statisti
al properties of� that determine the exponentials. Generally, the mu-tual probability distribution of �(t) and �(t) must beknown, whi
h is quite a 
ompli
ated obje
t dependingon the details of the �ow dynami
s. However, we 
anestablish an estimation for typi
al �u
tuations � � s=�that follows from Eqs. (2.19) and (2.21). Therefore,e.g., bB2x(t)
 � (s2=�2)bB2y(t)
.There is a question 
on
erning moments of the third
omponent of the magneti
 indu
tion, hB2nz i. Analyz-ing their behavior requires taking the 
omponents of393
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ount, whi
h we ignored in inves-tigating Bx and By. We then 
on
lude that the timedependen
e of hB2nz i is 
hara
terized by the same expo-nentials exp(
nt) both at the di�usionless and di�usionstages. As regards the prefa
tors, they depend on thedetails of the �ow statisti
s.3.1. Pair 
orrelationsWe 
onsider the one-time magneti
 �eld pair 
orre-lation fun
tionFij(t; r) = hBi(t; r1 + r)Bj(t; r1)i: (3.3)Here, as previously, angular bra
kets mean averagingover spa
e (that is, integration over r1 with the inversevolume as a fa
tor). We assume statisti
al homogeneityin spa
e of both the velo
ity and the initial magneti
�eld �u
tuations; that is why spatial average (3.3) 
har-a
terizes the magneti
 �eld 
orrelations in the wholevolume. We 
onsider the 
ase r � �, whi
h allowsusing the smooth �ow approximation.Again, we start from representation (2.7). Then,analogously to the se
ond moment, pair 
orrelationfun
tion (3.3) 
an be written asFij(t) = 
bWikBk[R(0)℄W 0jlBl[R0(0)℄
� ;where the traje
tories R and R0 terminate at the re-spe
tive points r1 + r and r1, at a time t. We thenobtainFij(t) = hbWik(t)Wjl(t)Fkl[�R(0)℄
i ; (3.4)where Fij is the initial (at t = 0) pair 
orrela-tion fun
tion of the magneti
 �eld �u
tuations and�R = R�R0. The 
orrelation length l of F is smallerthan �, and we 
an therefore 
onsider j�Rj < �. Thenboth evolution matri
es in (3.4) 
an be taken at thesame point R. Averaging in Eq. (3.4) 
an be treatedas averaging over the velo
ity statisti
s.The di�eren
e �R satis�es the same equation(2.10) if j�Rj � �. However, we are now interestedin the solution with the �nal 
ondition �R = r. Thissolution is written as�R(t0) = Ŵ (t0)Ŵ�1(t)r �� Ŵ (t0) tZt0 dt1Ŵ�1(t1)[�(t1)� �0(t1)℄ (3.5)instead of Eq. (2.11). We immediately 
on
lude fromEq. (3.5) that the pair 
orrelation fun
tion 
oin
ideswith the se
ond moment if r . rd. In what follows, we

therefore examine the 
ase r � rd, where the se
ondterm in Eq. (3.5) is negligible and we �nd�R(0) = Ŵ�1(t)r: (3.6)To be more pre
ise, expression (3.6) is 
orre
t ify � r � rd, that is understood below.There are two di�erent regimes for the pair 
orre-lation fun
tion. If t < ��1 ln(l=r), then j�R(0)j istypi
ally less than l; this regime exists if r � l. In this
ase, two Lagrangian traje
tories R and R0 remainstypi
ally within the 
orrelation radius l at t = 0 andthe behavior of expression (3.4) is insensitive to the sep-aration r. Therefore, the pair 
orrelation fun
tion Fijvirtually 
oin
ides with the single-point average hBiBjiin this regime and, 
onsequently, its time dependen
eis determined by the growth rate 
 = �2.If t > ��1 ln(l=r), then j�R(0)j is typi
ally largerthan l and only rare events where j�R(0)j < l 
on-tribute to the 
orrelation fun
tion. Using the repre-sentation Ŵ = T̂L�̂T̂R, we obtain from Eq. (3.6) thatj�R(0)j � e�(rx � �ry), where rx and ry are 
oor-dinates of the separation r. The probability that thequantity is less than or of the order of l is estimated ase��l=r (if rx � ry � r), whi
h is an interval of values of� where �R(0) < l. Therefore, BiBj �B20e�l=r and,
onsequently, F (t) �B20 exp(�1t)l=r.We 
olle
t the obtained results:F (t) �8>><>>: B20 exp(�2t); t < 1� ln lr ;B20 exp(�1t) lr ; t > 1� ln lr ; (3.7)where the inequality rd � r � l is assumed. There-fore, the pair 
orrelation fun
tion is governed by thesame exponentials as the se
ond moment. In addition,we �nd the r-dependen
e of the pair 
orrelation fun
-tion. We note that expression (3.7) turns into expres-sion (3.2) for the se
ond moment at r � rd, as it should.Returning to expression (3.4), we 
on
lude that adi�eren
e between the pair 
orrelation fun
tion Fijand the moments hBiBji is solely in the behaviorof �R. Therefore, relations between the 
ompo-nents of Fij 
ontrolled by the evolution matri
es inEq. (3.4) are the same as for the moments hBiBji, e.g.,Fyy � (�=s)2Fxx.3.2. Mellin transformIt is instru
tive to examine the Mellin transform ofthe pair 
orrelation fun
tion. This analysis reveals its394
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aling properties. We de�ne the Mellin transform as~F (t; k) = 1Z0 drr �rl ��ik F (t; r); (3.8)where the dire
tion of the radius ve
tor r is assumed tobe �xed. Be
ause the velo
ity �eld is smooth, di�erentharmoni
s ~F (t; k) evolve independently, being repre-sented as a sum of exponentials 
hara
terizing di�erentstru
tures of ~Fij . At times t � ��1, only the leadingexponential survives, that is, ~F (k; ') / exp[
(k)t℄.To return to the real spa
e, we should perform theinverse Mellin transformF (t; r) = 1Z�1 dk2� exp ��ik ln lr + 
(k)t� ~F(k): (3.9)The quantity ~F(k) is determined by the initial mag-neti
 �eld �u
tuations, 
orrelated on the s
ale l. Thatis why we in
orporated this quantity into relations (3.8)and (3.9).A remark about analyti
 properties of ~F(k) is inorder. We assume that at r > l, the initial pair 
or-relation fun
tion F(r) rapidly de
reases as r in
reases.Integral (3.8) then, 
onverges if Im k > 0. Therefore,~F(k) is analyti
 in the upper k-halfplane. Besides, theintegral diverges (at small r) as k ! 0. Therefore, sin-gularities of ~F(k) lie in the lower k-halfplane, startingfrom the point k = 0. The 
hara
ter of the singularitiesdepends on analyti
 properties of the initial fun
tionF(r). If it is analyti
 in r, then we expe
t ~F(k) tohave a series of poles along the lower imaginary semi-axis, with the �rst one at k = 0. We note that ina

ordan
e with general rules, the integration 
ontourin Eq. (3.9) should run above the �rst singular pointk = 0.We 
an draw some general 
on
lusions taking intoa

ount that 
(k) � �. If ln(l=r) > �t, then inte-gral (3.9) is determined by a narrow vi
inity of thepoint k = 0. Then F (t; r) / exp[
(0)t℄, and we identify
(0) and �2. If ln(l=r) < �t, then integral (3.9) 
an be
al
ulated in the saddle-point approximation. To �ndthe saddle point, we should shift the integration 
on-tour into the upper halfplane to rea
h the saddle pointk = iq?, where q? determines the minimal value of 
(iq)for q > 0. Indeed, the growth rate 
(iq) is real, andtherefore the point k = iq? is a solution of the equationd
=dk = 0 giving an extremum of the exponential inEq. (3.9). ThenF (t; r) / (l=r)q? exp[
(iq?)t℄;

and we identify 
(iq?) with �1 (see Eq. (3.7)). We notethat in a

ordan
e with asymptoti
 law (3.7), q? shouldbe equal to unity, q? = 1.3.3. Higher-order 
orrelationsHere, we 
onsider higher-order 
orrelation fun
-tions of magneti
 �eld (2.8). We obtain expressionslike Eq. (3.5) for separations �R between the pointsR1(0); : : : ;R2n(0), whi
h are needed to 
al
ulate F2nin a

ordan
e with Eq. (2.7). If �t < ln(l=j�rj) for allseparations between the points r1; : : : ; r2n, then all sep-arations �R(0) are less than l. In this situation, we ar-rive at the same expression F2n �B2n0 he2n�i as for the2nth moment, and we 
on
lude that F2n / exp(�2nt),see Eq. (3.2).We now turn to the 
ase where �t > ln(l=r), withall separations �r assumed to be of the same order.We �rst 
onsider the geometry where all the pointsr1; : : : ; r2n lie on a line, that is, all ve
tors r� � r�have the same dire
tions, and we 
an write �r � r,where r is one of the separations. We then arrive atthe estimation j�Rj � e�(rx��ry), similar to that forthe pair 
orrelation fun
tion. We thus obtain the sameprobability � e��l=r that the separations j�R(0)j . l.Then F2n � B2n0 he(2n�1)�il=r, where the fa
tor e2n�originates from the produ
t of the matri
es Ŵ , appear-ing in a

ordan
e with expression (2.7). Averaging thisexpression, we obtain F2n(t) � B2n0 exp(�2n�1t)l=r.We stress that the growth rates are here di�erent fromthose of the 
orresponding moments.However, the above expression is 
orre
t only ift < ��1 ln(l=rd). For larger t, the di�usion 
ontri-butions to the di�eren
es �R� be
ome relevant (seeEq. (3.5)). Then, by manipulating with �, only onedi�eren
e among the �R(0) 
an be made less than l.After that, all the other di�eren
es typi
ally a
quirevalues of the order of rde�, and the probability that adi�eren
e is smaller than l is estimated as (l=rd)e��.We therefore 
on
lude thatF2n � * lr � lrd�n�1 en�+ / exp(�nt):The same results (up to 
ombinatorial fa
tors) holdfor the 
ollinear geometry, where the set r1; : : : ; r2n isseparated into n pairs with parallel ve
tors r� � r�
hara
terizing the pairs. Then the 
orresponding dif-feren
es �R behave as previously and the same argu-ments apply. We summarize our results for the 
ollineargeometry:395
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F2n(t) �8>>>>>>>><>>>>>>>>:

B2n0 exp(�2nt); t < 1� ln lr ;B2n0 exp(�2n�1t) lr ; 1� ln lr < t < 1� ln lrd ;B2n0 lr � lrd�n�1 exp(�nt); t > 1� ln lrd : (3.10)
It is a generalization of expressions (3.7) for the pair
orrelation fun
tion. We note that in the 
ollinear ge-ometry, similarly to the pair 
orrelation fun
tion, theestimate By � (�=s)Bx determines relations betweendi�erent 
omponents of F2n, whereas the z-
omponentsrequire a separate investigation.If the 
ollinear geometry is destroyed, then it is im-possible to put all the separations j�R(0)j inside thes
ale l at any �, if t > ��1 ln(l=r). In this situation,the behavior of the 
orrelation fun
tion F2n is nonuni-versal, being sensitive to the details of the initial spa-tial distribution of B. In any 
ase, the value of F2nin the non
ollinear geometry is mu
h less than in the
ollinear one. The situation resembles the one real-ized for a randomly adve
ted passive s
alar on s
aleslarger than the pumping length [34℄. We 
on
ludethat at t > ��1 ln(l=r), 
orrelations of the magneti
�eld are 
on
entrated near 
ollinear geometries, de
ay-ing away from the geometries. The de
aying lengthis estimated as le��t at t < ��1 ln(l=rd) and as rd att > ��1 ln(l=rd).4. SHORT-CORRELATED FLOWHere, we 
onsider a strong steady shear �ow 
om-plemented by a random 
omponent short-
orrelated intime. This 
ase admits an analyti
al solution and 
antherefore be used to verify our general assertions andpredi
tions. In addition, the 
ase is naturally realizedbe
ause the strong shear destroys 
orrelations of therandom 
omponent, and we therefore expe
t that theshort-
orrelated 
ase is frequently en
ountered in real�ows.In the short-
orrelated 
ase, the matrix of the ve-lo
ity gradients �̂ des
ribing the random 
omponent ofthe �ow has to be treated as white noise, that is, avariable Æ-
orrelated in time. In the isotropi
 
ase, weobtain the tensorial stru
tureh�ik(t1)�jn(t2)i == D(4ÆijÆkn�ÆikÆjn � ÆinÆjk)Æ(t1�t2); (4.1)where the fa
tor D 
hara
terizes the random �owstrength and the numeri
al fa
tor is introdu
ed as in

Ref. [35℄. But as we have argued, the only relevant
omponent of the random velo
ity gradient matrix inthe 
ase � � s (whi
h is a manifestation of the ran-dom �ow weakness) is � � �yx. We 
hara
terize itsstatisti
al properties by the expressionh�(t1)�(t2)i = 4DÆ(t1 � t2); (4.2)formally 
oin
iding with Eq. (4.1) for the yx-
omponent. Other 
omponents of �̂ 
an have 
orre-lation fun
tions di�erent from (4.1). The random 
om-ponent 
an be 
onsidered to be weaker than the steadyshear �ow if D � s.Statisti
al properties of the separation �R(t) be-tween 
lose Lagrangian traje
tories in a randomsmooth �ow with strong shear 
omponent in the short-
orrelated 
ase are investigated in Ref. [36℄ (in the 
on-text of polymer dynami
s). We here present the re-sults obtained in that paper without derivation. Wenote that our variable � is related to the tilt angle � inRef. [36℄ as � = 
tg �, or � � ��1 in the 
ase of smalltilt angles in whi
h we are interested. The expressionfor the Lyapunov exponent found in Ref. [36℄ is� = 31=3p��(1=6) D1=3s2=3: (4.3)Therefore, the 
ondition s� D does guarantee the in-equality � � s. We also note that � � D and that�! 0 as D ! 0. The last property is a natural 
onse-quen
e of the vanishing Lyapunov exponent for a purelyshear �ow.For the short-
orrelated 
ase, it is possible to �ndthe exponents �n 
hara
terizing the growth rates ofthe moments of �R(t) (see Eq. (2.23)) if n� 1. Thena saddle-point (instanton) approximation in the fun
-tional spa
e [37℄ 
an be used, whi
h leads to [36℄
n = 325=3n4=3D1=3s2=3 � �n4=3: (4.4)The nonlinear dependen
e of �n on n, �n / n4=3, sig-nals a strong intermitten
y of the �ow. We note thatin our anisotropi
 
ase, the growth rates �n in
reaseas n in
reases slower than in the isotropi
 
ase, where�n / n2 for the short-
orrelated �ow (see Ref. [15℄).396
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orrelation fun
tionWe next examine the two-point one-time 
orrelationfun
tion (3.3) for the velo
ity �eld short-
orrelated intime. In this 
ase, it is possible to derive a 
losed equa-tion for the 
orrelation fun
tion (see, e.g., Ref. [12℄).We here study the fun
tion at s
ales mu
h larger thanthe di�usion s
ale rd (but mu
h smaller than the velo
-ity 
orrelation length �). It is then possible to negle
tdi�usion e�e
ts, and we omit all terms with the noise� in subsequent relations.We brie�y explain the derivation of the equation.First, it follows from de�nition (2.6) thatŴ (t) = T exp(�̂)Ŵ (t� �); �̂ = tZt�� dt0 �̂; (4.5)where � is an arbitrary time (less than t). We 
hoose� to be mu
h smaller than ��1, but mu
h larger thanthe velo
ity 
orrelation time (this is possible for a short-
orrelated �ow). Then �̂ is a small fa
tor, although thetwo fa
tors in Eq. (4.5) 
an be treated as statisti
allyindependent. Substituting expression (4.5) in Eq. (3.4),expanding the result into a series in �̂ (up to the se
ondorder) and averaging the result inside the time inter-val (t� �; t) in a

ordan
e with Eq. (4.2), we obtain avariation of Fij under passing from t� � to t. Be
ausethe variation is small, it 
an be rewritten in terms of adi�erential equation.Assuming the isotropi
 
orrelation fun
tion of �u
-tuations in (4.1), we obtain the equation�tFij = �2sy�xFij + sFiyÆjx + sFyjÆix ++ 4D �ÆijFkk � 12Fij � rk�jFik � rk�iFkj ++ 12(rr)Fij + 12r2r2Fij � 14rmrn�m�nFij� : (4.6)In the absen
e of shear (at s = 0), system of equa-tions (4.6) leads to a 
losed equation for the tra
e ofthe 
orrelation fun
tion H = Fkk :�tH = D �10H + 6r�rH + r2�2rH� :The equation 
oin
ides with one presented in Ref. [14℄(for the s
aling exponent � = 2 and zero for
ing).We now eliminate irrelevant terms in Eq. (4.6) us-ing the following properties: s is mu
h larger than D,the 
hara
teristi
 value of x is mu
h larger than thatof y, and, a

ordingly, �y � �x. We 
an then keepsolely the terms originating from �yx in Eq. (4.6). The

resulting equation leads to a 
losed system of equationsfor the three 
omponents Fxx, Fxy, and Fyy of the pair
orrelation fun
tion:�tFxx = �2sy�xFxx + 2sFxy + 4Dx2�2yFxx;�tFxy = �2sy�xFxy + sFyy ++2Dx2�2yFxy � 4Dx�yFxx;�tFyy = �2sy�xFyy + 2Dx2�2yFyy �� 8Dx�yFxy +DFxx: (4.7)
Further, we use the dimensionless time T = (8Ds2)1=3tand introdu
e the notationf = Fxx; g = (s=D)1=3Fxy; h = (s=D)2=3Fyy:We investigate a spe
ial 
ase of 
oin
iding points.At r = 0, all terms with derivatives drop fromEqs. (4.7), and they take the form�T 0B� fgh 1CA = 0B� 0 1 00 0 1=22 0 0 1CA0B� fgh 1CA : (4.8)An in
reasing solution of the equation is0B� fgh 1CAr=0 / 0B� 112 1CA eT : (4.9)This behavior 
orresponds to the growth rate 
 == (8Ds2)1=3 of the magneti
 �eld se
ond moment. Onthe other hand, the 
ase 
orresponds to small r, thatis, to the 
ondition ln(l=r) > �t. Therefore, 
 = �2,and we 
on
lude that �2 = (8Ds2)1=3 in our 
ase.It is 
onvenient to pass to the �polar 
oordinates�% and ' in the shear plane: x = % 
os', y == (D=s)1=3% sin'. We then perform the Mellin trans-form f; g; h! ~f; ~g; ~h in terms of % and derive the equa-tions for ~f; ~g, and ~h from system (4.7). In terms of thequantity q = �ik, the equations are written as397



I. V. Kolokolov, V. V. Lebedev, G. A. Sizov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011�T ~f = ~f 00 
os4 '++ ~f 0 �sin2 '� 2(q + 1) sin' 
os3 '�++ ~f �q sin' 
os'� q 
os4 ' ++ (q2 + q) sin2 ' 
os2 '�+ ~g;�t~g = ~g00 
os4 '++~g0 �sin2 '� 2(q + 1) sin' 
os3 '�++ ~g �q sin' 
os'� q 
os4 ' ++ (q2 + q) sin2 ' 
os2 '���2 ~f 0 
os2 '+ 2q ~f sin' 
os'+ ~h=2;�t~h = ~h00 
os4 '++~h0 �sin2 '� 2(q + 1) sin' 
os3 '�++~h �q sin' 
os'� q 
os4 ' ++ (q2 + q) sin2 ' 
os2 '��� 4~g0 
os2 '+ 4q~g sin' 
os'+ 2 ~f;
(4.10)

where the prime denotes the derivative over the angle '.4.2. Numeri
sNext, we study the time evolution of system (4.10)numeri
ally for di�erent real values of q (with imagi-nary k = iq) using the impli
it di�eren
e s
heme on theinterval (��=2; �=2) for ' with periodi
 boundary 
on-ditions. We have 
hosen as initial 
onditions for f; g,and h as the same Gaussian fun
tions 
entered near' = 0 and with a width of the order of unity. Then weextra
t the leading growth rate 
(iq) = (8Ds2)1=3
(q)dominating the behavior of the system at T � 1. Thedimensionless quantity 
 was extra
ted as
 = 1T ln f(T0 + T )f(T0) ;where T0+T is 
hosen to be large enough (near 30) andT0 is introdu
ed to ex
lude the in�uen
e of an initialtransient pro
ess (we have 
hosen T0 = T ).The quantity 
 is plotted as a fun
tion of q in Fig. 2.It turned out to be positive everywhere, with a mini-mum at q = 1, 
(1) = 0:435. The value q = 1 is ina

ordan
e with Eq. (3.7) and the general analysis inSe
. 3. As we argued there, the minimum value of 
(iq)determines �1, that is, �1 = 
(q?)(8Ds2)1=3. The valueof 
 at q = 0 is 
 = 1, in a

ordan
e with Eq. (4.9) andthe general arguments given in Se
. 3. Therefore, theobtained results 
on�rm our general assertions.5. DISCUSSIONWe have analyzed the kinemati
 dynamo stagewhen small-s
ale �u
tuations of the magneti
 �eld grow

−1 1 2 3 4
q

0
0

1

2

3

c

Fig. 2. Growth rate of the Mellin transform of the pair
orrelation fun
tion on the imaginary axisin a steady shear �ow 
omplemented by relatively weakrandom velo
ity �u
tuations. The weakness is 
hara
-terized by the inequality s � �, where s is the shearrate and � is the Lyapunov exponent of the �ow. Theuniversal features we have established are revealed attimes t � ��1. The shear makes the �ow stronglyanisotropi
, whi
h, paradoxi
ally, simpli�es the analy-sis of the dynamo phenomenon be
ause a single 
om-ponent of the random velo
ity gradient appears to berelevant. We analyzed the situation where the 
orre-lation length l of the initial magneti
 �eld �u
tuationsis less than the velo
ity 
orrelation length � (i.e., theKolmogorov length for developed turbulen
e). Prob-ably, the smallness of l is not 
ru
ial for our s
hemebe
ause small s
ales of the magneti
 �eld distributionin spa
e are inevitably produ
ed by the hydrodynami
motion.We stress that in the leading approximation in �=s,our problem is redu
ed to a purely two-dimensional ve-lo
ity �eld (with 
omponents along the shear velo
ityand along its gradient). We have proved the existen
eof the dynamo in this 
ase (that is, the exponentialgrowth of the magneti
 �eld moments). The result ob-viously 
ontradi
ts the statement in Refs. [38�40℄ (Zel-dovi
h theorem) that there 
annot be a magneti
 dy-namo in two-dimensional �ows. We assert that thisstatement is wrong and the error is in ignoring thethird 
omponent B3 of the magneti
 indu
tion (per-pendi
ular to the velo
ity plane). The third 
ompo-nent satis�es the passive s
alar equation and, 
onse-quently, de
ays exponentially. But B3 
annot be ig-nored in the divergen
e-free 
ondition rB = 0 be
ausethe 
hara
teristi
 s
ale of the magneti
 �eld along thedire
tion of its growth in
reases faster than the mag-neti
 �eld itself. It 
an be 
he
ked that all the terms in398



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Magneti
 �eld 
orrelations in a random �ow : : :rB = �xBx+�yBy+�zBz de
ay with the same expo-nent, and therefore the 
ondition rB = 0 leads to ane�e
tively divergent in-plane magneti
 �eld. The dy-namo e�e
t is not forbidden for su
h a �eld. A detailedanalysis of the dis
repan
y will be published elsewhere.The existen
e of the dynamo e�e
t for two-dimensional�ows is a subje
t of numeri
al veri�
ation.For our general 
on
lusions, we do not spe
ify sta-tisti
al properties of the random �ow, exploring onlyits smoothness at s
ales less than the velo
ity 
or-relation length �. It is then possible to relate thekinemati
 growth rates 
n of the magneti
 �eld (seeEq. (2.2)) to intrinsi
 
hara
teristi
s of the �ow 
hara
-terizing the divergen
e of 
lose Lagrangian traje
tories(see Eq. (2.23)). We �nd that 
n = �2n in the di�usion-less regime and 
n = �n in the di�usion regime. Wealso related the anisotropy degree of the magneti
 �eldto the same intrinsi
 
hara
teristi
s of the �ow. There-fore, the main features of the magneti
 �eld statisti
s(in
luding its intermitten
y) are di
tated by the �owstatisti
s. We note that our general s
heme 
an be ap-plied without essential modi�
ations to the statisti
allyisotropi
 �ows or to random �ows with other types ofanisotropy.We established the prin
ipal features of the mag-neti
 �eld 
orrelation fun
tions. The pair 
orrelationfun
tion behaves like the se
ond moment at small sep-arations r, and in
reases with the growth rate 
hara
-teristi
 of the di�usion regime; at larger r, it is propor-tional to 1=r. As regards higher-order 
orrelation fun
-tions, the situation is more 
ompli
ated. At small timest, they behave like the 
orresponding moments. Butat larger time t > ��1 ln(l=r), 
orrelations are peakednear the 
ollinear geometry (where 2n points are sepa-rated into n pairs with parallel separations) and thereis an intermediate asymptoti
 regime when the 
orrela-tion fun
tions grow with the rates that do not 
oin
idewith the growth rates of the moments. Then, at timest > ��1 ln(l=rd), the 
orrelation fun
tion grows withthe same exponent as the 
orresponding moment in thedi�usion regime. The s
aling behavior of the 
orrela-tion fun
tions in the 
ollinear regime is / 1=r. The
orrelations de
ay rapidly with the deviation from the
ollinear geometry. This re�e
ts a 
ompli
ated spa
ialstru
ture of the magneti
 �eld that is strongly 
orre-lated for spe
ial geometries produ
ed by a�ne geomet-ri
 transformations from the initial magneti
 �u
tua-tions.Our general assertions 
an be veri�ed by solving themodel with the �u
tuating 
omponent short-
orrelatedin time. This model admits several analyti
 results.The nonlinear n-dependen
e of the growth rates 
n,


n / n4=3, at large n signals a strong intermitten
y ofthe magneti
 �eld. Therefore, only rare events 
on
en-trated in a restri
ted part of spa
e 
ontribute to highmoments of the magneti
 �eld. We analyzed the pair
orrelation fun
tion of the magneti
 �eld in detail, andthe analysis 
on�rms all our general assertions, in
lud-ing s
aling behavior in di�erent regimes.The ideology and the analyti
 approa
h developedin this paper 
an be tended to the dynami
s of poly-mer solutions possessing elasti
ity that is des
ribedsimilarly to the magneti
 �eld. Along these lines, wehope to 
larify some aspe
ts of the so-
alled elasti
turbulen
e [22�24℄ that are still not explained.We thank A. I. Chernykh, M. V. Chertkov,G. E. Falkovi
h, and S. S. Vergeles for the helpfuldis
ussions and remarks. The work was supported inpart by the RFBR (grant No. 09-02-01346-a) and bythe RF Ministry of Edu
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