АНОМАЛИИ МОДУЛЯ ЮНГА ПРИ СТРУКТУРНЫХ ФАЗОВЫХ ПЕРЕХОДАХ В РЕДКОЗЕМЕЛЬНЫХ КОБАЛЬТИТАХ $m RBaCo_4O_7$ ($m R=Y,\ Tm-Lu$)

3. А. Казей^а^{*}, В. В. Снегирев^а, А. С. Андреенко^а, Л. П. Козеева^b

^а Московский государственный университет им. М. В. Ломоносова 119992, Москва, Россия

^b Институт неорганической химии им. А. В. Николаева Сибирского отделения Российской академии наук 630090, Новосибирск, Россия

Поступила в редакцию 11 августа 2010 г.

Проведены экспериментальные исследования упругих свойств редкоземельных кобальтитов $\operatorname{RBaCo_4O_7}(\mathrm{R}=\mathrm{Y},\mathrm{Tm-Lu})$ в области температур (80–300) К. Обнаружено значительное смягчение модуля Юнга $\Delta E(T)/E_0 \approx -(1-2)\cdot 10^{-1}$ кобальтитов с ионами Lu и Yb, отражающее неустойчивость кристаллической структуры при понижении температуры и сопровождающееся обратным скачком в точке структурного фазового перехода первого рода. Смягчение модуля Юнга и скачок при фазовом переходе уменьшаются на порядок, а температура перехода T_s и гистерезис ΔT_s растут от Lu- к Tm-соединению. Значительная величина смягчения модуля Юнга при структурном переходе в Lu- и Yb-кобальтитах свидетельствует об обращении в нуль соответствующей упругой константы, тогда как в Tm-кобальтите эта константа не является «мягкой» модой фазового перехода. Установлено, что структурный фазовый переход в Lu- и Yb-кобальтитах сопровождается значительным максимумом поглощения в точке фазового перехода и дополнительным максимумом в низкотемпературной фазе, а аномалии поглощения для Tm-кобальтита на порядок меньше.

1. ВВЕДЕНИЕ

Исследование соединений, имеющих две и более взаимно связанные подсистемы и обнаруживающих одновременно несколько упорядоченных состояний (магнитное, квадрупольное, зарядовое, сегнетоэлектрическое и др.) и фазовых переходов различной природы, является в настоящее время актуальнейшей проблемой физики твердого тела. Неудивительно, что эти системы демонстрируют необычное сочетание физических свойств — структурных, магнитных, магнитоупругих, упругих, электрических, сегнетоэлектрических — и обнаруживают новые физические явления. Этим соединениям посвящено множество экспериментальных и теоретических работ, результаты анализируются и суммируются в обширных обзорах [1]. К такого типа системам относятся и редкоземельные (РЗ) кобальтиты сложного состава $\operatorname{RBaCo}_4\operatorname{O}_x(x=7.0\pm\delta,8.0\pm\delta),$ имеющие связанные 3d- и 4f-магнитные подсистемы [2, 3].

Семейство РЗ-кобальтитов RBaCo₄O_{7+δ}, обнаруживающее необычное магнитное поведение, обусловленное фрустрацией обменных взаимодействий и переменной валентностью в 3*d*-подсистеме, интенсивно исследуется последние несколько лет [4-6]. При высоких температурах эти соединения имеют гексагональную структуру Р6₃mc [7–9], которая испытывает небольшие ромбические искажения при понижении температуры. Величина ромбического искажения для Yb-кобальтита, например, составляет $(a - b/\sqrt{3})/a = -6.1 \cdot 10^{-3} (a \approx a_h, b \approx \sqrt{3}a_h,$ $a_h = b_h = 6.26539A$) [10]. Температура структурного фазового перехода T_s монотонно понижается при уменьшении радиуса РЗ-иона, так что начиная с Ег-кобальтита фазовый переход происходит при температуре ниже 300 К [3,11]. Искажение структуры при этом фазовом переходе меняет геометрию обменных связей и, таким образом, должно сказываться на магнитных фазовых переходах в Со-подсистеме, которые имеют место при $T_N < T_s \ [11, 12].$

^{*}E-mail: kazei@plms.phys.msu.ru

Структурные и магнитные фазовые переходы в семействе РЗ-кобальтитов исследовались различными методами, главным образом, магнитными и калориметрическими [3,11]. Много работ посвящено исследованию природы и особенностей различных транспортных свойств в системах с переменной валентностью [2,13]. Отметим, однако, что часто аномалии соответствующих термодинамических свойств при фазовом переходе слабо выражены на фоне различных вкладов, например, фононном, и не позволяют надежно исследовать влияние различных факторов на фазовые переходы. По этой причине, по-видимому, экспериментальные данные о фазовых переходах, особенно, структурных, не являются, на наш взгляд, достаточно полными и достоверными. Так, при исследовании теплоемкости [3,11] температура фазового перехода первого рода определяется без учета гистерезиса; наличие гистерезиса и его изменение по ряду РЗ-кобальтитов не отслеживается. При этом упругие свойства, модуль Юнга и внутреннее трение, которые очень чувствительны к наличию фазовых переходов различной природы, для этих систем практически не изучены. Настоящая работа посвящена экспериментальному исследованию упругих свойств в области структурных фазовых переходов в РЗ-кобальтитах RBaCo₄O₇ с ионами Y, Tm-Lu.

2. ОБРАЗЦЫ И ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА

Исследования упругих свойств проводились на поликристаллических образцах $RBaCo_4O_7$ (R = Y, Tm-Lu), синтезированных по керамической технологии с многократным обжигом на воздухе. Для твердофазного синтеза использовались оксиды R₂O₃ (ос.ч.), Co₃O₄ (ч.д.а.), BaCO₃ (ос.ч.), предварительно отожженные соответственно при температурах 800°С, 700°С, 500°С. Стехиометрическая смесь исходных компонентов тщательно перетиралась в агатовой ступке с помощью ацетона, загружалась в корундовый тигель, уплотнялась и помещалась в печь с омическим нагревом. Отжиг проводился многоступенчато при температурах 850°С-900°С-950°С-1000°С-1050°С по 20 ч при каждой температуре с промежуточным перетиранием. Взвешивание образца до и после отжига на каждой ступени свидетельствовало о том, что при $T = 870 \,^{\circ}\mathrm{C}$ практически полностью происходила декарбонизация ВаСО₃. На окончательном этапе порошок прессовался в таблетки и отжигался при $T = 1100 \,^{\circ}\text{C}$ в течение 50–70 ч, после чего охлаждался с выключенной печью до комнатной температуры. Содержание кислорода в керамиках после такого отжига было близко к 7.0.

Фазовый состав контролировался рентгенографически на дифрактометре «Stoe STADI-P» на $K_{\alpha 1}$ -излучении Со с точностью около 1 %. Все линии на рентгенограммах образцов RBaCo₄O₇ с ионами Y, Tm-Lu при комнатной температуре индицировались в рамках гексагональной или слабо искаженной (для Y-кобальтита) гексагональной структуры, кроме одной примесной линии неустановленной фазы (относительная интенсивность около 3 %). Значения параметров гексагональной элементарной ячейки a_h и c_h , определенные по рефлексам (205) и (4 $\overline{2}$ 0), совпадали с литературными данными. Плотность керамических образцов составляла (75–80) % от рентгеновской.

Модуль Юнга Е и коэффициент внутреннего трения q^{-1} измерялись методом составного резонатора на частоте около 110 кГц в интервале температур 80-300 К. В автоматизированной установке в качестве задающего генератора использовался Agilent 33120A, в качестве регистрирующего устройства — цифровой осциллограф Tektronix TDS 1002. Температура измерялась и контролировалась с помощью температурного контроллера Lakeshore 331 с точностью ±0.03 К. Температурные измерения проводились в режиме стационарного состояния, а температурный шаг и выдержка в области фазового перехода варьировались в широких пределах, обеспечивающих стационарность. Управление экспериментом и первичная обработка проводились на стандартном IBM-совместимом компьютере с интерфейсом IEEE-488 с использованием оригинального программного обеспечения. Поликристаллические образцы позволяли проводить измерения упругих свойств непосредственно вблизи T_s, где для кристаллов измерения вдоль «мягкого» направления осложнены из-за большого поглощения звука.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

3.1. Модуль Юнга и внутреннее трение

На рис. 1 и 2 приведены температурные зависимости относительной величины модуля Юнга

$$\frac{\Delta E(T)}{E_0} = \frac{E(T)}{E_0} - 1,$$

$$\Delta E(T) = E(T) - E_0, \quad E_0 = E(T = 300 \text{ K})$$

и коэффициента внутреннего трения $q^{-1}(T)$ для кобальтитов Y, Yb и Lu. Для удобства сравнения за-

Рис.1. Зависимость относительной величины модуля Юнга $\Delta E/E_0$ поликристаллических образцов LuBaCo₄O₇, YbBaCo₄O₇ и YBaCo₄O₇ от температуры в области структурного фазового перехода при нагреве (светлые точки) и охлаждении (темные точки). На вставке показана область фазового перехода образца YbBaCo₄O₇ в большем масштабе

висимости $\Delta E(T)/E_0$ для всех образцов нормированы на их значение E_0 при T = 300 К. Видно, что для YbBaCo₄O₇, уже начиная с комнатной температуры, наблюдается смягчение модуля Юнга при понижении температуры, достигающее максимальной величины $\Delta E(T)/E_0 \approx -9 \cdot 10^{-2}$ при $T_{min} \approx 170$ К. При дальнейшем понижении температуры происходит резкий скачок, характерный для фазовых переходов первого рода. Зависимость $\Delta E(T)/E_0$ в области фазового перехода обнаруживает температурный гистерезис порядка 7 К (вставка на рис. 1), при этом температура фазового перехода T_s , определенная по скачку или максимуму производной dE(T)/dT, лежит в диапазоне (160–170) К. Вне области фазового перехода зависимости $\Delta E(T)/E_0$ при нагреве и охлаждении практически совпадают. Наблюдаемые температуры перехода и гистерезиса для Yb-кобальтита хорошо согласуются с данными, полученными в работе [2] при исследовании сопротивления и коэффициента Зеебака. Величина гистерезиса в области фазового перехода, как было обнаружено в этой работе, различна для стационарного

Рис.2. Температурная зависимость внутреннего трения q^{-1} поликристаллических образцов YbBaCo₄O₇ и YBaCo₄O₇ в области структурного фазового перехода при нагреве (светлые точки) и охлаждении (темные точки). На вставке показана область фазового перехода образца YbBaCo₄O₇ в большем масштабе

температурного режима и режима температурного дрейфа.

Модуль Юнга Lu-кобальтита обнаруживает качественно похожее поведение при понижении температуры. Максимальное смягчение модуля $\Delta E(T)/E_0 \approx -17\cdot 10^{-2}$ при $T_{min} \approx 140$ K в два раза больше и сопровождается более резким скачком. Однако зависимости $\Delta E(T)/E_0$ при нагреве и охлаждении практически совпадают в исследованной области температур, исключая область ниже T = 110 K.

Для Y-соединения, которое в исследуемой области температур не испытывает структурного фазового перехода ($T_s > 300 \text{ K}$), модуль Юнга обнаруживает монотонное возрастание $\Delta E(T)/E_0 \approx 3 \cdot 10^{-2}$ вплоть до температуры 80 К. Небольшая аномалия ниже 130 К коррелирует с ростом поглощения в этой области (см. далее) и имеет, по-видимому, релаксационную природу.

Коэффициент внутреннего трения q^{-1} для YbBaCo₄O₇ резко возрастает, примерно в 5 раз, в области фазового перехода и обнаруживает два сравнимых по величине максимума поглощения $q^{-1} \approx 4 \cdot 10^{-3}$. Один максимум $q^{-1}(T)$ совпадает с границей устойчивости низкотемпературной фазы, а второй смещен вниз по температуре примерно на 15 К (вставка на рис. 2). Коэффициент внутреннего трения, так же как и модуль Юнга, имеет заметный температурный гистерезис в области фазового перехода (вставка на рис. 2). Гистерезис характеризуется различной величиной максимумов поглощения при нагреве и охлаждении, тогда как положения максимумов не меняются. При понижении температуры ниже 130 К для Yb-соединения наблюдается сильное возрастание коэффициента внутреннего трения $q^{-1}(T)$, который достигает максимальной величины $q^{-1} \approx 6 \cdot 10^{-3}$ при T = 95 К.

Для LuBaCo₄O₇ коэффициент внутреннего трения также обнаруживает сильный максимум в области фазового перехода, величина которого почти на порядок больше, чем для Yb-кобальтита (не показан на рис. 2). Этот максимум также имеет сложную структуру и характеризуется наличием более слабого дополнительного пика со стороны высоких температур. Для Y-соединения поглощение невелико в области температур (300–130) К и начинает расти при более низкой температуре, достигая максимальной величины $q^{-1} \approx 6 \cdot 10^{-3}$ при T = 80 К. Отметим еще дополнительный максимум поглощения $q^{-1} \approx 2 \cdot 10^{-3}$ в области T = 250 К, который может быть связан с близостью структурного фазового перехода в Y-кобальтите, для которого $T_s > 300$ К.

Модуль Юнга Тт-кобальтита демонстрирует несколько иное поведение в диапазоне температур (300-80) К. Смягчение модуля Юнга при понижении температуры также начинается с комнатной температуры, достигает максимальной величины $\Delta E(T)/E_0 \approx 4 \cdot 10^{-2}$ при $T_{min} \approx 210$ К (рис. 3), сопровождается скачком при фазовом переходе и продолжается при дальнейшем понижении температуры. Скачок более размыт и существенно меньше по величине, чем для Yb-кобальтита. При этом величина температурного гистерезиса $\Delta T_s \approx 20$ K, наоборот, значительно больше и постепенно уменьшается при термоциклировании (сравните кривые 1, 2 и 3 на вставке рис. 3, соответствующие последовательным сериям измерений), достигая постоянной величины порядка 14 К.

При понижении температуры ниже 120 К наблюдается возрастание модуля Юнга примерно на $3.5 \cdot 10^{-2}$, так что при T = 80 К величина $\Delta E(T)/E_0$ практически возвращается к своему значению при комнатной температуре. Эта низкотемпературная аномалия может быть связана с магнитным упорядочением в Со-подсистеме. Интересно, что для Yb-кобальтита также видны признаки близости магнитного фазового перехода, проявляющиеся в увели-

Рис. 3. Зависимость относительной величины модуля Юнга $\Delta E/E_0$ поликристаллических образцов ${\rm TmBaCo_4O_7}$ и ${\rm YBaCo_4O_7}$ от температуры в области структурного фазового перехода при нагреве (светлые точки) и охлаждении (темные точки). На вставке показана область фазового перехода образца ${\rm TmBaCo_4O_7}$ в большем масштабе; кривые 1, 2, 3 соответствуют последовательным сериям измерений при нагреве

чении производной на зависимости $\Delta E(T)/E_0$ при T < 100 К. Магнитные фазовые переходы в исследуемых кобальтитах, однако, не является предметом настоящей работы и заслуживают отдельного рассмотрения.

Коэффициент внутреннего трения для TmBaCo₄O₇ скачкообразно возрастает на величину порядка $\Delta q^{-1} \approx 3 \cdot 10^{-4}$ при фазовом переходе (рис. 4), что на порядок меньше, чем для YbBaCo₄O₇. В низкотемпературной фазе внутреннее трение продолжает монотонно увеличиваться, однако остается заметно меньше, чем в Yb-кобальтите. И только при понижении температуры ниже 130 К коэффициент внутреннего трения $q^{-1}(T)$ для Tm-соединения сильно возрастает, достигая максимальной величины $q^{-1} \approx 15 \cdot 10^{-3}$ при T = 90 К. Этот максимум поглощения, который может быть связан с магнитным фазовым переходом, в Tm-кобальтите более выражен, так как температура перехода для него выше.

Уменьшение амплитуды звуковой волны на порядок в наших экспериментах не дало заметных изменений зависимости $\Delta E(T)/E_0$ вблизи T_s . При уве-

Рис.4. Температурная зависимость внутреннего трения q^{-1} поликристаллических образцов ${\rm TmBaCo_4O_7}$ и ${\rm YBaCo_4O_7}$ в области структурного фазового перехода при нагреве (светлые точки) и охлаждении (темные точки). На вставке показан релаксационный максимум образца ${\rm TmBaCo_4O_7}$

личении частоты от 110 до 330 кГц (третья гармоника) характерные температуры на зависимости $\Delta E(T)/E_0$ практически не меняются. Однако при этом сильно возрастает поглощение, что не позволяет надежно исследовать характер зависимости максимумов $q^{-1}(T)$ от частоты.

Кроме описанных аномалий, связанных со структурными фазовыми переходами, упругие характеристики исследуемых кобальтитов обнаруживают дополнительные особенности, в частности максимумы поглощения $q^{-1}(T)$ в интервале температур (250–300) К. Эти максимумы в большей или меньшей степени видны для всех исследуемых кобальтитов (см., например, вставку на рис. 4 и рис. 2) и имеют, по-видимому, релаксационную природу. Их величина и характерная температура сильно зависят от термоциклирования и предыстории измерений.

3.2. Структурные фазовые переходы в РЗ-кобальтитах $RBaCo_4O_7$ (R = Tm-Lu)

Структурные фазовые переходы в семействе кобальтитов RBaCo₄O_{7+δ} исследовались различными методами. Но как часто бывает для «модных» объектов, работы грешат неполнотой и противоречивостью экспериментальных данных. При исследовании термодинамических свойств (теплоемкости, магнитной восприимчивости) авторы часто приводят данные для области фазового перехода без указания условий эксперимента (нагрев–охлаждение, скорости изменения температур и др., см., например, работы [3,11]). Однако значительный гистерезис при фазовом переходе первого рода делает эти экспериментальные данные некорректными.

Исследование упругих модулей, которые очень чувствительны к наличию фазовых переходов, может восполнить этот пробел. В отсутствие фазовых переходов постоянные упругой жесткости соединений, как известно, возрастают с понижением температуры и в области достаточно низких температур этот рост замедляется. Такое изменение упругих постоянных с температурой, являющееся следствием ангармоничности колебаний кристаллической решетки, наблюдается для Y-кобальтита в исследованной области температур.

В области различных фазовых переходов упругие постоянные испытывают значительные аномалии, особенно сильные для структурных переходов. Например в РЗ-цирконах структурный фазовый переход, обусловленный кооперативным эффектом Яна-Теллера, сопровождается обращением в нуль компоненты матрицы упругих модулей, сопряженной с деформацией («мягкая мода») [14, 15]. Например, при орторомбической деформации растяжения/сжатия вдоль оси (100) (деформации *В*₁*g*-типа) в тетрагональных цирконах смягчение до нуля при T_s испытывает упругая константа $(c_{11} - c_{12})$, а на других константах c_{ij} аномалии существенно меньше $(\Delta c_{ij}/c_{ij} \sim 10^{-3})$ [14]. Таким образом, в этом случае зависимость модуля Юнга E(T) отражает по существу изменение с температурой соответствующей мягкой моды c_{ij} .

Для исследованных образцов кобальтитов смягчение модуля Юнга свидетельствует о неустойчивости кристаллической структуры при понижении температуры, а глубокие минимумы и последующие скачки на зависимостях $\Delta E(T)/E_0$ обусловлены структурными фазовыми переходами. Вклад в модуль Юнга, обусловленный структурным переходом, после учета фононного вклада на основе У-кобальтита обнаруживает четкие закономерности при движении по ряду РЗ-кобальтитов (рис. 5). Для последнего в серии Lu-соединения температура перехода T_s самая низкая, а смягчение модуля Юнга и скачок при фазовом переходе достигают максимальной величины. Для Yb-кобальтита величина

Рис.5. Вклад в модуль Юнга при структурном переходе для образцов TmBaCo₄O₇, YbBaCo₄O₇, LuBaCo₄O₇ при нагреве (светлые точки) и охлаждении (темные точки)

смягчения и скачка уменьшаются почти в два раза. В Тт-кобальтите скачок модуля на порядок величины меньше, а смягчение продолжается и после фазового перехода. Температура перехода T_s и гистерезис ΔT_s при фазовом переходе монотонно растут от Lu- к Тт-соединению. Минимум зависимости $\Delta E(T)/E_0$ для всех образцов приходится на температуру несколько более высокую, чем температура структурного фазового перехода T_s , а критическая температура T_s совпадает со скачком или с максимумом производной (точкой перегиба) на зависимости $\Delta E(T)/E_0$.

Фазовый переход сопровождается резким возрастанием поглощения в Lu- и Yb-кобальтитах, и значительно меньшим ростом в Tm-соединении. Кроме того, упругие свойства РЗ-кобальтитов RBaCo₄O₇ (R = Tm-Lu) имеют ряд дополнительных аномалий при температурах, отличных от T_s . Максимум поглощения в низкотемпературной фазе связан, по-видимому, с релаксацией структурных доменов. В этом случае можно ожидать сильного влияния на величину «доменного» максимума q^{-1} магнитного поля, которое будет поддерживать монодоменные кристаллиты с осью легкого намагничивания вдоль поля, и они, таким образом, не будут давать вклада в релаксационное поглощение звука.

В настоящее время природа и механизм структурного перехода в РЗ-кобальтитах однозначно не установлены. Обсуждаются различные модели, такие как зарядовое упорядочение в Со-подсистеме [3], оптимизация ненасыщенных связей Ва координационного многогранника [10], спин-решеточная нестабильность и даже возникновение ближнего антиферромагнитного порядка/корреляций в Со-подсистеме [2]. Хотя последний эффект не является фазовым переходом и не должен приводить к ярко выраженным аномалиям различных термодинамических свойств. Отметим также, что развитых теорий для описания переходов типа оптимизации ненасыщенных связей или зарядового упорядочения не имеется и поэтому не представляется возможным сделать какие-либо оценки взаимодействий, ответственных за переход.

На данном этапе полезно провести сравнение с аномалиями упругих свойств РЗ-цирконов при структурных фазовых переходах ян-теллеровской природы, для которых имеются развитые и апробированные теоретические модели. Величина смягчения $\Delta E(T)/E_0$ и максимум q^{-1} в РЗ-цирконах такого же порядка, что и в Lu-кобальтите. Для поликристаллического образца DyVO₄, например, смягчение модуля при ян-теллеровском переходе B_{1g} -типа составляет $\Delta E(T)/E_0 \approx 3 \cdot 10^{-2}$ [16]. Коэффициент внутреннего трения q^{-1} в DyVO₄ обнаруживает два максимума поглощения: слабый — при T_s и более сильный, около $1.7 \cdot 10^{-2}$, при $T_d = 7$ К.

На упругие свойства при структурных фазовых переходах сильное влияние могут оказывать структурные домены, возникающие ниже T_s. Под действием механических напряжений, обусловленных звуковой волной, происходит перестройка доменной структуры (например, длинные оси доменов выстраиваются вдоль растягивающего механического напряжения). Это эквивалентно дополнительной «мягкости» в решетке и, например, в РЗ-цирконах приводит к дальнейшему смягчению модуля $\Delta E(T)/E_0$ ниже T_s [16]. Для исследованных РЗ-кобальтитов минимальное значение модуля Юнга достигается выше температуры перехода T_s , т. е. доменный вклад в модуль Юнга невелик. С релаксацией структурных доменов связан сильный максимум $q^{-1}(T)$ в низкотемпературной фазе, наблюдаемый как в РЗ-кобальтитах, так и РЗ-цирконах.

Таким образом, особенности акустических свойств РЗ-кобальтитов и РЗ-цирконов при структурных фазовых переходах в основных чертах совпадают, хотя природа структурных переходов в этих семействах, по-видимому, различна. В РЗ-цирконах структурный переход обусловлен квазивырожденным основным состоянием РЗ-иона, занимающего в структуре позиции с высокой локальной симметрией. В РЗ-кобальтитах решающим фактором, по-видимому, является размер РЗ-иона, при уменьшении которого гексагональная структура остается устойчивой до более низких температур. Значительная величина смягчения модуля Юнга в Lu- и Yb-кобальтитах позволяет предположить, что соответствующая упругая константа (типа $(c_{11} - c_{12}))$ обращается в нуль при структурном переходе. Наоборот, в Tm-кобальтите, для которого смягчение на порядок меньше, эта константа не является «мягкой» модой фазового перехода.

Отметим также некоторые общие черты поведения упругих свойств P3-кобальтитов и слоистых перовскитов RBa₂Cu₃O_{6+x}, обусловленные наличием дефектности по кислороду и беспорядка в 3*d*-подсистеме. Для слоистых перовскитов это приводит к появлению многочисленных релаксационных максимумов поглощения звука в разных диапазонах температур, которые сильно зависят от микроструктуры, термоциклирования, предыстории измерений. Похожие релаксационные эффекты, по-видимому, имеют место и в P3-кобальтитах. Этот вопрос требует дополнительного исследования.

4. ЗАКЛЮЧЕНИЕ

В настоящей работе проведены первые экспериментальные исследования упругих свойств РЗ-кобальтитов RBaCo₄O₇, которые характеризуются набором необычных и интригующих физических явлений и характеристик, таких как переменная валентность в Со-подсистеме и обусловленные ею особенности транспортных свойств, фрустрация обменных взаимодействий в 3*d*-подсистеме и ее необычное магнитное поведение, взаимосвязанные 3*d*- и 4f-подсистем и др. На соотношение между разновалентными ионами Со²⁺/Со³⁺ в исследуемых кобальтитах можно эффективно влиять с помощью кислородного индекса, а также соответствующими катионными замещениями. Это позволяет управлять магнитным поведением Со-подсистемы и ее воздействием на РЗ-подсистему, свойства которой практически не исследованы.

Нами обнаружено значительное смягчение модуля Юнга кобальтитов Lu и Yb и гораздо меньшее смягчение Tm-кобальтита, отражающее неустойчивость кристаллической структуры при понижении температуры и сопровождающееся обратным скачком в точке структурного фазового перехода первого рода. Смягчение модуля Юнга и скачок при фазовом переходе уменьшаются на порядок, а температура перехода T_s и гистерезис ΔT_s растут от Lu- к Tm-соединению. При этом структурные фазовые переходы в исследуемых кобальтитах сопровождается максимумом поглощения звука в точке фазового перехода и дополнительным максимумом в низкотемпературной фазе.

Работа выполнена при частичной финансовой поддержке РФФИ (грант № 10-02-00532-а).

ЛИТЕРАТУРА

- 1. Н. Б. Иванова, С. Г. Овчинников, М. М. Коршунов, УФН 179, 837 (2009).
- A. Maignan, V. Caignaert, D. Pelloquin et al., Phys. Rev. B 74, 165110 (2006).
- N. Nakayama, T. Mizota, Y. Ueda et al., J. Magn. Magn. Mat. 300, 98 (2006).
- L. C. Chapon, P. G. Radaelli, H. Zheng et al., Phys. Rev. B 74, 172401 (2006).
- P. Manuel, L. C. Chapon, P. G. Radaelli et al., Phys. Rev. Lett. 103, 037202 (2009).
- W. Schweika, M. Valldor, and P. Lemmens, Phys. Rev. Lett. 98, 067201 (2007).
- E. A. Juarez-Arellano, A. Friedrich, D. J. Wilson et al., Phys. Rev. B 79, 064109 (2009).
- E. V. Tsipis, J. C. Waerenborgh, M. Avdeev et al., J. Sol. St. Chem. 182, 640 (2009).
- L. P. Kozeeva, M. Yu. Kamaneva, A. I. Smolentsev et al., J. Struct. Chem. 49, 1071 (2008).
- A. Huq, J. F. Mitchell, H. Zheng et al., J. Sol. St. Chem. 179, 1136 (2006).
- M. Markina, A. N. Vasiliev, N. Nakayama et al., J. Magn. Magn. Mat. **322**, 1249 (2010).
- M. Valldor, Y. Sanders, and W. Schweika, J. Phys.: Confer. Ser. 145, 012076 (2009).
- 13. H. Hao, C. Chen, L. Pan et al., Physica B 387, 98 (2007).
- G. A. Gehring and E. A. Gehring, Rep. Progr. Phys. 38, 1 (1975).
- В. И. Соколов, З. А. Казей, Н. П. Колмакова и др., ЖЭТФ 99, 945 (1991).
- 16. А. Е. Дворникова, З. А. Казей, В. И. Соколов, ЖЭТФ 96, 1444 (1989).