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We analyze the magnetic kinematic dynamo in a conducting fluid where a stationary shear flow is accompanied
by relatively weak random velocity fluctuations. The diffusionless and diffusion regimes are described. The
growth rates of the magnetic field moments are related to the statistical characteristics of the flow describing
divergence of the Lagrangian trajectories. The magnetic field correlation functions are examined, and their
growth rates and scaling behavior are established. General assertions are illustrated by the explicit solution of a

model where the velocity field is short-correlated in time.

1. INTRODUCTION

The subject of the paper is the magnetic dynamo,
that is, the magnetic field generation by hydrodynamic
motions in a conducting medium. We theoretically in-
vestigate the effect in a conducting fluid (plasma, elect-
rolyte) where a random hydrodynamic flow is excited.
The principal example of such a flow is hydrodynamic
turbulence (see, e.g., Refs. [1, 2]) responsible for the
magnetic field generation in different geophysical and
astrophysical phenomena [3-10]. We consider the case
where the magnetic field grows from small initial fluctu-
ations and examine the evolution stage of a sufficiently
weak magnetic field, which allows neglecting the feed-
back from the magnetic field to the flow. The stage
where the flow is independent of the magnetic field is
called kinematic. The kinematic approach becomes in-
valid when the increasing magnetic field begins to affect
the fluid motion essentially. In this case, the velocity
field is strongly influenced by the Lorentz force, and
hence the induction dynamics is no longer linear. In
most cases, this leads to saturation of the magnetic field
fluctuations maintained by the hydrodynamic flow. Al-
though the magnetic field cannot be described by a
linear equation in this regime, the kinematic stage pro-
duces magnetic structures similar to those occurring at
the saturation state (see, e.g., Ref. [11]). A possible ex-
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planation of this fact is related to strong intermittency
of the magnetic field, which implies that the feedback
is concentrated in restricted space regions where the
magnetic field is anomalously strong.

We assume that the random flow exciting the dy-
namo is statistically homogeneous in space and time.
Usually, it is assumed in addition that the flow is statis-
tically isotropic. If the velocity field is short-correlated
in time, then it is possible to derive closed equations for
the magnetic induction correlation functions [12]. The
corresponding pair correlation function has been ana-
lyzed in Refs. [13, 14]. The complete statistical descrip-
tion of the magnetic field for a short-correlated smooth
statistically isotropic flow was given in Ref. [15], where
the growth rates and the structure of spatial corre-
lation functions were found. However, it is interest-
ing to consider random flows with an average shear
flow, which are widespread in astrophysical applica-
tions. Such flows are statistically anisotropic and need
a special analysis. Here, we examine the case where
a steady shear flow is complemented by a relatively
weak random component. We focus on the analysis of
growth rates of moments of the magnetic field (mag-
netic induction), the degree of its anisotropy, and the
structure of the magnetic field correlation functions.
Our goal is to relate the magnetic statistical charac-
teristics to those of the flow, thus revealing the most
universal features of the dynamo effect. The general
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assertions are illustrated by a model where the veloc-
ity field is short-correlated in time and can be solved
analytically.

An additional motivation for our research comes
from dynamics of polymer solutions that is in many
respects similar to magnetohydrodynamics [16-18]. In
particular, we have in mind the so-called coil-stretch
transition [19] (see also Refs. [20, 21]) that is an ana-
log of the dynamo effect in polymer solutions. A
decade ago, the elastic turbulence was discovered [22—-
24], which is a chaotic hydrodynamic motion of polymer
solutions that can be realized even at small Reynolds
numbers, in contrast to the traditional hydrodynamic
turbulence. Elastic turbulence is a natural framework
for applying an extension of the dynamo theory to poly-
mer solutions.

The behavior of the magnetic field moments at the
kinematic stage in the presence of a strong shear flow
was established in Ref. [25]. But to examine the spatial
structure of the magnetic field, we must know its corre-
lation functions, and these are studied in this paper in
the framework of the general scheme used in Ref. [25].
To verify our general predictions, we examine the dy-
namo effect in the framework of an analytically solvable
model where random flow a short-correlated in time is
excited on the background of a strong stationary shear
flow.

The structure of this paper is as follows. In Sec. 2,
we introduce basic relations needed to analyze the mag-
netic field correlations and dynamics. We present the
general dynamic equation, give its formally exact solu-
tion, and discuss statistical properties of the quantities
entering this solution. In Sec. 3, moments and corre-
lation functions of the magnetic field are investigated.
We relate its growth rates to the growth rates of the
separation between two close fluid particles and estab-
lish the principal spatial structure of the correlation
functions. Section 4 is devoted to the model where the
fluctuating component of the flow is short-correlated
in time. We establish the growth rates for the model
and analyze the pair correlation function in detail. The
obtained results are in agreement with our general as-
sertions. In Sec. 5, we outline our main results and
discuss their possible applications and extensions.

2. BASIC RELATIONS

We consider the magnetic field evolution in a con-
ducting fluid (plasma or electrolyte) where hydrody-
namic motions are excited. Then the magnetic field
dynamics is governed by the equation [26]
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4B =(B-V)v—(v-V)B+kV’B, (2.1)

where B is the magnetic induction, v is the flow ve-
locity, and s is the magnetodiffusion coefficient, in-
versely proportional to the electrical conductivity of
the medium. The flow is assumed to be incompress-
ible, V-v = 0. We also assume that the magnetodif-
fusion term in Eq. (2.1) is small in comparison with
those related to the flow. We consider the case where
the magnetic field is relatively weak and therefore its
feedback to the flow is negligible. Then relation (2.1) is
a linear equation determining the magnetic field evolu-
tion in a prescribed velocity field; this regime is called
kinematic.

The hydrodynamic motion excited in the fluid is as-
sumed to be random (turbulent) and the velocity statis-
tics is assumed to be homogeneous in space and time.
We examine the magnetic field growth from initial weak
fluctuations distributed statistically homogeneously in
space at the initial instant ¢ = 0. The correlation length
of the initial fluctuations [ is assumed to be smaller
than the velocity correlation length n. If we consider
hydrodynamic turbulence, then the role of the velocity
correlation length is played by the Kolmogorov scale.
At scales less than 7, the velocity field v can be consi-
dered smooth. The magnetic growth (dynamo) can be
characterized by moments of the magnetic induction
that exponentially increase with time ¢:

(IBOP™) o exp ().

Here, angular brackets denote averaging over space.
Exponential laws (2.2) are characteristic of the kine-
matic dynamo because Eq. (2.1) is linear in the mag-
netic induction B in this case.

One of our goals is to express the growth rates v, in
Eq. (2.2) via statistical characteristics of the flow. The
natural measure for the growth rates -, is the so-called
Lyapunov exponent of the flow, A, equal to the average
logarithmic divergence rate of close fluid particles. A
special question concerns the n. dependence of ,,. If the
magnetic induction statistics is Gaussian, then v, x n.
Deviations from the linear law signal the intermittency
of the magnetic field. The intermittency implies that
high moments of the magnetic field are determined by
rare strong fluctuations.

There are two different regimes of the kinematic
magnetic field growth. The first regime is realized if
all characteristic scales of the magnetic field are much
larger than the magnetic diffusion length ry = \/K/\.
The assumed smallness of the diffusion coefficient im-
plies the inequality n > ry. We also assume that
[ > rg; then the diffusion term in Eq. (2.1) is negligible

(2.2)
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Fig.1. Sketch of typical magnetic blobs during the

diffusive kinematic stage

at the first stage of the magnetic evolution, which we
call diffusionless. The magnetic field lines are deformed
by the flow without reconnections in this regime. But
distortions of the magnetic field by the flow inevitably
lead to producing order-r, scales in the field. After
that, the magnetic diffusion is switched on and recon-
nections can occur. This second (diffusion) stage is
characterized by the growth rates different from those
describing the diffusionless regime.

We present a qualitative picture explaining the
magnetic field evolution at the kinematic stage. The
initial magnetic field distribution in space can be re-
garded as an ensemble of blobs of sizes of the order
of I. Then the blobs are distorted by the flow, being
stretched in one direction and compressed in another
direction. In the isotropic case, the stretching and com-
pression directions vary chaotically in space and time,
but in our case, they are attached to the shear flow: the
blobs are stretched mainly along the shear velocity and
are compressed in the direction of the shear velocity
gradient. At the first (diffusionless) stage, the blobs are
deformed without intersections and the magnetic field
induction grows as the separation between close fluid
particles because Eq. (2.1) at k = 0 coincides with the
equation for the separations.

The diffusionless stage terminates when the charac-
teristic blob width decreased to the diffusion length r,.
Then the diffusion is switched on, which leads to two
effects. First, the diffusion prevents further shrinking
the blob widths, which therefore remain of the order
of r4, whereas the blobs continue to be stretched in
the direction of the shear velocity. Second, due to re-
connections of the magnetic field lines allowed by dif-
fusion, the blobs start to overlap. As a result, new
blobs of a characteristic longitudinal size n are formed
(Fig. 1). The magnetic induction in such blobs can be
found by averaging the induction of a large number N
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of initial blobs, with the number N increasing expo-
nentially with time. Averaging over a large number of
random variables leads to the appearance of an expo-
nentially small factor about 1/4/N in the amplitude of
the magnetic induction. In addition, the amplitudes of
the initial blobs continue to increase with time as the
separation between fluid particles. We conclude that at
this second (diffusive) stage, the magnetic field is still
increasing exponentially with time, but slower than at
the first stage.

We consider the case where the steady shear con-
stituent of the flow is much stronger than the random
one. Quantitatively, the condition is written as the in-
equality s > A, where s is the shear rate. Indeed, the
Lyapunov exponent in a pure shear flow is zero, and its
nonzero value is associated with the presence of a rel-
atively weak random constituent of the flow. The dis-
torted magnetic blobs are elongated mainly along the
shear velocity. However, they are tilted with respect
to the velocity direction due to presence of the random
velocity component (see Fig. 1). The tilt exhibits the
same dynamics as the direction of the polymer stretch-
ing in the same flow [21]. Therefore, the tilt angle ¢
(see Fig. 1) can be estimated as ¢ ~ A/s. The tilt angle
determines the typical ratio of the magnetic field com-
ponents B, /B, ~ A/s < 1, where the x axis is directed
along the shear velocity, which varies along the y axis.
Thus, the ratio s/ characterizes the anisotropy degree
of the magnetic field.

2.1. Lagrangian dynamics

To analyze moments and correlation functions of
the magnetic induction, we need a solution of magne-
todynamic equation (2.1) for the induction field B(t)
in terms of its initial value 25, 9 = B(0). We here use
a generalization of the scheme proposed in Ref. [27]
and elaborated in Ref. [25], which uses the Lagrangian
approach to fluid dynamics.

First, instead of solving Eq. (2.1) with the second-
order Laplace operator, it is convenient to pass to the
first-order equation

B=(B-V)v—(v-V)B+ (£ V)B, (2.3)
where £€(t) are white noises (Langevin forces) mimic-
king the magnetic diffusion. The means of the & are
zero and their pair correlation function is

[&i(t1)&5(t2)] = 2k0;50(t1 — t2), (2.4)

where “|...]” mean averaging over the £ statistics and
k is the same diffusion coefficient as in Eq. (2.1). The
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solution of evolution equation (2.1) is given by the so-
lution of Eq. (2.3) averaged over the & statistics for any
velocity field v(t,r).

To prove the assertion, we find the increment of the
magnetic field induction during a small time interval e.
A formal solution of Eq. (2.3) is

B(#) = Texp /dt’ [2—vv+5(t')v] B(t — ),

t—e

where Texp is the chronologically ordered exponen-
tial and ¥ is the matrix of the velocity gradients,
¥ ;i = 0jvj. Expanding the exponent and averaging the
result over the £ statistics in accordance with Eq. (2.4),
we find the increment

B(t)—B(t—¢)=¢(B-V)v—¢(v-V)B+exV’B

in the first order in e. We note that cross terms are
absent in this approximation because the averages of &
are zero. The above increment is equivalent to the one
obtained directly from Eq. (2.1).

Second, we solve Eq. (2.3) by the method of char-
acteristics. The equation for the characteristic R is

AR =v(t,R) +&. (2.5)

This equation describes a Lagrangian trajectory dis-
turbed by Langevin forces. If the magnetic induction is
written as B(t,r) = b(¢,R), then the quantity b satis-
fies the equation 0ib; = X;;b;, where f](t) is the velocity
gradients matrix, ¥;; = 0;v;, taken at the time ¢ and
at the spatial point R(t). A solution of the equation
can be written as b(t) = W (¢)b(0), where the matrix
W (t) is the chronologically ordered exponential

W(t) = Texp /dt'i(t’) (2.6)

The matrix W, which we call the evolution matrix, can
be treated as a solution of the equation oW = SW
with the initial condition W (0) = 1.

Finally, we find the formally exact solution of
Eq. (2.1),

(2.7)

where, again, “|. .. |” mean averaging over the £ statis-
tics determined by Eq. (2.4). To find R(0), we must
solve Eq. (2.5) on the time interval (0,¢) with the
boundary condition R(t) = r posed at the final time.
In other words, we should track the magnetic field back

in time along the disturbed Lagrangian trajectories and
include the factor W accumulated along the trajectory.

The evolution matrix W has some general proper-
ties that follow from definition (2.6). The determinant
of W is equal to unity because the velocity gradient
matrix O is traceless, tr & = 0, which is in turn a con-
sequence of the incompressibility condition V - v = 0.
We introduce the symmetric matrix WW7 (where the
superscript “T” denotes transposition) and denote its
eigenvalues as W2, W3, W2, where all the quantities
Wy, Wa, W3 are positive. Because the determinant of
W is equal to unity, we have W1 WoW3 = 1. We or-
der the eigenvalues as W7 > Wy > W3, then Wy > 1
and Wi < 1. At times t > A~! we are interested
in, typical values of In W; and In W3 can be estimated
as +At, and therefore W; is exponentially large and
W3 is exponentially small. The estimation for Wy de-
pends on the details of the flow statistics. In any case,
Wi > Wa > W at times £ > A7'.

In the framework of the proposed formalism, cor-
relation functions of the magnetic field B are to be
calculated by averaging products of factors (2.7) taken
at the respective points over the statistics of the noise
&, in addition to averaging over space. Thus, say, the
one-time correlation function

F2n,i...j(1‘1, ooy Tan) = (Bi(ry) ... Bj(l‘2n)> ) (2.8)

has to be calculated in two steps. First, we substitute
expression (2.7) in the right-hand side of (2.8) and then
average the resulting product over the £ statistics de-
termined by Eq. (2.4); this averaging catches the mag-
netic diffusion. We emphasize that the fields & have
to be treated as independent for all the 2n factors in
the product. Second, we average the result over space.
Averaging over scales less than or of the order of n
(traced back to the initial time) gives statistics of the
initial magnetic field fluctuations, and averaging over
scales more than or of the order of n counts different
realizations of 3. Therefore, the latter is equivalent to
averaging over the velocity statistics. This logic was
realized for the isotropic random flow in Ref. [15].

In the diffusionless regime, realized at ¢t <
< A 'In(l/rq), we can neglect the diffusion effects.
Then in calculating the moment (|B|*>"), we can take
the product of identical factors (2.7), where R is
simply a Lagrangian trajectory terminated at the
point r at time ¢. Then

|B(r)|*" ~ Wi B,

where B is taken at the origin of the Lagrangian tra-
jectory. Here, just the factor W2™ is responsible for the
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exponential growth of the moments, and therefore we
can restrict ourselves to the estimation

[B(r)P"] ~ WirBg",

where 8 is the characteristic value of the initial mag-
netic field fluctuations. In the diffusion regime, realized
at t > A 1In(l/ry), the situation is somewhat more
complicated.

We first consider the second moment. Then we
deal with two trajectories, R and R’, terminating at
the same point r at time ¢, but characterized by inde-
pendent noises & and &'. The second moment can be
written as the average,

(B)) = (| B"ROWTWBRO)]|). (29
An appreciable contribution to the second moment is
associated with the trajectories with |R(0)—R'(0)| < 1.
Because |[R(0) —R/(0)] <« n and |R(t) —R/(t)| = 0, the
difference AR = R — R’ remains much less than 7 at
any time from the interval (0, ¢) for such an event. From
Eq. (2.5), expanding the velocity up to terms linear in
AR, we then obtain

HAR = SAR + & — ¢, (2.10)
where ¥ can be taken at any of the points R or R/.
The solution of Eq. (2.10) that is equal to zero at t' = ¢
is written as

AR(t)

t

T (#) / a6 T (1)E(R) — €(1)] (2.11)

t

To calculate the second moment, we should know
the AR(0) statistics. Because the separation AR(0) is
a linear combination of £ and &', it should be treated
as a Gaussian variable in averaging over the & statis-
tics, and then its probability distribution function is
completely determined by the matrix M:

t
M;; = |AR;(0)AR;(0)| = 4n/dt1 Wi Wit (2.12)
0

The expression for M is derived from Eqs. (2.4)
and (2.11). The matrix M is symmetric, and its eigen-
values are positive. We let the eigenvalues be denoted
by m?, m3, m3 and order the m as m; > ma > ms; the
inequalities become strong, mi > msy > mg, if A\t > 1.
We emphasize that the directions of the eigenvectors of

M are “frozen” at At > 1 [28-31]. Then the integral
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determining m; is dominated by t —t; ~ A~!, and we
arrive at the estimation mq ~ rdW3_1. The integral de-
termining ms is dominated by t; ~ A™', and therefore
mg ~ rq. An estimation for msy depends on the time
dependence of W5. If W, increases, then ms remains
of the order of rg4, but it grows like my ~ rszfl if Ws
decreases.

We now find the probability that AR(0) is less than
[ in the diffusion regime, when t > A='In(l/r;). We
can think in terms of the components of AR(0) in
the basis attached to the eigenvectors of M. Because
my > [, the probability that the first component of
AR(0) is less than [ is estimated as [/my ~ (I/rq)Ws.
If W5 increases with time, then both ms and ms are
of the order of r4 and therefore the probability that
the second and the third components of AR(0) are less
than [ is close to unity. From Eq. (2.9), we then find

LIBJ*] ~ B3 (1/ra) W1 W5, (2.13)
where we used the relation Wy WoW3 = 1.

The situation with a decreasing W5 is slightly dif-
ferent. In this case, mo > [ at the diffusive stage, and
there appears an additional small probability that the
second component AR(0) is less than /. This proba-
bility can be estimated as {/ms ~ (I/rq)W>. We then
obtain (|BJ?) ~ BW;(I/r4)? instead of Eq. (2.13).
But the integration over space (at the next step of av-
eraging) kills the leading term due to the solenoidal
nature of the magnetic field B. Therefore, we have to
take the next term in the probability distribution of
AR»(0) into account, which contributes an extra small
factor (I/ms2)? to the probability. Thus, we arrive at

LIBJ?) ~ B3(/ra) WL W5 (2.14)

We note that expressions (2.13) and (2.14) are
equivalent to those obtained in the Fourier representa-
tion for the statistically isotropic case in Ref. [15]. But
expressions (2.13) and (2.14), written for real space,
are also correct for the anisotropic problem (which we
are investigating), and are in fact more suitable for the
problem.

We turn to higher moments. It can be seen that
the principal contribution to the average ||B|?" ] is pro-
duced by configurations where the 2n points R, (0) are
divided into n pairs with separations less than or of the
order of [ in each pair. Because of the independence of
the white noises &,, the probability of this event can be
estimated as the product of probabilities for the second
moment, that is,

[IB["| ~ [1B*]", (2.15)
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where the second moment is given by Eq. (2.13) or
Eq. (2.14). We have ignored a combinatorial factor in
Eq. (2.15) because we are interested in the time depen-
dence of the moments.

2.2. Evolution matrix

The next step in finding the magnetic field moments
is averaging over the velocity statistics. Before do-
ing this, we should establish statistical properties of
evolution matrix (2.6). Some universal properties of
such matrices, which can be treated as products of a
large number of random matrices, are well established
[28-31]; the properties are revealed at ¢t > A~'. But
we examine a strongly anisotropic case, with the steady
shear flow dominating. This requires modifying the
consideration in Ref. [15], where the isotropic case (sta-
tistically isotropic flow) was investigated.

For the anisotropic problem, it is convenient to use
the Gaussian decomposition of the evolution matrix
W = TL ATR, where TL and TR are the triangle matri-
ces

1 x x
TL = 0 1 X2 )
0 0 1
(2.16)
1 O
T = G 1
G ¢ 1

and A is a diagonal matrix. Because both triangle ma-
trices, T; and TR, have unit determinants, the deter-
minant of A is also equal to unity.

The matrices are written in the reference frame at-
tached to the shear flow: the axis z is directed along
the shear velocity and the axis y is directed along the
shear velocity gradient. Therefore, the shear velocity
is written as v, = sy, where s is the shear rate. For
our flow, which is composed of a steady shear flow and
a random component, the matrix of the velocity gra-
dients ¥;; = 0;v; is a sum of two terms related to the
shear and the random components of the flow:

Yji(t) = 805204y + 0ji(t). (2.17)

The random matrix oj; is zero on average and should be
characterized in terms of its correlation functions. The
trace of the matrix is zero, tré = 0 (due to the flow
incompressibility). We recall that the Lyapunov expo-
nent A of a purely shear flow is equal to zero. Therefore
A is sensitive to &, although the random flow is weaker
than the steady one.
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Substituting the decomposition W= TL ATR in the
evolution equation 9; W = YW, we find
T7'STy =170, Ty + 9, AA ™ +
+ A TRTZ'AT. (2.18)

The respective terms in the right-hand side of
Eq. (2.18) are a left off-diagonal matrix, a diagonal
matrix, and a right off-diagonal matrix. Therefore, we
obtain a closed (nonlinear) equation for the matrix Ty
that leads to a homogeneous-in-time statistics of the
matrix. Next, for components of the diagonal matrix
8tAA_1, we obtain expressions that are random vari-
ables with statistics homogeneous in time. Therefore,
the central limit theorem applies to In Ay, In A,, and
In Az (where A; are eigenvalues of A) Typically, the
variables are linear in time ¢ with the coefficients of
the order of A\. The situation with the matrix TR is
slightly more complicated because of the exponential
factors in the last term in Eq. (2.18). Therefore, some
components of Tr behave exponentially with time like
the factors.

From Eq. (2.18) for T7., based on the leading role of
the shear term in expression (2.17), we obtain a hierar-
chy x > v1 > x2. Therefore, in the leading approxi-
mation in A/s, the only component o, is relevant and
the equation for the matrix TL is reduced to a single
equation for the component Y,

oY =5 — 2o, (2.19)
where ¢ = 0,,. We conclude that the variable x has
a statistics homogeneous in time, in accordance with
our general expectations. We note that y ~ s/v > 1,
as follows from Eq. (2.19). Keeping the leading-in-y
contributions to the diagonal terms in Eq. (2.18), we
obtain diag (8tAA*1) = (—xo,x0,0). Therefore, in
this approximation,

diag A = (e7”,e”,1), 0Oip = Yo. (2.20)
If t > A\7', then typically p ~ A\t > 1.

We conclude from the equations for (i, (2, and (3
following from Eq. (2.18) that at At > 1, the variable
(1 is “frozen” at an order-of-unity level, whereas the
variables (» and (3 increase exponentially and can be
estimated as e”. However, the combination (;(3 — (2,
entering Tg ! is “frozen” at an order-of-unity level as
well as (.

Based on the results obtained for the matrices 17,
A, and Tx we find eigenvalues of the matrix W. In
the leading approximation in A\/s, we obtain Wy ~ e?,
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Wy ~ 1, and W3 ~ e~ ?. These expressions, together
with Eq. (2.20), lead to the relation

A= (9p) = (x0),

where averaging is performed over the velocity statis-
tics.

Because p is given by an integral over time of a ran-
dom quantity whose statistics is homogeneous in time
(see Eqgs. (2.19) and (2.20)), the p statistics has some
universal features at A\t > 1. Namely, the probability
distribution function (PDF) of p can be written in a
self-similar form [32]

P(p) o exp[—tS(p/t)],

where S is the so-called Kramer function (or entropy
function). Expression (2.22) is a manifestation of PDFs
for the so-called intensive variables (see, e.g., [33]). Ex-
pression (2.22) implies that relative fluctuations of p
decrease as t increases.

We consider moments of the divergence of close La-
grangian trajectories in our random flow. The equa-
tion governing the separation AR between the trajec-
tories is O;AR; = X;;AR;; it can be obtained from
Eq. (2.10) by letting € — 0. A solution of the equa-
tion is AR(t) = WAR(0). Therefore, at ¢ > A1, we
arrive at the estimation AR(t) ~ AR(0)e”. Then the
moments of AR can be calculated in the saddle-point
approximation (justified by the inequality At > 1):

(2.21)

(2.22)

qAM%=/ﬁpmmMRw«mem (2.23)

where

An = =S¥n) + ntn, S' () = n.

Thus, the exponents \,, are determined by statistical
properties of the Lagrangian trajectories. We note that
the Lyapunov exponent A can be formally expressed via
Ap as A = (d\,/dn)p=o.

General statistical properties of the separation AR
for the random flow with strong average shear were
established in Ref. [21], in the context of the single-
polymer dynamics in such a flow. A strong intermit-
tency of AR(t) is expected, which is revealed in a large-
n growth of A\, that is faster than linear, because the
linear law A, oc n is characteristic of the Gaussian
statistics of AR(t).

(2.24)

3. CORRELATION FUNCTIONS

To find the time dependence of the magnetic field
moments, we have to additionally average expres-
sion (2.15) over space, which is equivalent to averaging
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over the p statistics and the statistics of initial mag-
netic fluctuations. The 2nth moment of the magnetic
field induction is then written as
B"0) = [do P [B0)]. (31
In our approximation, Wy ~ e” and W5 ~ 1, and there-
fore B(t) ~ e’y in the diffusionless regime, whereas
|IBI?| ~ 9B5(1/rq)e” in the diffusion regime, as fol-
lows from Eq. (2.13). Substituting the expressions in
Eq. (3.1) and integrating over p (in the saddle-point
approximation), we find v, = A2, for the diffusionless
regime and v, = A, for the diffusion regime. Thus, we
have related the dynamo growth rates introduced in
Eq. (2.2) to the statistical properties of the flow. Our
results can be summarized in terms of the estimations

(IB(®)]*") ~
exp(Aant)B2", t<Alln ri’
d
~ "N l (3.2)
<—) exp(Ant) B3, > A" n—.
rq Ta

The main contribution to the moments (B?"(t)) is
associated with the component B, of the magnetic in-
duction directed along the velocity of the shear flow
(see Fig. 1). We turn to moments of the component B,
directed along the gradient of the shear flow, (B}").
The moments are much smaller than the moments
(B?"(t)), the smallness being caused by the strong
shear flow. It follows from Eqgs. (2.16) and (2.20) that
| B2(t)] = x*|B;(t)]. Hence, the variable y is a mea-
sure of the magnetic field anisotropy, y~' determines
the tilt angle ¢ of the magnetic blobs to the shear veloc-
ity (see Fig. 1). Because the variable x has a statistics
homogeneous in time, the factor y~2 does not produce
a difference in the growth rates, and hence both mo-
ments (B}") and (B;") are proportional to the same
exponential exp(vy,t). But the prefactors at the expo-
nentials are different. To find the difference in the pref-
actors, is not enough to know statistical properties of
p that determine the exponentials. Generally, the mu-
tual probability distribution of p(t) and x(¢) must be
known, which is quite a complicated object depending
on the details of the flow dynamics. However, we can
establish an estimation for typical fluctuations xy ~ s/\
that follows from Eqs. (2.19) and (2.21). Therefore,

LB2(D)] ~ (s2/32) | B2(1).

There is a question concerning moments of the third
component of the magnetic induction, (B>"). Analyz-
ing their behavior requires taking the components of
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the matrix 77, into account, which we ignored in inves-
tigating B, and B,. We then conclude that the time
dependence of (B2") is characterized by the same expo-
nentials exp(v,t) both at the diffusionless and diffusion
stages. As regards the prefactors, they depend on the
details of the flow statistics.

3.1. Pair correlations

We consider the one-time magnetic field pair corre-
lation function

Fij(t,r) = (Bi(t,r1 +1)Bj(t,r1)).  (3.3)

Here, as previously, angular brackets mean averaging
over space (that is, integration over ry with the inverse
volume as a factor). We assume statistical homogeneity
in space of both the velocity and the initial magnetic
field fluctuations; that is why spatial average (3.3) char-
acterizes the magnetic field correlations in the whole
We consider the case r < n, which allows
using the smooth flow approximation.

Again, we start from representation (2.7). Then,
analogously to the second moment, pair correlation
function (3.3) can be written as

volume.

Fij(t) = ([Wi B [R(0)]W, B[R’ (0)]]) .

where the trajectories R and R’ terminate at the re-
spective points r; + r and ry, at a time ¢t. We then
obtain

Fij (1) = ([Wir ()W () Fra[AR(0)]]) , (3-4)

where F;; is the initial (at ¢ 0) pair correla-
tion function of the magnetic field fluctuations and
AR = R—R/'. The correlation length [ of F is smaller
than 1, and we can therefore consider |[AR| < 7. Then
both evolution matrices in (3.4) can be taken at the
same point R. Averaging in Eq. (3.4) can be treated
as averaging over the velocity statistics.

The difference AR satisfies the same equation
(2.10) if |AR| < n. However, we are now interested
in the solution with the final condition AR = r. This
solution is written as

W) [ wign) - €w)) 65)
tl
instead of Eq. (2.11). We immediately conclude from

Eq. (3.5) that the pair correlation function coincides
with the second moment if r < rg. In what follows, we
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therefore examine the case r > ry, where the second
term in Eq. (3.5) is negligible and we find

~

AR(0) = W (t)r. (3.6)
To be more precise, expression (3.6) is correct if
y ~ r > rg, that is understood below.

There are two different regimes for the pair corre-
lation function. If ¢+ < A~!In(l/r), then |[AR(0)]| is
typically less than [; this regime exists if » < [. In this
case, two Lagrangian trajectories R and R’ remains
typically within the correlation radius [ at ¢ = 0 and
the behavior of expression (3.4) is insensitive to the sep-
aration r. Therefore, the pair correlation function Fj;
virtually coincides with the single-point average (B;B;)
in this regime and, consequently, its time dependence
is determined by the growth rate v = \s.

If t > A='In(l/r), then |AR(0)] is typically larger
than [ and only rare events where |AR(0)| < [ con-
tribute to the correlation function. Using the repre-
sentation W = T, ATg, we obtain from Eq. (3.6) that
|AR(0)| ~ e”(ry — xry), where r, and r, are coor-
dinates of the separation r. The probability that the
quantity is less than or of the order of [ is estimated as
e Pl/r (if ry ~ry ~ r), which is an interval of values of
x where AR(0) < I. Therefore, B;B; ~ Bje’l/r and,
consequently, F(t) ~ 983 exp(\t)l/r.

We collect the obtained results:

1.1
Blexp(hat), t< X In —,

r

F(t) ~ (3.7)

B2 exp()\lt)%, t> iln ;,

where the inequality rq < r < [ is assumed. There-
fore, the pair correlation function is governed by the
same exponentials as the second moment. In addition,
we find the r-dependence of the pair correlation func-
tion. We note that expression (3.7) turns into expres-
sion (3.2) for the second moment at r ~ rq4, as it should.

Returning to expression (3.4), we conclude that a
difference between the pair correlation function Fj;
and the moments (B;Bj;) is solely in the behavior
of AR. Therefore, relations between the compo-
nents of Fj; controlled by the evolution matrices in
Eq. (3.4) are the same as for the moments (B;B;), e.g.,
Fyy ~ (\8)*Fy,.

3.2. Mellin transform

It is instructive to examine the Mellin transform of
the pair correlation function. This analysis reveals its
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scaling properties. We define the Mellin transform as

F(t k) = /oo
0

where the direction of the radius vector r is assumed to
be fixed. Because the velocity field is smooth, different
harmonics F(t, k) evolve independently, being repre-
sented as a sum of exponentials characterizing different
structures of Fj;. At times ¢ > A\~', only the leading
exponential survives, that is, F'(k, ) o exp[y(k)t].

To return to the real space, we should perform the
inverse Mellin transform

Fit) = [ 5

dr

r

r

(7)4kFuﬂm (3.8)

— exp
m

Pmm%+ﬂm4fmy(am

The quantity F(k) is determined by the initial mag-
netic field fluctuations, correlated on the scale [. That
is why we incorporated this quantity into relations (3.8)
and (3.9).

A remark about analytic properties of F(k) is in
order. We assume that at » > [, the initial pair cor-
relation function F(r) rapidly decreases as r increases.
Integral (3.8) then, converges if Imk > 0. Therefore,
F(k) is analytic in the upper k-halfplane. Besides, the
integral diverges (at small r) as k — 0. Therefore, sin-
gularities of F(k) lie in the lower k-halfplane, starting
from the point k£ = 0. The character of the singularities
depends on analytic properties of the initial function
F(r). If it is analytic in r, then we expect F(k) to
have a series of poles along the lower imaginary semi-
axis, with the first one at & = 0. We note that in
accordance with general rules, the integration contour
in Eq. (3.9) should run above the first singular point
k=0.

We can draw some general conclusions taking into
account that y(k) ~ X. If In(l/r) > At, then inte-
gral (3.9) is determined by a narrow vicinity of the
point k£ = 0. Then F(t,r) o exp[y(0)t], and we identify
7(0) and A2. If In(l/r) < At, then integral (3.9) can be
calculated in the saddle-point approximation. To find
the saddle point, we should shift the integration con-
tour into the upper halfplane to reach the saddle point
k = iqs, where ¢, determines the minimal value of v(iq)
for ¢ > 0. Indeed, the growth rate v(iq) is real, and
therefore the point k& = iq, is a solution of the equation
dvy/dk = 0 giving an extremum of the exponential in
Eq. (3.9). Then

F(t,r) oc (1/r)" exp[y(igs)t],
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and we identify v(ig,) with A1 (see Eq. (3.7)). We note
that in accordance with asymptotic law (3.7), ¢, should
be equal to unity, ¢, = 1.

3.3. Higher-order correlations

Here, we consider higher-order correlation func-
tions of magnetic field (2.8). We obtain expressions
like Eq. (3.5) for separations AR between the points
R1(0),...,Ra,(0), which are needed to calculate Fs,
in accordance with Eq. (2.7). If At < In(I/|Ar|) for all
separations between the points ry, ..., rs,, then all sep-
arations AR/(0) are less than [. In this situation, we ar-
rive at the same expression Fb, ~ 82" (>"?) as for the
2nth moment, and we conclude that F,, o< exp(A2,t),
see Eq. (3.2).

We now turn to the case where At > In(l/r), with
all separations Ar assumed to be of the same order.
We first consider the geometry where all the points
.,Tay lie on a line, that is, all vectors r, — rg
have the same directions, and we can write Ar ~ r,
where r is one of the separations. We then arrive at
the estimation |AR| ~ e?(r, — xry), similar to that for
the pair correlation function. We thus obtain the same
probability ~ e~ ?l/r that the separations |AR(0)| < 1.
Then Fy, ~ BF"(e??=1°)]/r, where the factor >
originates from the product of the matrices W, appear-
ing in accordance with expression (2.7). Averaging this
expression, we obtain Fb,(t) ~ B2" exp(Aan_1t)l/7.
We stress that the growth rates are here different from
those of the corresponding moments.

However, the above expression is correct only if
t < A 'In(l/ry). For larger t, the diffusion contri-
butions to the differences AR, become relevant (see
Eq. (3.5)). Then, by manipulating with v, only one
difference among the AR(0) can be made less than [.
After that, all the other differences typically acquire
values of the order of rye”, and the probability that a
difference is smaller than [ is estimated as (I/rq)e".
We therefore conclude that

{1 ()" ) o

The same results (up to combinatorial factors) hold
for the collinear geometry, where the set ry,...,ro, is
separated into n pairs with parallel vectors r, — rp
characterizing the pairs. Then the corresponding dif-
ferences AR behave as previously and the same argu-
ments apply. We summarize our results for the collinear
geometry:

ry,..

l

r

l

rd
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n 1.1
%(2) eXp()‘Qnt)v t < Xln;a
l 1.1 1, 1
2n
Fon(t) ~{ By exp()\gn_lt);, Xln; <t< Xln e (3.10)
AN 11
2n
L At), > <ln—.
B, . <7’d) exp(Ant) >3 nrd

It is a generalization of expressions (3.7) for the pair
correlation function. We note that in the collinear ge-
ometry, similarly to the pair correlation function, the
estimate B, ~ (A/s)B, determines relations between
different components of F5,,, whereas the z-components
require a separate investigation.

If the collinear geometry is destroyed, then it is im-
possible to put all the separations |[AR(0)| inside the
scale [ at any Y, if t > A"!In(I/r). In this situation,
the behavior of the correlation function Fj,, is nonuni-
versal, being sensitive to the details of the initial spa-
tial distribution of 8. In any case, the value of Fy,
in the noncollinear geometry is much less than in the
collinear one. The situation resembles the one real-
ized for a randomly advected passive scalar on scales
larger than the pumping length [34]. We conclude
that at t > A~ 'In(I/r), correlations of the magnetic
field are concentrated near collinear geometries, decay-
ing away from the geometries. The decaying length
is estimated as le M at t < A !ln(l/ry) and as rq at
t>A"tn(l/ry).

4. SHORT-CORRELATED FLOW

Here, we consider a strong steady shear flow com-
plemented by a random component short-correlated in
time. This case admits an analytical solution and can
therefore be used to verify our general assertions and
predictions. In addition, the case is naturally realized
because the strong shear destroys correlations of the
random component, and we therefore expect that the
short-correlated case is frequently encountered in real
flows.

In the short-correlated case, the matrix of the ve-
locity gradients 6 describing the random component of
the flow has to be treated as white noise, that is, a
variable d-correlated in time. In the isotropic case, we
obtain the tensorial structure

(oir(t1)ojn(ta)) =

= D(40;0kn—0ik0jn — 0indjk)0(t1—t2), (4.1)

where the factor D characterizes the random flow
strength and the numerical factor is introduced as in
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Ref. [35]. But as we have argued, the only relevant
component of the random velocity gradient matrix in
the case A < s (which is a manifestation of the ran-
dom flow weakness) is ¢ = 0,,. We characterize its
statistical properties by the expression

<0’(t1)0’(t2)> = 4D(5(t1 — tg), (42)

formally coinciding with Eq. (4.1) for the yaz-
component. Other components of & can have corre-
lation functions different from (4.1). The random com-
ponent can be considered to be weaker than the steady
shear flow if D < s.

Statistical properties of the separation AR(t) be-
tween close Lagrangian trajectories in a random
smooth flow with strong shear component, in the short-
correlated case are investigated in Ref. [36] (in the con-
text of polymer dynamics). We here present the re-
sults obtained in that paper without derivation. We
note that our variable y is related to the tilt angle ¢ in
Ref. [36] as x = ctg ¢, or x &~ ¢~ ! in the case of small
tilt angles in which we are interested. The expression
for the Lyapunov exponent found in Ref. [36] is

A _ 31/3\/7_1- D1/3

_ 2/3
(1/6) ‘

s (4.3)
Therefore, the condition s > D does guarantee the in-
equality A < s. We also note that A > D and that
A — 0 as D — 0. The last property is a natural conse-
quence of the vanishing Lyapunov exponent for a purely
shear flow.

For the short-correlated case, it is possible to find
the exponents )\, characterizing the growth rates of
the moments of AR(t) (see Eq. (2.23)) if n > 1. Then
a saddle-point (instanton) approximation in the func-
tional space [37] can be used, which leads to [36]

51/3”4/3171/382/3 ~ A3,
2

Tn = (4.4)
The nonlinear dependence of A, on n, A, x n*/3, sig-
nals a strong intermittency of the flow. We note that
in our anisotropic case, the growth rates A, increase
as n increases slower than in the isotropic case, where
An o n? for the short-correlated flow (see Ref. [15]).
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4.1. Pair correlation function

We next examine the two-point one-time correlation
function (3.3) for the velocity field short-correlated in
time. In this case, it is possible to derive a closed equa-
tion for the correlation function (see, e.g., Ref. [12]).
We here study the function at scales much larger than
the diffusion scale r4 (but much smaller than the veloc-
ity correlation length 7). It is then possible to neglect
diffusion effects, and we omit all terms with the noise
£ in subsequent relations.

We briefly explain the derivation of the equation.
First, it follows from definition (2.6) that

t

/ dt' $,  (4.5)

t—r1

[1p

W(t) = Texp(E)W (t — 1),

where 7 is an arbitrary time (less than ¢). We choose
7 to be much smaller than A\~!, but much larger than
the velocity correlation time (this is possible for a short-
correlated flow). Then = is a small factor, although the
two factors in Eq. (4.5) can be treated as statistically
independent. Substituting expression (4.5) in Eq. (3.4),
expanding the result into a series in = (up to the second
order) and averaging the result inside the time inter-
val (t — 7,t) in accordance with Eq. (4.2), we obtain a
variation of Fj; under passing from ¢ — 7 to t. Because
the variation is small, it can be rewritten in terms of a
differential equation.

Assuming the isotropic correlation function of fluc-
tuations in (4.1), we obtain the equation

8tFij = —28y8xFij + SFiy(ij + Sij(Six +

1
+ 4D 6iijk — EF” — rkajFik — rkaiij +

1 1
(xV)Fij + 57’2V2Fu‘ - ZrmrnamanFij (4.6)

DO | =

+

In the absence of shear (at s = 0), system of equa-
tions (4.6) leads to a closed equation for the trace of
the correlation function H = Fjy:

OH = D (10H + 6rd,H + r*02H) .

The equation coincides with one presented in Ref. [14]
(for the scaling exponent & = 2 and zero forcing).

We now eliminate irrelevant terms in Eq. (4.6) us-
ing the following properties: s is much larger than D,
the characteristic value of x is much larger than that
of y, and, accordingly, 9, > 0,. We can then keep
solely the terms originating from o, in Eq. (4.6). The

397

resulting equation leads to a closed system of equations
for the three components F,,, F,,, and F, of the pair
correlation function:

Ot Fro = —25y0y Fyy + 25Fyy + 4Da”0, Fya,
OcFyy = —25y0y Fyy + sFyy +

+2Dz°0) Fyy — 4ADx0y Fry,  (4.7)

O Fyy = —25y0, Fyy + 2D’ 0, F, —

— 8D, Fyy + DF,,.

Further, we use the dimensionless time T = (8Ds?)'/3¢
and introduce the notation

1/3F

Ty

f:mea g:(S/D) h:(s/D)2/3Fyy'

We investigate a special case of coinciding points.
At r 0, all terms with derivatives drop from
Eqgs. (4.7), and they take the form

f 01 0 f
orl ¢ |=10 0 1/2 g (4.8)
h 2 0 0 h
An increasing solution of the equation is
f 1
g x| 1 |eT. (4.9)
h 2

This behavior corresponds to the growth rate
= (8Ds?)'/3 of the magnetic field second moment. On
the other hand, the case corresponds to small r, that
is, to the condition In(l/r) > At. Therefore, v = Ao,
and we conclude that Ay = (8Ds2)'/3 in our case.

It is convenient to pass to the “polar coordinates”
o and ¢ in the shear plane: =z pcosy, y
= (D/s)"/?psinp. We then perform the Mellin trans-
form f,g,h — f,§, hin terms of ¢ and derive the equa-
tions for f,§, and h from system (4.7). In terms of the
quantity ¢ = —ik, the equations are written as
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orf = f"cos' o+
+ f! [sin® ¢ — 2(¢ + 1) sinp cos® ] +
+f [qsingpcosgo — qcos4<,9 +
+ (¢° + q) sin® p cos? SD] + 9,
0:g = §" cos* p +
+§' [sin® p — 2(¢q + 1) sinp cos® ] +
+g [qsingocosgo—qcos‘lgo +

+ (¢* + ¢) sin® pcos® o] — (4.10)

—2f"cos? ¢ + 2¢f singcos  + h/2,
Arh = h'" cos* o +
+1' [sin? ¢ — 2(q + 1) sin g cos® ] +
-I-ﬁ [qsirupcosgo — qcos4go +
+ (¢° + q) sin® g cos® ] —
— 4§ cos® p + 4qgsin p cos ¢ + 2f,

where the prime denotes the derivative over the angle .

4.2. Numerics

Next, we study the time evolution of system (4.10)
numerically for different real values of ¢ (with imagi-
nary k = iq) using the implicit difference scheme on the
interval (—m/2,7/2) for ¢ with periodic boundary con-
ditions. We have chosen as initial conditions for f,g,
and h as the same Gaussian functions centered near
¢ = 0 and with a width of the order of unity. Then we
extract the leading growth rate v(iq) = (8Ds*)'/3c(q)
dominating the behavior of the system at "> 1. The
dimensionless quantity ¢ was extracted as

c= 1 In 710(110 +7)
T f(To)

where Ty + T is chosen to be large enough (near 30) and
To is introduced to exclude the influence of an initial
transient process (we have chosen Ty = T).

The quantity c is plotted as a function of ¢ in Fig. 2.
It turned out to be positive everywhere, with a mini-
mum at ¢ = 1, ¢(1) = 0.435. The value ¢ = 1 is in
accordance with Eq. (3.7) and the general analysis in
Sec. 3. As we argued there, the minimum value of (iq)
determines \;, that is, \; = ¢(gx)(8Ds?)"/3. The value
of cat ¢ =01is ¢ =1, in accordance with Eq. (4.9) and
the general arguments given in Sec. 3. Therefore, the
obtained results confirm our general assertions.

5. DISCUSSION

We have analyzed the kinematic dynamo stage
when small-scale fluctuations of the magnetic field grow
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Fig.2. Growth rate of the Mellin transform of the pair

correlation function on the imaginary axis

in a steady shear flow complemented by relatively weak
random velocity fluctuations. The weakness is charac-
terized by the inequality s > A, where s is the shear
rate and A is the Lyapunov exponent of the flow. The
universal features we have established are revealed at
times ¢t > A~!. The shear makes the flow strongly
anisotropic, which, paradoxically, simplifies the analy-
sis of the dynamo phenomenon because a single com-
ponent of the random velocity gradient appears to be
relevant. We analyzed the situation where the corre-
lation length [ of the initial magnetic field fluctuations
is less than the velocity correlation length n (i.e., the
Kolmogorov length for developed turbulence). Prob-
ably, the smallness of [ is not crucial for our scheme
because small scales of the magnetic field distribution
in space are inevitably produced by the hydrodynamic
motion.

We stress that in the leading approximation in A/s,
our problem is reduced to a purely two-dimensional ve-
locity field (with components along the shear velocity
and along its gradient). We have proved the existence
of the dynamo in this case (that is, the exponential
growth of the magnetic field moments). The result ob-
viously contradicts the statement in Refs. [38-40] (Zel-
dovich theorem) that there cannot be a magnetic dy-
namo in two-dimensional flows. We assert that this
statement is wrong and the error is in ignoring the
third component Bz of the magnetic induction (per-
pendicular to the velocity plane). The third compo-
nent satisfies the passive scalar equation and, conse-
quently, decays exponentially. But B3 cannot be ig-
nored in the divergence-free condition VB = 0 because
the characteristic scale of the magnetic field along the
direction of its growth increases faster than the mag-
netic field itself. It can be checked that all the terms in
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VB = 0,B, + 0yBy + 0.B. decay with the same expo-
nent, and therefore the condition VB = 0 leads to an
effectively divergent in-plane magnetic field. The dy-
namo effect is not forbidden for such a field. A detailed
analysis of the discrepancy will be published elsewhere.
The existence of the dynamo effect for two-dimensional
flows is a subject of numerical verification.

For our general conclusions, we do not specify sta-
tistical properties of the random flow, exploring only
its smoothness at scales less than the velocity cor-
relation length n. It is then possible to relate the
kinematic growth rates 7, of the magnetic field (see
Eq. (2.2)) to intrinsic characteristics of the flow charac-
terizing the divergence of close Lagrangian trajectories
(see Eq. (2.23)). We find that 7, = A2y, in the diffusion-
less regime and v, = A, in the diffusion regime. We
also related the anisotropy degree of the magnetic field
to the same intrinsic characteristics of the flow. There-
fore, the main features of the magnetic field statistics
(including its intermittency) are dictated by the flow
statistics. We note that our general scheme can be ap-
plied without essential modifications to the statistically
isotropic flows or to random flows with other types of
anisotropy.

We established the principal features of the mag-
netic field correlation functions. The pair correlation
function behaves like the second moment at small sep-
arations r, and increases with the growth rate charac-
teristic of the diffusion regime; at larger r, it is propor-
tional to 1/r. As regards higher-order correlation func-
tions, the situation is more complicated. At small times
t, they behave like the corresponding moments. But
at larger time ¢ > A~'In(l/r), correlations are peaked
near the collinear geometry (where 2n points are sepa-
rated into n pairs with parallel separations) and there
is an intermediate asymptotic regime when the correla-
tion functions grow with the rates that do not coincide
with the growth rates of the moments. Then, at times
t > A 'In(l/ry), the correlation function grows with
the same exponent as the corresponding moment in the
diffusion regime. The scaling behavior of the correla-
tion functions in the collinear regime is o 1/r. The
correlations decay rapidly with the deviation from the
collinear geometry. This reflects a complicated spacial
structure of the magnetic field that is strongly corre-
lated for special geometries produced by affine geomet-
ric transformations from the initial magnetic fluctua-
tions.

Our general assertions can be verified by solving the
model with the fluctuating component short-correlated
in time. This model admits several analytic results.
The nonlinear n-dependence of the growth rates v,,
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Yn o< 0473 at large n signals a strong intermittency of
the magnetic field. Therefore, only rare events concen-
trated in a restricted part of space contribute to high
moments of the magnetic field. We analyzed the pair
correlation function of the magnetic field in detail, and
the analysis confirms all our general assertions, includ-
ing scaling behavior in different regimes.

The ideology and the analytic approach developed
in this paper can be tended to the dynamics of poly-
mer solutions possessing elasticity that is described
similarly to the magnetic field. Along these lines, we
hope to clarify some aspects of the so-called elastic
turbulence [22—24] that are still not explained.
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