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An analysis of the Zeeman effect with a strong external magnetic field on the energy spectrum in graphene is
presented. In general, the Hamiltonian of graphene in applied electric and magnetic fields is not of SO(1,2)
invariance even in the nearest-neighbor approximation because of the Zeeman coupling. But an approximate
SO(1,2) invariance can be obtained when the applied magnetic field is very strong. This approximate invariance
can be used to relate the energy structure of graphene in the presence of both electric and magnetic fields to that
when there is only magnetic field. Therefore, it can help explain the recently found quantum Hall conductance

(4¢*/h)L for L =0, 1.

Graphene has been one of the major foci in physics
because of its simple lattice structure and linear dis-
persion relation near the Fermi level [1-3] when only
nearest-neighbor hopping is taken into account. It
has become a new testbed not only for condensed
matter physics but also for quantum field theory and
mathematical physics [4,5]. The physical properties of
graphene in external field, such as the quantum Hall
effect (both integer and fractional [6-11]), spin quan-
tum Hall effect [12], transport theory [13, 14], supercon-
ducting [15] and magnetic confinement [16] are under
intensive study. Effects of next-nearest-neighbor hop-
ping have also been studied [17]. It is widely recognized
that the integer quantum Hall conductance is

(2+3)

where L =0, 1,...[1]. Although disorder and the 4-fold
symmetry breaking may be used to explain the recently
found quantum Hall structures n = 0, £1, +4 [18-22],
a unified explanation is still called for and the simple
structure of previous formula for oy, still deserves a
simple and fundamental explanation. Not surprisingly,
the quantum Hall plateaus at n = +2, +6, +10 in
graphenes can be explained by using the Landau levels
of a spinless particle in an external magnetic field and
the (1 4+ 2) Lorentz invariance of the massless Dirac
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Hamiltonian [23]. Because simple use of the Landau
levels disregards the Zeeman energy, which is not neg-
ligible compared with low-lying Landau levels, the Zee-
man energy might explain some of the recently found
plateaus. In this work, we find that although the Zee-
man energy breaks the SO(1,2) invariance in general,
the system can still have an approximate invariance
when the magnetic field is strong enough, and the ap-
proximate invariance can be used to relate the physics
of one experimental configuration to that of another.
Following this line, we found that the newly observed
quantum Hall plateaus (4¢?/h)L for L = 0,1 can be
attributed to the Zeeman energy.

The direct lattice of graphene is a superposition of
two interpenetrated triangular lattices A4, Ap. The
generators of the lattice A4 are [24]

al:\/§a<1 -3

20 2
1 3
a2 = V3a (5%)

[24], where a ~ 1.42 A is the carbon—carbon distance.

The vectors
> , a ( >

connect, each site in the lattice A4 to its nearest neigh-
bor sites in the lattice Ap. Unlike regular electron
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spin, the pseudospin in graphene represents the two
sublattices and there is no magnetic moment associ-
ated. Hence the pseudospin does not couple directly
to the magnetic field [6]. We here consider only the
nearest-neighbor tight-binding Hamiltonian

3
Hoy=—tY_ > Y [Al()B,(r+s) +

o relAy i=1

+ Bl(r+s)A,(r)], (1)

where ¢ is pseudospin index and t is the uniform hop-
ping constant. In the presence of an applied magnetic
field B and an electric field E = =V, the Zeeman
energy and Coulomb energy should be included:

Z B Af(r)TA(r) +

reA 4

Hz = B

+ Z B - Bf(r)rB(r)

rcAp

(2

He =q [Z p(r)AT(X) Alr) +

rcAy

+ Y ¢(r)B'(r)B(r)

rcAp

, (3)

where
_ leln

B =
2Mmee

is the Bohr magneton. In momentum space, we have

ay = \/JlTA Z e~ T A(r)

réA 4

and

1 ik
> e B(r),
\/NA rcAp

where IV, is the number of lattice points of the sublat-
tice A4 (or Ag). Introducing two-component spinors

¢k = (akvbk)Tv TP]T( = (aircvb;r()v ¢k01 = Uko,

b =

wkoﬂ = bko’7 o==+1

allows linearizing Hj near the two Dirac points K.
Considering K, we have

H=> ¢ (vra -p+usB)& +
p

+Y ni(vra-p — upB)p + He.  (4)
p

Using the y-matrices v# = (o3,i09,i01) and incorpo-
rating the U(1) gauge invariance, we write the Hamil-
tonian as

H = /d2x§_(ac)[pr'y~ (—iV — %A) +upBY® +

P gle() + / Pxil(z) x

x [hwpy - (—N - %A) — 1B’ + ¢ ’¢In(z).  (5)

Let
# = (2°,x) = (vpt,z,y), A" = (A" A).
Setting
D=0, +ig Ay, A= %,
we have

L =¢Nihd e — H = {(x) (i + gBy°)E(x) +
+1)(z)(ih P — gBy°)n(x), (6)

where ¢ = up/vp. The U(1) gauge invariance is pre-
served, but the Lorentz SO(1,2) invariance is broken by
the Zeeman term. Because

1 1
-9, A,y = By + —E,y’ — —E»' (7)
(a VR
we can write
By® ~ —"T9, A, (])

for |E| < vp|B|, and in this case,

L= [ dae@)inp - g0, 400)6) +
+ () (ihP + ge" T O Avyrn(z) |, (9)

which shows the (1+2) Lorentz invariance. The current
is

. oL _ _
= SA €y E+ gyt +
n

+ ge" 70, (E77€) — ge" O (yFm).  (10)

We first consider a constant applied magnetic field.
In this case, p = 0 and we want to calculate the grand
canonical partition function

Z =Tre PK,

where
K = H — uN.
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The Dirac equation is

[waa : (—iv - %A) + upB - u} £=K¢ o (11)

is the Landau degeneracy per unit area. For B = 1T,
we have Ay ~ 2.4 -10"/m? The grand canonical
thermo-potential is

which is written as the second order equation (16)

=AY Y Infl e e,

(K — ppB + p)* ¢ s

2.2
vy,

( D;D; + Bag)f— £ (12)

For ;1 = 0, we have the energy levels

Using standard Landau levels (assuming ¢B = |¢B|),
we have -
Ky, ,=:|:7”'LUF\/2—B (+1/2—s,)+ upB. 17
(K — pupB +p)? = w22qB(( +1/2 —5.),  (13) s zB+1/2-5) (17)

whence Corresponding to the field 1, we have

Ky = ﬂ:hUF\/QQB(é-I-I/Q—SZ)+,MBB—M. (14) q
h Ky, = iwa\/zﬁB(e +1/2—5.) —upB, (18)

The partition function is

7 = H[l + e*BKz,S,]Aa and therefore the energy levels are symmetric under

(15)

0os- + < —. Therefore, if graphene is undoped, the Fermi
level is still at 4 = 0. We suppose that ugB > 0. Care-
where l4B| ful analysis shows that negative levels come from both

= oxh the ¢ and 7 fields ([A] denotes the integer part of A),

|
i 5B
§:Kypq/2: upB — hlvp| Bt, (= {thv%] +1,...,00, (19)
2
- 94 npB

Ko _1/9: upB —h B (41 (= . 2

€ Kemaja upB = Hoely 2B+ 1), 0= [J25] . (20)
1B
—nugB + hlvp|, /2= BE (=0,1,..., {2 Z 2] ,
. qhw
n: IX(J/Q : r (21)
—upB — hlvp|, /2= BE (=1,2,...,00,
B
—upB + hjop| Q%B(ﬂ-l-l), (=0,1,..., [2“2 } ~1,
v?

n: IX’47_1/2 : er (22)

—upB — hvp| qB(€-|-1), (=0,1,2,...00

For t = 3.033 eV, vp = 3ta/2h ~ 10° m/s. Defining

2quvih
BO = 2F 5
HB

we have By ~ 1.1-10% T. For laboratory field B ~ 10 T, it therefore follows that [B/By] = 0. Hence, for the &
field, the negative K, 1 /5 levels are

3221/2:{ upB — hlvp|y/2= Bé (=1,..., 00, (23)
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and the negative Ky _; /5 levels are
sZ:—l/Z:{ upB — hlvp|,[2+ B(€+1) (=0,...,00. (24)

For the 7 field, the negative K/, levels are

_/J’BBa €:07
s, =1/2: 7 (25)
—upB — hlvp| ZEBZ, (=1,2,...,00,

and the negative Ky _; /5 levels are

sZ:—l/Z:{—,uBB hlvp] qB(é-l-l) (=0,1,2,...00. (26)

It follows that the levels where

q
MBB—h|UF| QEB& é:]_,...,OO, leLll_L?"'lv LQZLé—Lg—}—l.

d the level
anc the fevels If —upB is not filled, i.e., 4 < —pupB, then

—upB — hlvp| Q%Bé, (=1,2,...,00
N=Ap (2L} =LY +1)+2(LL -~ LYy + 1)) =
are doubly degenerate (apart from the Landau degen- — AL (L1 + Ly). (28)
eracy). We cannot have an infinite number of filled LA 2
negative levels, and hence a cut-off is necessary. We

suppose that among the levels The physics near K_ makes an equal contribution.

The magnetization is
pupB — hlvp|y/2+ Bé (=L%... L}

M = pp(Ne — Ny), (29)
are filled, and among the levels
where
—upB — hlvp|,[2+ Bé (=LY%, .. .1}
Ne = t N, = L p). 30
are filled. If —upB is also filled, then at T = 0 K, ¢ zp:<€1°£p>’ n zp:<”1°’7p> (30)

N =Ap (2(L} —Ly+1)+2(LY—Ly+1)+1) =
p (2 -Li+1)+2(Ly— L+ 1)+1) The thermo-potential for the ¢ fields should be regu-

—2A; <L1 + L+ 1) . (27) larized. The sum in the second term in the following
2 formula actually extends not to infinity but only L;:

— i—i =1In[l+exp{B(p — usB)}] +2gln [1+exp{ <u thF MBB) }] +
+ 22111 [l-l-exp {5 <u+pr\/@—;¢33> H . (31)

31nZ
op

With
r

(N)=p" 0’

0
_p-1
b o
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we have
(N) A L +2 i L +
§— /AL
1 B —
+exp{f(upB -} T L exp {B(hvp /2%B€+MBB B u)}
L1 1
+2)° (32)
=114 exp {B <—wa, IQ%BE + upB — u) }
Similarly,
1 — 1
<N>7‘I =Ag +2 Z +
1 —upB — /
+exp{ﬂ( HUB :u)} =11+ exp {ﬂ(th 2%B£_IJ/BB_,U)}
Lo 1
+2)° (33)
=11+ exp {B(—hvp, /Z%Bﬂ —upB — u)}
At zero temperature, y = 0, and we have We have
E, = —yvB, B.=1B,
(N) =(N)e + (N)y = Ap[1+2(L1 + Ly)],  (34)
whence ,
and the manetization v = _Ey.
B!
M = Appp(2L1 — 2Ly — 1). (35) Therefore,
Since 0 _ -0 e 0 _ Eé/ -0
Ly = Lo Lot 1, =i 3T =B = VorB’
we have in ¥. We note that
M = +A . ) .
e i* = a(vrp,j)- (38)
An intensive discgssiog of pseudospin paramagnetism The Hall conductance is
in graphene was given in [25] very recently. X
. . . ) N q
~ We nex‘u~ consider perpendicular ~magnetlc and elect U;y =1 0 = E(QL +1), (39)
ric fields with |E| < vp|B|. In this case, we can use vrb,
the approximate SO(1,2) invariance and the above re-  if ;5B is filled or
sults. We suppose that the system ¥/ is moving with a 5
velocity v relative to the system . For v = (v,0), the g;y = VB’ j0 = %QL’ (40)
SO(1,2) transformation is VF Sy

AL =A,"A,, (36)
v =By 0
A= =By v 0 [, (37)
0 0 1
where
gV _ 1
vp’ Y -5 —ﬂ2.
8 ZKOT®, Bem. 2(8)
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if —upB is not filled, where L = Ly + L. The physics
near K_ makes equal contribution, we hence

r 7 0
Uzy - UFBé]
4q? 1
(L2, —upBis filled,
h 2
= (41)
4¢? ,
TL’ —upB is not filled.
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The above SO(1,2) transformation breaks down when
v > vp, i.e. when |Ej| > vp|B;|. The magnetic mo-
ment current

j& = nB(vr(pe = pn)sic — Jn) (42)
is then given by
9k,
Js = (=vB)vrM = HB=—= (43)
So far, the sequence of Hall conductance
4q> 1
Ty = (L * 5)

has been observed; we here predict the existence of the
sequence
! i¢*

h
the recently observed L = 0,1 being just part of this
sequence [22]. According to above analysis, the filling
of Zeeman levels makes the difference.

To summarize, we discussed the Hamiltonian and
energy levels of graphene in general constant external
electric and magnetic fields. The systems is not SO(1,2)
Lorentz invariant when the Zeeman energy is taken into
account. But when the magnetic field is strong enough,
the SO(1,2) Lorentz invariance is well preseved. Using
the symmetry, we predicted a sequence

L,

szy =

4e?
Ty — —L
a y h
and explained the recently observed Hall conductance
4e?
O'xy:TL, L:O,l,

which is an indication that the Zeeman levels are not
filled at zero temperature.

M. M. was partially supported by NSF Grant No.
DMR-0804805.
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