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Thermodynamics of a short-range model of spin ice magnets in a field is considered in the Bethe—Peierls approx-
imation. The results obtained for [111], [100], and [011] fields agree reasonably well with the existing Monte
Carlo simulations and some experiments. In this approximation, all extremely sharp field-induced anomalies are
described by analytic functions of temperature and the applied field. In spite of the absence of true phase transi-
tions, the analysis of the entropy and specific heat reliefs over the H-T plane allows discerning “pseudo-phases”
with a specific character of spin fluctuations and defining the lines of relatively sharp “pseudo-transitions”

between them.

The discovery of spin ice compounds [1,2] has
opened wide perspectives in the studies of real geo-
metrically frustrated magnets, with their reach physics
stemming from the macroscopically degenerate ground
states. An additional remarkable feature is that these
compounds can be described by the relatively sim-
ple Ising model with the nearest-neighbor exchange
on the pyrochlore lattice. This is due to the lucky
chance that strong dipole interactions in these com-
pounds have a negligible effect on the low-energy ex-
citations of the Ising moments directed along the lines
connecting the centers of corner-sharing tetrahedra [3].
The low-temperature physics of spin ices can therefore
be adequately captured by the short-range Ising model
except for the ultra-low temperatures where the equi-
librium properties may be unobservable [4].

Such a model predicts the absence of phase tran-
sitions in zero field, which agrees with experiments in
spin ice compounds [1,2]. Meanwhile, a wealth of rel-
atively sharp anomalies in the applied magnetic fields
H of different directions is observed in their thermo-
dynamic parameters [5-14]. Some of these anomalies
are interpreted as field-induced transitions, while oth-
ers are thought to indicate the crossover between the re-
gions with different types of collective spin fluctuations.
The notion of such regions originates from Villain’s
idea of low-temperature “spin-liquid” state in frustrated
magnets [15], where spin fluctuations are strongly cor-
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related, being mostly confined to the ground-state sub-
space. By contrast, the high-temperature region fea-
tures uncorrelated spin fluctuations and hence repre-
sents a genuine paramagnet. Although there is no true
phase transition between paramagnet and spin-liquid
state, the temperature dividing these “quasi-phases”
can nevertheless be identified, as the temperature T,
of a maximum of specific heat maximum in its tem-
perature dependence C'(T) [4]. Indeed, this maximum
indicates a relatively sharp decrease in entropy due to
the confinement of spin fluctuations at low T'. It may be
hoped that this definition of T, can justify the notion
of “pseudo-transition” between the “quasi-phases” with
different types of spin fluctuations and, in the frame-
work of rigorous theory, may help quantify the regions
where various spin-liquid states exist.

Implicitly, the notions of “quasi-phases” and “pseu-
do-transition” are widely used to heuristically inter-
pret the observed field-induced anomalies of C(T') in
spin ices and to identify the regions belonging to dif-
ferent spin-liquid states on the H-T planes [9-13]. Yet
it is important to discriminate between the “pseudo-
transitions” and the ordinary ones because the micro-
scopic models describing the former would not have any
singular point but only the crossover regions. In addi-
tion, these crossovers can become progressively sharper
at low T and in the vicinity of critical fields, such
that the “pseudo-transitions” may look like true transi-
tions in experiments and simulations. The observed
sharpening of “pseudo-transitions” gives rise to the
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idea that in [111] (Refs. [9-11]), [110] (Refs. [12,13]),
and [100] (Ref. [16]) fields at low temperatures spin
ice compounds experience first-order transitions of the
“gas-liquid” type, ending up at the critical point at
some maximal 7. Also from the same sharpening,
the notion of the specific “Kasteleyn transition” in the
short-range spin ice model in [100] field [17] originated.

Here, we show that most probably, there are no
true phase transitions in the short-range spin ice model
in [111], [100], and [110] fields and all the observed ther-
modynamic anomalies can be described by perfectly
smooth functions of 7' and H. Actually, this conclu-
sion can be made on the basis of the existing theo-
retical results. Indeed, the papers presenting Monte
Carlo simulations in the regions of “gas-liquid” [16, 18]
and “Kasteleyn” transitions [17] also present the re-
sults obtained in the Bethe—Peierls (BP) approximation
“corroborating” the numerical results. Both these data
show a remarkable agreement with experiments [6, 9
11], but BP results describe extremely sharp anomalies
with perfectly smooth functions. Taking this fact seri-
ously may tell us that we are actually dealing with the
“pseudo-transitions” and their sharpening at low T

We show explicitly how the BP approximation in
the short-range spin ice model can describe very sharp
field-induced anomalies with analytic functions of T
and H. In the BP approach, the sharp anomalies at
low T are only the reflections of true first-order transi-
tions that occur at 7' = 0 and some critical fields. In
view of the high precision with which the BP approxi-
mation can reproduce the nominally exact results [16—
18] as well as experimental data [6-13] and quite clear
physics underlying the origin of the anomalies, we can
suppose that BP’s “pseudo-transitions” are not arte-
facts of the approximation but the intrinsic feature of
the model.

1. SPIN ICE IN THE BETHE-PEIERLS
APPROXIMATION

Magnetic ions in spin ice are placed on the py-
rochlore lattice consisting of corner-sharing tetrahedra;
a fragment of the lattice is shown in Fig. 1. Strong
anisotropy allows only two directions of magnetic mo-
ments along the local easy axis connecting the site with
the centers of tetrahedra. Therefore, the magnetic state
is defined by Ising spins o, on the sites. Considering
four sites belonging to the central tetrahedron in Fig. 1,
we define their easy axes by the unit vectors shown in
this figure:
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Fig.1. Fragment of a pyrochlore lattice (a) and the
vectors defining the directions of the easy axes on their
sites (b)

Here, %, y, and Z are the unit vectors along the coor-
dinate axes. Then the magnetic moments of the sites
are

(2)
and the effective Hamiltonian for the tetrahedron in an
external field H is [14]

mg, = ey0y

3 2 3
M) =5 (Z ””) = 0aHa, Ho=H-eq (3)
a=0 a=0

With definition (1), the identities

3

1
Zeazo, ea~eB:—§, a# 3,

a=0

(4)

hold, and ¢, = 1 corresponds to the “out” moment.
The BP approximation for the pyrochlore lat-
tice [17] assumes that the effective fields acting on the
sites of a given tetrahedron (say, the central one in
Fig. 1a) from all other sites are the same as those acting
on its nearest neighbours (outer sites in Fig. 1a) from
all other sites except those of the given tetrahedron.
This field equivalence does not actually hold on the py-
rochlore lattice due to the correlations arising from the
closed loops of tetrahedra. But it becomes exact on the
variant of the hierarchical Bethe lattice built from the
corner-sharing tetrahedra [17]. We can obtain it from
the cluster in Fig. 1a attaching a tetrahedron to each
outer site and then endowing each of the new outer
sites with a new tetrahedron, and so on. The process is
illustrated by the planar graph in Fig. 2a, where tetra-
hedra are projected to the squares with the numbers
on their sites indicating the orientations of easy axes.
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Fig.2. a) Fragment of a Bethe lattice built hierar-
chically via addition of new tetrahedra to the outer
sites. The lattice can be viewed as consisting of four
trees connected by the bonds of the central tetrahedron
(dashed line). The numbers indicate the directions of
easy axes of the sites, b) the same lattice can be ob-
tained from two trees via merging their root sites

As Fig. 2a shows, we can consider such a Bethe lat-
tice as consisting of four a-trees with « = 0, 1, 2, 3
denoting their root sites, which are connected by the
bonds of the central tetrahedra. Alternatively, we can
obtain the lattice from two a-trees merging their root
sites (cf. Fig. 2b). Hence, there are two ways to con-
struct the free energy of the Bethe lattice with the par-
tial partition functions Z, (o4, N) for the N-site a-trees
summed over all spins except the root one. Using the
first representation of the Bethe lattice, we have the
free energy

3
&y =-ThTrae " [[ Zaloa,N),  (5)
a=0
where 3 = T~ 1, H(o) is defined in Eq. (3), and Tr,
denotes the summation over o,, a =0, 1, 2, 3. In the
other representation, we obtain the free energies

by = _TlnTro'a ehao.azi(aavN)a ha = ﬂHa- (6)

Assuming the finite correlation range in our system we
have in the thermodynamic limit, N — oo,

&y — ANF +45G, &5 — (2N — 1)F + 25G,

where F' is the (internal) free energy per site in this
limit, S is the number of surface sites in a tree and G
is the density of the surface contribution to the full po-
tential. 2N — 1 in the second relation appears because
we have merged two root sites into one.

The peculiarity of Bethe lattices having formally
the infinite spatial dimension consists in the finite ra-
tio S/N at N — oo. In our lattice S/N — 2/3 and

we cannot neglect the surface contribution to the full
potential. Yet this circumstance does not prevent the
determination of the free energy per site F' from ®, and
®,, as we can choose their linear combination where
the surface terms conceal each other. Thus we have

3
1.
F =g lim <2<I>4 - Z_%@m) : (7)
We can also represent Z, (04, N) in Eqs. (5) and (6) as

Z0(0a, N) = Ag(N)e"7

where 2,7 has the meaning of the effective magnetic
fields exerted on the sites of the central tetrahedron by
the other spins in the lattice. From (3) and (5)—(7),
introducing the new variables f, = z, + h, instead
of x,, we then obtain

TS T
F=2=S In[2ch(2fa — ha)] — = In2Z(f),
4 QZ:; 2 (8)
Tr, w(o, f),

Owing to the form of Eq. (7), the resulting expression
for F' depends only on the parameters f,. The equa-
tions for f, can be obtained from the condition that
they provide a minimum of F',

oF 0’°F
— =0, caCs =75 >0 for all c, 10
0fa Z;: ’0fadfs o

or
th(zfa - ha) = <Ua>w7 (11)

where the angular brackets with the “w” subscript de-
note the average with the distribution function w(o, f)
from Eq. (9). Alternatively, we can obtain the same
equations (11) from recursion relations for Z, (o, N).
For the Hessian in Eq. (10), we obtain

O%*F 2
Bfaaf, ~ dor 1= (oakul -
— S{0a08)e + gloa)ulosbe. (12)

The standard derivation of Eqs. (11) does not yield
a positive definiteness of the Hessian which causes no
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problems when these equations have a unique solution.
Otherwise, we would have to choose among the solu-
tions, the natural choice being the one that provides
the global free energy minimum.

With f, obtained from Egs. (11), we can fully de-
scribe the spin ice thermodynamics in the BP approx-
imation. For the equilibrium values of spins, (0,), we
use the lattice representation in Fig. 2b to obtain

Tr,, 0022 (04 )€t B
Tr,, Z2(0q o

<Ua> = th(2fa - hoz)- (13)

)6h‘1'7‘1

According to Eq. (2), the equilibrium magnetization
per spin is then given by

Z (04) =~ Zeattha—h) (14)

Also from (8)—(11), we obtain the equilibrium entropy

OF _ 1o
= = _BF — -
+ B (z (f)e*‘“( +4Zy(f)e BK) . (15)
Z(f) 2 '
Here, we introduce the quantities
1 > ouf
Zn(f) = iTrU esso % x
3 2
(Z aa> ,4n? , n=0,1,2, (16)
a=0

which define the contributions to Z(f) in (8) from the
groups of states with equal exchange energies:

2

Z Zn(f)672"2K.

n=0

Z(f)

(17)

Hence, Zy(f) corresponds to the contributions of spin
ice states (two in, two out), Z;(f)e 2% describes the
contributions of (three in, one out) and (three out, one
in) states, and Zo(f)e~8% results from all in and all out
states. Explicit expressions for Z,,(f) are

Zo(f) =ch(fo+ fi —fo—f3) +
+2ch(fo — f1) ch(fo — f3),
3 3
Zl(f)=2ch ZfB—Qfa ) (18)

a=0 £=0

a($0)
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Fig.3. Temperature dependence of S and C in zero
field. A logarithmic scale is chosen on the T axis

From (17) and (18), we can also obtain the explicit
form of equations of state (11) as

d1n Z(f)
Ofa

Further differentiations of Eqs. (14) and (15) can yield
the tensor of magnetic susceptibilities and specific heat.

We have a quite simple theory of spin ice thermody-
namics consisting essentially of Eqs. (8) and (9). This
theory can describe all intricate features of this strongly
frustrated system behavior in various fields, as we show
below. To begin, we can easily find that in a zero field,
S in Eq. (15) gives the Pauling value of the residual
entropy at 7' = 0 [19]:

th(2fa - ha) = (19)

1
T3

2 2

Indeed, at H = 07 fa = 0, and ZO = 3, Z1 = 47 ZQ = 1,
and hence

~

Sp = 0.2.

1 1 . .
S(T)=—5n2+ SIn(3+ 472K 4 78K 4

e—2K 4 o—8K
4K .
AR 3+ 4de 2K 4 e 8K
Therefore, S(0) = Sp at T = 0 (K = oo), while
S(0) = In2 at T = oo (K = 0). For the specific
heat, we obtain
o =05 _ 24KZeT?(1 —2e721 4 3e71F)
oT (3 + e 2K _ p—4K + 676K)2

The temperature behavior of S and C' is shown in
Fig. 3. It illustrates the notions of “quasi-phases” and
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“pseudo-transition”. The function S exhibits a broad
crossover between Pauling and paramagnetic values,
but below T, ~ 0.8.J, where C' has a maximum, we
have a “spin ice liquid”, where the local spin configura-
tions are mainly “two in, two out”, while above T, they
are almost uncorrelated and we have a “paramagnetic
quasi-phase”.

2. SPIN ICE IN THE [111] FIELD

For H = Heg, we have

h():h, h1=h2=h3=—h/3, h:BH

and the solution of Eq. (1

fi=1

9) that

9) has the form
fO =7, = f3 = -
Tt then follows from (1

Oln Z(z,y)
oz 7’

Z@an (f)

ofi

y) is given by Eq. (17) with

th(2z — h) =

n(a-t)-

where Z(z,

_ 0InZ(x,y) (20)

Ay '

Zo(l‘,
Zl(xa
ZZ(xv

y) = 3ch(z +y),
y) = ch(z + 3y) + 3ch(z —y),
y) = ch(z — 3y).

(21)

Also from (4) and (14), we have

(m) = = (22)

th(2z — h) + th (Qy - g)] )

We first consider the case of low temperatures and

moderate fields
TJ, H<J.

As we show below, we can then drop the contributions
to Z that are proportional to Z; and Zs, and therefore

Eqs. (20) become
h
th(2z — h) = 3th <2y - §> =th(z +y). (23)
Hence, we have
r=y+h,
h 1
m=|m)|=th|2y—=-) = ——,
|< >| ( Y 3) /1—|—3t2+1 (24)

4
=th|=-h]).
= (21)
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Using this m, we can express other thermodynamic
quantities as

1,3, 1 (1-m’)
CBF=In2 4+ p "7
pE =gt g T
1 3
= BF—hm=-In>
Io] hm = 2 ng +
+§[(1— m)In(1 —m) + (1 +m)In(l +m)] —
1
~3 [(14+3m) In(14+3m)+(1-3m) In(1-3m)], (25)
om 2 (1 —m?)(1—-9m?) 5
=Txy= =3 = .
Y= %n T3 Tvame 0 O
The relation for the specific heat C' follows from the
equation
OB F
22— 2
o (26)

and the scaling form of SF, which depends only on
h = H/T. Due to this scaling, the above quantities
are constant along the lines H = ¢T' and have differ-

ent limit values at H = T = 0 along these lines. In
particular, at H = 0, we have
m=0, S=Sp, Y'=2, C=0, (27)
while at T'= 0,
1 1, 4
=—-, S=-In-~0.072 "'=C=0. (28
m= 3, 1103 ;X (28)

Here, the entropy value is reduced with respect to Sp
because of partial lifting of the ground state degener-
acy in the [111] field. This fixes the “out” direction for
the 0 spin, while three others can freely choose which
one of them is to also point out to obey the ice rule.
This phase corresponds to a “kagome ice” state in the
original pyrochlore lattice [18].

Following [19], we first consider the spins as be-
longing to N/4 independent tetrahedra. We then have
Iy = 3V/* states for the spins. Turning to the N/4
bond tetrahedra connecting the independent ones, we
then see that their free (1, 2, 3) sites have o 1
with the probability py = 1/3 and ¢ = —1 with the
probability p_ = 2/3. Therefore, the average num-
ber of favorable 3-spin states (two in, one out) per
such tetrahedron is 3py p? = 4/9 and the total number
of states T' = T(4/9)N/* = (4/3)N/* gives the value
of S = N7!'InT in Eq. (28). We thus see that the
Pauling-Anderson entropy estimates [19] are exact in
the BP approximation.

The behavior of thermodynamic variables near the
point H =T = 0, given by Eqs. (25), is shown in Fig. 4.
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Fig.4. Field and temperature dependences of thermodynamic variables near H =T = 0 in a [111] field
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Fig.5. Temperature dependences of S and C' at T' < J for H < J, H || [111]. The values of H/.J are shown near the
curves. The low-T peak of C defines a quasi-transition between the “kagome ice” state with S = 0.072 to the spin ice state
with S close to the Pauling entropy Sp ~ 0.2 (dashed line)
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The S and C temperature dependences in the broader
range 1" < J for H < J obtained via numerical solu-
tion of the equations of state are presented in Fig. 5.
We note the appearance of an additional low-T" peak
in C(T) at H ~ 0.7T designating a pseudo-transition
between the “kagome ice” and ordinary spin ice states.

We can now assess the range of validity of the above
analytic results. We have assumed that

c= Zl(xay)ei2K + Z2(x7y)678K < 1.
ZO (xv y)
This condition can be violated as h — oo when
z,y — oo. Indeed, we then have ¢ ~ ¢2¥=%) and
therefore the above results hold for y < K. From (24),
we have y &~ h/6 as h — oo, and the validity condition
for T <« .Jis H <6.J.

Hence, for T <« J and H > 6.J, we cannot ignore
7y and Z,. But analytic results can be also readily ob-
tained in this case. Here, h — oo and we can assume
that © — oo, and therefore the second equation in (20)
becomes

(o 142 B
Y73) T3y e K

This is actually the quadratic equation
W—du—2=0, u=e M3 A=eM32K(29)
Therefore,

u= eV 3 =

(A—%\/A24—8). (30)

From the first equation in (20), we obtain the exact
relation

1
2

2 _ 62(y+h)M
C(_yvl()’ (31)
C(y, K) = 3+e20K) 4 3 2(K+y) | o—4(2K+y)

e

It follows that always 2z —h — oo contrary to 2y —h/3,
and hence, according to (22),

m5|<m>|=i[1+th<2y—g)] _

A+ VATES
A+3VN2 8
Again using 22 — h — oo and Egs. (30) and (32), we

can express thermodynamic quantities in terms of the
magnetization as

(32)

m? h

1 1
—ﬂF—§1H2+Zlnm+§,

S = 1(2—3m)ln2—}— §mlnm—
2 2
- Z(l —2m)In(1 —2m) — (3m —1)In(3m — 1), (33)
om 2 (3m—1)(1-2m) 5
p_gme 2 Wl am) — (}_ '
X'=5-=3 T , C=(h—6K)%".

Hence, at T <« J < H, the scaling dependence on
the single parameter (H — H..)/T, H. = 6.J, also holds.
Here, thermodynamic quantities are constant along the
straight lines emerging from the point T'=0, H = H,.
At this point, spin ice undergoes a first-order phase
transition from the degenerate “kagome ice” phase to
the completely ordered “three in, one out” phase. At
T =0, we have

1 1
H<H, m=gz §=1ng~0072
x=0=0,
2 1. 16
H=H,, ng, S=11n3z029, (34)
2
"'=—  C=0
X 457 b
1
H > H,, m=g, S=x=C=0

The large value of S at H = H, is due to the degen-
eracy between the configurations of the adjoint phases.
We also note that the results for H < H, coincide with
the T = 0 results in Eq. (28) valid down to H = 0.
Hence, at 7' =0 and 0 < H < H,., we have plateaus
in field dependences of S and m, which are also seen
at low T < J (see Fig. 6). They also have crossing
points at H = H, due to scaling, in agreement with
experiments [6, 11] and simulations [18].

Figure 7 shows the behavior of thermodynamic vari-
ables at high 7" and H. The location of specific heat
ridges on the H-T plane is summarized in Fig. 8. They
are used to define the regions of spin ice, kagome ice,
and paramagnetic and completely ordered (“saturated”)
quasi-phases. However, the attribution of some def-
inite spin-liquid quasi-phase to the central region in
Fig. 8 seems to be less appropriate because it is hard
to describe the nature of collective excitations for the
whole vast H and T ranges here. The experimental
data on C' in a [111] field [8-10] show only a vague
resemblance to the present results. Accordingly, the
phase diagram in Fig. 8 differs essentially from the ex-
perimental ones [9, 11].
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Fig.6. Field dependences of thermodynamic variables, T' < .7, H || [111]. The values of T'/.J are shown near the curves

3. SPIN ICE IN THE [100] FIELD

For H = He,, we have
ho = hy = h/V3, hy=hs=—h/V3,

and hence one of the six spin ice configurations (0, 1
spins out, 2, 3 spins in) becomes preferable in this field.
The ground state degeneracy is therefore completely
lifted and we should have S = 0 at 7" = 0. Because
S = Sp at H =0 and low T, the increase in the field
may result in a “pseudo-transition” from the spin ice to
the ordered “saturated” state. Indeed, it shows up in
simulations [16,17] and is extremely sharp at T < J,
which allows defining the transition point as [17]

H.= T?an ~ 0.67.

h=pH

(35)

This sharpness results from the existence of specific
string excitations with a unique free-energy gap, which

296

they can overcome at H < H. [17]. However, we show
here that this is only a “pseudo-transition” and its sharp
anomalies can be described in the BP approximation
with perfectly smooth functions.

The solution of Eq. (19) is given by fo = fi =
= —fy = — f3 =z, whence
e, h
m)=—th{2zx-—). 36
= G5 o (20~ 5 ) 0
It follows from (17)—(19) that
Z(x) =2+ chdx + 4e 2K ch 2z + e 8K,
h - 37
Z(x)th <2x -— > = shdx + 2¢ 72K sh2z. (37)
V3

The last equation is actually an algebraic forth-order
equation for v = exp(—2z),
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Fig.7. Thermodynamic variables at high T and H, H || [111]
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w
T

Spin ice
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T/J

Fig.8. Quasi-phases and the lines of pseudo-transitions
between them for a [111] field

av* + (24 a* = b)® + 3a(l - b)v* +
+ (1 —2b—a'b)v = ab, (38)

0 = exp(—2K), b= exp <_% h,> .

In the interval 0 < v < 1, it has a unique solution
that depends analytically on H and T at T" > 0. Find-
ing the solution numerically, we obtain the thermody-
namic quantities as functions of H and 7. The re-
sults are shown in Figs. 9 and 10. Quite remarkably, at
T <« J, we see absolutely sharp anomalies that can be
easily mixed up with the genuine phase transitions. But
in the present theory, they are only sharp crossovers;
the genuine first-order transition takes place only at
T=H-=0.

To show this, we assume that 7" < .J and determine
the behavior of v as a — 0. We can simplify Eq. (38)
to

(2 = b)v® + (1 — 2b)v = ab. (39)
As a — 0, we have

1
b< =,

> v —0;

bol o, 21
2 VTN 2Ty
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Fig.9. Temperature dependences of thermodynamic variables in a low [100] field. The values of H/.J are shown near the
curves. The peaks of C' and y define the Kasteleyn pseudo-transition from the ordered quasi-phase to the spin ice phase

with S close to Sp = 0.51n(1.5) (dashed line)

Hence, as a — 0, v = v(b) is very close to its limit

function
/12b—1
=4/ —— J(2b-1
v 2_b ( )7

differing from it by a small amount of the order of
a'l? —2K/3 We can therefore describe the low-
temperature thermodynamics very precisely with the
singular v = v(b) from Eq. (40). Its singular point

(40)

= e

b: 6_2H/\/§T :1
a 2

coincides with the critical field H. in (35), below
which the string fluctuations develop in the original
pyrochlore structure [17].

At H > H,. (b < 1/2), we thus have

r=00, m=—==~058  S=C=x=0,
7 X
and at H < H. (b > 1/2), we obtain
1 3b
E =S T
1 3 oh  b(2-D)
— _BF—hm= =1 _=h
S=-AF-hm =g g~ /8 -1’
1 1w
RN T S
8 1—-b+10?
"=Ty=ob— T 0= Ry
N =T =g e O= X
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Fig.10. Field dependences of thermodynamic variables in a [100] field at T < .J. The values of T'/.J are shown near the
curves

At H=H.—0(b=1/2+0)

16 4
! 5 C=§1n22w0.64, m =

X = S=0.

1
73
These expressions agree well with the numerical data
for T < 0.2J shown in Figs. 9 and 10 and with the
results of Monte Carlo simulations [16, 17].

Figure 11 presents the general view of S and C' be-
havior over the H-T plane, and Fig. 12 depicts the
location of the specific heat ridges defining the quasi-
transitions between paramagnetic, spin ice, and satu-
rated quasi-phases. We note that the dashed line in
Fig. 12 does not correspond to a local maximum of C
because it vanishes at higher fields; it is only a contin-
uation of the low-field ridge. Therefore, the exact de-
termination of boundaries between “quasi-phases” from
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S and C behavior is not always possible. The existing
experiments in a [100] field [6,8,12] give only scarce
evidence in favor of the present results far from the
T = H =0 point.

4. SPIN ICE IN THE [011] FIELD

For H
H=— (e, +e.),
ﬂ(y )
we have
2
h[):—hlz gh, h2:h3:0, hzﬂH

Therefore, the field in the [011] direction does not act
on 2, 3 spins that form the [-chains perpendicular to
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H/J

Fig.11. S and C in a [100] field

H/J
0.8 | 4
Ordered
|
|
04| ! ]
|
| Paramagnet
|
Spin ice
0 1 .
Fig.12. Pseudo-phases in a [100] field. The dashed

line continues the low-field ridge

the field, while 0, 1 spins belong to the a-chains ori-
ented along the field [13]. At T = 0, the directions of
spins in a-chains are fixed by the field (0 out, 1 in), but
the -chain spins have two possibilities to comply with
the spin ice rule and provide the lowest energy: either
all 2 spins are fixed at —1 and all 3 spins at +1 or
vice versa. Hence, for S-chains of a length L, we have
I = 2V/2L ground state configurations. But in spite
of the macroscopic degeneracy, the zero-temperature
entropy
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1 1
S—NIHF—EIHQ

tends to zero in the thermodynamic limit. Hence, we
here may expect the existence of a crossover between
spin ice and “ordered chains” quasi-phases with an in-
crease in the field at low 7.

The thermodynamics in such a field is described an-
alytically in a rather simple way. The solution of the
equation of state is given by

fo=—fi=z, fa=f3=0
S0)
1 2 H
(m):Eth <2x—\/;h> I

Z(x) = 21 + ¢ ) [eh(20) + d(K)],

1 + 26721( + 678K

dK) = 2(1+ e 2K)

and the equation of state

th <2x - \/?h) [ch(22) + d(K)] = sh(2z)

can be easily solved to give
sh <, /2 h)
1 3
V6 5\ ’
sh <\/§ h) + d?(K)

(41)
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Fig.13. Temperature dependences of thermodynamic variables in low [011] fields. The values of H/.J are shown near the
curves. S approaches the Pauling value Sp = 0.51n(1.5) (dashed line) and the low-T' peak of C' defines the pseudo-transition
from spin ice to ordered chains

—28F =In(1+e %K) +

+1In |ch (@ h> +,|sh (@ h> +R(K) | . (42)

We do not present the general expressions for S, C,
and y here because they are rather cumbersome. But
for T < J, d(K) ~ 1/2 and we obtain the following
scaling functions of h:

m=y/2 —— izt (y/2n
V3 Vi 37
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1. 3 1 V1—t¢2
BF=:lno4-mh—Y " S— _BF—h
I’ 2r12-|-2r12_ TR S I3 m,
om 2 1=t .
Ul N NG
N =0 T3 3R X

At H = 0, therefore, S = Sp, C = m = 0, and
X' = 2/3, while at T =0, S = C Y = 0 and
m = 1/v6 ~ 0.41. Accordingly, the specific heat, C'(T')
shows a maximum at 7' < J and H, =~ 0.867, indicat-
ing a crossover between spin ice and “ordered chains”
quasi-phases in addition to the one at T' &~ 0.8 for the
paramagnet—spin ice quasi-transition (cf. Fig. 13).
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Fig.14. Temperature dependences of thermodynamic variables in high [011] fields. The values of H/.J are shown near the
curves. The high-field S approaches the “random 3-chain” value 0.5In2 ~ 0.35 (dashed line) in the region delimited by C
maxima

Another specific quasi-phase exists in a [011] field
at J < T < H. Indeed, it follows from (41) and (42)
that

m =

1 1 h
%, —ﬂF—§1H2+%,
In this region, the strong field fixes the directions of 0,
1 spins, but T is sufficiently high to initiate free flips of
spins in $-chains. These flips have no effect on m, which
is determined solely by 0, 1 spins, but give rise to half
the paramagnetic entropy because half of the spins in
a system fluctuate between two states. As a result, we
have two maxima of C'(T'), one at T ~ 0.8/ indicating

1
S = §ln2 ~ 0.35.
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the crossover between “random [-chains” and “ordered
chains” quasi-phases, and the other at 7'~ 0.9H corre-
sponding to the “random [-chains”-paramagnet quasi-
transition (see Fig. 14).

The overall picture of the C(T, H) relief is shown
in Fig. 15. Its ridges are used to define the boundaries
between quasi-phases presented in Fig. 16. Again, we
have no first-order transitions anticipated on the basis
of simulations [12]. The experimental C' in a [011] field
and the resulting phase diagram [13] agree qualitatively
with Figs. 15 and 16 except for the close vicinity of the
H =T =0 point.
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Fig.16. Pseudo-phases in a [011] field. Dashed lines
are the continuation of the vanishing ridges of C'

5. CONCLUSIONS

The main conclusion from the present results is that
the BP approximation can adequately describe many
intricate features of the thermodynamics of a short-
range frustrated magnet in a field. In some way, it is su-
perior to the Monte Carlo simulations because it helps
discern the true phase transitions and sharp crossovers.
In the cases considered in the present model, true first-
order transitions occur only at T = H = 0 and at
T = 0, H = 6J points, while sharp field-induced
anomalies result from their proximity. It is quite possi-

ble that this feature is preserved in the rigorous the-
ory of short-range 3D spin ice, because the present
results closely resemble the numerically exact Monte
Carlo data. More generally, we note that the BP ap-
proximation adequately describes the short-range cor-
relations and neglects the long-range ones, and this is
sufficient to give a qualitatively correct picture of ther-
modynamics near first-order transitions where the cor-
relation length stays finite. Evidently, it would be less
successful in the vicinity of second-order transitions.

We also note that the BP approximation is a vari-
ant of more general cluster variation methods [20, 21],
which can give adequate quantitative results for sys-
tems with strong short-range competing interactions
(in contrast to the simple mean field approximation).
In particular, the application of cluster methods to
the crystals with tetrahedral units in their structures
such as KDP-type ferroelectrics [22] and ordering al-
loys [21,23] have also yielded the results that can be
compared favorably with those of Monte Carlo simu-
lations. We may therefore suppose that further devel-
oping the cluster approximation beyond the BP one
along the lines of Refs. [20,21] could further improve
the description of the thermodynamics of spin ice com-
pounds.

Another point demonstrated by the BP results is
the usefulness of the notions of “quasi-phases” and
“pseudo-transitions”. For example, they relieve us from
the necessity to guess what the order parameter for the
Kasteleyn transition is or whether it is of the first-order
or of the second-order type. They also allow us to dis-
cern the definite spin-liquid states even at very high
temperatures and fields, which is the case of the “ran-
dom f-chains” quasi-phase in a [011] field (see Fig. 16).
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However, it is not always possible to assign the defi-
nite type of spin excitations to a region surrounded by
specific heat ridges (cf. Fig. 8), and these ridges may
vanish to leave the boundary between quasi-phases in-
definite (see Figs. 12 and 16).

The present results also nearly quantitatively
reproduce the experimental data for the entropy
and magnetization of spin ices in fields. However,
experimental results for the specific heat in the vicinity
of the mentioned zero-temperature transitions show
much less agreement with the theory. The origin of
these discrepancies still has to be found in future
studies.

Author gratefully acknowledges the usefull discus-
sions of this work with S. N. Korshunov.
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