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SPIN ICE IN A FIELD: QUASI-PHASESAND PSEUDO-TRANSITIONSP. N. Timonin *Southern Federal University344090, Rostov-on-Don, RussiaRe
eived January 14, 2011Thermodynami
s of a short-range model of spin i
e magnets in a �eld is 
onsidered in the Bethe�Peierls approx-imation. The results obtained for [111℄, [100℄, and [011℄ �elds agree reasonably well with the existing MonteCarlo simulations and some experiments. In this approximation, all extremely sharp �eld-indu
ed anomalies aredes
ribed by analyti
 fun
tions of temperature and the applied �eld. In spite of the absen
e of true phase transi-tions, the analysis of the entropy and spe
i�
 heat reliefs over the H�T plane allows dis
erning �pseudo-phases�with a spe
i�
 
hara
ter of spin �u
tuations and de�ning the lines of relatively sharp �pseudo-transitions�between them.The dis
overy of spin i
e 
ompounds [1; 2℄ hasopened wide perspe
tives in the studies of real geo-metri
ally frustrated magnets, with their rea
h physi
sstemming from the ma
ros
opi
ally degenerate groundstates. An additional remarkable feature is that these
ompounds 
an be des
ribed by the relatively sim-ple Ising model with the nearest-neighbor ex
hangeon the pyro
hlore latti
e. This is due to the lu
ky
han
e that strong dipole intera
tions in these 
om-pounds have a negligible e�e
t on the low-energy ex-
itations of the Ising moments dire
ted along the lines
onne
ting the 
enters of 
orner-sharing tetrahedra [3℄.The low-temperature physi
s of spin i
es 
an thereforebe adequately 
aptured by the short-range Ising modelex
ept for the ultra-low temperatures where the equi-librium properties may be unobservable [4℄.Su
h a model predi
ts the absen
e of phase tran-sitions in zero �eld, whi
h agrees with experiments inspin i
e 
ompounds [1; 2℄. Meanwhile, a wealth of rel-atively sharp anomalies in the applied magneti
 �eldsH of di�erent dire
tions is observed in their thermo-dynami
 parameters [5�14℄. Some of these anomaliesare interpreted as �eld-indu
ed transitions, while oth-ers are thought to indi
ate the 
rossover between the re-gions with di�erent types of 
olle
tive spin �u
tuations.The notion of su
h regions originates from Villain'sidea of low-temperature �spin-liquid� state in frustratedmagnets [15℄, where spin �u
tuations are strongly 
or-*E-mail: pntim�live.ru

related, being mostly 
on�ned to the ground-state sub-spa
e. By 
ontrast, the high-temperature region fea-tures un
orrelated spin �u
tuations and hen
e repre-sents a genuine paramagnet. Although there is no truephase transition between paramagnet and spin-liquidstate, the temperature dividing these �quasi-phases�
an nevertheless be identi�ed, as the temperature Tmof a maximum of spe
i�
 heat maximum in its tem-perature dependen
e C(T ) [4℄. Indeed, this maximumindi
ates a relatively sharp de
rease in entropy due tothe 
on�nement of spin �u
tuations at low T . It may behoped that this de�nition of Tm 
an justify the notionof �pseudo-transition� between the �quasi-phases� withdi�erent types of spin �u
tuations and, in the frame-work of rigorous theory, may help quantify the regionswhere various spin-liquid states exist.Impli
itly, the notions of �quasi-phases� and �pseu-do-transition� are widely used to heuristi
ally inter-pret the observed �eld-indu
ed anomalies of C(T ) inspin i
es and to identify the regions belonging to dif-ferent spin-liquid states on the H�T planes [9�13℄. Yetit is important to dis
riminate between the �pseudo-transitions� and the ordinary ones be
ause the mi
ro-s
opi
 models des
ribing the former would not have anysingular point but only the 
rossover regions. In addi-tion, these 
rossovers 
an be
ome progressively sharperat low T and in the vi
inity of 
riti
al �elds, su
hthat the �pseudo-transitions� may look like true transi-tions in experiments and simulations. The observedsharpening of �pseudo-transitions� gives rise to the6 ÆÝÒÔ, âûï. 2 (8) 289



P. N. Timonin ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011idea that in [111℄ (Refs. [9�11℄), [110℄ (Refs. [12; 13℄),and [100℄ (Ref. [16℄) �elds at low temperatures spini
e 
ompounds experien
e �rst-order transitions of the�gas�liquid� type, ending up at the 
riti
al point atsome maximal T . Also from the same sharpening,the notion of the spe
i�
 �Kasteleyn transition� in theshort-range spin i
e model in [100℄ �eld [17℄ originated.Here, we show that most probably, there are notrue phase transitions in the short-range spin i
e modelin [111℄, [100℄, and [110℄ �elds and all the observed ther-modynami
 anomalies 
an be des
ribed by perfe
tlysmooth fun
tions of T and H . A
tually, this 
on
lu-sion 
an be made on the basis of the existing theo-reti
al results. Indeed, the papers presenting MonteCarlo simulations in the regions of �gas�liquid� [16; 18℄and �Kasteleyn� transitions [17℄ also present the re-sults obtained in the Bethe�Peierls (BP) approximation�
orroborating� the numeri
al results. Both these datashow a remarkable agreement with experiments [6; 9�11℄, but BP results des
ribe extremely sharp anomalieswith perfe
tly smooth fun
tions. Taking this fa
t seri-ously may tell us that we are a
tually dealing with the�pseudo-transitions� and their sharpening at low T .We show expli
itly how the BP approximation inthe short-range spin i
e model 
an des
ribe very sharp�eld-indu
ed anomalies with analyti
 fun
tions of Tand H . In the BP approa
h, the sharp anomalies atlow T are only the re�e
tions of true �rst-order transi-tions that o

ur at T = 0 and some 
riti
al �elds. Inview of the high pre
ision with whi
h the BP approxi-mation 
an reprodu
e the nominally exa
t results [16�18℄ as well as experimental data [6�13℄ and quite 
learphysi
s underlying the origin of the anomalies, we 
ansuppose that BP's �pseudo-transitions� are not arte-fa
ts of the approximation but the intrinsi
 feature ofthe model.1. SPIN ICE IN THE BETHE�PEIERLSAPPROXIMATIONMagneti
 ions in spin i
e are pla
ed on the py-ro
hlore latti
e 
onsisting of 
orner-sharing tetrahedra;a fragment of the latti
e is shown in Fig. 1. Stronganisotropy allows only two dire
tions of magneti
 mo-ments along the lo
al easy axis 
onne
ting the site withthe 
enters of tetrahedra. Therefore, the magneti
 stateis de�ned by Ising spins �� on the sites. Consideringfour sites belonging to the 
entral tetrahedron in Fig. 1,we de�ne their easy axes by the unit ve
tors shown inthis �gure:

à
x

z
y1 3 0 2b

Fig. 1. Fragment of a pyro
hlore latti
e (a) and theve
tors de�ning the dire
tions of the easy axes on theirsites (b)e0 = (x̂+ ŷ + ẑ) =p3 ; e1 = (x̂� ŷ � ẑ) =p3 ;e2 = (�x̂+ŷ�ẑ) =p3 ; e3 = (�x̂�ŷ+ẑ) =p3: (1)Here, x̂, ŷ, and ẑ are the unit ve
tors along the 
oor-dinate axes. Then the magneti
 moments of the sitesare m� = e��� (2)and the e�e
tive Hamiltonian for the tetrahedron in anexternal �eld H is [14℄H(�) = J2  3X�=0��!2� 3X�=0��H�; H� � H�e�: (3)With de�nition (1), the identities3X�=0 e� = 0; e� � e� = �13 ; � 6= �; (4)hold, and �� = 1 
orresponds to the �out� moment.The BP approximation for the pyro
hlore lat-ti
e [17℄ assumes that the e�e
tive �elds a
ting on thesites of a given tetrahedron (say, the 
entral one inFig. 1a) from all other sites are the same as those a
tingon its nearest neighbours (outer sites in Fig. 1a) fromall other sites ex
ept those of the given tetrahedron.This �eld equivalen
e does not a
tually hold on the py-ro
hlore latti
e due to the 
orrelations arising from the
losed loops of tetrahedra. But it be
omes exa
t on thevariant of the hierar
hi
al Bethe latti
e built from the
orner-sharing tetrahedra [17℄. We 
an obtain it fromthe 
luster in Fig. 1a atta
hing a tetrahedron to ea
houter site and then endowing ea
h of the new outersites with a new tetrahedron, and so on. The pro
ess isillustrated by the planar graph in Fig. 2a, where tetra-hedra are proje
ted to the squares with the numberson their sites indi
ating the orientations of easy axes.290
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Fig. 2. a) Fragment of a Bethe latti
e built hierar-
hi
ally via addition of new tetrahedra to the outersites. The latti
e 
an be viewed as 
onsisting of fourtrees 
onne
ted by the bonds of the 
entral tetrahedron(dashed line). The numbers indi
ate the dire
tions ofeasy axes of the sites, b) the same latti
e 
an be ob-tained from two trees via merging their root sitesAs Fig. 2a shows, we 
an 
onsider su
h a Bethe lat-ti
e as 
onsisting of four �-trees with � = 0, 1, 2, 3denoting their root sites, whi
h are 
onne
ted by thebonds of the 
entral tetrahedra. Alternatively, we 
anobtain the latti
e from two �-trees merging their rootsites (
f. Fig. 2b). Hen
e, there are two ways to 
on-stru
t the free energy of the Bethe latti
e with the par-tial partition fun
tions Z�(��; N) for theN -site �-treessummed over all spins ex
ept the root one. Using the�rst representation of the Bethe latti
e, we have thefree energy�4 = �T lnTr� e��H(�) 3Y�=0Z�(��; N); (5)where � = T�1, H(�) is de�ned in Eq. (3), and Tr�denotes the summation over ��, � = 0, 1, 2, 3. In theother representation, we obtain the free energies�2� = �T lnTr�� eh���Z2�(��; N); h� � �H�: (6)Assuming the �nite 
orrelation range in our system wehave in the thermodynami
 limit, N !1,�4 ! 4NF + 4SG; �2� ! (2N � 1)F + 2SG;where F is the (internal) free energy per site in thislimit, S is the number of surfa
e sites in a tree and Gis the density of the surfa
e 
ontribution to the full po-tential. 2N � 1 in the se
ond relation appears be
ausewe have merged two root sites into one.The pe
uliarity of Bethe latti
es having formallythe in�nite spatial dimension 
onsists in the �nite ra-tio S=N at N ! 1. In our latti
e S=N ! 2=3 and

we 
annot negle
t the surfa
e 
ontribution to the fullpotential. Yet this 
ir
umstan
e does not prevent thedetermination of the free energy per site F from �4 and�2� as we 
an 
hoose their linear 
ombination wherethe surfa
e terms 
on
eal ea
h other. Thus we haveF = 14 limN!1 2�4 � 3X�=0�2�! : (7)We 
an also represent Z�(��; N) in Eqs. (5) and (6) asZ�(��; N) = A�(N)ex��� ;where x�T has the meaning of the e�e
tive magneti
�elds exerted on the sites of the 
entral tetrahedron bythe other spins in the latti
e. From (3) and (5)�(7),introdu
ing the new variables f� = x� + h� insteadof x�, we then obtainF = T4 3X�=0 ln [2 
h(2f� � h�)℄� T2 ln 2Z(f);Z(f) � 12 Tr� w(�; f); (8)
w(�; f) = exp24�K2  3X�=0��!2 + 3X�=0 f���35 ;K � �J: (9)Owing to the form of Eq. (7), the resulting expressionfor F depends only on the parameters f�. The equa-tions for f� 
an be obtained from the 
ondition thatthey provide a minimum of F ,�F�f� = 0; X�;� 
�
� �2F�f��f� > 0 for all 
; (10)or th(2f� � h�) = h��iw; (11)where the angular bra
kets with the �w� subs
ript de-note the average with the distribution fun
tion w(�; f)from Eq. (9). Alternatively, we 
an obtain the sameequations (11) from re
ursion relations for Z�(�;N).For the Hessian in Eq. (10), we obtain�2F�f��f� = Æ�� �1� h��i2w��� 12h����iw + 12 h��iwh��iw: (12)The standard derivation of Eqs. (11) does not yielda positive de�niteness of the Hessian whi
h 
auses no291 6*



P. N. Timonin ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011problems when these equations have a unique solution.Otherwise, we would have to 
hoose among the solu-tions, the natural 
hoi
e being the one that providesthe global free energy minimum.With f� obtained from Eqs. (11), we 
an fully de-s
ribe the spin i
e thermodynami
s in the BP approx-imation. For the equilibrium values of spins, h��i, weuse the latti
e representation in Fig. 2b to obtainh��i = Tr�� ��Z2�(��)eh���Tr�� Z2�(��)eh��� = th(2f� � h�): (13)A

ording to Eq. (2), the equilibrium magnetizationper spin is then given byhmi = 14 3X�=0 e�h��i = 14 3X�=0 e� th(2f� � h�): (14)Also from (8)�(11), we obtain the equilibrium entropyS = ��F�T = ��F � 14 3X�=0h�h��i++ KZ(f) �Z1(f)e�2K + 4Z2(f)e�8K� : (15)Here, we introdu
e the quantitiesZn(f) = 12 Tr�8<:e 3P�=0��f� �� Æ 24 3X�=0��!2 ; 4n2359=; ; n = 0; 1; 2; (16)whi
h de�ne the 
ontributions to Z(f) in (8) from thegroups of states with equal ex
hange energies:Z(f) = 2Xn=0Zn(f)e�2n2K : (17)Hen
e, Z0(f) 
orresponds to the 
ontributions of spini
e states (two in, two out), Z1(f)e�2K des
ribes the
ontributions of (three in, one out) and (three out, onein) states, and Z2(f)e�8K results from all in and all outstates. Expli
it expressions for Zn(f) areZ0(f) = 
h(f0 + f1 � f2 � f3) ++2 
h(f0 � f1) 
h(f2 � f3);Z1(f) = 3X�=0 
h0� 3X�=0 f� � 2f�1A ;Z2(f) = 
h 3X�=0 f�! : (18)

0:01 0:1 1 10 100T=J

ln 2
00:20:40:6 S

C0:5 ln 1:5
Fig. 3. Temperature dependen
e of S and C in zero�eld. A logarithmi
 s
ale is 
hosen on the T axisFrom (17) and (18), we 
an also obtain the expli
itform of equations of state (11) asth(2f� � h�) = � lnZ(f)�f� : (19)Further di�erentiations of Eqs. (14) and (15) 
an yieldthe tensor of magneti
 sus
eptibilities and spe
i�
 heat.We have a quite simple theory of spin i
e thermody-nami
s 
onsisting essentially of Eqs. (8) and (9). Thistheory 
an des
ribe all intri
ate features of this stronglyfrustrated system behavior in various �elds, as we showbelow. To begin, we 
an easily �nd that in a zero �eld,S in Eq. (15) gives the Pauling value of the residualentropy at T = 0 [19℄:SP = 12 ln 32 � 0:2:Indeed, at H = 0, f� = 0, and Z0 = 3, Z1 = 4, Z2 = 1,and hen
eS(T ) = �12 ln 2 + 12 ln(3 + 4e�2K + e�8K) ++ 4K e�2K + e�8K3 + 4e�2K + e�8K :Therefore, S(0) = SP at T = 0 (K = 1), whileS(1) = ln 2 at T = 1 (K = 0). For the spe
i�
heat, we obtainC = T �S�T = 24K2e�2K(1� 2e�2K + 3e�4K)(3 + e�2K � e�4K + e�6K)2 :The temperature behavior of S and C is shown inFig. 3. It illustrates the notions of �quasi-phases� and292



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Spin i
e in a �eld: quasi-phases and pseudo-transitions�pseudo-transition�. The fun
tion S exhibits a broad
rossover between Pauling and paramagneti
 values,but below Tm � 0:8J , where C has a maximum, wehave a �spin i
e liquid�, where the lo
al spin 
on�gura-tions are mainly �two in, two out�, while above Tm, theyare almost un
orrelated and we have a �paramagneti
quasi-phase�.2. SPIN ICE IN THE [111℄ FIELDFor H = He0, we haveh0 = h; h1 = h2 = h3 = �h=3; h � �Hand the solution of Eq. (19) has the formf0 = x; f1 = f2 = f3 = �y:It then follows from (19) thatth(2x� h) = � lnZ(x; y)�x ;3 th�2y � h3� = � 3Xi=1 � lnZ(f)�fi = � lnZ(x; y)�y ; (20)where Z(x; y) is given by Eq. (17) withZ0(x; y) = 3 
h(x+ y);Z1(x; y) = 
h(x+ 3y) + 3 
h(x � y);Z2(x; y) = 
h(x� 3y): (21)Also from (4) and (14), we havehmi = e04 �th(2x� h) + th�2y � h3�� : (22)We �rst 
onsider the 
ase of low temperatures andmoderate �elds T � J; H � J:As we show below, we 
an then drop the 
ontributionsto Z that are proportional to Z1 and Z2, and thereforeEqs. (20) be
ometh(2x� h) = 3 th�2y � h3� = th(x+ y): (23)Hen
e, we have x = y + h;m = jhmij = th�2y � h3� = 1p1 + 3t2 + 1 ;t � th�43 h� : (24)

Using this m, we 
an express other thermodynami
quantities as��F = 12 ln 32 + 18 ln (1�m2)31� 9m2 ;S = ��F � hm = 12 ln 32 ++ 38 [(1�m) ln(1�m) + (1 +m) ln(1 +m)℄��18 [(1+3m) ln(1+3m)+(1�3m) ln(1�3m)℄ ; (25)�0 � T� = �m�h = 23 (1�m2)(1� 9m2)1 + 3m2 ; C = h2�0:The relation for the spe
i�
 heat C follows from theequation �� F�h = �m (26)and the s
aling form of �F , whi
h depends only onh = H=T . Due to this s
aling, the above quantitiesare 
onstant along the lines H = 
T and have di�er-ent limit values at H = T = 0 along these lines. Inparti
ular, at H = 0, we havem = 0; S = SP ; �0 = 23 ; C = 0; (27)while at T = 0,m = 13 ; S = 14 ln 43 � 0:072; �0 = C = 0: (28)Here, the entropy value is redu
ed with respe
t to SPbe
ause of partial lifting of the ground state degener-a
y in the [111℄ �eld. This �xes the �out� dire
tion forthe 0 spin, while three others 
an freely 
hoose whi
hone of them is to also point out to obey the i
e rule.This phase 
orresponds to a �kagome i
e� state in theoriginal pyro
hlore latti
e [18℄.Following [19℄, we �rst 
onsider the spins as be-longing to N=4 independent tetrahedra. We then have�0 = 3N=4 states for the spins. Turning to the N=4bond tetrahedra 
onne
ting the independent ones, wethen see that their free (1, 2, 3) sites have � = 1with the probability p+ = 1=3 and � = �1 with theprobability p� = 2=3. Therefore, the average num-ber of favorable 3-spin states (two in, one out) persu
h tetrahedron is 3p+p2� = 4=9 and the total numberof states � = �0(4=9)N=4 = (4=3)N=4 gives the valueof S = N�1 ln � in Eq. (28). We thus see that thePauling�Anderson entropy estimates [19℄ are exa
t inthe BP approximation.The behavior of thermodynami
 variables near thepointH = T = 0, given by Eqs. (25), is shown in Fig. 4.293
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ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Spin i
e in a �eld: quasi-phases and pseudo-transitionsThe S and C temperature dependen
es in the broaderrange T � J for H � J obtained via numeri
al solu-tion of the equations of state are presented in Fig. 5.We note the appearan
e of an additional low-T peakin C(T ) at H � 0:7T designating a pseudo-transitionbetween the �kagome i
e� and ordinary spin i
e states.We 
an now assess the range of validity of the aboveanalyti
 results. We have assumed that" � Z1(x; y)e�2K + Z2(x; y)e�8KZ0(x; y) � 1:This 
ondition 
an be violated as h ! 1 whenx; y ! 1. Indeed, we then have " � e2(y�K), andtherefore the above results hold for y < K. From (24),we have y � h=6 as h!1, and the validity 
onditionfor T � J is H < 6J .Hen
e, for T � J and H � 6J , we 
annot ignoreZ1 and Z2. But analyti
 results 
an be also readily ob-tained in this 
ase. Here, h ! 1 and we 
an assumethat x!1, and therefore the se
ond equation in (20)be
omes th�2y � h3� = 1 + e2(y�K)3 + e2(y�K) :This is a
tually the quadrati
 equationu2 � �u� 2 = 0; u � e2y�h=3; � � eh=3�2K : (29)Therefore,u � e2y�h=3 = 12 ��+p�2 + 8� : (30)From the �rst equation in (20), we obtain the exa
trelation e2x = e2(y+h) �(y;K)�(�y;K) ;�(y;K) = 3+e2(y�K)+3e�2(K+y)+e�4(2K+y): (31)It follows that always 2x�h!1 
ontrary to 2y�h=3,and hen
e, a

ording to (22),m � jhmij = 14 �1 + th�2y � h3�� == �+p�2 + 8�+ 3p�2 + 8 : (32)Again using 2x � h ! 1 and Eqs. (30) and (32), we
an express thermodynami
 quantities in terms of themagnetization as��F = 12 ln 2 + 14 ln m21� 2m + h3 ;

S = 12(2� 3m) ln 2 + 32m lnm�� 34(1� 2m) ln(1� 2m)� (3m� 1) ln(3m� 1); (33)�0 = �m�h = 23 (3m�1)(1�2m)1�m ; C = (h�6K)2�0:Hen
e, at T � J � H , the s
aling dependen
e onthe single parameter (H�H
)=T , H
 � 6J , also holds.Here, thermodynami
 quantities are 
onstant along thestraight lines emerging from the point T = 0, H = H
.At this point, spin i
e undergoes a �rst-order phasetransition from the degenerate �kagome i
e� phase tothe 
ompletely ordered �three in, one out� phase. AtT = 0, we haveH < H
; m = 13 ; S = 14 ln 43 � 0:072;� = C = 0;H = H
; m = 25 ; S = 14 ln 165 � 0:29;�0 = 245 ; C = 0;H > H
; m = 12 ; S = � = C = 0: (34)
The large value of S at H = H
 is due to the degen-era
y between the 
on�gurations of the adjoint phases.We also note that the results for H < H
 
oin
ide withthe T = 0 results in Eq. (28) valid down to H = 0.Hen
e, at T = 0 and 0 < H < H
, we have plateausin �eld dependen
es of S and m, whi
h are also seenat low T < J (see Fig. 6). They also have 
rossingpoints at H = H
 due to s
aling, in agreement withexperiments [6; 11℄ and simulations [18℄.Figure 7 shows the behavior of thermodynami
 vari-ables at high T and H . The lo
ation of spe
i�
 heatridges on the H�T plane is summarized in Fig. 8. Theyare used to de�ne the regions of spin i
e, kagome i
e,and paramagneti
 and 
ompletely ordered (�saturated�)quasi-phases. However, the attribution of some def-inite spin-liquid quasi-phase to the 
entral region inFig. 8 seems to be less appropriate be
ause it is hardto des
ribe the nature of 
olle
tive ex
itations for thewhole vast H and T ranges here. The experimentaldata on C in a [111℄ �eld [8�10℄ show only a vagueresemblan
e to the present results. A

ordingly, thephase diagram in Fig. 8 di�ers essentially from the ex-perimental ones [9; 11℄.295
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Fig. 6. Field dependen
es of thermodynami
 variables, T < J , H k [111℄. The values of T=J are shown near the 
urves3. SPIN ICE IN THE [100℄ FIELDFor H = Hex, we haveh0 = h1 = h=p3; h2 = h3 = �h=p3; h � �Hand hen
e one of the six spin i
e 
on�gurations (0, 1spins out, 2, 3 spins in) be
omes preferable in this �eld.The ground state degenera
y is therefore 
ompletelylifted and we should have S = 0 at T = 0. Be
auseS = SP at H = 0 and low T , the in
rease in the �eldmay result in a �pseudo-transition� from the spin i
e tothe ordered �saturated� state. Indeed, it shows up insimulations [16; 17℄ and is extremely sharp at T � J ,whi
h allows de�ning the transition point as [17℄H
 = T p32 ln 2 � 0:6T: (35)This sharpness results from the existen
e of spe
i�
string ex
itations with a unique free-energy gap, whi
h

they 
an over
ome at H < H
 [17℄. However, we showhere that this is only a �pseudo-transition� and its sharpanomalies 
an be des
ribed in the BP approximationwith perfe
tly smooth fun
tions.The solution of Eq. (19) is given by f0 = f1 == �f2 = �f3 = x, when
ehmi = exp3 th�2x� hp3 � : (36)It follows from (17)�(19) thatZ(x) = 2 + 
h 4x+ 4e�2K 
h 2x+ e�8K ;Z(x) th�2x� hp3 � = sh 4x+ 2e�2K sh 2x: (37)The last equation is a
tually an algebrai
 forth-orderequation for � = exp(�2x),296
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 variables at high T and H, H k [111℄
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69
H=J Ordered

Fig. 8. Quasi-phases and the lines of pseudo-transitionsbetween them for a [111℄ �elda�4 + (2 + a4 � b)�3 + 3a(1� b)�2 ++ (1� 2b� a4b)� = ab; (38)

a � exp(�2K); b � exp�� 2p3 h� :In the interval 0 < � < 1, it has a unique solutionthat depends analyti
ally on H and T at T > 0. Find-ing the solution numeri
ally, we obtain the thermody-nami
 quantities as fun
tions of H and T . The re-sults are shown in Figs. 9 and 10. Quite remarkably, atT � J , we see absolutely sharp anomalies that 
an beeasily mixed up with the genuine phase transitions. Butin the present theory, they are only sharp 
rossovers;the genuine �rst-order transition takes pla
e only atT = H = 0.To show this, we assume that T � J and determinethe behavior of � as a ! 0. We 
an simplify Eq. (38)to (2� b)�3 + (1� 2b)� = ab: (39)As a! 0, we haveb < 12 ; � ! 0; b = 12 ; � = �a3�1=3 ;b > 12 ; � !r2b� 12� b :297
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0:03Fig. 9. Temperature dependen
es of thermodynami
 variables in a low [100℄ �eld. The values of H=J are shown near the
urves. The peaks of C and � de�ne the Kasteleyn pseudo-transition from the ordered quasi-phase to the spin i
e phasewith S 
lose to SP = 0:5 ln(1:5) (dashed line)Hen
e, as a ! 0, � = �(b) is very 
lose to its limitfun
tion � =r2b� 12� b #(2b� 1); (40)di�ering from it by a small amount of the order ofa1=3 = e�2K=3. We 
an therefore des
ribe the low-temperature thermodynami
s very pre
isely with thesingular � = �(b) from Eq. (40). Its singular pointb � e�2H=p3T = 12
oin
ides with the 
riti
al �eld H
 in (35), belowwhi
h the string �u
tuations develop in the originalpyro
hlore stru
ture [17℄.

At H > H
 (b < 1=2), we thus havex =1; m = 1p3 � 0:58; S = C = � = 0;and at H < H
 (b > 1=2), we obtain��F = 12 ln 3b4b� b2 � 1 ;S = ��F�hm = 12 ln 34b�b2�1� 2hp3 b(2�b)4b�b2�1 ;m = 1p3 1� b24b� b2 � 1 ;�0 � T� = 83b 1� b+ b2(4b� b2 � 1)2 ; C = h2�0:298
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Fig. 10. Field dependen
es of thermodynami
 variables in a [100℄ �eld at T � J . The values of T=J are shown near the
urvesAt H = H
 � 0 (b = 1=2 + 0)�0 = 169 ; C = 43 ln2 2 � 0:64; m = 1p3 ; S = 0:These expressions agree well with the numeri
al datafor T � 0:2J shown in Figs. 9 and 10 and with theresults of Monte Carlo simulations [16; 17℄.Figure 11 presents the general view of S and C be-havior over the H�T plane, and Fig. 12 depi
ts thelo
ation of the spe
i�
 heat ridges de�ning the quasi-transitions between paramagneti
, spin i
e, and satu-rated quasi-phases. We note that the dashed line inFig. 12 does not 
orrespond to a lo
al maximum of Cbe
ause it vanishes at higher �elds; it is only a 
ontin-uation of the low-�eld ridge. Therefore, the exa
t de-termination of boundaries between �quasi-phases� from

S and C behavior is not always possible. The existingexperiments in a [100℄ �eld [6; 8; 12℄ give only s
ar
eeviden
e in favor of the present results far from theT = H = 0 point.4. SPIN ICE IN THE [011℄ FIELDFor H = Hp2 (ey + ez);we haveh0 = �h1 =r23 h; h2 = h3 = 0; h � �H:Therefore, the �eld in the [011℄ dire
tion does not a
ton 2, 3 spins that form the �-
hains perpendi
ular to299
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Fig. 12. Pseudo-phases in a [100℄ �eld. The dashedline 
ontinues the low-�eld ridgethe �eld, while 0, 1 spins belong to the �-
hains ori-ented along the �eld [13℄. At T = 0, the dire
tions ofspins in �-
hains are �xed by the �eld (0 out, 1 in), butthe �-
hain spins have two possibilities to 
omply withthe spin i
e rule and provide the lowest energy: eitherall 2 spins are �xed at �1 and all 3 spins at +1 orvi
e versa. Hen
e, for �-
hains of a length L, we have� = 2N=2L ground state 
on�gurations. But in spiteof the ma
ros
opi
 degenera
y, the zero-temperatureentropy

S = 1N ln � = 12L ln 2tends to zero in the thermodynami
 limit. Hen
e, wehere may expe
t the existen
e of a 
rossover betweenspin i
e and �ordered 
hains� quasi-phases with an in-
rease in the �eld at low T .The thermodynami
s in su
h a �eld is des
ribed an-alyti
ally in a rather simple way. The solution of theequation of state is given byf0 = �f1 = x; f2 = f3 = 0so hmi = 1p6 th 2x�r23 h! HH ;Z(x) = 2(1 + e�2K) [
h(2x) + d(K)℄ ;d(K) = 1 + 2e�2K + e�8K2(1 + e�2K) ;and the equation of stateth 2x�r23 h! [
h(2x) + d(K)℄ = sh(2x)
an be easily solved to givem � jhmij = 1p6 sh r23 h!vuutsh r23 h!2 + d2(K) ; (41)300
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es of thermodynami
 variables in low [011℄ �elds. The values of H=J are shown near the
urves. S approa
hes the Pauling value SP = 0:5 ln(1:5) (dashed line) and the low-T peak of C de�nes the pseudo-transitionfrom spin i
e to ordered 
hains� 2�F = ln(1 + e�2K) ++ ln264
h r23 h!+vuutsh r23 h!2+d2(K)375 : (42)We do not present the general expressions for S, C,and � here be
ause they are rather 
umbersome. Butfor T � J , d(K) � 1=2 and we obtain the followings
aling fun
tions of h:m =r23 tp1 + 3t2 ; t � th r23 h! ;
��F = 12 ln 32 + 12 ln p1� t22�p1 + 3t2 ; S = ��F � hm;�0 � �m�h = 23 1� t2(1 + 3t2)3=2 ; C = h2�0:At H = 0, therefore, S = SP , C = m = 0, and�0 = 2=3, while at T = 0, S = C = �0 = 0 andm = 1=p6 � 0:41. A

ordingly, the spe
i�
 heat C(T )shows a maximum at T � J and H
 � 0:86T , indi
at-ing a 
rossover between spin i
e and �ordered 
hains�quasi-phases in addition to the one at T � 0:8J for theparamagnet�spin i
e quasi-transition (
f. Fig. 13).301
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Fig. 14. Temperature dependen
es of thermodynami
 variables in high [011℄ �elds. The values of H=J are shown near the
urves. The high-�eld S approa
hes the �random �-
hain� value 0:5 ln 2 � 0:35 (dashed line) in the region delimited by CmaximaAnother spe
i�
 quasi-phase exists in a [011℄ �eldat J � T � H . Indeed, it follows from (41) and (42)thatm = 1p6 ; ��F = 12 ln 2+ hp6 ; S = 12 ln 2 � 0:35:In this region, the strong �eld �xes the dire
tions of 0,1 spins, but T is su�
iently high to initiate free �ips ofspins in �-
hains. These �ips have no e�e
t onm, whi
his determined solely by 0, 1 spins, but give rise to halfthe paramagneti
 entropy be
ause half of the spins ina system �u
tuate between two states. As a result, wehave two maxima of C(T ), one at T � 0:8J indi
ating

the 
rossover between �random �-
hains� and �ordered
hains� quasi-phases, and the other at T � 0:9H 
orre-sponding to the �random �-
hains��paramagnet quasi-transition (see Fig. 14).The overall pi
ture of the C(T;H) relief is shownin Fig. 15. Its ridges are used to de�ne the boundariesbetween quasi-phases presented in Fig. 16. Again, wehave no �rst-order transitions anti
ipated on the basisof simulations [12℄. The experimental C in a [011℄ �eldand the resulting phase diagram [13℄ agree qualitativelywith Figs. 15 and 16 ex
ept for the 
lose vi
inity of theH = T = 0 point.302



ÆÝÒÔ, òîì 140, âûï. 2 (8), 2011 Spin i
e in a �eld: quasi-phases and pseudo-transitions

T/J

H/J

C

0.3

0.2

0.8

0.4

0
0.5 1.0 1.5 2.0

0.2

0.3

C

T/J

20 15 10 5

20
15

H/J

а б

Fig. 15. Spe
i�
 heat in low (a) and high (b) [011℄ �elds

2 4
T/J

0

2

4

H/J

Random
β-chains

Paramagnet

Spin ice

O
rd

er
ed

ch
a
in

s

Fig. 16. Pseudo-phases in a [011℄ �eld. Dashed linesare the 
ontinuation of the vanishing ridges of C5. CONCLUSIONSThe main 
on
lusion from the present results is thatthe BP approximation 
an adequately des
ribe manyintri
ate features of the thermodynami
s of a short-range frustrated magnet in a �eld. In some way, it is su-perior to the Monte Carlo simulations be
ause it helpsdis
ern the true phase transitions and sharp 
rossovers.In the 
ases 
onsidered in the present model, true �rst-order transitions o

ur only at T = H = 0 and atT = 0, H = 6J points, while sharp �eld-indu
edanomalies result from their proximity. It is quite possi-

ble that this feature is preserved in the rigorous the-ory of short-range 3D spin i
e, be
ause the presentresults 
losely resemble the numeri
ally exa
t MonteCarlo data. More generally, we note that the BP ap-proximation adequately des
ribes the short-range 
or-relations and negle
ts the long-range ones, and this issu�
ient to give a qualitatively 
orre
t pi
ture of ther-modynami
s near �rst-order transitions where the 
or-relation length stays �nite. Evidently, it would be lesssu

essful in the vi
inity of se
ond-order transitions.We also note that the BP approximation is a vari-ant of more general 
luster variation methods [20; 21℄,whi
h 
an give adequate quantitative results for sys-tems with strong short-range 
ompeting intera
tions(in 
ontrast to the simple mean �eld approximation).In parti
ular, the appli
ation of 
luster methods tothe 
rystals with tetrahedral units in their stru
turessu
h as KDP-type ferroele
tri
s [22℄ and ordering al-loys [21; 23℄ have also yielded the results that 
an be
ompared favorably with those of Monte Carlo simu-lations. We may therefore suppose that further devel-oping the 
luster approximation beyond the BP onealong the lines of Refs. [20; 21℄ 
ould further improvethe des
ription of the thermodynami
s of spin i
e 
om-pounds.Another point demonstrated by the BP results isthe usefulness of the notions of �quasi-phases� and�pseudo-transitions�. For example, they relieve us fromthe ne
essity to guess what the order parameter for theKasteleyn transition is or whether it is of the �rst-orderor of the se
ond-order type. They also allow us to dis-
ern the de�nite spin-liquid states even at very hightemperatures and �elds, whi
h is the 
ase of the �ran-dom �-
hains� quasi-phase in a [011℄ �eld (see Fig. 16).303
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itations to a region surrounded byspe
i�
 heat ridges (
f. Fig. 8), and these ridges mayvanish to leave the boundary between quasi-phases in-de�nite (see Figs. 12 and 16).The present results also nearly quantitativelyreprodu
e the experimental data for the entropyand magnetization of spin i
es in �elds. However,experimental results for the spe
i�
 heat in the vi
inityof the mentioned zero-temperature transitions showmu
h less agreement with the theory. The origin ofthese dis
repan
ies still has to be found in futurestudies.Author gratefully a
knowledges the usefull dis
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