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MAGNETIC FIELD CORRELATIONS IN A RANDOM FLOWWITH STRONG STEADY SHEARI. V. Kolokolov, V. V. Lebedev *, G. A. SizovLandau Institute for Theoretial Physis, Russian Aademy of Sienes119334, Mosow, RussiaMosow Institute of Physis and Tehnology141700, Dolgoprudnyi, Mosow Region, RussiaReeived Otober 28, 2011We analyze the magneti kinemati dynamo in a onduting �uid where a stationary shear �ow is aompaniedby relatively weak random veloity �utuations. The di�usionless and di�usion regimes are desribed. Thegrowth rates of the magneti �eld moments are related to the statistial harateristis of the �ow desribingdivergene of the Lagrangian trajetories. The magneti �eld orrelation funtions are examined, and theirgrowth rates and saling behavior are established. General assertions are illustrated by the expliit solution of amodel where the veloity �eld is short-orrelated in time.1. INTRODUCTIONThe subjet of the paper is the magneti dynamo,that is, the magneti �eld generation by hydrodynamimotions in a onduting medium. We theoretially in-vestigate the e�et in a onduting �uid (plasma, elet-rolyte) where a random hydrodynami �ow is exited.The prinipal example of suh a �ow is hydrodynamiturbulene (see, e.g., Refs. [1, 2℄) responsible for themagneti �eld generation in di�erent geophysial andastrophysial phenomena [3�10℄. We onsider the asewhere the magneti �eld grows from small initial �utu-ations and examine the evolution stage of a su�ientlyweak magneti �eld, whih allows negleting the feed-bak from the magneti �eld to the �ow. The stagewhere the �ow is independent of the magneti �eld isalled kinemati. The kinemati approah beomes in-valid when the inreasing magneti �eld begins to a�etthe �uid motion essentially. In this ase, the veloity�eld is strongly in�uened by the Lorentz fore, andhene the indution dynamis is no longer linear. Inmost ases, this leads to saturation of the magneti �eld�utuations maintained by the hydrodynami �ow. Al-though the magneti �eld annot be desribed by alinear equation in this regime, the kinemati stage pro-dues magneti strutures similar to those ourring atthe saturation state (see, e.g., Ref. [11℄). A possible ex-*E-mail: lwlebede�gmail.om

planation of this fat is related to strong intermittenyof the magneti �eld, whih implies that the feedbakis onentrated in restrited spae regions where themagneti �eld is anomalously strong.We assume that the random �ow exiting the dy-namo is statistially homogeneous in spae and time.Usually, it is assumed in addition that the �ow is statis-tially isotropi. If the veloity �eld is short-orrelatedin time, then it is possible to derive losed equations forthe magneti indution orrelation funtions [12℄. Theorresponding pair orrelation funtion has been ana-lyzed in Refs. [13, 14℄. The omplete statistial desrip-tion of the magneti �eld for a short-orrelated smoothstatistially isotropi �ow was given in Ref. [15℄, wherethe growth rates and the struture of spatial orre-lation funtions were found. However, it is interest-ing to onsider random �ows with an average shear�ow, whih are widespread in astrophysial applia-tions. Suh �ows are statistially anisotropi and needa speial analysis. Here, we examine the ase wherea steady shear �ow is omplemented by a relativelyweak random omponent. We fous on the analysis ofgrowth rates of moments of the magneti �eld (mag-neti indution), the degree of its anisotropy, and thestruture of the magneti �eld orrelation funtions.Our goal is to relate the magneti statistial hara-teristis to those of the �ow, thus revealing the mostuniversal features of the dynamo e�et. The general387 12*



I. V. Kolokolov, V. V. Lebedev, G. A. Sizov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011assertions are illustrated by a model where the velo-ity �eld is short-orrelated in time and an be solvedanalytially.An additional motivation for our researh omesfrom dynamis of polymer solutions that is in manyrespets similar to magnetohydrodynamis [16�18℄. Inpartiular, we have in mind the so-alled oil�strethtransition [19℄ (see also Refs. [20, 21℄) that is an ana-log of the dynamo e�et in polymer solutions. Adeade ago, the elasti turbulene was disovered [22�24℄, whih is a haoti hydrodynami motion of polymersolutions that an be realized even at small Reynoldsnumbers, in ontrast to the traditional hydrodynamiturbulene. Elasti turbulene is a natural frameworkfor applying an extension of the dynamo theory to poly-mer solutions.The behavior of the magneti �eld moments at thekinemati stage in the presene of a strong shear �owwas established in Ref. [25℄. But to examine the spatialstruture of the magneti �eld, we must know its orre-lation funtions, and these are studied in this paper inthe framework of the general sheme used in Ref. [25℄.To verify our general preditions, we examine the dy-namo e�et in the framework of an analytially solvablemodel where random �ow a short-orrelated in time isexited on the bakground of a strong stationary shear�ow.The struture of this paper is as follows. In Se. 2,we introdue basi relations needed to analyze the mag-neti �eld orrelations and dynamis. We present thegeneral dynami equation, give its formally exat solu-tion, and disuss statistial properties of the quantitiesentering this solution. In Se. 3, moments and orre-lation funtions of the magneti �eld are investigated.We relate its growth rates to the growth rates of theseparation between two lose �uid partiles and estab-lish the prinipal spatial struture of the orrelationfuntions. Setion 4 is devoted to the model where the�utuating omponent of the �ow is short-orrelatedin time. We establish the growth rates for the modeland analyze the pair orrelation funtion in detail. Theobtained results are in agreement with our general as-sertions. In Se. 5, we outline our main results anddisuss their possible appliations and extensions.2. BASIC RELATIONSWe onsider the magneti �eld evolution in a on-duting �uid (plasma or eletrolyte) where hydrody-nami motions are exited. Then the magneti �elddynamis is governed by the equation [26℄

�tB = (B �r)v � (v �r)B+ �r2B; (2.1)where B is the magneti indution, v is the �ow ve-loity, and � is the magnetodi�usion oe�ient, in-versely proportional to the eletrial ondutivity ofthe medium. The �ow is assumed to be inompress-ible, r � v = 0. We also assume that the magnetodif-fusion term in Eq. (2.1) is small in omparison withthose related to the �ow. We onsider the ase wherethe magneti �eld is relatively weak and therefore itsfeedbak to the �ow is negligible. Then relation (2.1) isa linear equation determining the magneti �eld evolu-tion in a presribed veloity �eld; this regime is alledkinemati.The hydrodynami motion exited in the �uid is as-sumed to be random (turbulent) and the veloity statis-tis is assumed to be homogeneous in spae and time.We examine the magneti �eld growth from initial weak�utuations distributed statistially homogeneously inspae at the initial instant t = 0. The orrelation lengthof the initial �utuations l is assumed to be smallerthan the veloity orrelation length �. If we onsiderhydrodynami turbulene, then the role of the veloityorrelation length is played by the Kolmogorov sale.At sales less than �, the veloity �eld v an be onsi-dered smooth. The magneti growth (dynamo) an beharaterized by moments of the magneti indutionthat exponentially inrease with time t:DjB(t)j2nE / exp (nt) : (2.2)Here, angular brakets denote averaging over spae.Exponential laws (2.2) are harateristi of the kine-mati dynamo beause Eq. (2.1) is linear in the mag-neti indution B in this ase.One of our goals is to express the growth rates n inEq. (2.2) via statistial harateristis of the �ow. Thenatural measure for the growth rates n is the so-alledLyapunov exponent of the �ow, �, equal to the averagelogarithmi divergene rate of lose �uid partiles. Aspeial question onerns the n dependene of n. If themagneti indution statistis is Gaussian, then n / n.Deviations from the linear law signal the intermittenyof the magneti �eld. The intermitteny implies thathigh moments of the magneti �eld are determined byrare strong �utuations.There are two di�erent regimes of the kinematimagneti �eld growth. The �rst regime is realized ifall harateristi sales of the magneti �eld are muhlarger than the magneti di�usion length rd = p�=�.The assumed smallness of the di�usion oe�ient im-plies the inequality � � rd. We also assume thatl � rd; then the di�usion term in Eq. (2.1) is negligible388
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Fig. 1. Sketh of typial magneti blobs during thedi�usive kinemati stageat the �rst stage of the magneti evolution, whih weall di�usionless. The magneti �eld lines are deformedby the �ow without reonnetions in this regime. Butdistortions of the magneti �eld by the �ow inevitablylead to produing order-rd sales in the �eld. Afterthat, the magneti di�usion is swithed on and reon-netions an our. This seond (di�usion) stage isharaterized by the growth rates di�erent from thosedesribing the di�usionless regime.We present a qualitative piture explaining themagneti �eld evolution at the kinemati stage. Theinitial magneti �eld distribution in spae an be re-garded as an ensemble of blobs of sizes of the orderof l. Then the blobs are distorted by the �ow, beingstrethed in one diretion and ompressed in anotherdiretion. In the isotropi ase, the strething and om-pression diretions vary haotially in spae and time,but in our ase, they are attahed to the shear �ow: theblobs are strethed mainly along the shear veloity andare ompressed in the diretion of the shear veloitygradient. At the �rst (di�usionless) stage, the blobs aredeformed without intersetions and the magneti �eldindution grows as the separation between lose �uidpartiles beause Eq. (2.1) at � = 0 oinides with theequation for the separations.The di�usionless stage terminates when the hara-teristi blob width dereased to the di�usion length rd.Then the di�usion is swithed on, whih leads to twoe�ets. First, the di�usion prevents further shrinkingthe blob widths, whih therefore remain of the orderof rd, whereas the blobs ontinue to be strethed inthe diretion of the shear veloity. Seond, due to re-onnetions of the magneti �eld lines allowed by dif-fusion, the blobs start to overlap. As a result, newblobs of a harateristi longitudinal size � are formed(Fig. 1). The magneti indution in suh blobs an befound by averaging the indution of a large number N

of initial blobs, with the number N inreasing expo-nentially with time. Averaging over a large number ofrandom variables leads to the appearane of an expo-nentially small fator about 1=pN in the amplitude ofthe magneti indution. In addition, the amplitudes ofthe initial blobs ontinue to inrease with time as theseparation between �uid partiles. We onlude that atthis seond (di�usive) stage, the magneti �eld is stillinreasing exponentially with time, but slower than atthe �rst stage.We onsider the ase where the steady shear on-stituent of the �ow is muh stronger than the randomone. Quantitatively, the ondition is written as the in-equality s � �, where s is the shear rate. Indeed, theLyapunov exponent in a pure shear �ow is zero, and itsnonzero value is assoiated with the presene of a rel-atively weak random onstituent of the �ow. The dis-torted magneti blobs are elongated mainly along theshear veloity. However, they are tilted with respetto the veloity diretion due to presene of the randomveloity omponent (see Fig. 1). The tilt exhibits thesame dynamis as the diretion of the polymer streth-ing in the same �ow [21℄. Therefore, the tilt angle �(see Fig. 1) an be estimated as � � �=s. The tilt angledetermines the typial ratio of the magneti �eld om-ponents By=Bx � �=s� 1, where the x axis is diretedalong the shear veloity, whih varies along the y axis.Thus, the ratio s=� haraterizes the anisotropy degreeof the magneti �eld.2.1. Lagrangian dynamisTo analyze moments and orrelation funtions ofthe magneti indution, we need a solution of magne-todynami equation (2.1) for the indution �eld B(t)in terms of its initial valueB,B = B(0). We here usea generalization of the sheme proposed in Ref. [27℄and elaborated in Ref. [25℄, whih uses the Lagrangianapproah to �uid dynamis.First, instead of solving Eq. (2.1) with the seond-order Laplae operator, it is onvenient to pass to the�rst-order equation�tB = (B �r)v � (v �r)B+ (� �r)B; (2.3)where �(t) are white noises (Langevin fores) mimi-king the magneti di�usion. The means of the � arezero and their pair orrelation funtion isb�i(t1)�j(t2) = 2�ÆijÆ(t1 � t2); (2.4)where �b: : : � mean averaging over the � statistis and� is the same di�usion oe�ient as in Eq. (2.1). The389



I. V. Kolokolov, V. V. Lebedev, G. A. Sizov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011solution of evolution equation (2.1) is given by the so-lution of Eq. (2.3) averaged over the � statistis for anyveloity �eld v(t; r).To prove the assertion, we �nd the inrement of themagneti �eld indution during a small time interval �.A formal solution of Eq. (2.3) isB(t) = Texp8<: tZt�� dt0 h�̂� vr+ �(t0)ri9=;B(t� �);where Texp is the hronologially ordered exponen-tial and �̂ is the matrix of the veloity gradients,�ji = �ivj . Expanding the exponent and averaging theresult over the � statistis in aordane with Eq. (2.4),we �nd the inrementB(t)�B(t� �) = �(B �r)v � �(v �r)B+ ��r2Bin the �rst order in �. We note that ross terms areabsent in this approximation beause the averages of �are zero. The above inrement is equivalent to the oneobtained diretly from Eq. (2.1).Seond, we solve Eq. (2.3) by the method of har-ateristis. The equation for the harateristi R is�tR = v(t;R) + �: (2.5)This equation desribes a Lagrangian trajetory dis-turbed by Langevin fores. If the magneti indution iswritten as B(t; r) = b(t;R), then the quantity b satis-�es the equation �tbj = �jibi, where �̂(t) is the veloitygradients matrix, �ji = �ivj , taken at the time t andat the spatial point R(t). A solution of the equationan be written as b(t) = Ŵ (t)b(0), where the matrixŴ (t) is the hronologially ordered exponentialŴ (t) = T exp8<: tZ0 dt0 �̂(t0)9=; : (2.6)The matrix Ŵ , whih we all the evolution matrix, anbe treated as a solution of the equation �tŴ = �̂Ŵwith the initial ondition Ŵ (0) = 1.Finally, we �nd the formally exat solution ofEq. (2.1), B(t; r) = jŴ (t)B[R(0)℄k ; (2.7)where, again, �b: : : � mean averaging over the � statis-tis determined by Eq. (2.4). To �nd R(0), we mustsolve Eq. (2.5) on the time interval (0; t) with theboundary ondition R(t) = r posed at the �nal time.In other words, we should trak the magneti �eld bak

in time along the disturbed Lagrangian trajetories andinlude the fator Ŵ aumulated along the trajetory.The evolution matrix Ŵ has some general proper-ties that follow from de�nition (2.6). The determinantof Ŵ is equal to unity beause the veloity gradientmatrix �̂ is traeless, tr �̂ = 0, whih is in turn a on-sequene of the inompressibility ondition r � v = 0.We introdue the symmetri matrix Ŵ Ŵ T (where thesupersript �T � denotes transposition) and denote itseigenvalues as W 21 , W 22 , W 23 , where all the quantitiesW1, W2, W3 are positive. Beause the determinant ofŴ is equal to unity, we have W1W2W3 = 1. We or-der the eigenvalues as W1 > W2 > W3, then W1 > 1and W3 < 1. At times t � ��1 we are interestedin, typial values of lnW1 and lnW3 an be estimatedas ��t, and therefore W1 is exponentially large andW3 is exponentially small. The estimation for W2 de-pends on the details of the �ow statistis. In any ase,W1 �W2 �W3 at times t� ��1.In the framework of the proposed formalism, or-relation funtions of the magneti �eld B are to bealulated by averaging produts of fators (2.7) takenat the respetive points over the statistis of the noise�, in addition to averaging over spae. Thus, say, theone-time orrelation funtionF2n;i:::j(r1; : : : ; r2n) = hBi(r1) : : : Bj(r2n)i ; (2.8)has to be alulated in two steps. First, we substituteexpression (2.7) in the right-hand side of (2.8) and thenaverage the resulting produt over the � statistis de-termined by Eq. (2.4); this averaging athes the mag-neti di�usion. We emphasize that the �elds � haveto be treated as independent for all the 2n fators inthe produt. Seond, we average the result over spae.Averaging over sales less than or of the order of �(traed bak to the initial time) gives statistis of theinitial magneti �eld �utuations, and averaging oversales more than or of the order of � ounts di�erentrealizations of �̂. Therefore, the latter is equivalent toaveraging over the veloity statistis. This logi wasrealized for the isotropi random �ow in Ref. [15℄.In the di�usionless regime, realized at t �� ��1 ln(l=rd), we an neglet the di�usion e�ets.Then in alulating the moment hjBj2ni, we an takethe produt of idential fators (2.7), where R issimply a Lagrangian trajetory terminated at thepoint r at time t. ThenjB(r)j2n �W 2n1 jBj2n;where B is taken at the origin of the Lagrangian tra-jetory. Here, just the fatorW 2n1 is responsible for the390



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Magneti �eld orrelations in a random �ow : : :exponential growth of the moments, and therefore wean restrit ourselves to the estimationbjB(r)j2n �W 2n1 B2n0 ;whereB0 is the harateristi value of the initial mag-neti �eld �utuations. In the di�usion regime, realizedat t � ��1 ln(l=rd), the situation is somewhat moreompliated.We �rst onsider the seond moment. Then wedeal with two trajetories, R and R0, terminating atthe same point r at time t, but haraterized by inde-pendent noises � and �0. The seond moment an bewritten as the average,h(B)2i = DjBT [R(0)℄Ŵ T Ŵ 0B[R0(0)℄kE : (2.9)An appreiable ontribution to the seond moment isassoiated with the trajetories with jR(0)�R0(0)j . l.Beause jR(0)�R0(0)j � � and jR(t)�R0(t)j = 0, thedi�erene �R = R �R0 remains muh less than � atany time from the interval (0; t) for suh an event. FromEq. (2.5), expanding the veloity up to terms linear in�R, we then obtain�t�R = �̂�R+ � � �0; (2.10)where �̂ an be taken at any of the points R or R0.The solution of Eq. (2.10) that is equal to zero at t0 = tis written as�R(t0) == �Ŵ (t0) tZt0 dt1Ŵ�1(t1)[�(t1)� �0(t1)℄: (2.11)To alulate the seond moment, we should knowthe �R(0) statistis. Beause the separation �R(0) isa linear ombination of � and �0, it should be treatedas a Gaussian variable in averaging over the � statis-tis, and then its probability distribution funtion isompletely determined by the matrix M̂ :Mij = b�Ri(0)�Rj(0) = 4� tZ0 dt1W�1ik W�1jk : (2.12)The expression for M̂ is derived from Eqs. (2.4)and (2.11). The matrix M̂ is symmetri, and its eigen-values are positive. We let the eigenvalues be denotedby m21, m22, m23 and order the m as m1 > m2 > m3; theinequalities beome strong, m1 � m2 � m3, if �t� 1.We emphasize that the diretions of the eigenvetors ofM̂ are �frozen� at �t � 1 [28�31℄. Then the integral

determining m1 is dominated by t� t1 � ��1, and wearrive at the estimation m1 � rdW�13 . The integral de-termining m3 is dominated by t1 � ��1, and thereforem3 � rd. An estimation for m2 depends on the timedependene of W2. If W2 inreases, then m2 remainsof the order of rd, but it grows like m2 � rdW�12 if W2dereases.We now �nd the probability that �R(0) is less thanl in the di�usion regime, when t � ��1 ln(l=rd). Wean think in terms of the omponents of �R(0) inthe basis attahed to the eigenvetors of M̂ . Beausem1 � l, the probability that the �rst omponent of�R(0) is less than l is estimated as l=m1 � (l=rd)W3.If W2 inreases with time, then both m2 and m3 areof the order of rd and therefore the probability thatthe seond and the third omponents of �R(0) are lessthan l is lose to unity. From Eq. (2.9), we then �ndbjBj2 �B20(l=rd)W1W�12 ; (2.13)where we used the relation W1W2W3 = 1.The situation with a dereasing W2 is slightly dif-ferent. In this ase, m2 � l at the di�usive stage, andthere appears an additional small probability that theseond omponent �R(0) is less than l. This proba-bility an be estimated as l=m2 � (l=rd)W2. We thenobtain hjBj2i � B20W1(l=rd)2 instead of Eq. (2.13).But the integration over spae (at the next step of av-eraging) kills the leading term due to the solenoidalnature of the magneti �eld B. Therefore, we have totake the next term in the probability distribution of�R2(0) into aount, whih ontributes an extra smallfator (l=m2)2 to the probability. Thus, we arrive atbjBj2 �B20(l=rd)4W1W 22 : (2.14)We note that expressions (2.13) and (2.14) areequivalent to those obtained in the Fourier representa-tion for the statistially isotropi ase in Ref. [15℄. Butexpressions (2.13) and (2.14), written for real spae,are also orret for the anisotropi problem (whih weare investigating), and are in fat more suitable for theproblem.We turn to higher moments. It an be seen thatthe prinipal ontribution to the average bjBj2n is pro-dued by on�gurations where the 2n points R�(0) aredivided into n pairs with separations less than or of theorder of l in eah pair. Beause of the independene ofthe white noises ��, the probability of this event an beestimated as the produt of probabilities for the seondmoment, that is, bjBj2n � bjBj2n; (2.15)391



I. V. Kolokolov, V. V. Lebedev, G. A. Sizov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011where the seond moment is given by Eq. (2.13) orEq. (2.14). We have ignored a ombinatorial fator inEq. (2.15) beause we are interested in the time depen-dene of the moments.2.2. Evolution matrixThe next step in �nding the magneti �eld momentsis averaging over the veloity statistis. Before do-ing this, we should establish statistial properties ofevolution matrix (2.6). Some universal properties ofsuh matries, whih an be treated as produts of alarge number of random matries, are well established[28�31℄; the properties are revealed at t � ��1. Butwe examine a strongly anisotropi ase, with the steadyshear �ow dominating. This requires modifying theonsideration in Ref. [15℄, where the isotropi ase (sta-tistially isotropi �ow) was investigated.For the anisotropi problem, it is onvenient to usethe Gaussian deomposition of the evolution matrixŴ = T̂L�̂T̂R, where T̂L and T̂R are the triangle matri-es T̂L = 0B� 1 � �10 1 �20 0 1 1CA ;T̂R = 0B� 1 0 0�1 1 0�2 �3 1 1CA (2.16)
and �̂ is a diagonal matrix. Beause both triangle ma-tries, T̂L and T̂R, have unit determinants, the deter-minant of �̂ is also equal to unity.The matries are written in the referene frame at-tahed to the shear �ow: the axis x is direted alongthe shear veloity and the axis y is direted along theshear veloity gradient. Therefore, the shear veloityis written as vx = sy, where s is the shear rate. Forour �ow, whih is omposed of a steady shear �ow anda random omponent, the matrix of the veloity gra-dients �ji = �ivj is a sum of two terms related to theshear and the random omponents of the �ow:�ji(t) = sÆjxÆiy + �ji(t): (2.17)The randommatrix �ji is zero on average and should beharaterized in terms of its orrelation funtions. Thetrae of the matrix is zero, tr �̂ = 0 (due to the �owinompressibility). We reall that the Lyapunov expo-nent � of a purely shear �ow is equal to zero. Therefore� is sensitive to �̂, although the random �ow is weakerthan the steady one.

Substituting the deomposition Ŵ = T̂L�̂T̂R in theevolution equation �tŴ = �̂Ŵ , we �ndT̂�1L �̂T̂L = T̂�1L �tT̂L + �t�̂�̂�1 ++ �̂�tT̂RT̂�1R �̂�1: (2.18)The respetive terms in the right-hand side ofEq. (2.18) are a left o�-diagonal matrix, a diagonalmatrix, and a right o�-diagonal matrix. Therefore, weobtain a losed (nonlinear) equation for the matrix T̂Lthat leads to a homogeneous-in-time statistis of thematrix. Next, for omponents of the diagonal matrix�t�̂�̂�1, we obtain expressions that are random vari-ables with statistis homogeneous in time. Therefore,the entral limit theorem applies to ln�1, ln�2, andln�3 (where �i are eigenvalues of �̂). Typially, thevariables are linear in time t with the oe�ients ofthe order of �. The situation with the matrix T̂R isslightly more ompliated beause of the exponentialfators in the last term in Eq. (2.18). Therefore, someomponents of T̂R behave exponentially with time likethe fators.From Eq. (2.18) for T̂L, based on the leading role ofthe shear term in expression (2.17), we obtain a hierar-hy � � �1 � �2. Therefore, in the leading approxi-mation in �=s, the only omponent �yx is relevant andthe equation for the matrix T̂L is redued to a singleequation for the omponent �,�t� = s� �2�; (2.19)where � � �yx. We onlude that the variable � hasa statistis homogeneous in time, in aordane withour general expetations. We note that � � s= � 1,as follows from Eq. (2.19). Keeping the leading-in-�ontributions to the diagonal terms in Eq. (2.18), weobtain diag (�t�̂�̂�1) = (���; ��; 0). Therefore, inthis approximation,diag� = (e��; e�; 1); �t� = ��: (2.20)If t� ��1, then typially � � �t� 1.We onlude from the equations for �1, �2, and �3following from Eq. (2.18) that at �t � 1, the variable�1 is �frozen� at an order-of-unity level, whereas thevariables �2 and �3 inrease exponentially and an beestimated as e�. However, the ombination �1�3 � �2,entering T̂�1R , is �frozen� at an order-of-unity level aswell as �1.Based on the results obtained for the matries T̂L,�̂, and T̂R we �nd eigenvalues of the matrix Ŵ . Inthe leading approximation in �=s, we obtain W1 � e�,392



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Magneti �eld orrelations in a random �ow : : :W2 � 1, and W3 � e��. These expressions, togetherwith Eq. (2.20), lead to the relation� � h�t�i = h��i; (2.21)where averaging is performed over the veloity statis-tis.Beause � is given by an integral over time of a ran-dom quantity whose statistis is homogeneous in time(see Eqs. (2.19) and (2.20)), the � statistis has someuniversal features at �t � 1. Namely, the probabilitydistribution funtion (PDF) of � an be written in aself-similar form [32℄P (�) / exp[�tS(�=t)℄; (2.22)where S is the so-alled Kramer funtion (or entropyfuntion). Expression (2.22) is a manifestation of PDFsfor the so-alled intensive variables (see, e.g., [33℄). Ex-pression (2.22) implies that relative �utuations of �derease as t inreases.We onsider moments of the divergene of lose La-grangian trajetories in our random �ow. The equa-tion governing the separation �R between the traje-tories is �t�Rj = �ji�Ri; it an be obtained fromEq. (2.10) by letting � ! 0. A solution of the equa-tion is �R(t) = Ŵ�R(0). Therefore, at t � ��1, wearrive at the estimation �R(t) � �R(0)e�. Then themoments of �R an be alulated in the saddle-pointapproximation (justi�ed by the inequality �t� 1):hj�Rjni = Z d� P (�)j�Rjn / exp(�nt); (2.23)�n = �S( n) + n n; where S0( n) = n: (2.24)Thus, the exponents �n are determined by statistialproperties of the Lagrangian trajetories. We note thatthe Lyapunov exponent � an be formally expressed via�n as � = (d�n=dn)n=0.General statistial properties of the separation �Rfor the random �ow with strong average shear wereestablished in Ref. [21℄, in the ontext of the single-polymer dynamis in suh a �ow. A strong intermit-teny of �R(t) is expeted, whih is revealed in a large-n growth of �n that is faster than linear, beause thelinear law �n / n is harateristi of the Gaussianstatistis of �R(t).3. CORRELATION FUNCTIONSTo �nd the time dependene of the magneti �eldmoments, we have to additionally average expres-sion (2.15) over spae, whih is equivalent to averaging

over the � statistis and the statistis of initial mag-neti �utuations. The 2nth moment of the magneti�eld indution is then written as
B2n(t)� = Z d� P (�) �B2n(t)� : (3.1)In our approximation,W1 � e� andW2 � 1, and there-fore B(t) � e�B0 in the di�usionless regime, whereasbjBj2 � B20(l=rd)e� in the di�usion regime, as fol-lows from Eq. (2.13). Substituting the expressions inEq. (3.1) and integrating over � (in the saddle-pointapproximation), we �nd n = �2n for the di�usionlessregime and n = �n for the di�usion regime. Thus, wehave related the dynamo growth rates introdued inEq. (2.2) to the statistial properties of the �ow. Ourresults an be summarized in terms of the estimationshjB(t)j2ni �� 8>>><>>>: exp(�2nt)B2n0 ; t < ��1 ln lrd ;� lrd�n exp(�nt)B2n0 ; t > ��1 ln lrd : (3.2)The main ontribution to the moments 
B2n(t)� isassoiated with the omponent Bx of the magneti in-dution direted along the veloity of the shear �ow(see Fig. 1). We turn to moments of the omponent Bydireted along the gradient of the shear �ow, hB2ny i.The moments are muh smaller than the moments
B2n(t)�, the smallness being aused by the strongshear �ow. It follows from Eqs. (2.16) and (2.20) thatbB2x(t) = �2bB2y(t). Hene, the variable � is a mea-sure of the magneti �eld anisotropy, ��1 determinesthe tilt angle � of the magneti blobs to the shear velo-ity (see Fig. 1). Beause the variable � has a statistishomogeneous in time, the fator ��2 does not produea di�erene in the growth rates, and hene both mo-ments hB2nx i and hB2ny i are proportional to the sameexponential exp(nt). But the prefators at the expo-nentials are di�erent. To �nd the di�erene in the pref-ators, is not enough to know statistial properties of� that determine the exponentials. Generally, the mu-tual probability distribution of �(t) and �(t) must beknown, whih is quite a ompliated objet dependingon the details of the �ow dynamis. However, we anestablish an estimation for typial �utuations � � s=�that follows from Eqs. (2.19) and (2.21). Therefore,e.g., bB2x(t) � (s2=�2)bB2y(t).There is a question onerning moments of the thirdomponent of the magneti indution, hB2nz i. Analyz-ing their behavior requires taking the omponents of393



I. V. Kolokolov, V. V. Lebedev, G. A. Sizov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011the matrix T̂L into aount, whih we ignored in inves-tigating Bx and By. We then onlude that the timedependene of hB2nz i is haraterized by the same expo-nentials exp(nt) both at the di�usionless and di�usionstages. As regards the prefators, they depend on thedetails of the �ow statistis.3.1. Pair orrelationsWe onsider the one-time magneti �eld pair orre-lation funtionFij(t; r) = hBi(t; r1 + r)Bj(t; r1)i: (3.3)Here, as previously, angular brakets mean averagingover spae (that is, integration over r1 with the inversevolume as a fator). We assume statistial homogeneityin spae of both the veloity and the initial magneti�eld �utuations; that is why spatial average (3.3) har-aterizes the magneti �eld orrelations in the wholevolume. We onsider the ase r � �, whih allowsusing the smooth �ow approximation.Again, we start from representation (2.7). Then,analogously to the seond moment, pair orrelationfuntion (3.3) an be written asFij(t) = 
bWikBk[R(0)℄W 0jlBl[R0(0)℄� ;where the trajetories R and R0 terminate at the re-spetive points r1 + r and r1, at a time t. We thenobtainFij(t) = hbWik(t)Wjl(t)Fkl[�R(0)℄i ; (3.4)where Fij is the initial (at t = 0) pair orrela-tion funtion of the magneti �eld �utuations and�R = R�R0. The orrelation length l of F is smallerthan �, and we an therefore onsider j�Rj < �. Thenboth evolution matries in (3.4) an be taken at thesame point R. Averaging in Eq. (3.4) an be treatedas averaging over the veloity statistis.The di�erene �R satis�es the same equation(2.10) if j�Rj � �. However, we are now interestedin the solution with the �nal ondition �R = r. Thissolution is written as�R(t0) = Ŵ (t0)Ŵ�1(t)r �� Ŵ (t0) tZt0 dt1Ŵ�1(t1)[�(t1)� �0(t1)℄ (3.5)instead of Eq. (2.11). We immediately onlude fromEq. (3.5) that the pair orrelation funtion oinideswith the seond moment if r . rd. In what follows, we

therefore examine the ase r � rd, where the seondterm in Eq. (3.5) is negligible and we �nd�R(0) = Ŵ�1(t)r: (3.6)To be more preise, expression (3.6) is orret ify � r � rd, that is understood below.There are two di�erent regimes for the pair orre-lation funtion. If t < ��1 ln(l=r), then j�R(0)j istypially less than l; this regime exists if r � l. In thisase, two Lagrangian trajetories R and R0 remainstypially within the orrelation radius l at t = 0 andthe behavior of expression (3.4) is insensitive to the sep-aration r. Therefore, the pair orrelation funtion Fijvirtually oinides with the single-point average hBiBjiin this regime and, onsequently, its time dependeneis determined by the growth rate  = �2.If t > ��1 ln(l=r), then j�R(0)j is typially largerthan l and only rare events where j�R(0)j < l on-tribute to the orrelation funtion. Using the repre-sentation Ŵ = T̂L�̂T̂R, we obtain from Eq. (3.6) thatj�R(0)j � e�(rx � �ry), where rx and ry are oor-dinates of the separation r. The probability that thequantity is less than or of the order of l is estimated ase��l=r (if rx � ry � r), whih is an interval of values of� where �R(0) < l. Therefore, BiBj �B20e�l=r and,onsequently, F (t) �B20 exp(�1t)l=r.We ollet the obtained results:F (t) �8>><>>: B20 exp(�2t); t < 1� ln lr ;B20 exp(�1t) lr ; t > 1� ln lr ; (3.7)where the inequality rd � r � l is assumed. There-fore, the pair orrelation funtion is governed by thesame exponentials as the seond moment. In addition,we �nd the r-dependene of the pair orrelation fun-tion. We note that expression (3.7) turns into expres-sion (3.2) for the seond moment at r � rd, as it should.Returning to expression (3.4), we onlude that adi�erene between the pair orrelation funtion Fijand the moments hBiBji is solely in the behaviorof �R. Therefore, relations between the ompo-nents of Fij ontrolled by the evolution matries inEq. (3.4) are the same as for the moments hBiBji, e.g.,Fyy � (�=s)2Fxx.3.2. Mellin transformIt is instrutive to examine the Mellin transform ofthe pair orrelation funtion. This analysis reveals its394



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Magneti �eld orrelations in a random �ow : : :saling properties. We de�ne the Mellin transform as~F (t; k) = 1Z0 drr �rl ��ik F (t; r); (3.8)where the diretion of the radius vetor r is assumed tobe �xed. Beause the veloity �eld is smooth, di�erentharmonis ~F (t; k) evolve independently, being repre-sented as a sum of exponentials haraterizing di�erentstrutures of ~Fij . At times t � ��1, only the leadingexponential survives, that is, ~F (k; ') / exp[(k)t℄.To return to the real spae, we should perform theinverse Mellin transformF (t; r) = 1Z�1 dk2� exp ��ik ln lr + (k)t� ~F(k): (3.9)The quantity ~F(k) is determined by the initial mag-neti �eld �utuations, orrelated on the sale l. Thatis why we inorporated this quantity into relations (3.8)and (3.9).A remark about analyti properties of ~F(k) is inorder. We assume that at r > l, the initial pair or-relation funtion F(r) rapidly dereases as r inreases.Integral (3.8) then, onverges if Im k > 0. Therefore,~F(k) is analyti in the upper k-halfplane. Besides, theintegral diverges (at small r) as k ! 0. Therefore, sin-gularities of ~F(k) lie in the lower k-halfplane, startingfrom the point k = 0. The harater of the singularitiesdepends on analyti properties of the initial funtionF(r). If it is analyti in r, then we expet ~F(k) tohave a series of poles along the lower imaginary semi-axis, with the �rst one at k = 0. We note that inaordane with general rules, the integration ontourin Eq. (3.9) should run above the �rst singular pointk = 0.We an draw some general onlusions taking intoaount that (k) � �. If ln(l=r) > �t, then inte-gral (3.9) is determined by a narrow viinity of thepoint k = 0. Then F (t; r) / exp[(0)t℄, and we identify(0) and �2. If ln(l=r) < �t, then integral (3.9) an bealulated in the saddle-point approximation. To �ndthe saddle point, we should shift the integration on-tour into the upper halfplane to reah the saddle pointk = iq?, where q? determines the minimal value of (iq)for q > 0. Indeed, the growth rate (iq) is real, andtherefore the point k = iq? is a solution of the equationd=dk = 0 giving an extremum of the exponential inEq. (3.9). ThenF (t; r) / (l=r)q? exp[(iq?)t℄;

and we identify (iq?) with �1 (see Eq. (3.7)). We notethat in aordane with asymptoti law (3.7), q? shouldbe equal to unity, q? = 1.3.3. Higher-order orrelationsHere, we onsider higher-order orrelation fun-tions of magneti �eld (2.8). We obtain expressionslike Eq. (3.5) for separations �R between the pointsR1(0); : : : ;R2n(0), whih are needed to alulate F2nin aordane with Eq. (2.7). If �t < ln(l=j�rj) for allseparations between the points r1; : : : ; r2n, then all sep-arations �R(0) are less than l. In this situation, we ar-rive at the same expression F2n �B2n0 he2n�i as for the2nth moment, and we onlude that F2n / exp(�2nt),see Eq. (3.2).We now turn to the ase where �t > ln(l=r), withall separations �r assumed to be of the same order.We �rst onsider the geometry where all the pointsr1; : : : ; r2n lie on a line, that is, all vetors r� � r�have the same diretions, and we an write �r � r,where r is one of the separations. We then arrive atthe estimation j�Rj � e�(rx��ry), similar to that forthe pair orrelation funtion. We thus obtain the sameprobability � e��l=r that the separations j�R(0)j . l.Then F2n � B2n0 he(2n�1)�il=r, where the fator e2n�originates from the produt of the matries Ŵ , appear-ing in aordane with expression (2.7). Averaging thisexpression, we obtain F2n(t) � B2n0 exp(�2n�1t)l=r.We stress that the growth rates are here di�erent fromthose of the orresponding moments.However, the above expression is orret only ift < ��1 ln(l=rd). For larger t, the di�usion ontri-butions to the di�erenes �R� beome relevant (seeEq. (3.5)). Then, by manipulating with �, only onedi�erene among the �R(0) an be made less than l.After that, all the other di�erenes typially aquirevalues of the order of rde�, and the probability that adi�erene is smaller than l is estimated as (l=rd)e��.We therefore onlude thatF2n � * lr � lrd�n�1 en�+ / exp(�nt):The same results (up to ombinatorial fators) holdfor the ollinear geometry, where the set r1; : : : ; r2n isseparated into n pairs with parallel vetors r� � r�haraterizing the pairs. Then the orresponding dif-ferenes �R behave as previously and the same argu-ments apply. We summarize our results for the ollineargeometry:395
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F2n(t) �8>>>>>>>><>>>>>>>>:

B2n0 exp(�2nt); t < 1� ln lr ;B2n0 exp(�2n�1t) lr ; 1� ln lr < t < 1� ln lrd ;B2n0 lr � lrd�n�1 exp(�nt); t > 1� ln lrd : (3.10)
It is a generalization of expressions (3.7) for the pairorrelation funtion. We note that in the ollinear ge-ometry, similarly to the pair orrelation funtion, theestimate By � (�=s)Bx determines relations betweendi�erent omponents of F2n, whereas the z-omponentsrequire a separate investigation.If the ollinear geometry is destroyed, then it is im-possible to put all the separations j�R(0)j inside thesale l at any �, if t > ��1 ln(l=r). In this situation,the behavior of the orrelation funtion F2n is nonuni-versal, being sensitive to the details of the initial spa-tial distribution of B. In any ase, the value of F2nin the nonollinear geometry is muh less than in theollinear one. The situation resembles the one real-ized for a randomly adveted passive salar on saleslarger than the pumping length [34℄. We onludethat at t > ��1 ln(l=r), orrelations of the magneti�eld are onentrated near ollinear geometries, deay-ing away from the geometries. The deaying lengthis estimated as le��t at t < ��1 ln(l=rd) and as rd att > ��1 ln(l=rd).4. SHORT-CORRELATED FLOWHere, we onsider a strong steady shear �ow om-plemented by a random omponent short-orrelated intime. This ase admits an analytial solution and antherefore be used to verify our general assertions andpreditions. In addition, the ase is naturally realizedbeause the strong shear destroys orrelations of therandom omponent, and we therefore expet that theshort-orrelated ase is frequently enountered in real�ows.In the short-orrelated ase, the matrix of the ve-loity gradients �̂ desribing the random omponent ofthe �ow has to be treated as white noise, that is, avariable Æ-orrelated in time. In the isotropi ase, weobtain the tensorial strutureh�ik(t1)�jn(t2)i == D(4ÆijÆkn�ÆikÆjn � ÆinÆjk)Æ(t1�t2); (4.1)where the fator D haraterizes the random �owstrength and the numerial fator is introdued as in

Ref. [35℄. But as we have argued, the only relevantomponent of the random veloity gradient matrix inthe ase � � s (whih is a manifestation of the ran-dom �ow weakness) is � � �yx. We haraterize itsstatistial properties by the expressionh�(t1)�(t2)i = 4DÆ(t1 � t2); (4.2)formally oiniding with Eq. (4.1) for the yx-omponent. Other omponents of �̂ an have orre-lation funtions di�erent from (4.1). The random om-ponent an be onsidered to be weaker than the steadyshear �ow if D � s.Statistial properties of the separation �R(t) be-tween lose Lagrangian trajetories in a randomsmooth �ow with strong shear omponent in the short-orrelated ase are investigated in Ref. [36℄ (in the on-text of polymer dynamis). We here present the re-sults obtained in that paper without derivation. Wenote that our variable � is related to the tilt angle � inRef. [36℄ as � = tg �, or � � ��1 in the ase of smalltilt angles in whih we are interested. The expressionfor the Lyapunov exponent found in Ref. [36℄ is� = 31=3p��(1=6) D1=3s2=3: (4.3)Therefore, the ondition s� D does guarantee the in-equality � � s. We also note that � � D and that�! 0 as D ! 0. The last property is a natural onse-quene of the vanishing Lyapunov exponent for a purelyshear �ow.For the short-orrelated ase, it is possible to �ndthe exponents �n haraterizing the growth rates ofthe moments of �R(t) (see Eq. (2.23)) if n� 1. Thena saddle-point (instanton) approximation in the fun-tional spae [37℄ an be used, whih leads to [36℄n = 325=3n4=3D1=3s2=3 � �n4=3: (4.4)The nonlinear dependene of �n on n, �n / n4=3, sig-nals a strong intermitteny of the �ow. We note thatin our anisotropi ase, the growth rates �n inreaseas n inreases slower than in the isotropi ase, where�n / n2 for the short-orrelated �ow (see Ref. [15℄).396



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Magneti �eld orrelations in a random �ow : : :4.1. Pair orrelation funtionWe next examine the two-point one-time orrelationfuntion (3.3) for the veloity �eld short-orrelated intime. In this ase, it is possible to derive a losed equa-tion for the orrelation funtion (see, e.g., Ref. [12℄).We here study the funtion at sales muh larger thanthe di�usion sale rd (but muh smaller than the velo-ity orrelation length �). It is then possible to negletdi�usion e�ets, and we omit all terms with the noise� in subsequent relations.We brie�y explain the derivation of the equation.First, it follows from de�nition (2.6) thatŴ (t) = T exp(�̂)Ŵ (t� �); �̂ = tZt�� dt0 �̂; (4.5)where � is an arbitrary time (less than t). We hoose� to be muh smaller than ��1, but muh larger thanthe veloity orrelation time (this is possible for a short-orrelated �ow). Then �̂ is a small fator, although thetwo fators in Eq. (4.5) an be treated as statistiallyindependent. Substituting expression (4.5) in Eq. (3.4),expanding the result into a series in �̂ (up to the seondorder) and averaging the result inside the time inter-val (t� �; t) in aordane with Eq. (4.2), we obtain avariation of Fij under passing from t� � to t. Beausethe variation is small, it an be rewritten in terms of adi�erential equation.Assuming the isotropi orrelation funtion of �u-tuations in (4.1), we obtain the equation�tFij = �2sy�xFij + sFiyÆjx + sFyjÆix ++ 4D �ÆijFkk � 12Fij � rk�jFik � rk�iFkj ++ 12(rr)Fij + 12r2r2Fij � 14rmrn�m�nFij� : (4.6)In the absene of shear (at s = 0), system of equa-tions (4.6) leads to a losed equation for the trae ofthe orrelation funtion H = Fkk :�tH = D �10H + 6r�rH + r2�2rH� :The equation oinides with one presented in Ref. [14℄(for the saling exponent � = 2 and zero foring).We now eliminate irrelevant terms in Eq. (4.6) us-ing the following properties: s is muh larger than D,the harateristi value of x is muh larger than thatof y, and, aordingly, �y � �x. We an then keepsolely the terms originating from �yx in Eq. (4.6). The

resulting equation leads to a losed system of equationsfor the three omponents Fxx, Fxy, and Fyy of the pairorrelation funtion:�tFxx = �2sy�xFxx + 2sFxy + 4Dx2�2yFxx;�tFxy = �2sy�xFxy + sFyy ++2Dx2�2yFxy � 4Dx�yFxx;�tFyy = �2sy�xFyy + 2Dx2�2yFyy �� 8Dx�yFxy +DFxx: (4.7)
Further, we use the dimensionless time T = (8Ds2)1=3tand introdue the notationf = Fxx; g = (s=D)1=3Fxy; h = (s=D)2=3Fyy:We investigate a speial ase of oiniding points.At r = 0, all terms with derivatives drop fromEqs. (4.7), and they take the form�T 0B� fgh 1CA = 0B� 0 1 00 0 1=22 0 0 1CA0B� fgh 1CA : (4.8)An inreasing solution of the equation is0B� fgh 1CAr=0 / 0B� 112 1CA eT : (4.9)This behavior orresponds to the growth rate  == (8Ds2)1=3 of the magneti �eld seond moment. Onthe other hand, the ase orresponds to small r, thatis, to the ondition ln(l=r) > �t. Therefore,  = �2,and we onlude that �2 = (8Ds2)1=3 in our ase.It is onvenient to pass to the �polar oordinates�% and ' in the shear plane: x = % os', y == (D=s)1=3% sin'. We then perform the Mellin trans-form f; g; h! ~f; ~g; ~h in terms of % and derive the equa-tions for ~f; ~g, and ~h from system (4.7). In terms of thequantity q = �ik, the equations are written as397



I. V. Kolokolov, V. V. Lebedev, G. A. Sizov ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011�T ~f = ~f 00 os4 '++ ~f 0 �sin2 '� 2(q + 1) sin' os3 '�++ ~f �q sin' os'� q os4 ' ++ (q2 + q) sin2 ' os2 '�+ ~g;�t~g = ~g00 os4 '++~g0 �sin2 '� 2(q + 1) sin' os3 '�++ ~g �q sin' os'� q os4 ' ++ (q2 + q) sin2 ' os2 '���2 ~f 0 os2 '+ 2q ~f sin' os'+ ~h=2;�t~h = ~h00 os4 '++~h0 �sin2 '� 2(q + 1) sin' os3 '�++~h �q sin' os'� q os4 ' ++ (q2 + q) sin2 ' os2 '��� 4~g0 os2 '+ 4q~g sin' os'+ 2 ~f;
(4.10)

where the prime denotes the derivative over the angle '.4.2. NumerisNext, we study the time evolution of system (4.10)numerially for di�erent real values of q (with imagi-nary k = iq) using the impliit di�erene sheme on theinterval (��=2; �=2) for ' with periodi boundary on-ditions. We have hosen as initial onditions for f; g,and h as the same Gaussian funtions entered near' = 0 and with a width of the order of unity. Then weextrat the leading growth rate (iq) = (8Ds2)1=3(q)dominating the behavior of the system at T � 1. Thedimensionless quantity  was extrated as = 1T ln f(T0 + T )f(T0) ;where T0+T is hosen to be large enough (near 30) andT0 is introdued to exlude the in�uene of an initialtransient proess (we have hosen T0 = T ).The quantity  is plotted as a funtion of q in Fig. 2.It turned out to be positive everywhere, with a mini-mum at q = 1, (1) = 0:435. The value q = 1 is inaordane with Eq. (3.7) and the general analysis inSe. 3. As we argued there, the minimum value of (iq)determines �1, that is, �1 = (q?)(8Ds2)1=3. The valueof  at q = 0 is  = 1, in aordane with Eq. (4.9) andthe general arguments given in Se. 3. Therefore, theobtained results on�rm our general assertions.5. DISCUSSIONWe have analyzed the kinemati dynamo stagewhen small-sale �utuations of the magneti �eld grow
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Fig. 2. Growth rate of the Mellin transform of the pairorrelation funtion on the imaginary axisin a steady shear �ow omplemented by relatively weakrandom veloity �utuations. The weakness is hara-terized by the inequality s � �, where s is the shearrate and � is the Lyapunov exponent of the �ow. Theuniversal features we have established are revealed attimes t � ��1. The shear makes the �ow stronglyanisotropi, whih, paradoxially, simpli�es the analy-sis of the dynamo phenomenon beause a single om-ponent of the random veloity gradient appears to berelevant. We analyzed the situation where the orre-lation length l of the initial magneti �eld �utuationsis less than the veloity orrelation length � (i.e., theKolmogorov length for developed turbulene). Prob-ably, the smallness of l is not ruial for our shemebeause small sales of the magneti �eld distributionin spae are inevitably produed by the hydrodynamimotion.We stress that in the leading approximation in �=s,our problem is redued to a purely two-dimensional ve-loity �eld (with omponents along the shear veloityand along its gradient). We have proved the existeneof the dynamo in this ase (that is, the exponentialgrowth of the magneti �eld moments). The result ob-viously ontradits the statement in Refs. [38�40℄ (Zel-dovih theorem) that there annot be a magneti dy-namo in two-dimensional �ows. We assert that thisstatement is wrong and the error is in ignoring thethird omponent B3 of the magneti indution (per-pendiular to the veloity plane). The third ompo-nent satis�es the passive salar equation and, onse-quently, deays exponentially. But B3 annot be ig-nored in the divergene-free ondition rB = 0 beausethe harateristi sale of the magneti �eld along thediretion of its growth inreases faster than the mag-neti �eld itself. It an be heked that all the terms in398



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Magneti �eld orrelations in a random �ow : : :rB = �xBx+�yBy+�zBz deay with the same expo-nent, and therefore the ondition rB = 0 leads to ane�etively divergent in-plane magneti �eld. The dy-namo e�et is not forbidden for suh a �eld. A detailedanalysis of the disrepany will be published elsewhere.The existene of the dynamo e�et for two-dimensional�ows is a subjet of numerial veri�ation.For our general onlusions, we do not speify sta-tistial properties of the random �ow, exploring onlyits smoothness at sales less than the veloity or-relation length �. It is then possible to relate thekinemati growth rates n of the magneti �eld (seeEq. (2.2)) to intrinsi harateristis of the �ow hara-terizing the divergene of lose Lagrangian trajetories(see Eq. (2.23)). We �nd that n = �2n in the di�usion-less regime and n = �n in the di�usion regime. Wealso related the anisotropy degree of the magneti �eldto the same intrinsi harateristis of the �ow. There-fore, the main features of the magneti �eld statistis(inluding its intermitteny) are ditated by the �owstatistis. We note that our general sheme an be ap-plied without essential modi�ations to the statistiallyisotropi �ows or to random �ows with other types ofanisotropy.We established the prinipal features of the mag-neti �eld orrelation funtions. The pair orrelationfuntion behaves like the seond moment at small sep-arations r, and inreases with the growth rate hara-teristi of the di�usion regime; at larger r, it is propor-tional to 1=r. As regards higher-order orrelation fun-tions, the situation is more ompliated. At small timest, they behave like the orresponding moments. Butat larger time t > ��1 ln(l=r), orrelations are peakednear the ollinear geometry (where 2n points are sepa-rated into n pairs with parallel separations) and thereis an intermediate asymptoti regime when the orrela-tion funtions grow with the rates that do not oinidewith the growth rates of the moments. Then, at timest > ��1 ln(l=rd), the orrelation funtion grows withthe same exponent as the orresponding moment in thedi�usion regime. The saling behavior of the orrela-tion funtions in the ollinear regime is / 1=r. Theorrelations deay rapidly with the deviation from theollinear geometry. This re�ets a ompliated spaialstruture of the magneti �eld that is strongly orre-lated for speial geometries produed by a�ne geomet-ri transformations from the initial magneti �utua-tions.Our general assertions an be veri�ed by solving themodel with the �utuating omponent short-orrelatedin time. This model admits several analyti results.The nonlinear n-dependene of the growth rates n,
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