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ANOMALOUS RESISTIVITY AND THE ORIGIN OF HEAVY MASSIN THE TWO-BAND HUBBARD MODELWITH ONE NARROW BANDM. Yu. Kagan a*, V. V. Val'kov baKapitza Institute for Physi
al Problems119334, Mos
ow, RussiabKirenskii Institute of Physi
s660036, Krasnoyarsk, RussiaRe
eived November 1, 2010Dedi
ated to the memory of Professor A. G. AronovWe sear
h for marginal Fermi-liquid behavior [1℄ in the two-band Hubbard model with one narrow band. We
onsider the limit of low ele
tron densities in the bands and strong intraband and interband Hubbard inter-a
tions. We analyze the in�uen
e of ele
tron polaron e�e
t [2℄ and other me
hanisms of mass enhan
ement(related to momentum dependen
e of the self-energies) on the e�e
tive mass and s
attering times of light andheavy 
omponents in the 
lean 
ase (ele
tron�ele
tron s
attering and no impurities). We �nd the tenden
ytowards phase separation (towards negative partial 
ompressibility of heavy parti
les) in the 3D 
ase for a largemismat
h between the densities of heavy and light bands in the strong-
oupling limit. We also observe that forlow temperatures and equal densities, the homogeneous state resistivity R(T ) � T 2 behaves in a Fermi-liquidfashion in both 3D and 2D 
ases. For temperatures higher than the e�e
tive bandwidth for heavy ele
tronsT > W �h , the 
oherent behavior of the heavy 
omponent is totally destroyed. The heavy parti
les move di�u-sively in the surrounding of light parti
les. At the same time, the light parti
les s
atter on the heavy ones asif on immobile (stati
) impurities. In this regime, the heavy 
omponent is marginal, while the light one is not.The resistivity saturates for T > W �h in the 3D 
ase. In 2D, the resistivity has a maximum and a lo
alizationtail due to weak-lo
alization 
orre
tions of the Altshuler�Aronov type [3℄. Su
h behavior of resistivity 
ouldbe relevant for some uranium-based heavy-fermion 
ompounds like UNi2Al3 in 3D and for some other mixed-valen
e 
ompounds possibly in
luding layered manganites in 2D. We also brie�y 
onsider the super
ondu
tive(SC) instability in the model. The leading instability is towards the p-wave pairing and is governed by theenhan
ed Kohn�Luttinger [4℄ me
hanism of SC at low ele
tron density. The 
riti
al temperature 
orrespondsto the pairing of heavy ele
trons via polarization of the light ones in 2D.1. INTRODUCTIONThe physi
s of uranium-based heavy-fermion 
om-pounds and the origin of a heavy mass m�h � 200me forf -ele
trons in them is possibly very di�erent (see [2℄)from the physi
s of 
erium-based heavy fermions, wherethe Kondo e�e
t (or more generally, the physi
s of theKondo latti
e model) is dominant [5; 6℄. The point isthat uranium-based heavy fermions are usually in themixed-valen
e limit [7℄ with strong hybridization be-tween heavy (f ele
trons or f�d ele
trons) and light*E-mail: kagan�kapitza.ras.ru

(s�p ele
trons) 
omponents. On the level of two-par-ti
le hybridization, the interband Hubbard intera
tionleads to an additional enhan
ement of the heavy ele
t-rons mass due to the ele
tron polaron e�e
t (EPE).Physi
ally, the EPE is 
onne
ted with a nonadiaba-ti
al part of the many-body wave fun
tion des
ribinga heavy ele
tron and a 
loud of virtual ele
tron�holepairs of light parti
les. These pairs are mixed with thewave fun
tion of the heavy ele
tron but do not follow itwhen a heavy ele
tron tunnels from one elementary 
ellto a neighboring one. It is shown in [2℄ that in the uni-tary limit of the strong Hubbard intera
tion betweenheavy and light ele
trons, the e�e
tive heavy mass 
an179 12*
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h the value m�h=mL � (mh=mL)2, and if we startfrom the ratio mh=mL � 10 between bare masses ofheavy and light ele
trons, on the level of LDA approx-imation, for example, we 
ould �nish with the e�e
tivevalue m�h � 100mL, whi
h is typi
al for uranium-basedheavy-fermion 
ompounds.A similar e�e
t 
an also be des
ribed using strongone-parti
le hybridization between heavy and lightbands [2℄.A natural question arises whether the two-bandHubbard model with one narrow band is a simple toymodel to observe non-Fermi liquid behavior and thewell-known marginal Fermi liquid behavior in parti
-ular [1℄. We re
all that in the marginal Fermi liquid(MFL) theory, the quasiparti
les are strongly damped(Im " � Re " � T ). A

ording to [1℄, the strong damp-ing 
 � T of quasiparti
les (instead of the standarddamping 
 � T 2="F for a Landau�Fermi liquid) 
anexplain numerous experiments in HTSC 
ompounds in-
luding a linear resistivity R(T ) � T for T > TC atoptimal doping 
on
entrations. The MFL pi
ture wasalso proposed to des
ribe the properties of UPt3 dopedby Pd in
luding the spe
i�
 heat measurements [8℄. Wenote that the two-band Hubbard model with one nar-row band is a natural generalization of the well-knownFali
ov�Kimball model [9℄ but 
ontains ri
her physi
sdue to a �nite width of the heavy band (instead of alo
alized level), whi
h allows an interesting dynami
sof the heavy 
omponent.In this paper, we evaluate the damping and trans-port times for heavy and light ele
trons. We test thesetimes for marginality and �nd that for low tempera-tures T < W �h (W �h is the e�e
tive bandwidth for heavyele
trons) and equal densities of heavy and light bandsin a homogeneous state, we have the standard Lan-dau�Fermi liquid behavior with a resistivity R(T ) � T 2in the 
ase of ele
tron�ele
tron s
attering in both 3Dand 2D. For higher temperatures T > W �h (W �h � 50 Kfor m�h � 200me), the heavy band is totally destroyedand heavy parti
les move di�usively in the surroun-ding of light parti
les, while the light parti
les s
at-ter on the heavy ones as if on immobile (stati
) im-purities. For these temperatures, the heavy 
ompo-nent is marginal, but the light one is not. We try to�nd a marginal behavior of the light 
omponent withweak lo
alization 
orre
tions of the Altshuler�Aronovtype [3℄ for the s
attering time of light ele
trons takeninto a

ount. We do not obtain a marginal behaviorof the light 
omponent, but we obtain a very inter-esting anomalous resistivity 
hara
teristi
s, espe
iallyin the 2D 
ase, where the resistivity has a maximum

for T � W �h and a lo
alization tail at higher tempera-tures [10℄. In 3D, the resistivity saturates for T > W �h .Su
h resistivity 
hara
teristi
s 
ould possibly des
ribesome 3D uranium-based heavy-fermion 
ompounds likeUNi2Al3 and some other mixed-valen
e systems in
lud-ing Yb-based heavy-fermion 
ompounds [11; 12℄, wherethe low-density approa
h pursued in this paper 
ouldpossibly des
ribe the real experimental situation. In2D, the behavior of resistivity possibly has some rela-tion to layered manganites, where we deal with two de-generate (eg) 
ondu
ting orbitals (bands) of d ele
tronsof Mn. However, an alternative explanation is possiblefor manganites [13℄. A

ording to it, the resistivity isgoverned by ele
tron tunneling from one metalli
 FMpolaron to a neighboring one via an insulating AFM orPM barrier in the regime of nanos
ale phase separationin the ele
tron subsystem. It would be interesting to
ompare these two me
hanisms for resistivity in layeredmanganites in more detail.We also 
onsider other me
hanisms of heavy massenhan
ement di�erent from the EPE and �nd a verypronoun
ed e�e
t in 3D 
onne
ted with a momentumdependen
e of the self-energy of heavy ele
trons due tothe �heavy�light� intera
tion. In the strong-
ouplinglimit, this e�e
t 
ould provide even larger ratios ofm�h=mh than the EPE does. It leads to negative 
om-pressibility of heavy parti
les and thus reveals the ten-den
y towards phase separation or at least 
harge re-distribution between the bands for a large density mis-mat
h nh � nL, in qualitative agreement with the re-sults in [14℄.In the �nal se
tion, we study the leading SC in-stability that arises in the two-band model in the 2D
ase. The leading instability at low density is proved tobe towards the triplet p-wave pairing. It des
ribes thepairing of heavy ele
trons via polarization of light ele
-trons [15; 16℄ in the framework of the enhan
ed Kohn�Luttinger [4℄ me
hanism of SC and provides rather re-alisti
 
riti
al temperatures in the 2D or layered 
ase,espe
ially for the situation of geometri
ally separatedbands belonging to neighboring layers.
2. THE TWO-BAND HUBBARD MODEL WITHONE NARROW BANDThe Hamiltonian of the two-band Hubbard modelis given by180



ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011 Anomalous resistivity and the origin of heavy mass : : :Ĥ 0 = �th Xhiji� a+i�aj� � tL Xhiji� b+i�bj� �� "0Xi� nhi� � �Xi� (nLi� + nhi�) ++ UhhXi n"ihn#ih + ULLXi n"iLn#iL ++ UhL2 Xi niLnih; (1)where Uhh and ULL are intraband Hubbard intera
-tions for heavy and light ele
trons respe
tively UhL isthe interband Hubbard intera
tion between heavy andlight ele
trons, th and tL are transfer integrals for heavyand light ele
trons, n�ih = a+i�ai� , n�iL = b+i�bi� are thedensities of heavy and light ele
trons on site i with spinproje
tion �, and � is the 
hemi
al potential. We notethat �"0 is the 
enter of gravity of the heavy band, andthe di�eren
e � between the bottoms of the bands isgiven by� = �"0 + WL �Wh2 = Ehmin �ELmin:After the Fourier transformation, we obtainĤ 0 =Xp� "h(p)a+p�ap� +Xp� "L(p)b+p�bp� ++ UhhXpp0q a+p"a+p0#ap�q#ap0+q" ++ ULLXpp0q b+p"b+p0#bp�q#bp0+q" ++ UhL2 Xpp0q��0 a+p�(b+p0�0bp�q�0 )ap0+q� ; (2)where in D dimensions for the hyper
ubi
 latti
e,"h(p) = �2th DXa=1 
os(pad)� "0 � �and "L(p) = �2tL DXa=1 
os(pad)� �are the quasiparti
le energies for heavy and light bands(see Fig. 1), and pa = fpx; py; : : : g are Cartesian pro-je
tions of the momentum. For low densities of heavyand light 
omponents ntotdD = (nh + nL) dD � 1, thequasiparti
le spe
tra are"h(p) = �Wh2 + th(p2d2)� "0 � �;"L(p) = �WL2 + tL(p2d2)� �; (3)

0

µ

WL

εF L

εF h

∆

Wh

−ε0

Fig. 1. Band stru
ture in the two-band model with onenarrow band. Wh andWL are the bandwidths of heavyand light ele
trons, "Fh and "FL are the Fermi ener-gies, � = �"0+(WL�Wh)=2 is the energy di�eren
ebetween the bottoms of the heavy and light bands, with(�"0) being the 
enter of gravity of the heavy band.The 
enter of gravity of the light band is at zero. � is
hemi
al potentialwhereWh = 4Dth andWL = 4DtL are the bandwidthsof heavy and light ele
trons for the D-dimensional hy-per
ubi
 latti
e and d is the intersite distan
e. Hen
e,introdu
ing the bare masses of heavy and light 
ompo-nents mh = 12thd2 ; mL = 12tLd2 (4)and Fermi energies"Fh = p2Fh2mh = Wh2 + �+ "0; "FL = WL2 + �; (5)we �nally obtain the quasiparti
le spe
tra for T ! 0 as"h(p) = p22mh � "Fh; "L(p) = p22mL � "FL: (6)In deriving (4)�(6) we impli
itly assumed that the dif-feren
e between the bottom of the bands � in Fig. 1 isnot too large, and hen
e the paraboli
 approximationfor the spe
tra of both bands is still valid. We notethat there is no one-parti
le hybridization in Hamilto-nians (1) and (2), but there is a strong two-parti
lehybridization UhL2 Xi nhi nLi :We assume that mh � mL, and thereforeWh=WL = mL=mh � 1: (7)We also assume that the strong-
oupling situationUhh � ULL � UhL � WL � Wh o

urs (UhL is largebe
ause in reality light parti
les experien
e strong s
at-tering on the heavy ones as if on a quasiresonan
e level).Finally we 
onsider the simplest 
ase where the densi-ties of the bands are of the same order: nh � nL (in3D, n = p3F =3�2, while in 2D, n = p2F =2�).181
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Fig. 2. T -matri
es Thh, TLL, and ThL for the two-bandmodel with heavy (h) and light (L) ele
trons, Uhh andULL are the intraband Hubbard intera
tions, and UhLis the interband Hubbard intera
tion between heavyand light parti
les3. THE KANAMORI T -MATRIXAPPROXIMATIONA

ording to the renormalization s
heme of Kana-mori, the strong Hubbard intera
tions [17℄ in the 
aseof low ele
tron density (almost empty latti
e) shouldbe des
ribed in terms of the 
orresponding va
uum T -matri
es (see Fig. 2). In the 3D 
ase, the solution ofthe 
orresponding Bethe�Salpeter integral equations inthe va
uum yields for the T -matri
es (see [15�17℄)Thh = Uhhd31� Uhhd3Kva
hh (0; 0) � Uhhd31 + Uhh=8�th ;ThL � UhLd31 + UhL=8�t�hL ; TLL � ULLd31 + ULL=8�tL ; (8)where Kva
hh (0; 0) � � Z d3p(2�)3 mhp2is a Cooper loop for heavy parti
les in the va
uum (theprodu
t of two va
uum Green's fun
tions of heavy par-ti
les in a Cooper 
hannel for the total frequen
y andtotal momentum equal to zero),m�hL = 12t�hLd2 = mhmLmh +mL � mLfor mh � mL is an e�e
tive mass for the T -matrix ThL(for s
attering of light ele
trons on heavy ones) and,a

ordingly, t�hL � tL is an e�e
tive transfer integral;Ud3 plays the role of the zeroth Fourier 
omponent in3D. As a result, for Uhh � ULL � UhL � WL � Wh,we haveThh � 8�thd3; ThL � TLL � 8�tLd3: (9)

The s-wave s
attering length for the Hubbard model[15℄ is de�ned as a = mT=4� = T=8�td2, and hen
eahh = ahL = aLL � d (10)in the strong-
oupling 
ase.Correspondingly, the gas parameter of Galitskiif0 = 2apF=� [18; 19℄ in the 
ase of equal densities ofheavy and light bands nL = nh is given byf0 = (fL0 � 2dpFL=�) = (fh0 � 2dpFh=�) �� 2dpF=� (11)(it is 
onvenient to in
lude the fa
tor 2=� in the def-inition of the gas parameter in 3D). In the 2D, 
asefor strong Hubbard intera
tions and low densities,with logarithmi
 a

ura
y, the va
uum T -matri
es fornL = nh are given by [15; 16℄Thh � Uhhd21 + Uhh8�th �1=d2Z�p2F dp2p2 �
� Uhhd21 + Uhh8�th ln 1p2F d2 ;TLL � ULLd21 + ULL8�tL ln 1p2F d2 ;ThL � UhLd21 + UhL8�tL ln 1p2F d2 ;

(12)
where Ud2 plays the role of the zeroth Fourier 
om-ponent of the Hubbard potential in 2D. As a result,in the strong-
oupling 
ase, the 2D gas parameter ofBloom [20℄ for equal densities nL = nh isf0 = f0L = f0h � 12 ln(1=pFd) : (13)4. EVALUATION OF THE SELF-ENERGIES OFHEAVY AND LIGHT BANDSWe evaluate the imaginary part Im� of self-energiesin the two-band Hubbard model 
onsidering the 
lean
ase (no impurities) and taking only the ele
tron�ele
t-ron s
attering into a

ount. It is important for evalua-tion of the s
attering times for heavy and light ele
tronsand the subsequent 
al
ulation of the resistivity R(T ).In the two-band model (see Fig. 3),�h = �hh +�hL and �L = �LL +�Lh: (14)182
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Σh = Thh ThL

h L

+

h h h hFig. 3. The T -matrix approximation for the self-energyof a heavy parti
le. Thh and ThL are the full T -matri
esin substan
e. The diagrams for �L are similarIn the 3D 
ase, the full T -matri
es in substan
e thatenter in the diagrams for �hh in Fig. 3 have the formThh(
;p) = Uhhd31� Uhhd3Khh(
;p) ; (15)whereKhh(
;p) == Z d3p0(2�)3 1� nFh ("p0+p)� nFh ("�p0)
� "h(p0 + p)� "h(�p0) + i0 (16)is a Cooper loop in substan
e (the produ
t of twoGreen's fun
tions in the Cooper 
hannel), nFh (") is theFermi�Dira
 distribution fun
tion for heavy parti
les,and similarly for the full T -matri
es ThL, TLh, and TLLand Cooper loops KhL, KLh, and KLL.If we expand the T -matrix for heavy parti
les in the�rst two orders in the gas parameter, then a

ording toGalitskii [18℄ we obtainThh(
;p) = 4�ahmh +�4�ahmh �2 (Khh �Kva
hh ) ++ o"�4�ahmh �3 (Khh �Kva
hh )2# ; (17)where 4�ahmh � Uhhd31� Uhhd3Kva
hh (18)
oin
ides with the Kanamori approximation for theva
uum T -matrix andKva
hh (
;p) � Z d3p0=(2�)3
� (p0 + p)22mh � p022mhis the Cooper loop in the va
uum (rigorously speaking,the s
attering length is de�ned by Kva
hh (0; 0), but thedi�eren
e between Kva
hh (
;p) and Kva
hh (0; 0) is pro-portional to the gas parameter ahpFh and is small).Khh in (17) is the full Cooper loop (
ooperon) in sub-stan
e for heavy parti
les given by (16). If we 
onsider

low densities and the energies 
lose to "F , we 
an showthat the terms negle
ted in Thh are small with respe
tto the gas parameter4�ahmh (Khh �Kva
hh ) � ahpFh:The self-energy of heavy parti
les �hh in the �rst twoorders of the gas parameter is given by�hh(p) =Xk Thh(k+p)Gh(k) � 4�ahmh Xk Gh(k)���4�ahmh �2Xk (Khh�Kva
hh )Gh(k)+o(ahpFh)3: (19)The �rst term be
omes 4�ahnh=mh, whi
h is just theHartree�Fo
k 
ontribution. In the se
ond term, we 
anmake an analyti
 
ontinuation i!n ! ! + io for thebosoni
 propagator Khh and the fermioni
 propagatorGh. As a result (bearing in mind that ImKva
hh = 0),we obtain the imaginary part of �(2)hh asIm�(2)hh (";p) = �4�ahmh �2 ��Xk ImKhh("k+";k+p) [nB("k+")+nF ("k)℄ == ��4�ahmh �2 � Z d3k(2�)3 Z d3p0(2�)3 �� �1� nFh (p+ p0 + k) � nFh (�p0)��� [nB("k + ") + nF ("k)℄�� Æ ["+ "h(k) � "h(p+ p0 + k)� "h(�p0)℄ (20)and similarly for the real part of P(2)hh :Re�(2)hh (";p) = �4�ahmh �2 ��Xk [ReKhh("k + ";k+ p) �� ReKva
hh ("k + "p;k+ p)℄�� [nB("k + ") + nF ("k)℄ ; (21)where for the real part of a Cooper loop in va
uum,ReKva
hh ("k + "p;k+ p) = Z d3p0(2�)3 �� P 2mhk2 + p2 � (p0 + k+ p)2 � p02 (22)is 
al
ulated at resonan
e for 
 = "k+"p (or for " = "p),and P is the prin
ipal value. In (20) and (21), nB(
) == 1=(e
=T � 1) and nF (
) = 1=(e
=T + 1) are thebosoni
 and fermioni
 distribution fun
tions, and hen
enB("k + ") + nF ("k) = 12 �
th "k + "2T � th "k2T � : (23)183
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h, σ h, σ

h, σ

h, σ

ThhFig. 4. An ex
hange-type diagram for the self-energy��hh that 
ontains the matrix element a+� a+� a�a� andis therefore absent in the Hubbard modelThe real part of the Cooper loop in substan
e for heavyparti
les is given byReKhh("k + ";k+ p) = Z d3p0(2�)3 �� 1� nFh (p+ p0 + k)� nFh (�p0)"+ "h(k)� "h(p+ p0 + k)� "h(�p0) :The analyti
 
ontinuation for �(2)hh in the 2D 
ase issimilar to the one in the 3D 
ase.We note that for 
=T � 1, the bosoni
 distribu-tion fun
tion nB(
)! 0 and the fermioni
 distributionfun
tion nF (
) ! �(
) is the step-fun
tion. Hen
eat low temperatures Im�hh and Re�hh a
quire thestandard form [18; 19; 21℄. In fa
t for low tempera-tures T � Wh � WL, the most 
onvenient way isto evaluate Im�(2)hh (") for T ! 0, whi
h yields thestandard Fermi-liquid result Im�(2)hh (") � "2, and thenmake the temperature averaging with the 
orrespond-ing fermioni
 distribution fun
tion nF ("). Therefore," � T for the s
attering times of the quasiparti
les.The evaluation of �hL, �Lh, and �LL at low temper-atures in the �rst two orders in the gas parameter issimilar to the evaluation of �hh in both 3D and 2D
ases.But for higher temperatures, we should keep inmind that nB(
) ! T=
 for T � 
. The fermioni
distribution fun
tion is �washed out� by temperature.A

ordingly, nF (
) = (1�
=2T )=2. These approxima-tions are important when we evaluate Im� for highertemperatures T > Wh [22℄.We note that in 
ontrast to the model of a slightlynonideal Fermi gas (see [18; 19; 21℄), the Hubbardmodel does not 
ontain an ex
hange-type diagram for�hh (see Fig. 4) be
ause the T -matrix in this diagram
orresponds to the in
oming and outgoing heavy par-ti
les with the same spin proje
tion a+� a+� a�a� , whilethe Hubbard model 
ontains only the matrix elementsa+" a+# a#a".

We also note that when we expand the T -matrixup to se
ond order in the gas parameter, we impli
itlyassume that the T -matrix itself does not have a sim-ple pole stru
ture of the type of a bosoni
 propagator.This is the 
ase for a partially �lled band nhdD � 1and the low-energy se
tor where 0 < " < Wh � Uhh.E�e
tively, we negle
t the latti
e in this expansion.However, taking the latti
e into a

ount produ
estwo poles for the full (unexpanded) T -matrix of heavyparti
les in (15). The �rst one is 
onne
ted with theso-
alled antibound state predi
ted by Hubbard [17℄and Anderson [23℄ and 
orresponds to a large positiveenergy " � Uhh > 0: (24)Physi
ally, it des
ribes an antibound pair of two heavyparti
les with the energy Uhh on the same latti
e site.It therefore re�e
ts the presen
e of the upper Hubbardband already at low densities nhdD � 1. But the inten-sity of the upper Hubbard band is small at low densitiesand for the low-energy se
tor.A se
ond pole in the full T -matrix found by in [24℄
orresponds to a negative energy and in the 2D 
aseyields " � �2"Fh � 2"2FhWh < 0: (25)It des
ribes the bound state of two holes below thebottom of the heavy band (" < �2"Fh). Therefore,it has zero imaginary part and does not 
ontribute toImT . (This mode produ
es nonanalyti
 
orre
tions toRe�hh � j"j5=2 in 2D). We 
an negle
t these two 
on-tributions for the self-energy when we 
al
ulate the ef-fe
tive masses and s
attering times in the forth
omingse
tions. The more rigorous approa
h to the general-ization of Galitskii results for the self-energy [18℄ tothe 
ase of �nite temperatures (whi
h is important forkineti
 appli
ations) will be a subje
t of a separate pub-li
ation.5. ELECTRON POLARON EFFECTFor T ! 0, the Green's fun
tions for heavy andlight ele
trons are given byGh(!;q) = 1! � "h(q)� �h(!;q) �� Zh! � "�h(q) + io ;GL(!;q) � ZL! � "�L(q) + io ; (26)where"�h(q) = q2 � p2Fh2m�h ; "�L(q) = q2 � p2FL2m�L (27)184
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le spe
tra, andZ�1h = 0�1� �Re�(2)h (!;q)�! ����� !!0q!pFh1A ;Z�1L = 0�1� �Re�(2)L (!;q)�! ����� !!0q!pFL1A (28)are Z-fa
tors of heavy and light ele
trons. Substitu-tion of the leading 
ontribution from Re�(2)hL(!;q) (de-s
ribed by a formula similar to (21)) to Re�(2)h (!;q)in (28) yieldslim!!0q!pFh � Re�(2)hL(!;q)�! � ��4�ahLm�hL �2 ZZ dDp(2�)D�� dDp0(2�)D �1�nFL(p0+p)�nFh (�p0)�nFL(p�q)["L(p�q)�"L(p0+p)�"h(�p0)℄2 ; (29)where nB(
)! 0, nF (
) is a step fun
tion for 
=T �� 1, ahL � d in 3D is 
onne
ted with the va
uumT -matrix ThL and m�hL � mL. Repla
ingdDp(2�)D dDp0(2�)Din (29) with N2L(0) d"L(p) d"L(p0) (where NL(0) is thedensity of states for light parti
les), and taking intoa

ount that "L(p � q) < 0 while "L(p0 + p) > 0, we
an easily verify that for mh � mL (or equivalently for"FL � "Fh) this expression 
ontains a large logarithm(see [2℄). Hen
e, the Z-fa
tor of the heavy parti
les inthe leading approximation is given byZ�1h � 1 + 2f20 ln mhmL ; (30)where f0 = 2pFLd=� is the gas parameter in 3D andequivalently f0 � 1=2 ln(1=pFLd) in 2D. We note thatthe 
ontribution to Zh from Re�(2)hh does not 
ontaina large logarithm. Correspondingly, for the e�e
tivemass of a heavy parti
le in (26), a

ording to [19; 21℄,we obtainmhm�h = Zh0�1 + � Re�(2)hL ("h(q);q)�"h(q) �����"h(q)!01A : (31)Therefore, as usual, the Z-fa
tor 
ontributes to the en-han
ement of the heavy mass:m�hmh � Z�1h � �1 + 2f20 ln mhmL� : (32)The analogous 
al
ulations for ZL with Re�Lh andRe�LL yields only m�L=mL � Z�1L � (1 + f20 ). If the

e�e
tive parameter 2f20 ln(mh=mL) > 1, we are in thesituation of a strong ele
tron polaron e�e
t. To ob-tain the 
orre
t polaron exponent in this region of pa-rameters diagrammati
ally, we should at least sum upthe so-
alled maximally 
rossed diagrams for Re�hL.But the exponent 
an also be evaluated in a di�erentte
hnique, based on the nonadiabati
 part of the many-parti
le wave fun
tion [2℄ that des
ribes a heavy par-ti
le dressed in a 
loud of ele
tron�hole pairs of lightparti
les. This yieldsm�hmh � Z�1h = �mhmL�b=(1�b) ; (33)where b = 2f20 . For b = 1=2 or, equivalently, for f0 == 1=2 (as for the 
oupling 
onstant of the s
reenedCoulomb intera
tion in the RPA s
heme), we are in theso-
alled unitary limit. In this limit, a

ording to [2℄,the polaron exponent is b1� b = 1; (34)and hen
e m�h=mh = mh=mL (35)or, equivalently,m�h=mL = (mh=mL)2: (36)Thus, starting from the ratio between the bare massesmh=mL � 10 (obtained, for instan
e, in LDA approxi-mation), we �nish in the unitary limit with m�h=mL �� 100 (due to the many-body EPE), whi
h is a typi
alratio for uranium-based heavy-fermion (HF) systems.5.1. Other me
hanisms of heavy massenhan
ementWe note that rigorously speaking (see (31)), the mo-mentum dependen
e of Re�(2)hL("h(q);q) is also veryimportant for the evaluation of the e�e
tive mass.Very preliminary estimates by Prokof'ev and a presentauthors show that in the zeroth approximation inmL=mh, in the 3D 
ase 
lose to the Fermi surfa
e (for"h(q) = (q2 � p2Fh)=2mh ! 0 and q ! pFh),Re�(2)hL("h(q);q) � 2�4�ahLmL �2 �� Z d3p(2�)3 �LL(0;p)nFh (p� q); (37)where�LL(0;p) = Z d3p0(2�)3 nFL("p0+p)� nFL("p0)"L(p0)� "L(p0 + p) (38)185
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 polarization operator for light parti
les.Having in mind that jp�qj < pFh and q � pFh in (37),we 
an see that p! 0 and use the asymptoti
 form for�LL(0;p) at small p � pFL (if the densities of heavyand light bands are not very di�erent and pFL � pFh):limp!0�LL(0;p) = NL(0)�1� p212p2FL� ; (39)where NL(0) = mLpFL=2�2 is the density ofstates for light ele
trons in 3D. The substitutionof limp!0�LL(0;p) from (39) in (37) yieldsRe�(2)hL("h(q);q) � Re�(2)hL(0; pFh)�� (q2 � p2Fh)2mh f209 mhnhmLnL ; (40)where f0 � 2dpFL=� is the 3D gas parameter and nh == p3Fh=3�2 and nL = p3FL=3�2 are the densities ofheavy and light bands.The �rst term in (40) des
ribes Re�(2)hL("h(q);q) onthe Fermi surfa
e (for "h(q) = 0 and q = pFh):Re�(2)hL(0; pFh) � 4f203 nhnL �� "FL�1� 2p2Fh15p2FL� > 0 for pFh � pFL: (41)It is a renormalization of the e�e
tive 
hemi
al poten-tial of the heavy band in the se
ond order in the gasparameter due to the intera
tion of light and heavyparti
les.We note that a

ording to [18; 19℄, the renormalizedheavy-parti
le spe
trum is given by"�h(q) = � q22mh � �effh �+ 2�mL nL(�) ahL ++Re�(2)hL("h(q);q) = q2 � p2Fh2m�h ; (42)where the s
attering length ahL � d, the e�e
tive 
hem-i
al potential �effh = �h +Wh=2 + "0 is 
ounted fromthe bottom of the heavy band, and the Hartree�Fo
kterm (2�=mL)nL(�) ahL represents the 
ontribution tothe self-energy Re�(1)hL in the �rst order in the gas pa-rameter. From (42), 
olle
ting the terms proportionalto "h(q) = (q2 � p2Fh)=2mh, we obtainq2 � p2Fh2m�h = "h(q)�1� f209 mhnhmLnL� : (43)Correspondingly, the e�e
tive mass of a heavy parti
leis given by

mhm�h =  1 + � Re�(2)hL("h(q);q)�"h(q) �����"h!0! == 1� f209 mhnhmLnL : (44)As a result, we obtain a mu
h more dramati
 en-han
ement of m�h than in the EPE, whi
h yields onlymh=m�h � �1� 2f20 ln(mh=mL)� due to the Z-fa
tor ofa heavy parti
le. For mh=mL � 10, the 
ontributionto m�h in (44) be
omes larger than the 
ontributionfrom the Z-fa
tor in (32) for a large density mismat
hnh � 5nL between the heavy and light bands. We notethat the 
ontribution to m�h=mh from Re�(2)hh ("h(q);q)asso
iated with the �heavy�heavy� intera
tion is smallin 
omparison with the 
ontribution tom�h from Re�(2)hL(whi
h is asso
iated with the �heavy�light� intera
tion)due to the smallness of the ratio between the baremasses: mL=mh � 1. We 
an now 
olle
t the termsthat do not depend on "h(q) in (42). This gives thee�e
tive 
hemi
al potential of heavy ele
trons�effh = p2Fh2mh + 2�mL nL(�) ahL +Re�(2)hL(0; pFh): (45)We note that the 
ontributions to �effh from theHartree�Fo
k term (2�=mh)nh(�) ahh of heavy ele
-trons and from Re�(2)hh (0; pFh) (whi
h is 
onne
tedwith �heavy�heavy� intera
tions) are small in 
ompar-ison with �heavy�light� 
ontributions due to the small-ness of the ratio between the bare masses: mL=mh � 1.In 2D, the stati
 polarization operator is�LL(0;p) = mL2� 0�1�Res1� 4p2FLp2 1A ;and hen
e for p < 2pFL, �LL(0;p) = mL=2� does not
ontain any dependen
e on p2, in 
ontrast to the 3D
ase. Thus, the EPE in 2D is a dominant me
hanismof the heavy mass enhan
ement.A more a

urate evaluation of the momentum de-penden
e of Re�(2)hL("h(q);q) for the larger densities inthe bands together with the summation of the higher-order 
ontributions to Re�hL will be a subje
t of aseparate investigation.We note that for the light parti
les, the momen-tum dependen
es of Re�(2)Lh and Re�(2)LL yield onlym�L=mL � 1 + f20 , and hen
e the light mass is notstrongly enhan
ed in both 3D and 2D 
ases.5.2. The tenden
y towards phase separationWe also note that for larger densities of the heavyband nh � nC � 1 (and large di�eren
e in densi-186
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e ntotdD == (nh + nL) dD � 1), another me
hanisms of heavymass enhan
ement be
ome more e�e
tive. Namely, forthese densities and a large mismat
h between nh andnL, we 
ould have a tenden
y towards phase separationin a two-band model [14℄.We note that if we analyze the e�e
tive 
hemi
alpotential of the heavy band in (45) in the limit of thelarge density mismat
h nh � nL in 3D and evaluatethe partial 
ompressibility (the sound velo
ity of heavyparti
les squared)��1hh � 
2h = nhmh ��h�nh ;we already see the tenden
y towards phase separation(towards negative 
ompressibility) in the strong-
oup-ling limit and low densities for f20mhpFh=mLpFL & 1,in qualitative agreement with the results in [14℄. Amore 
areful analysis of all the partial 
ompressibili-ties in the system at larger f0 and a large mismat
hbetween the densities will be reported elsewhere.In the end of this se
tion, we emphasize that thephysi
s of the EPE and evaluation of Zh in [2℄ are tosome extent 
onne
ted with the well-known results ofNozieres et al. [25℄ on infrared divergen
es in the de-s
ription of the Brownian motion of a heavy parti
le ina Fermi liquid and on the infrared divergen
es for theproblem of X-ray photoemission from the deep ele
-tron levels, as well as with the famous results of An-derson [26℄ on the orthogonality 
atastrophe for the 1D
hain of N ele
trons under the addition of one impurityto the system.Finally, we mention a 
ompeting me
hanism pro-posed in [27℄ �rst for an explanation of the e�e
tivemass in praseodymium (Pr) and in some uranium-based mole
ules like U(C8H8)2. Later on, Fulde et al.[27℄ generalized this me
hanism to some other uranium-based HF-
ompounds with lo
alized and delo
alized or-bitals. This me
hanism has a quantum 
hemi
al natureand is based on the s
attering of 
ondu
tive ele
tronson lo
alized orbitals as if on two-level systems. Themass enhan
ement is here governed by non-diagonalmatrix elements of the Coulomb intera
tion, whi
h arenot 
ontained in the simple version of a two-band modelin (1). In this 
ontext, we also mention [28℄, where theauthors 
onsidered the mass enhan
ement of 
ondu
-tivity ele
trons due to their s
attering on lo
al f -levelssplitted by the 
rystalline �eld.We note that dHvA experiments [29℄ together withARPES experiments [30℄ and thermodynami
 measure-ments [31℄ are the main instruments to re
onstru
tthe Fermi surfa
e for HF 
ompounds and to deter-

mine the e�e
tive mass (thus verifying the predi
tionsof di�erent theories regarding the mass enhan
ementin uranium-based HF 
ompounds).6. TEMPERATURE DEPENDENCE OF THERESISTIVITY6.1. Imaginary parts of self-energies in thehomogeneous 
ase for low temperaturesT <WhIn the homogeneous 
ase, after averagingIm�(2)("(q);q) in (20) with the fermioni
 distri-bution fun
tion nF ("(q)=T ), we obtain the followingexpression for Im�(2)(T ) of heavy and light ele
tronsat low temperatures T � Wh and for equal densitiesnh = nL in the heavy and light bands:Im�(2)LL(T ) = f20 T 2"FL ;Im�(2)Lh(T ) = f20 T 2"Fh mhmL (46)and a

ordingly:Im�(2)hh (T ) = f20 T 2"Fh ; Im�(2)hL(T ) = f20 T 2"Fh : (47)It follows that all Im�(2)(T ) behave in the standardFermi-liquid fashion Im�(2)(T ) � T 2.Moreover, Im�(2)Lh(T )� Im�(2)LL(T ), and hen
eIm�(2)L (T ) = Im�(2)Lh(T ) + Im�(2)LL(T ) �� Im�(2)Lh(T ): (48)We 
an now estimate the Drude 
ondu
tivity for thelight band: �L = nLe2�LmL ; (49)where a naive estimate for �L yields
L = 1=�L = Im�(2)L (T ) = Im�(2)Lh(T ); (50)when
e 1=�L � 1=�Lh. Correspondingly, we obtain the
ondu
tivity�L � �Lh = nLe2�LhmL = nLe2f20T 2 "FhmLmhmL == nLe2f20 p2Fh �"FhT �2 : (51)Introdu
ing the minimal Mott�Regel 
ondu
tivities�min = �e2~ � pF in 3Dand �min = �e2~ � in 2D (52)187
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ase ofequal densities of heavy and light bands, nh = nL, weobtain �L � �Lh = �minf20 �"FhT �2 : (53)We note that, stri
tly speaking, the nondiagonal 
on-du
tivity �Lh (whi
h is de�ned by the s
attering oflight ele
trons on the heavy ones) is �nite only due toan a

ount of umklapp pro
esses:p1L + p2h = p3L + p4h +K; (54)where K � �=d is the wave ve
tor of the re
ipro
al lat-ti
e. For pFh � pFL, this means that densities in thelight and heavy bands 
annot be very small (otherwisethe 
ondu
tivity �Lh would be exponentially large).Hen
e, within the a

ura
y of our estimates,�Lh = �minf20 �WhT �2 : (55)The situation with the 
ondu
tivity of the heavy bandis a slightly more tri
ky sin
e Im�(2)hh (T ) � Im�(2)hL(T )and hen
e �hh � �hL. However, for a 
rude estimate,we 
an again 
onsider only the nondiagonal part of the
ondu
tivity �hL and take umklapp pro
esses (54) intoa

ount. Then�hL � �Lh � �minf20 �WhT �2 : (56)We note that estimates (56) for �Lh and �hL 
an be ver-i�ed using the exa
t solution of 
oupled kineti
 equa-tions for heavy and light parti
les with an a

ount ofumklapp pro
esses [22℄.The total resistivity is given byR = 1�h + �L � f20�min � TWh�2 : (57)It behaves in a Fermi-liquid manner R(T ) � T 2 for lowtemperatures T < Wh. For m�h � mh, we 
an repla
eWh with W �h in (56) and (57).6.2. The 
hemi
al potential at highertemperatures T > W �hIf T > W �h , the heavy band is totally destroyed(more pre
isely, it is destroyed for f20T = W �h as we seeshortly). To be a

urate, we �rst 
al
ulate the e�e
tive
hemi
al potential �effh = �+Wh=2 + "0 in (3) in thissituation.Generally speaking, nh + nL = ntot = 
onst,i.e., only the total density is 
onserved. In our 
ase,

however, for large di�eren
e between the bare massesmh � mL, ea
h density of the band is 
onserved pra
-ti
ally independently, nh � 
onst and nL � 
onst. Forheavy parti
les, all the states in the band are uniformlyo

upied at these temperatures. For T > Wh (assum-ing m�h=mh � 1), the e�e
tive 
hemi
al potential of theheavy parti
les is given by�effh = �+ Wh2 + "0 � �T ln� 1nhdD� : (58)Hen
e, we have the Boltzman behavior for �effh . TheFermi�Dira
 distribution fun
tion for heavy parti
les isnh(") = 1exp p2 � 2mh � �effhT !+ 1 �� 1�1 + p22mhT � exp ��effhT !+ 1 �� exp(�effh =T )1 + p22mhT � exp �effhT ! = 
onst: (59)For light parti
les for the temperatures Wh � T �� WL, be
ause mh � mL, the e�e
tive 
hemi
alpotential has approximately the same position as forT = 0. Indeed, for �Leff = �+WL=2 we havenL(") = 1exp p2 � 2mL � �effhT !+ 1 �� 1exp�p2 � p2FL2mLT �+ 1 �� �� p22mL � "FL� ; T � "FL; (60)and hen
e the e�e
tive 
hemi
al potential of light par-ti
les is �Leff � "FL: (61)6.3. Evaluation of the imaginary parts of theself-energies at higher temperaturesW �h < T <WLFor light parti
les, Im�(2)LL(T ) = f20T 2=WL does not
hange. ButIm�(2)Lh(T ) = f20WhmhmL � Im�(2)LL(T ) (62)188
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ribes almost elasti
 s
attering of light ele
-trons on the heavy ones as if on immobile (stati
) im-purities in the zeroth order in Wh=WL. We note thatWhmh = W �hm�h. For heavy ele
trons, we should a
-
ount for the bosoni
 
ontribution nB(
) � T=
 andthe fermioni
 
ontribution nF (
) � (1 � 
=2T )=2 for
=T � 1 to Im�(2) and thus to s
attering times. Thisyields Im�(2)hh (T ) = f20Wh; (63)whi
h des
ribes s
attering of heavy ele
trons on ea
hother in the situation when they uniformly o

upy theheavy band and 
an transfer to ea
h other only an en-ergy �Wh [2℄. Be
ause m�h � mh, we 
an repla
e Whwith W �h in (63). At the same time, for s
attering ofheavy parti
les on the light ones, we haveIm�(2)hL(T ) = f20T � Im�(2)hh (T ); (64)whi
h des
ribes the marginal Fermi-liquid behavior fordi�usive motion of heavy ele
trons in the surroundingof light ele
trons.We note that to derive (64) for WL > T > Whand in the zeroth order in the mass ratio mL=mh � 1,we rewrote expression (20) for Im�(2)hL("h(p);p) in theformIm�(2)hL("h(p);p) = ���4�ahLmL �2N2L(0)�� ZZ d"Lp0d"LkÆ("Lk � "Lp0)nF ("Lk)�� [1� nF ("Lp0)℄ ; (65)whi
h after the Æ-fun
tion integration yieldedIm�(2)hL("h(p);p) � �f20 Z d"LknF ("Lk)�� [1� nF ("Lk)℄ �� �f20 1Z�1 d" e"=T(1 + e"=T )2 � f20T: (66)6.4. Resistivity for T >W �h in the 3D 
aseFrom the previous se
tion, we have the s
atteringtimes of heavy and light parti
les for T > W �h given by1�L � 1�Lh = f20WhmhmL : (67)We note that f20Whmh=mL = f20W �hm�h=mL � f20WLin (67). In the same time,1�h � 1�hL = f20T; (68)

and hen
e the heavy 
omponent is marginal, but thelight one is not. The light band 
ondu
tivity is givenby �L = nLe2�LmL � nLe2�LhmL = �minf20 : (69)For the heavy band, the Drude formula must be mod-i�ed �nh=�T � W �h=T be
ause of T > W �h . We thenimmediately obtain�h = �minf20 �W �hT �2 : (70)As a result, the resistivity isR = 1�h + �L = f20�min (T=W �h )21 + (T=W �h )2 == f20�min 11 + (W �h=T )2 : (71)For T > W �h , the resistivity R � f20 =�min saturates.We thus obtain a residual resistivity at high tempera-tures due to the 
ondu
tivity of the light band. This isa very nontrivial result.6.5. Dis
ussion of the obtained results forresistivity at higher temperaturesWhen W �h < 1=�h or, equivalently, f20T > W �h , the
oherent motion in the heavy band is totally destroyed.The heavy parti
les begin to move di�usively in the sur-rounding of light parti
les. In this regime, rigorouslyspeaking, the diagram te
hnique 
an be used only forlight parti
les and not for heavy ones.But the exa
t solution of the density matrix equa-tion obtained in [2℄ shows that 1=�hL is qualitatively thesame for f20T > W �h as in our estimates, and the inverses
attering time 1=�Lh is also qualitatively the same dueto its physi
al meaning (s
attering of light ele
tronson heavy ones as if on immobile impurities). That iswhy �h and �L and hen
e R(T ) behave smoothly forf20T �W �h .6.6. An idea of a hidden heavy band for HTSCThe resistivity R(T ) in 3D a
quires a form (seeFig. 5) that is frequently obtained in uranium-based HF(for example, UNi2Al3). We note that R(T ) mimi
s alinear behavior in the 
rossover region of intermediatetemperatures T �W �h between T 2 and 
onst (with theresistivity saturating for T � W �h ). The same holds189
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Fig. 5. The resistivity R(T ) in the two-band model in3Dfor magnetoresistan
e in the well-known experimentsof P. L. Kapitza,R(H)�R(0)R(H) � (
C�)21 + (
C�)2 �� ( (
C�)2; 
C� < 1;
onst; 
C� > 1; (72)where 
C is the 
y
lotron frequen
y.In the 
rossover region 
C� � 1, the magnetore-sistan
e mimi
s a behavior linear in 
C . It then fol-lows that for T > W �h , heavy ele
trons are marginal,but light ele
trons are not. The natural questionarises whether it is possible to make light ele
tronsalso marginal and as a result to obtain the resistiv-ity su
h that R(T ) � T is marginal for T > W �h , butR(T ) � T 2 for T < W �h . Su
h resistivity 
hara
teris-ti
s 
ould serve as an alternative s
enario for the ex-planation of the normal properties in optimally dopedor slightly overdoped HTSC materials if we assume theexisten
e of a hidden heavy band with a bandwidthsmaller than the super
ondu
tive 
riti
al temperatureTC : W �h < TC (see Fig. 6). To obtain the Fermi-liquidbehavior R(T ) � T 2 at low temperatures, we shouldthen suppress SC by a large magneti
 �eld H to low
riti
al temperatures TC(H) < W �h .7. WEAK-LOCALIZATION CORRECTIONS INTHE 2D CASEThe tenden
y towards marginalization of the light
omponent manifests itself in the 2D 
ase. We knowthat logarithmi
 
orre
tions [3℄ to the 
lassi
al Drudeformula for 
ondu
tivity o

ur in 2D due to weak lo-
alization e�e
ts. But a

ording to our ideology, heavy

R

∼ T

∼ T 2

W ∗

h TC TFig. 6. Resistivity R(T ) in a super
ondu
ting materialwith a hidden heavy band for W �h < TC (W �h is ane�e
tive width of the heavy band)
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Fig. 7. Multiple s
attering of a light parti
le on heavyones in the interval between the s
attering of the lightparti
le on another light parti
les. L' is the di�usivelength, l is the elasti
 length, DL and vFL are the dif-fusion 
oe�
ient and the Fermi velo
ity for light ele
-trons, and �Lh and �' are the elasti
 time for s
atteringof light ele
trons on heavy ones and the inelasti
 (de-
oheren
e) timeparti
les play the role of impurities for s
attering oflight parti
les on them. That is why the 
orre
t ex-pression for the 
ondu
tivity of the light band �L inthe absen
e of spin-orbital 
oupling is given by�lo
L = �minf20 �1� f20 ln �'� � ; (73)where, a

ording to the weak lo
alization theory in 2D,� is the elasti
 time and �' is the inelasti
 (de
oheren
e)time. In our 
ase,� = �ei = �Lh; while �' = �ee == �LL; and �LL � �Lh; (74)where �ei and �ee are the times asso
iated with the s
at-tering of ele
trons on impurities and other ele
trons,respe
tively. Hen
e, between two s
atterings of a lightparti
le on another light one, it s
atters on heavy par-ti
les many times (see Fig. 7). As a result, the motion190
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les be
omes mu
h slower (also of the dif-fusive type) and two 
hara
teristi
 lengths appear inthe theory: the elasti
 lengthl = vFL�Lh (75)and the di�usive lengthL' =pDL�' ; (76)where DL is the di�usion 
oe�
ient for light ele
tronsand vFL is the Fermi velo
ity for light ele
trons.That is why in a more rigorous theory, a

ordingto [3℄ we should repla
e the inverse s
attering time1�LL(") � "Z0 d! !Z0 d"0 1Z0 a2LLm2L q dq(vFLq)2 = f20 T 2WL (77)with 1~�LL(") � "Z0 d! !Z0 d"0 1Z0 a2LLm2L q dq(i"0 +DLq2)2 ; (78)where the s
attering length aLL � d. In fa
t, we re-pla
e vFLq with the �
ooperon� pole (i"0 + DLq2) inAltshuler�Aronov terminology. Hen
e, the 
hara
te-risti
 wave ve
tors in the evaluation of ~�LL are q ��p"=DL, where " is an energy variable. The Altshu-ler�Aronov e�e
t in 2D yields1~�LL(") = f20 "NL(0)DL ; (79)where NL(0) = mL=2� is the 2D density of states forlight ele
trons. For the di�usion 
oe�
ient, we 
an usethe estimate DL = v2FL�Lh (80)and hen
e, having in mind that a

ording to (68) theinverse s
attering time is 1=�Lh(") = f20Whmh=mL �� f20WL, we obtain1~�LL(") � f20 f20WLmLv2FL=� " � f40 ": (81)Therefore, 1=~�LL also be
omes marginal for " � T . Forlogarithmi
 
orre
tions to the 
ondu
tivity, we have�'� = ~�LL�Lh = WLf20T � 1; (82)and hen
e �lo
L = �minf20 �1� f20 ln WLf20T � : (83)

For f20T �Wh, ln(WL=f20T ) � ln(WL=Wh) andZh = �lo
L�L = 1� f20 ln WLWh : (84)Therefore, for f20T � Wh, an enhan
ement of theheavy-parti
leZ-fa
tor due to the EPE and lo
alizationof light parti
les due to Altshuler�Aronov 
orre
tionsare governed by the same parameter f20 ln(mh=mL)in 2D.7.1. Justi�
ation of the expression forlo
alization 
orre
tions in 2DIn prin
iple, the impurities (heavy parti
les) aremobile and have some re
oil energy. That is why theformula �lo
L =�L = 1� f20 ln(WL=f20T ) should be justi-�ed (at least as regards the temperature exponent un-der logarithm, T or T�). For the justi�
ation, we needto estimate the loss of energy by one light parti
le be-fore it 
ollides with another light parti
le. The numberof 
ollisions with heavy parti
les between the s
atteringof a light parti
le on light one is L'=l. The maximalloss of energy in one 
ollision is W �h . The total loss isW �hL'=l = W �hpWL=T . The energy of light parti
leitself is T . This means that for W �hpWL=T < T or,equivalently, forT > W �h � WLf20W �h �1=3 ; (85)the loss of energy is small and heavy parti
les 
an beregarded as immobile impurities. Hen
e, the exponent� under the logarithm is 1.7.2. Resistivity in the 2D 
aseQualitatively, the resistivity behaves in 2D asR = f20�min 1(W �h=T )2 + 1� f20 ln(WL=f20T ) : (86)It has a maximum at Tmax � W �h=f0 and a lo
aliza-tion tail at higher temperatures (see Fig. 8). It wouldbe very interesting to �nd the magnetoresistan
e in the2D or layered 
ase in a two-band model with one narrowband for a strong quantizing magneti
 �eld H orientedperpendi
ular to the layers [33℄.8. SUPERCONDUCTIVITY IN THETWO-BAND MODEL WITH ONE NARROWBANDIn the end of this paper, we mention brie�y that theleading SC me
hanism at the low ele
tron density 
or-responds to p-wave pairing and is governed, espe
ially191
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Fig. 9. The leading 
ontribution to the e�e
tive inter-a
tion Veff for the p-wave pairing of heavy parti
les viapolarization of light parti
les. The open 
ir
les standfor the va
uum T -matrix ThLin 2D, by the pairing of heavy ele
trons via polarizationof light ones (see Fig. 9 and [15; 16℄) in the frameworkof enhan
ed Kohn�Luttinger me
hanism [4℄. The 
or-responding T
 depends on the relative doping of thebands nh=nL nonmonotoni
ally and has a broad andpronoun
ed maximum for nh=nL = 4 in 2D, where it
ould rea
h the experimentally feasible values realis-ti
 for layered ruthenates Sr2RuO4 [39℄ and uranium-based heavy-fermion 
ompounds like U1�xThxBe13 [38℄as well as for layered di
hal
ogenides CuS2, CuSe2and semimetalli
 superlatti
es InAs�GaSb, PbTe�SnTewith geometri
ally separated bands belonging to di�er-ent layers [37℄.

In the situation of a weak EPE for f20 lnmh=mL << 1, Zh � mh=m�h � 1 and "�Fh � "Fh, and a

ordingto [15; 16℄, the maximal TC1 is given byTC1 � "Fh exp�� 12f20mh=mL� : (87)Therefore, the e�e
tive gas parameter that governsTC1 in 
ase of a weak EPE is f0(mh=mL)1=2. At thesame time, in the unitary limit for f0 ! 1=2 andm�h=mL � (mh=mL)2, the estimates show thatTC1 � "�Fh expf�1=2f20g � "�Fh expf�2g: (88)It follows that for "�Fh � 50 K, TC1 
an rea
h 5 K,whi
h is quite ni
e.When we in
rease the density of the heavy bandand 
ome 
loser to half-�lling (nh ! 1), the d-waveSC paring (as in UPt3) be
omes more bene�
ial inthe framework of the spin-�u
tuation theory in theheavy band [40; 41℄. The more exoti
 me
hanisms of SCin heavy-fermion 
ompounds in
luding odd-frequen
ypairing [5; 42℄ are also possible.We note that in the 2D 
ase, where only the EPEe�e
t is present for the mass enhan
ement of heavyele
trons, the restri
tions on the homogeneous 
ase aremilder than in 3D.9. DISCUSSION AND CONCLUSIONSWe analyzed 
hara
teristi
 features of the two-band Hubbard model with one narrow band taking theele
tron�ele
tron s
attering into a

ount in the 
lean
ase (no impurities) for low ele
tron densities. We 
on-sidered the ele
tron polaron e�e
t and other me
ha-nisms of heavy mass enhan
ement related to the mo-mentum dependen
e of self-energies.In the 3D 
ase, the dominant me
hanism of heavymass enhan
ement is related to the momentum depen-den
e of the real part of a �heavy�light� self-energyand leads to a heavy mass renormalization that is lin-ear in the mass ratio. In the 2D 
ase, the dominantme
hanism of heavy mass enhan
ement is the EPE,whi
h leads to a logarithmi
 renormalization of theheavy parti
le Z-fa
tor. In the unitary limit, if we startwith mh=mL � 10 for the bare-mass ratio in the LDAs
heme, we 
an �nish with m�h=mL � 100 due to many-body e�e
ts, whi
h is quite natural for uranium-basedHF systems.The important role of the interband (�heavy�light�)Hubbard repulsion UhL for the formation of a heavymass m� � 100me in a two-band Hubbard model wasalso emphasized in [34℄ for the LiV2O4 HF 
ompound.192
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h nh � nL, we
an see the tenden
y towards negative 
ompressibil-ity in the heavy band in the strong-
oupling limitf20mhpFh=mLpFL & 1 already at low densities, whi
h
an lead to a redistribution of 
harge between the bandsand possibly to nanos
ale phase separation in qual-itative similarity with the results in [14℄. The ten-den
y towards phase separation at low ele
tron �ll-ings also manifests itself for the asymmetri
 Hub-bard model (whi
h involves Hubbard repulsion betweenheavy and light ele
trons) in the limit of strong asym-metry: th � tL [35℄ between heavy and light band-widths.For equal densities of the heavy and light bands,the resistivity in a homogeneous state behaves in aFermi-liquid fashion: R(T ) � T 2 at low temperaturesT < W �h in both 3D and in 2D 
ases (where W �h is thee�e
tive bandwidth of heavy parti
les).For higher temperatures T > W �h , when a 
oher-ent motion of parti
les in the heavy band is totallydestroyed, the heavy parti
les move di�usively in thesurrounding of light parti
les, while the light parti
less
atter on the heavy ones as if on immobile (stati
) im-purities. The resistivity saturates in the 3D 
ase, whi
his typi
al for some uranium-based HF-
ompounds in-
luding UNi2Al3.In 2D, due to weak-lo
alization 
orre
tions of theAltshuler�Aronov type, the resistivity at higher tem-peratures has a maximum and then a lo
alizationtail. Su
h behavior 
ould also be relevant for someother mixed-valen
e systems possibly in
luding lay-ered manganites. A similar behavior with a metal-like low-temperature dependen
e of the resistivity forT < 130 K and the insulator-like high-temperaturedependen
e was also observed in layered intermetalli
alloys Gd5Ge4, where the authors of [36℄ assume theexisten
e of a strongly 
orrelated narrow band at lowtemperatures.We brie�y dis
uss the SC instabilities that arise inthis model at low ele
tron densities. The leading in-stability of the enhan
ed Kohn�Luttinger type 
orre-sponds to p-wave pairing of heavy ele
trons via po-larization of light ele
trons. In the quasi-2D 
ase,TC 
an rea
h experimentally realisti
 values alreadyat low densities for layered di
hal
ogenides CuS2 andCuSe2 and semimetalli
 superlatti
es InAs�GaSb andPbTe�SnTe with geometri
ally separated bands be-longing to neighboring layers [37℄. We note that thep-wave SC is widely dis
ussed in 3D heavy-fermion sys-tems like U1�xThxBe13 [38℄ and in layered ruthenatesSr2RuO4 with several po
kets (bands) for 
ondu
tingele
trons [39℄. Also, when we in
rease the density of the

heavy band and 
ome 
loser to half-�lling (nh ! 1), thed-wave super
ondu
tive pairing (as in UPt3) be
omesmore bene�
ial in the framework of the spin-�u
tuationtheory in the heavy band [40; 41℄. Di�erent me
hanismsof SC in HF-
ompounds in
luding odd-frequen
y pair-ing are dis
ussed in [42℄.We also note that if we study the orbitally de-generate two-band Hubbard model, then the Hubbardparameters are U = Uhh = ULL = UhL + 2JH (whereJH is Hund's 
oupling) [43℄. Close to half-�lling, thismodel be
omes equivalent to the t�J orbital model [44℄and for J < t and at optimal doping 
ontains the SCd-wave pairing [45℄ governed by a superex
hange in-tera
tion between di�erent orbitals of the AFM typeJ > 0. For not very di�erent values of th and tL, thetypi
al value of J is of the order of t2=U � 300 K.The orbital t�J model also reveals a tenden
y towardsnanos
ale phase separation at low doping [46℄ with the
reation of orbital ferrons inside the insulating AFMorbital matrix. An orbital type of phase separationwas possibly observed in URu2Si2 [47℄.We are grateful to A. S. Alexandrov, A. F. An-dreev, A. F. Barabanov, M. A. Baranov, Yu. By
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