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We search for marginal Fermi-liquid behavior [1] in the two-band Hubbard model with one narrow band. We
consider the limit of low electron densities in the bands and strong intraband and interband Hubbard inter-
actions. We analyze the influence of electron polaron effect [2] and other mechanisms of mass enhancement
(related to momentum dependence of the self-energies) on the effective mass and scattering times of light and
heavy components in the clean case (electron—electron scattering and no impurities). We find the tendency
towards phase separation (towards negative partial compressibility of heavy particles) in the 3D case for a large
mismatch between the densities of heavy and light bands in the strong-coupling limit. We also observe that for
low temperatures and equal densities, the homogeneous state resistivity R(T') ~ T behaves in a Fermi-liquid
fashion in both 3D and 2D cases. For temperatures higher than the effective bandwidth for heavy electrons
T > W}, the coherent behavior of the heavy component is totally destroyed. The heavy particles move diffu-
sively in the surrounding of light particles. At the same time, the light particles scatter on the heavy ones as
if on immobile (static) impurities. In this regime, the heavy component is marginal, while the light one is not.
The resistivity saturates for T' > W} in the 3D case. In 2D, the resistivity has a maximum and a localization
tail due to weak-localization corrections of the Altshuler—Aronov type [3]. Such behavior of resistivity could
be relevant for some uranium-based heavy-fermion compounds like UNi2Als in 3D and for some other mixed-
valence compounds possibly including layered manganites in 2D. We also briefly consider the superconductive
(SCQ) instability in the model. The leading instability is towards the p-wave pairing and is governed by the
enhanced Kohn-Luttinger [4] mechanism of SC at low electron density. The critical temperature corresponds
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to the pairing of heavy electrons via polarization of the light ones in 2D.

1. INTRODUCTION

The physics of uranium-based heavy-fermion com-
pounds and the origin of a heavy mass mj ~ 200m, for
f-electrons in them is possibly very different (see [2])
from the physics of cerium-based heavy fermions, where
the Kondo effect (or more generally, the physics of the
Kondo lattice model) is dominant [5,6]. The point is
that uranium-based heavy fermions are usually in the
mixed-valence limit [7] with strong hybridization be-
tween heavy (f electrons or f—d electrons) and light
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(s—p electrons) components. On the level of two-par-
ticle hybridization, the interband Hubbard interaction
leads to an additional enhancement of the heavy elect-
rons mass due to the electron polaron effect (EPE).
Physically, the EPE is connected with a nonadiaba-
tical part of the many-body wave function describing
a heavy electron and a cloud of virtual electron—hole
pairs of light particles. These pairs are mixed with the
wave function of the heavy electron but do not follow it
when a heavy electron tunnels from one elementary cell
to a neighboring one. It is shown in [2] that in the uni-
tary limit of the strong Hubbard interaction between
heavy and light electrons, the effective heavy mass can

12%



M. Yu. Kagan, V. V. Val'kov

XITP, Tom 140, Bem. 1 (7), 2011

reach the value mj} /my ~ (my/mg)?, and if we start
from the ratio mp/mr ~ 10 between bare masses of
heavy and light electrons, on the level of LDA approx-
imation, for example, we could finish with the effective
value mj, ~ 100mp, which is typical for uranium-based
heavy-fermion compounds.

A similar effect can also be described using strong
one-particle hybridization between heavy and light
bands [2].

A natural question arises whether the two-band
Hubbard model with one narrow band is a simple toy
model to observe non-Fermi liquid behavior and the
well-known marginal Fermi liquid behavior in partic-
ular [1]. We recall that in the marginal Fermi liquid
(MFL) theory, the quasiparticles are strongly damped
(Ime ~ Ree ~ T'). According to [1], the strong damp-
ing v ~ T of quasiparticles (instead of the standard
damping v ~ T?/ep for a Landau-Fermi liquid) can
explain numerous experiments in HTSC compounds in-
cluding a linear resistivity R(T) ~ T for T > T¢ at
optimal doping concentrations. The MFL picture was
also proposed to describe the properties of UPt3 doped
by Pd including the specific heat measurements [8]. We
note that the two-band Hubbard model with one nar-
row band is a natural generalization of the well-known
Falicov—Kimball model [9] but contains richer physics
due to a finite width of the heavy band (instead of a
localized level), which allows an interesting dynamics
of the heavy component.

In this paper, we evaluate the damping and trans-
port times for heavy and light electrons. We test these
times for marginality and find that for low tempera-
tures T < Wy (W} is the effective bandwidth for heavy
electrons) and equal densities of heavy and light bands
in a homogeneous state, we have the standard Lan-
dau—Fermi liquid behavior with a resistivity R(T') ~ T
in the case of electron—electron scattering in both 3D
and 2D. For higher temperatures T' > W} (W ~ 50 K
for m} ~ 200me), the heavy band is totally destroyed
and heavy particles move diffusively in the surroun-
ding of light particles, while the light particles scat-
ter on the heavy ones as if on immobile (static) im-
purities. For these temperatures, the heavy compo-
nent is marginal, but the light one is not. We try to
find a marginal behavior of the light component with
weak localization corrections of the Altshuler—Aronov
type [3] for the scattering time of light electrons taken
into account. We do not obtain a marginal behavior
of the light component, but we obtain a very inter-
esting anomalous resistivity characteristics, especially
in the 2D case, where the resistivity has a maximum
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for T~ W} and a localization tail at higher tempera-
tures [10]. In 3D, the resistivity saturates for T' > Wj'.
Such resistivity characteristics could possibly describe
some 3D uranium-based heavy-fermion compounds like
UNip Al3 and some other mixed-valence systems includ-
ing Yb-based heavy-fermion compounds [11, 12], where
the low-density approach pursued in this paper could
possibly describe the real experimental situation. In
2D, the behavior of resistivity possibly has some rela-
tion to layered manganites, where we deal with two de-
generate (e4) conducting orbitals (bands) of d electrons
of Mn. However, an alternative explanation is possible
for manganites [13]. According to it, the resistivity is
governed by electron tunneling from one metallic FM
polaron to a neighboring one via an insulating AFM or
PM barrier in the regime of nanoscale phase separation
in the electron subsystem. It would be interesting to
compare these two mechanisms for resistivity in layered
manganites in more detail.

We also consider other mechanisms of heavy mass
enhancement different from the EPE and find a very
pronounced effect in 3D connected with a momentum
dependence of the self-energy of heavy electrons due to
the “heavy-light” interaction. In the strong-coupling
limit, this effect could provide even larger ratios of
m} /my, than the EPE does. It leads to negative com-
pressibility of heavy particles and thus reveals the ten-
dency towards phase separation or at least charge re-
distribution between the bands for a large density mis-
match ny > nr, in qualitative agreement with the re-
sults in [14].

In the final section, we study the leading SC in-
stability that arises in the two-band model in the 2D
case. The leading instability at low density is proved to
be towards the triplet p-wave pairing. It describes the
pairing of heavy electrons via polarization of light elec-
trons [15,16] in the framework of the enhanced Kohn—
Luttinger [4] mechanism of SC and provides rather re-
alistic critical temperatures in the 2D or layered case,
especially for the situation of geometrically separated
bands belonging to neighboring layers.

2. THE TWO-BAND HUBBARD MODEL WITH
ONE NARROW BAND

The Hamiltonian of the two-band Hubbard model
is given by
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where Upp and Upp are intraband Hubbard interac-
tions for heavy and light electrons respectively Uy, is
the interband Hubbard interaction between heavy and
light electrons, t;, and ¢, are transfer integrals for heavy
and light electrons, nJ, = aj;ai(,, ny, = b " bis are the
densities of heavy and light electrons on site ¢ with spin
projection o, and p is the chemical potential. We note
that —eg is the center of gravity of the heavy band, and
the difference A between the bottoms of the bands is
given by

Wi — Wy,
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After the Fourier transformation, we obtain
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where in D dimensions for the hypercubic lattice,

D
—2ty, Z cos(pad) — o —

a=1

en(p)

and

D

= —2ty, Z cos(pad) — 1

a=1
are the quasiparticle energies for heavy and light bands
(see Fig. 1), and p, = {paz,py,...} are Cartesian pro-
jections of the momentum. For low densities of heavy
and light components ny;d” = (ny +nr)d” < 1, the
quasiparticle spectra are

W,
en(p) :—Th + th(p*d?) — c0 — 5
W L (3)
er(p) = 5 +tr(p°d®) —
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Fig.1. Band structure in the two-band model with one
narrow band. W}, and W, are the bandwidths of heavy
and light electrons, epy and epr are the Fermi ener-
gies, A = —go + (W —W3)/2 is the energy difference
between the bottoms of the heavy and light bands, with
(—e0) being the center of gravity of the heavy band.
The center of gravity of the light band is at zero. p is
chemical potential

where W), = 4Dt and Wi = 4Dt are the bandwidths
of heavy and light electrons for the D-dimensional hy-
percubic lattice and d is the intersite distance. Hence,
introducing the bare masses of heavy and light compo-
nents

1 1
= —_— —_ 4
T 2t ;,d? )
and Fermi energies
2
_ Pen _ W _
EFh—th— 5 thteo, erL=——+m (5)

we finally obtain the quasiparticle spectra for T — 0 as
2

ST (6)

p
en(p) = S EFh,
mp
In deriving (4)—(6) we implicitly assumed that the dif-
ference between the bottom of the bands A in Fig. 1 is
not too large, and hence the parabolic approximation
for the spectra of both bands is still valid. We note
that there is no one-particle hybridization in Hamilto-
nians (1) and (2), but there is a strong two-particle

hybridization
Unt ho L
i

We assume that my > mp, and therefore

Wh/WL = mL/mh < 1.

er(p) = —err.

(7)
We also assume that the strong-coupling situation
Unh ~ Urr, ~ Upr, > Wi, > W), occurs (U, is large
because in reality light particles experience strong scat-
tering on the heavy ones as if on a quasiresonance level).
Finally we consider the simplest case where the densi-

ties of the bands are of the same order: nj, ~ ny (in
3D, n = p%. /372, while in 2D, n = p%/2m).
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Fig.2. T-matrices Ty, Trr, and T}z, for the two-band

model with heavy (h) and light (L) electrons, Uy, and

Uprr are the intraband Hubbard interactions, and Uy

is the interband Hubbard interaction between heavy
and light particles

3. THE KANAMORI T-MATRIX
APPROXIMATION

According to the renormalization scheme of Kana-
mori, the strong Hubbard interactions [17] in the case
of low electron density (almost empty lattice) should
be described in terms of the corresponding vacuum 7'-
matrices (see Fig. 2). In the 3D case, the solution of
the corresponding Bethe—Salpeter integral equations in
the vacuum yields for the T-matrices (see [15-17])

_ Upnd?  Und®
M UK e9(0,0) 1+ Upn /87ty ®)
T~ UhLd3 T~ Urnrd®
hLN1-I-U'},‘L/87l't;;L7 LLNI-I-ULL/STFtL7
where e
rvac ~ P mp
Ixhh (070) ~ _/ (271')3 p_z

is a Cooper loop for heavy particles in the vacuum (the
product of two vacuum Green’s functions of heavy par-
ticles in a Cooper channel for the total frequency and
total momentum equal to zero),

mpmry,
mp +mrp,

. 1
m = =
L otx 2

~my,

for my, > myp, is an effective mass for the T-matrix T},
(for scattering of light electrons on heavy ones) and,
accordingly, t;, ~ tr is an effective transfer integral;
Ud? plays the role of the zeroth Fourier component in
3D. As a result, for Uy, ~ Upp, ~ Upp > Wi > Wy,
we have
Thh%&rthdS, ThL NTLL%87TtLd3.

(9)
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The s-wave scattering length for the Hubbard model
[15] is defined as a = mT'/4r = T'/8xtd?, and hence

Aph = Qp1, = ALL ~d (10)

in the strong-coupling case.

Correspondingly, the gas parameter of Galitskii
fo = 2app/m [18,19] in the case of equal densities of
heavy and light bands ny, = ny, is given by

fo=(f§ = 2dppr/7) = (f§ ~ 2dppn/7) ~

~ 2dpp/n (11)

(it is convenient to include the factor 2/7 in the def-
inition of the gas parameter in 3D). In the 2D, case
for strong Hubbard interactions and low densities,
with logarithmic accuracy, the vacuum T-matrices for
nr = nyp, are given by [15, 16]

Upnd?
Thy ~ Y
Unn / p
8wty p2
~p2,
N Uhhdz
1+ — -
* Sty A (12)
ULLd2
TLLN ULL 1 )
87TtL %—‘d2
UhLd2
ThLN UhL 1 )

where Ud? plays the role of the zeroth Fourier com-
ponent of the Hubbard potential in 2D. As a result,
in the strong-coupling case, the 2D gas parameter of
Bloom [20] for equal densities ng, = ny, is

1

fo = for = fon = (i /prd)

(13)

4. EVALUATION OF THE SELF-ENERGIES OF
HEAVY AND LIGHT BANDS

We evaluate the imaginary part Im ¥ of self-energies
in the two-band Hubbard model considering the clean
case (no impurities) and taking only the electron—elect-
ron scattering into account. It is important for evalua-
tion of the scattering times for heavy and light electrons
and the subsequent calculation of the resistivity R(T').
In the two-band model (see Fig. 3),

Yph=Spu+ Xy and Xp =31 +Xpn. (14)
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Eh Thh ThL

h h h h
Fig.3. The T-matrix approximation for the self-energy
of a heavy particle. T}, and T}, are the full T-matrices

in substance. The diagrams for ¥, are similar

In the 3D case, the full T-matrices in substance that
enter in the diagrams for ¥j; in Fig. 3 have the form

Uhhd3
Thn(2 15
hh( p) 1— UhhdSIXhh(Q p) ( )
where
I(hh(ﬂ7 p) =
= / *p" 1 —nj(ep4p) =1 (e—p) (16)
(2m)? Q —en(p' +p) —en(—p') +1i0

is a Cooper loop in substance (the product of two
Green’s functions in the Cooper channel), n! () is the
Fermi-Dirac distribution function for heavy particles,
and similarly for the full T-matrices Ty 1, Trn, and Tr,
and Cooper loops K1, K, and K1,

If we expand the T-matrix for heavy particles in the
first two orders in the gas parameter, then according to
Galitskii [18] we obtain

4dra 4ra
Tha(2p) = Lt ( h) (Knn — Kp3°) +
mp mp
dra 3
+0 < h) (Khh_KggC)?] . (17)
mp
where

47rah N Uhhd3

T - UppdBK5e
coincides with the Kanamori approximation for the
vacuum 7T-matrix and

(18)
mp,

: d3pl (271')3
1‘226(971’) RJ"/ (p/ +/p)2 pl2
(= —
th th

is the Cooper loop in the vacuum (rigorously speaking,
the scattering length is defined by K}7°(0,0), but the
difference between K}7°(Q,p) and K}9°(0,0) is pro-
portional to the gas parameter apprp and is small).
Kpp in (17) is the full Cooper loop (cooperon) in sub-
stance for heavy particles given by (16). If we consider
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low densities and the energies close to £, we can show
that the terms neglected in T}, are small with respect
to the gas parameter

47rah

(Knn — Kp1°) ~ anprn-
The self-energy of heavy particles X5, in the first two

orders of the gas parameter is given by

4wah
Sha(p

)

The first term becomes 4mayny /my, which is just the
Hartree—Fock contribution. In the second term, we can
make an analytic continuation iw, — w + io for the
bosonic propagator Kjj; and the fermionic propagator
Gh. As a result (bearing in mind that Im K}#¢ = 0),

we obtain the imaginary part of n(2

hh as
2
Im s (e, p) = ( )

X Z Im Kpp(ep+e, k+p) [npep+e)+nr(er)] =
d3k d3pl

k
‘( ) ”/ (2#)3/ 2m)?

x [1=nf(p+p +k) —nj(—p')] x
x [np(er +¢€) + nr(er)] x

= Thn(k+p)Ga(k

AT
k

> Z(Khh—KﬁZc)Gh(k)+0(ahth)3- (19)
%

drap,

mhp

drap,

mp

drap,

M

X 0e+enk) —en(p+p +k)—en(—p')] (20)
and similarly for the real part of 222}3
(2) drayp, ?
ReX,, (e,p) = < p— )
x> [Re Kpn(ex + 2,k +p) —
k
— Re K}3¢(ek + p, k + p)] X
x [np(er +¢) +nper)], (21)

where for the real part of a Cooper loop in vacuum,

d3p’
Re Kpi(ex +ep, k+p) = /(ZT)3 X
th
22
k? +p® —(p' +k+p)* —p” 2

is calculated at resonance for Q = e+¢, (or fore = ¢),
and P is the principal value. In (20) and (21), np(Q)
= 1/(e?T — 1) and np(Q) = 1/(e¥T 4+ 1) are the
bosonic and fermionic distribution functions, and hence

g +¢

th
T

2

_thZk

nB(Ek+E)+nF(Ek) = 5T

. (23)



M. Yu. Kagan, V. V. Val'kov

XKIT®, Tom 140, Bomn. 1(7), 2011

3
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Fig.4. An exchange-type diagram for the self-energy
7, that contains the matrix element a}a}a,a, and
is therefore absent in the Hubbard model

The real part of the Cooper loop in substance for heavy
particles is given by

d3p/
Re Kpn(er + 6,k +p) =/(27T)3 X
L 1-nf(p+p +k) —nf(-p)
e+en(k) —en(p +p +k) —en(—p)

The analytic continuation for th) in the 2D case is

similar to the one in the 3D case.

We note that for /T > 1, the bosonic distribu-
tion function np(2) — 0 and the fermionic distribution
function np(Q) — 6(Q) is the step-function. Hence
at low temperatures Im X, and Re Xy, acquire the
standard form [18,19,21]. In fact for low tempera-
tures T <« W), <« Wy, the most convenient way is
to evaluate Im th) (¢) for T — 0, which yields the
standard Fermi-liquid result Tm ${2) (2) ~ 2, and then
make the temperature averaging with the correspond-
ing fermionic distribution function ng(g). Therefore,
¢ ~ T for the scattering times of the quasiparticles.
The evaluation of ¥, ¥15, and X7 at low temper-
atures in the first two orders in the gas parameter is
similar to the evaluation of ¥j; in both 3D and 2D
cases.

But for higher temperatures, we should keep in
mind that ng(Q) — T/Q for T > Q. The fermionic
distribution function is “washed out” by temperature.
Accordingly, np(2) = (1-/2T)/2. These approxima-
tions are important when we evaluate Im ¥ for higher
temperatures T > W}, [22].

We note that in contrast to the model of a slightly
nonideal Fermi gas (see [18,19,21]), the Hubbard
model does not contain an exchange-type diagram for
Shn (see Fig. 4) because the T-matrix in this diagram
corresponds to the incoming and outgoing heavy par-
ticles with the same spin projection ala}a,a,, while
the Hubbard model contains only the matrix elements
a?‘ajaiaT.

We also note that when we expand the T-matrix
up to second order in the gas parameter, we implicitly
assume that the T-matrix itself does not have a sim-
ple pole structure of the type of a bosonic propagator.
This is the case for a partially filled band n,d? <« 1
and the low-energy sector where 0 < ¢ < W), <« Upyp,.
Effectively, we neglect the lattice in this expansion.

However, taking the lattice into account produces
two poles for the full (unexpanded) T-matrix of heavy
particles in (15). The first one is connected with the
so-called antibound state predicted by Hubbard [17]
and Anderson [23] and corresponds to a large positive
energy

e ~Upn > 0. (24)

Physically, it describes an antibound pair of two heavy
particles with the energy Uy, on the same lattice site.
It therefore reflects the presence of the upper Hubbard
band already at low densities n,d” < 1. But the inten-
sity of the upper Hubbard band is small at low densities
and for the low-energy sector.

A second pole in the full T-matrix found by in [24]
corresponds to a negative energy and in the 2D case
yields

2 2
e —2epp — ;fh < 0. (25)

h
It describes the bound state of two holes below the
bottom of the heavy band (¢ < —2epp). Therefore,
it has zero imaginary part and does not contribute to
ImT. (This mode produces nonanalytic corrections to
Re ¥, ~ |¢]?/? in 2D). We can neglect these two con-
tributions for the self-energy when we calculate the ef-
fective masses and scattering times in the forthcoming
sections. The more rigorous approach to the general-
ization of Galitskii results for the self-energy [18] to
the case of finite temperatures (which is important for
kinetic applications) will be a subject of a separate pub-
lication.

5. ELECTRON POLARON EFFECT

For T — 0, the Green’s functions for heavy and
light electrons are given by

1
Gplw,q) = R~
W) = e - e,
7
N+, (26)
w—er(q) +io
Zr,
G W7 N —.7
rw,a) w—¢}(q) +io
where
2 2 2 2
* q” — Prp * 9 —PrL
enlq) = —, er(g) = * (27)
2my 2m7y
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are renormalized quasiparticle spectra, and

7-1_[1_ O Re Zf)(w,q)
" 80.) w—0
q—DPFh (28)
7-1_[1_ O Re E(LZ)(w,q)
.= R
6&) w—0
q—PFL

are Z-factors of heavy and light electrons. Substitu-
tion of the leading contribution from Re EfL) (w,q) (de-

scribed by a formula similar to (21)) to Re Ef) (w,q)
in (28) yields
. 8ReE§L2L)(w,q) 47rahL 2 de
};1—1}}) 8 ~ = * (2 )D X
9=PFh w mhL T
d7p' [L-nf @' +p)-ni (=Pl nE(p-=a)

* @n)p [er(P—a)—c1(P'+p)—cn(—p)]°

where np(Q2) — 0, np(Q) is a step function for Q/T >
> 1, apr, & d in 3D is connected with the vacuum
T-matrix Ty and mj; ~ mr. Replacing

de deI

in (29) with N?(0) der(p) der(p') (where Nz (0) is the
density of states for light particles), and taking into
account that e7,(p — q) < 0 while ez, (p' + p) > 0, we
can easily verify that for m; > mj, (or equivalently for
err > erp) this expression contains a large logarithm
(see [2]). Hence, the Z-factor of the heavy particles in
the leading approximation is given by

_ mp
Z ' x142f2In—
h + fOnmLa

(30)
where fy = 2pprd/w is the gas parameter in 3D and
equivalently fo ~ 1/21n(1/pprd) in 2D. We note that
the contribution to Z; from Re 222}3 does not contain
a large logarithm. Correspondingly, for the effective
mass of a heavy particle in (26), according to [19,21],
we obtain

m _ [y, OReS) (@), @) a1
mj, Ozn(q) en(@)s0

Therefore, as usual, the Z-factor contributes to the en-
hancement of the heavy mass:

~ (1+2f§1nﬂ).
mr,

The analogous calculations for Zp with Re Xy, and
Re Xy yields only m} /myp ~ ZL_1 ~ (1 + f2). If the

z,! (32)
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effective parameter 2fZ In(my/mg) > 1, we are in the
situation of a strong electron polaron effect. To ob-
tain the correct polaron exponent in this region of pa-
rameters diagrammatically, we should at least sum up
the so-called maximally crossed diagrams for Re ¥jy,.
But the exponent can also be evaluated in a different
technique, based on the nonadiabatic part of the many-
particle wave function [2] that describes a heavy par-
ticle dressed in a cloud of electron—hole pairs of light
particles. This yields

where b = 2f2. For b = 1/2 or, equivalently, for fo =
= 1/2 (as for the coupling constant of the screened
Coulomb interaction in the RPA scheme), we are in the
so-called unitary limit. In this limit, according to [2],
the polaron exponent is

*
my, m

b/(1—b)
)

~Zyt = (33)

mp mr,

b
— =1 34
o=, (34
and hence
my /mp = mp/mr (35)
or, equivalently,
my, /my = (my/mr)>. (36)

Thus, starting from the ratio between the bare masses
myp/mr, ~ 10 (obtained, for instance, in LDA approxi-
mation), we finish in the unitary limit with m} /my, ~
~ 100 (due to the many-body EPE), which is a typical
ratio for uranium-based heavy-fermion (HF) systems.

5.1. Other mechanisms of heavy mass
enhancement

We note that rigorously speaking (see (31)), the mo-
mentum dependence of Re EfL) (en(q),q) is also very
important for the evaluation of the effective mass.
Very preliminary estimates by Prokof’ev and a present
authors show that in the zeroth approximation in
mr,/mp, in the 3D case close to the Fermi surface (for

en(q) = (¢® — p%y,)/2my — 0 and ¢ — pr),

Re SV (e4(q), q)
d3P ol
< [ G0l -a). 67
where

M.(0,p) = /

d*p’ nf(‘%%p) - nE(SP’)
(2m)% er(p’) —er(p' +p)

(38)
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is the static polarization operator for light particles.
Having in mind that |p—q| < prp and ¢ &~ ppp, in (37),
we can see that p — 0 and use the asymptotic form for
II;.(0,p) at small p < ppy (if the densities of heavy
and light bands are not very different and prr, ~ prp):

).

where N7,(0) mrprr/2m? is the density of
states for light electrons in 3D. The substitution
of limy o Iz (0, p) from (39) in (37) yields

p2

12p%L

lim T13,,(0,) = N;(0) (1 - (39)

~Re=)) (0,prn) —

_(&® = PEy) f& mana
2mh 9 anL’

Re (% (eh(q), q)

(40)

where fo &~ 2dppr, /7 is the 3D gas parameter and nj, =
= p%,/37% and np = pk; /372 are the densities of
heavy and light bands.

The first term in (40) describes Re E;fL) (en(q),q) on
the Fermi surface (for ,(q¢) =0 and ¢ = prp):

4f nh

R E( ) 0 /0

B2 (0,prn) = =3 pal
2p%n

X EFI, <1— >>0 for prpp ~ prr.- (41)

15py,
It is a renormalization of the effective chemical poten-
tial of the heavy band in the second order in the gas
parameter due to the interaction of light and heavy
particles.

We note that according to [18, 19], the renormalized
heavy-particle spectrum is given by

2
. q 2r
i) = (5 = )+ 2w+
2 2
q —p
+Re 27 (enla). @) = 5, (42)
mp

where the scattering length a7, ~ d, the effective chem-
ical potential ,ueff = pp + Wh/2 + €9 is counted from
the bottom of the heavy band, and the Hartree—Fock
term (27 /myz,)nr (@) apr, represents the contribution to
the self-energy Re EE}L) in the first order in the gas pa-
rameter. From (42), collecting the terms proportional

to en(q) = (¢* — p%y,)/2mp, we obtain
2 2 2
9" —Prn fo mpnp
o x 1—=—1. 43
2mj, en(a) ( 9 anL> (43)

Correspondingly, the effective mass of a heavy particle
is given by
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mi _ [, ORei(En().a) _
mj Jen(q) 0
f& mpnp
=1-=— (4
9 mirnr, ( )

As a result, we obtain a much more dramatic en-
hancement of mj, than in the EPE, which yields only
mp/mj, ~ (1 —2f3In(mp/myz)) due to the Z-factor of
a heavy particle. For my/mp ~ 10, the contribution
to mj in (44) becomes larger than the contribution
from the Z-factor in (32) for a large density mismatch
np > 5ny, between the heavy and light bands. We note
that the contribution to mj /my from Re 2533 (en(q),q)
associated with the “heavy—heavy” interaction is small
in comparison with the contribution to mj from Re ZELQL)
(which is associated with the “heavy-light” interaction)
due to the smallness of the ratio between the bare
masses: my/mp < 1. We can now collect the terms
that do not depend on &,(¢q) in (42). This gives the
effective chemical potential of heavy electrons

2T

—_— nL(,u) anr + Re EgZL)(O,th).
mr,

Drn
th

it =

(45)
We note that the contributions to szf from the
Hartree-Fock term (27 /my)ny(p) apn of heavy elec-
trons and from Re th) (0,prp) (which is connected
with “heavy—heavy” interactions) are small in compar-
ison with “heavy-light” contributions due to the small-
ness of the ratio between the bare masses: my, /m; < 1.

In 2D, the static polarization operator is

1— 4pFy,
p? ’

mr

Orr(0,p) = o~ | 1 -Re

and hence for p < 2ppr, U1 (0,p) = mr /27 does not
contain any dependence on p?, in contrast to the 3D
case. Thus, the EPE in 2D is a dominant mechanism
of the heavy mass enhancement.

A more accurate evaluation of the momentum de-
pendence of Re EgL)(sh(q) q) for the larger densities in
the bands together with the summation of the higher-
order contributions to Re X will be a subject of a
separate investigation.

We note that for the 11 ht partlcles the momen-
tum dependences of Re ZLh and Re ZLL yield only
m% /my ~ 1+ f2, and hence the light mass is not
strongly enhanced in both 3D and 2D cases.

5.2. The tendency towards phase separation

We also note that for larger densities of the heavy
band np ~ ne < 1 (and large difference in densi-
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ties between the bands, ny < nj, whence ngd? =
= (np + nr)d” < 1), another mechanisms of heavy
mass enhancement become more effective. Namely, for
these densities and a large mismatch between n; and
nr,, we could have a tendency towards phase separation
in a two-band model [14].

We note that if we analyze the effective chemical
potential of the heavy band in (45) in the limit of the
large density mismatch nj, > ny in 3D and evaluate
the partial compressibility (the sound velocity of heavy
particles squared)

Ot
mp 87’Lh7

-1
Kpn

~ C% =
we already see the tendency towards phase separation
(towards negative compressibility) in the strong-coup-
ling limit and low densities for fgmuprn/mrprr > 1,
in qualitative agreement with the results in [14]. A
more careful analysis of all the partial compressibili-
ties in the system at larger fo and a large mismatch
between the densities will be reported elsewhere.

In the end of this section, we emphasize that the
physics of the EPE and evaluation of Zj, in [2] are to
some extent connected with the well-known results of
Nozieres et al. [25] on infrared divergences in the de-
scription of the Brownian motion of a heavy particle in
a Fermi liquid and on the infrared divergences for the
problem of X-ray photoemission from the deep elec-
tron levels, as well as with the famous results of An-
derson [26] on the orthogonality catastrophe for the 1D
chain of IV electrons under the addition of one impurity
to the system.

Finally, we mention a competing mechanism pro-
posed in [27] first for an explanation of the effective
mass in praseodymium (Pr) and in some uranium-
based molecules like U(CgHg)s. Later on, Fulde et al.
[27] generalized this mechanism to some other uranium-
based HF-compounds with localized and delocalized or-
bitals. This mechanism has a quantum chemical nature
and is based on the scattering of conductive electrons
on localized orbitals as if on two-level systems. The
mass enhancement is here governed by non-diagonal
matrix elements of the Coulomb interaction, which are
not contained in the simple version of a two-band model
in (1). In this context, we also mention [28], where the
authors considered the mass enhancement of conduc-
tivity electrons due to their scattering on local f-levels
splitted by the crystalline field.

We note that dHvA experiments [29] together with
ARPES experiments [30] and thermodynamic measure-
ments [31] are the main instruments to reconstruct
the Fermi surface for HF compounds and to deter-

mine the effective mass (thus verifying the predictions
of different theories regarding the mass enhancement
in uranium-based HF compounds).

6. TEMPERATURE DEPENDENCE OF THE
RESISTIVITY

6.1. Imaginary parts of self-energies in the
homogeneous case for low temperatures
T < Wy

In the homogeneous case, after averaging
Im 2 (2(q),q) in (20) with the fermionic distri-
bution function nr(e(q)/T), we obtain the following
expression for Im $(2)(T') of heavy and light electrons
at low temperatures 7' < W}, and for equal densities
np = nr in the heavy and light bands:

. T2
Im S°)(T) = fo .
iy (46)
ImSP)(T) = f2— 2
Lh( ) fO Epp MY,
and accordingly:
2 2
Im x)(T) = ng—, Imx)(T) = ng—. (47)
EFh EFh

It follows that all Im ©(*)(T") behave in the standard
Fermi-liquid fashion Im £()(T') ~ T2,
Moreover, Im E(L2,)L(T) > Im E(L?(T), and hence
Im SP(T) = Tm SP/(T) + Im ©2)(T) ~
~ImSP)(T). (48)

We can now estimate the Drude conductivity for the
light band:

2
op = AETL (49)
mr
where a naive estimate for 77, yields
yo =1/r, =Im SP(T) = Im SP)(T), (50)

whence 1/7;, & 1/7,. Correspondingly, we obtain the
conductivity

2 2
or ~ o NnNre TLh nre- cppmy,
mryp, ng2 mpmy,
TLL€2 EFh 2
0PFh

Introducing the minimal Mott—Regel conductivities

62
Omin = (E) pr in 3D

o2
and O'min:<ﬁ> in 2D (52)
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and working in the units where & = 1, in the case of
equal densities of heavy and light bands, ny = nr, we
Omin

obtain ,
7 ()

We note that, strictly speaking, the nondiagonal con-
ductivity o, (which is defined by the scattering of
light electrons on the heavy ones) is finite only due to
an account of umklapp processes:

EFh

T

(53)

O X OLp =

Piz + P2n = P31 + Pan + K, (54)
where K ~ 7/d is the wave vector of the reciprocal lat-
tice. For ppp ~ prr, this means that densities in the
light and heavy bands cannot be very small (otherwise
the conductivity o, would be exponentially large).
Hence, within the accuracy of our estimates,

Omin

_f§< )2'

The situation with the conductivity of the heavy band

is a slightly more tricky since Im Egh) (T) ~ Im EELQL) (T)

and hence oy, ~ op1,. However, for a crude estimate,

we can again consider only the nondiagonal part of the

conductivity o, and take umklapp processes (54) into
Omin

account. Then
2
(7))

We note that estimates (56) for o, and o7, can be ver-
ified using the exact solution of coupled kinetic equa-
tions for heavy and light particles with an account of
umklapp processes [22].

> 2

The total resistivity is given by

13 <
Omin

It behaves in a Fermi-liquid manner R(T) ~ T? for low

temperatures T' < Wy. For mj > my, we can replace

Wy, with W} in (56) and (57).

Wh,

T

oLk (55)

Wh,

T

OpI, ~ OLKp ~ (56)

1
o+ 0o,

T
Wh,

(57)

6.2. The chemical potential at higher
temperatures T' > Wy

If T > Wy, the heavy band is totally destroyed
(more precisely, it is destroyed for fZT = W} as we see
shortly). To be accurate, we first calculate the effective
chemical potential usz =p+ Wh/2+ep in (3) in this
situation.

Generally speaking, np + np = ng = const,
i.e., only the total density is conserved. In our case,
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however, for large difference between the bare masses
myp > mp, each density of the band is conserved prac-
tically independently, nj & const and ny &~ const. For
heavy particles, all the states in the band are uniformly
occupied at these temperatures. For T' > W}, (assum-
ing mj} /my ~ 1), the effective chemical potential of the
heavy particles is given by

M;ff —

W, 1
Py g~ =Tn [ —— ).
A+ 5 + o n (nth> (58)

Hence, we have the Boltzman behavior for M;ff . The
Fermi-Dirac distribution function for heavy particles is

1
ny(e) = ~
2 2 _ eff
exp <p—m;1 2
N 1
- 2 M;ff

p
1
( + thT

Jos -

eff T eff
~ SR (‘%) = const.  (59)
[
2mpT

For light particles for the temperatures W), < T <«
& Wy, because my > myp, the effective chemical
potential has approximately the same position as for
T = 0. Indeed, for ,ueLff =+ W /2 we have

(©) !
nrie) = ~
<p2'2mL—,quff> o
exp
T
v 1 o
~ 5 5 ~
P —PrL
—_— 1
exp< 5y T >+
2
NG( P —SFL>, T < epr, (60)
2mL

and hence the effective chemical potential of light par-
ticles is

Mé‘f N EFL- (61)

6.3. Evaluation of the imaginary parts of the
self-energies at higher temperatures

Wi <T <Wyg

For light particles, Im %\%) (T') = 2T /W, does not
change. But

m S()(T) = fFWa " > ImSET)  (62)
L
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for W < T < W (for T < Wi, T?*/W, <
< Whmh/mL).

This describes almost elastic scattering of light elec-
trons on the heavy ones as if on immobile (static) im-
purities in the zeroth order in Wy /Wp,. We note that
Wpmy, = Wymj. For heavy electrons, we should ac-
count for the bosonic contribution ng(Q) ~ T/Q and
the fermionic contribution np(Q) ~ (1 — Q/2T)/2 for
Q/T < 1to ITm () and thus to scattering times. This
yields

ImS/(T) = f2W, (63)
which describes scattering of heavy electrons on each
other in the situation when they uniformly occupy the
heavy band and can transfer to each other only an en-
ergy ~ Wy, [2]. Because m}, > my, we can replace W,
with W in (63). At the same time, for scattering of
heavy particles on the light ones, we have

m SP(T) = 37> mSE)(T),  (64)

which describes the marginal Fermi-liquid behavior for
diffusive motion of heavy electrons in the surrounding
of light electrons.

We note that to derive (64) for Wi, > T > W),
and in the zeroth order in the mass ratio mr,/my < 1,
we rewrote expression (20) for Im ZfL) (en(p),p) in the
form

4 2
I S (er(p), p) = —7 ( ”) N2(0)

x/ derpderkd(ery — erp)nr(eng) X

x[1—=np(ery)], (65)

which after the d-function integration yielded

Im 25122(%(1))»1)) ~ T3 /dﬁLknF(ELk) X

X [1 — nF(st)] ~

2 i e/T 2
~ ﬂ'fo / dam ~ fO T. (66)

6.4. Resistivity for T' > W;' in the 3D case

From the previous section, we have the scattering
times of heavy and light particles for T' > W} given by

1 1 m
—x =W (67)
TL TLh mr,

We note that fgWhmh/mL = fgng;:/mL ~ fgWL
in (67). In the same time,

~ — = 2T, (68)

and hence the heavy component is marginal, but the
light one is not. The light band conductivity is given
by

TLL62TL TLL62TLh

Omin
oL mr, mr, fe (69)

For the heavy band, the Drude formula must be mod-
ified Ony, /0T ~ W /T because of T' > W} . We then
immediately obtain

_ Omin Wy ?
TR (T) o

As a result, the resistivity is

g @y
on + o Tmin ].-I-(T/W,t)2
f3 1

= o 1y

For T > W}, the resistivity R & f&/0min saturates.
We thus obtain a residual resistivity at high tempera-
tures due to the conductivity of the light band. This is
a very nontrivial result.

6.5. Discussion of the obtained results for
resistivity at higher temperatures

When W} < 1/7, or, equivalently, f¢T > W}, the
coherent motion in the heavy band is totally destroyed.
The heavy particles begin to move diffusively in the sur-
rounding of light particles. In this regime, rigorously
speaking, the diagram technique can be used only for
light particles and not for heavy ones.

But the exact solution of the density matrix equa-
tion obtained in [2] shows that 1/7,, is qualitatively the
same for f3T > W} as in our estimates, and the inverse
scattering time 1/77, is also qualitatively the same due
to its physical meaning (scattering of light electrons
on heavy ones as if on immobile impurities). That is
why o, and o7, and hence R(T') behave smoothly for
T > Wy,

6.6. An idea of a hidden heavy band for HTSC

The resistivity R(T) in 3D acquires a form (see
Fig. 5) that is frequently obtained in uranium-based HF
(for example, UNipAls). We note that R(7") mimics a
linear behavior in the crossover region of intermediate
temperatures 7' ~ W} between T2 and const (with the
resistivity saturating for T' > Wy). The same holds

189



M. Yu. Kagan, V. V. Val'kov

XKIT®, Tom 140, Bomn. 1(7), 2011

2
_Jo_

Omin

T

Fig.5. The resistivity R(T) in the two-band model in
3D

for magnetoresistance in the well-known experiments
of P. L. Kapitza,

R(H) - R(0) (7
R(H) 1+ (Qc7)?
N{ (QcT)z, QcT < 1, (72)
const, Qer > 1,

where ¢ is the cyclotron frequency.

In the crossover region Qc7 ~ 1, the magnetore-
sistance mimics a behavior linear in Q¢. It then fol-
lows that for T > W}, heavy electrons are marginal,
but light electrons are not. The natural question
arises whether it is possible to make light electrons
also marginal and as a result to obtain the resistiv-
ity such that R(T') ~ T is marginal for T' > W, but
R(T) ~ T? for T < Wj. Such resistivity characteris-
tics could serve as an alternative scenario for the ex-
planation of the normal properties in optimally doped
or slightly overdoped HTSC materials if we assume the
existence of a hidden heavy band with a bandwidth
smaller than the superconductive critical temperature
Te: Wi < Te (see Fig. 6). To obtain the Fermi-liquid
behavior R(T) ~ T? at low temperatures, we should
then suppress SC by a large magnetic field H to low
critical temperatures Te(H) < W

7. WEAK-LOCALIZATION CORRECTIONS IN
THE 2D CASE

The tendency towards marginalization of the light
component manifests itself in the 2D case. We know
that logarithmic corrections [3] to the classical Drude
formula for conductivity occur in 2D due to weak lo-
calization effects. But according to our ideology, heavy
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Sy

Fig.6. Resistivity R(7T) in a superconducting material
with a hidden heavy band for W, < T¢ (W, is an
effective width of the heavy band)

L, =+/Dr7,

L

Fig.7. Multiple scattering of a light particle on heavy
ones in the interval between the scattering of the light
particle on another light particles. L, is the diffusive
length, [ is the elastic length, Dy, and vrr. are the dif-
fusion coefficient and the Fermi velocity for light elec-
trons, and 775, and 7, are the elastic time for scattering
of light electrons on heavy ones and the inelastic (de-
coherence) time

particles play the role of impurities for scattering of
light particles on them. That is why the correct ex-
pression for the conductivity of the light band o in
the absence of spin-orbital coupling is given by
Omin ( 2 Tnp)
1—filn—
fg fO T 9
where, according to the weak localization theory in 2D,
7 is the elastic time and 7, is the inelastic (decoherence)
time. In our case,

UlLOC _

(73)

T = Te; = Trn, Wwhile 7, =7 =

(74)

=711, and Trp > T,

where 7.; and 7., are the times associated with the scat-
tering of electrons on impurities and other electrons,
respectively. Hence, between two scatterings of a light
particle on another light one, it scatters on heavy par-
ticles many times (see Fig. 7). As a result, the motion
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of light particles becomes much slower (also of the dif-
fusive type) and two characteristic lengths appear in
the theory: the elastic length

l = UFLTLh (75)
and the diffusive length
L¢=\/DLT¢, (76)

where Dy, is the diffusion coefficient for light electrons
and vpy, is the Fermi velocity for light electrons.

That is why in a more rigorous theory, according
to [3] we should replace the inverse scattering time

&€

dw/dg'/qu 2 (77
TLL / mj (vrrq) =/ Wi, (77)
0 0
with
1 £ w o0 2 d
d I
Tr1(€) /w/ /m (ie' + Drg*)? (78)
0

where the scattering length ap; ~ d. In fact, we re-
place vrrq with the “cooperon” pole (ie’ + Drq?) in
Altshuler—Aronov terminology. Hence, the characte-
ristic wave vectors in the evaluation of 7,7 are ¢ ~
~ \/¢/Dr, where ¢ is an energy variable. The Altshu-
ler—Aronov effect in 2D yields

1

7~'LL(5)

_ f2 €
O N.(0)DL’

(79)

where Nz (0) = mpr /27 is the 2D density of states for
light electrons. For the diffusion coefficient, we can use
the estimate

DL = U%‘LTL}L (80)

and hence, having in mind that according to (68) the

inverse scattering time is 1/7z,() = fEWpmp/mp =~
~ fEWy, we obtain
1 fo fiWe 4
- ~ 5 e~ foe. (81)
Trr(e)  mpun,/m

Therefore, 1/7;,;, also becomes marginal for ¢ ~ T'. For
logarithmic corrections to the conductivity, we have

Ty 7~'LL WL

- =" == 1, 82
T TLh gT > ( )
and hence
loc Omin 2 L
= 1— f2In —”) . 83
=2 (- =
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For fET ~ Wy, n(W/f3T) ~ In(Wr/W}) and

O.loc WL
Zp=-Lt =1—f2In —. 84
h oL fo nWh ( )

Therefore, for f3T ~ W, an enhancement of the
heavy-particle Z-factor due to the EPE and localization
of light particles due to Altshuler—Aronov corrections
are governed by the same parameter f3In(my/mr)
in 2D.

7.1. Justification of the expression for
localization corrections in 2D

In principle, the impurities (heavy particles) are
mobile and have some recoil energy. That is why the
formula 0%°¢ /o, = 1 — f2In(Wy /f2T) should be justi-
fied (at least as regards the temperature exponent un-
der logarithm, 7" or T'%). For the justification, we need
to estimate the loss of energy by one light particle be-
fore it collides with another light particle. The number
of collisions with heavy particles between the scattering
of a light particle on light one is L, /l. The maximal
loss of energy in one collision is W;. The total loss is
WyL,/l = Wi\/Wr/T. The energy of light particle
itself is T'. This means that for W;\/W /T < T or,

Wi

equivalently, for
1/3
z)

the loss of energy is small and heavy particles can be
regarded as immobile impurities. Hence, the exponent
« under the logarithm is 1.

T > Wy ( (85)

7.2. Resistivity in the 2D case

Qualitatively, the resistivity behaves in 2D as

3 1
Omin (VV:/T)2 + 1-— fg ln(WL/ng) '

It has a maximum at Tyyee ~ Wy /fo and a localiza-
tion tail at higher temperatures (see Fig. 8). It would
be very interesting to find the magnetoresistance in the
2D or layered case in a two-band model with one narrow
band for a strong quantizing magnetic field H oriented
perpendicular to the layers [33].

R= (86)

8. SUPERCONDUCTIVITY IN THE
TWO-BAND MODEL WITH ONE NARROW
BAND

In the end of this paper, we mention briefly that the
leading SC mechanism at the low electron density cor-
responds to p-wave pairing and is governed, especially
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Fig. 8. Resistivity R(T') in the 2D case for the two-band

model with one narrow band. The resistivity exhibits a

maximum and a localization tail at higher temperatures
T>Wy;

Fig.9. The leading contribution to the effective inter-

action Vsy for the p-wave pairing of heavy particles via

polarization of light particles. The open circles stand
for the vacuum T-matrix T} 1,

in 2D, by the pairing of heavy electrons via polarization
of light ones (see Fig. 9 and [15, 16]) in the framework
of enhanced Kohn-Luttinger mechanism [4]. The cor-
responding T, depends on the relative doping of the
bands ny/n; nonmonotonically and has a broad and
pronounced maximum for n,/n; = 4 in 2D, where it
could reach the experimentally feasible values realis-
tic for layered ruthenates SroRuOy4 [39] and uranium-
based heavy-fermion compounds like U; _, Th, Bey3 [3§]
as well as for layered dichalcogenides CuS,, CuSes
and semimetallic superlattices InAs—GaSbh, PbTe-SnTe
with geometrically separated bands belonging to differ-
ent layers [37].
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In the situation of a weak EPE for fZlnmy/mp <
<1, Zy ~mp/m} ~ 1 and e}, ~ epp, and according
to [15,16], the maximal Ty is given by

Therefore, the effective gas parameter that governs
Tc1 in case of a weak EPE is fg(mh/mL)1/2. At the
same time, in the unitary limit for fo — 1/2 and
m} /mr, ~ (my/mr)?, the estimates show that

Tcr ~epp eXP{_l/Qfg} ~ epp, exp{—2}.

It follows that for €%, ~ 50 K, T¢i can reach 5 K,
which is quite nice.

When we increase the density of the heavy band
and come closer to half-filling (n, — 1), the d-wave
SC paring (as in UPt3) becomes more beneficial in
the framework of the spin-fluctuation theory in the
heavy band [40,41]. The more exotic mechanisms of SC
in heavy-fermion compounds including odd-frequency
pairing [5,42] are also possible.

We note that in the 2D case, where only the EPE
effect is present for the mass enhancement of heavy
electrons, the restrictions on the homogeneous case are
milder than in 3D.

1

_Qfgmh/m,; (87)

Tc1 ~ erpexp {

(88)

9. DISCUSSION AND CONCLUSIONS

We analyzed characteristic features of the two-
band Hubbard model with one narrow band taking the
electron—electron scattering into account in the clean
case (no impurities) for low electron densities. We con-
sidered the electron polaron effect and other mecha-
nisms of heavy mass enhancement related to the mo-
mentum dependence of self-energies.

In the 3D case, the dominant mechanism of heavy
mass enhancement is related to the momentum depen-
dence of the real part of a “heavy-light” self-energy
and leads to a heavy mass renormalization that is lin-
ear in the mass ratio. In the 2D case, the dominant
mechanism of heavy mass enhancement is the EPE,
which leads to a logarithmic renormalization of the
heavy particle Z-factor. In the unitary limit, if we start
with mp /mp ~ 10 for the bare-mass ratio in the LDA
scheme, we can finish with m} /mz ~ 100 due to many-
body effects, which is quite natural for uranium-based
HF systems.

The important role of the interband (“heavy-light”)
Hubbard repulsion Upp for the formation of a heavy
mass m* ~ 100m, in a two-band Hubbard model was
also emphasized in [34] for the LiV,04 HF compound.
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For a large density mismatch n, > np, we
can see the tendency towards negative compressibil-
ity in the heavy band in the strong-coupling limit
fémuprn/mrprr 2 1 already at low densities, which
can lead to a redistribution of charge between the bands
and possibly to nanoscale phase separation in qual-
itative similarity with the results in [14]. The ten-
dency towards phase separation at low electron fill-
ings also manifests itself for the asymmetric Hub-
bard model (which involves Hubbard repulsion between
heavy and light electrons) in the limit of strong asym-
metry: t, < tr, [35] between heavy and light band-
widths.

For equal densities of the heavy and light bands,
the resistivity in a homogeneous state behaves in a
Fermi-liquid fashion: R(T) ~ T? at low temperatures
T < Wy in both 3D and in 2D cases (where W} is the
effective bandwidth of heavy particles).

For higher temperatures 7' > W;', when a coher-
ent motion of particles in the heavy band is totally
destroyed, the heavy particles move diffusively in the
surrounding of light particles, while the light particles
scatter on the heavy ones as if on immobile (static) im-
purities. The resistivity saturates in the 3D case, which
is typical for some uranium-based HF-compounds in-
cluding UNipAls.

In 2D, due to weak-localization corrections of the
Altshuler—Aronov type, the resistivity at higher tem-
peratures has a maximum and then a localization
tail. Such behavior could also be relevant for some
other mixed-valence systems possibly including lay-
ered manganites. A similar behavior with a metal-
like low-temperature dependence of the resistivity for
T < 130 K and the insulator-like high-temperature
dependence was also observed in layered intermetallic
alloys GdsGey, where the authors of [36] assume the
existence of a strongly correlated narrow band at low
temperatures.

We briefly discuss the SC instabilities that arise in
this model at low electron densities. The leading in-
stability of the enhanced Kohn-Luttinger type corre-
sponds to p-wave pairing of heavy electrons via po-
larization of light electrons. In the quasi-2D case,
Te can reach experimentally realistic values already
at low densities for layered dichalcogenides CuS, and
CuSes and semimetallic superlattices InAs—GaSh and
PbTe-SnTe with geometrically separated bands be-
longing to neighboring layers [37]. We note that the
p-wave SC is widely discussed in 3D heavy-fermion sys-
tems like U;_,Th,Be;3 [38] and in layered ruthenates
SroRuO4 with several pockets (bands) for conducting
electrons [39]. Also, when we increase the density of the
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heavy band and come closer to half-filling (n, — 1), the
d-wave superconductive pairing (as in UPt3) becomes
more beneficial in the framework of the spin-fluctuation
theory in the heavy band [40,41]. Different mechanisms
of SC in HF-compounds including odd-frequency pair-
ing are discussed in [42].

We also note that if we study the orbitally de-
generate two-band Hubbard model, then the Hubbard
parameters are U = Uy, = Urr, = Upr, + 2Jg (where
Jir is Hund’s coupling) [43]. Close to half-filling, this
model becomes equivalent to the ¢—J orbital model [44]
and for J < t and at optimal doping contains the SC
d-wave pairing [45] governed by a superexchange in-
teraction between different orbitals of the AFM type
J > 0. For not very different values of ¢; and ¢y, the
typical value of .J is of the order of t*/U ~ 300 K.
The orbital ¢-J model also reveals a tendency towards
nanoscale phase separation at low doping [46] with the
creation of orbital ferrons inside the insulating AFM
orbital matrix. An orbital type of phase separation
was possibly observed in URu»Siy [47].
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