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ANOMALOUS RESISTIVITY AND THE ORIGIN OF HEAVY MASSIN THE TWO-BAND HUBBARD MODELWITH ONE NARROW BANDM. Yu. Kagan a*, V. V. Val'kov baKapitza Institute for Physial Problems119334, Mosow, RussiabKirenskii Institute of Physis660036, Krasnoyarsk, RussiaReeived November 1, 2010Dediated to the memory of Professor A. G. AronovWe searh for marginal Fermi-liquid behavior [1℄ in the two-band Hubbard model with one narrow band. Weonsider the limit of low eletron densities in the bands and strong intraband and interband Hubbard inter-ations. We analyze the in�uene of eletron polaron e�et [2℄ and other mehanisms of mass enhanement(related to momentum dependene of the self-energies) on the e�etive mass and sattering times of light andheavy omponents in the lean ase (eletron�eletron sattering and no impurities). We �nd the tendenytowards phase separation (towards negative partial ompressibility of heavy partiles) in the 3D ase for a largemismath between the densities of heavy and light bands in the strong-oupling limit. We also observe that forlow temperatures and equal densities, the homogeneous state resistivity R(T ) � T 2 behaves in a Fermi-liquidfashion in both 3D and 2D ases. For temperatures higher than the e�etive bandwidth for heavy eletronsT > W �h , the oherent behavior of the heavy omponent is totally destroyed. The heavy partiles move di�u-sively in the surrounding of light partiles. At the same time, the light partiles satter on the heavy ones asif on immobile (stati) impurities. In this regime, the heavy omponent is marginal, while the light one is not.The resistivity saturates for T > W �h in the 3D ase. In 2D, the resistivity has a maximum and a loalizationtail due to weak-loalization orretions of the Altshuler�Aronov type [3℄. Suh behavior of resistivity ouldbe relevant for some uranium-based heavy-fermion ompounds like UNi2Al3 in 3D and for some other mixed-valene ompounds possibly inluding layered manganites in 2D. We also brie�y onsider the superondutive(SC) instability in the model. The leading instability is towards the p-wave pairing and is governed by theenhaned Kohn�Luttinger [4℄ mehanism of SC at low eletron density. The ritial temperature orrespondsto the pairing of heavy eletrons via polarization of the light ones in 2D.1. INTRODUCTIONThe physis of uranium-based heavy-fermion om-pounds and the origin of a heavy mass m�h � 200me forf -eletrons in them is possibly very di�erent (see [2℄)from the physis of erium-based heavy fermions, wherethe Kondo e�et (or more generally, the physis of theKondo lattie model) is dominant [5; 6℄. The point isthat uranium-based heavy fermions are usually in themixed-valene limit [7℄ with strong hybridization be-tween heavy (f eletrons or f�d eletrons) and light*E-mail: kagan�kapitza.ras.ru

(s�p eletrons) omponents. On the level of two-par-tile hybridization, the interband Hubbard interationleads to an additional enhanement of the heavy elet-rons mass due to the eletron polaron e�et (EPE).Physially, the EPE is onneted with a nonadiaba-tial part of the many-body wave funtion desribinga heavy eletron and a loud of virtual eletron�holepairs of light partiles. These pairs are mixed with thewave funtion of the heavy eletron but do not follow itwhen a heavy eletron tunnels from one elementary ellto a neighboring one. It is shown in [2℄ that in the uni-tary limit of the strong Hubbard interation betweenheavy and light eletrons, the e�etive heavy mass an179 12*



M. Yu. Kagan, V. V. Val'kov ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011reah the value m�h=mL � (mh=mL)2, and if we startfrom the ratio mh=mL � 10 between bare masses ofheavy and light eletrons, on the level of LDA approx-imation, for example, we ould �nish with the e�etivevalue m�h � 100mL, whih is typial for uranium-basedheavy-fermion ompounds.A similar e�et an also be desribed using strongone-partile hybridization between heavy and lightbands [2℄.A natural question arises whether the two-bandHubbard model with one narrow band is a simple toymodel to observe non-Fermi liquid behavior and thewell-known marginal Fermi liquid behavior in parti-ular [1℄. We reall that in the marginal Fermi liquid(MFL) theory, the quasipartiles are strongly damped(Im " � Re " � T ). Aording to [1℄, the strong damp-ing  � T of quasipartiles (instead of the standarddamping  � T 2="F for a Landau�Fermi liquid) anexplain numerous experiments in HTSC ompounds in-luding a linear resistivity R(T ) � T for T > TC atoptimal doping onentrations. The MFL piture wasalso proposed to desribe the properties of UPt3 dopedby Pd inluding the spei� heat measurements [8℄. Wenote that the two-band Hubbard model with one nar-row band is a natural generalization of the well-knownFaliov�Kimball model [9℄ but ontains riher physisdue to a �nite width of the heavy band (instead of aloalized level), whih allows an interesting dynamisof the heavy omponent.In this paper, we evaluate the damping and trans-port times for heavy and light eletrons. We test thesetimes for marginality and �nd that for low tempera-tures T < W �h (W �h is the e�etive bandwidth for heavyeletrons) and equal densities of heavy and light bandsin a homogeneous state, we have the standard Lan-dau�Fermi liquid behavior with a resistivity R(T ) � T 2in the ase of eletron�eletron sattering in both 3Dand 2D. For higher temperatures T > W �h (W �h � 50 Kfor m�h � 200me), the heavy band is totally destroyedand heavy partiles move di�usively in the surroun-ding of light partiles, while the light partiles sat-ter on the heavy ones as if on immobile (stati) im-purities. For these temperatures, the heavy ompo-nent is marginal, but the light one is not. We try to�nd a marginal behavior of the light omponent withweak loalization orretions of the Altshuler�Aronovtype [3℄ for the sattering time of light eletrons takeninto aount. We do not obtain a marginal behaviorof the light omponent, but we obtain a very inter-esting anomalous resistivity harateristis, espeiallyin the 2D ase, where the resistivity has a maximum

for T � W �h and a loalization tail at higher tempera-tures [10℄. In 3D, the resistivity saturates for T > W �h .Suh resistivity harateristis ould possibly desribesome 3D uranium-based heavy-fermion ompounds likeUNi2Al3 and some other mixed-valene systems inlud-ing Yb-based heavy-fermion ompounds [11; 12℄, wherethe low-density approah pursued in this paper ouldpossibly desribe the real experimental situation. In2D, the behavior of resistivity possibly has some rela-tion to layered manganites, where we deal with two de-generate (eg) onduting orbitals (bands) of d eletronsof Mn. However, an alternative explanation is possiblefor manganites [13℄. Aording to it, the resistivity isgoverned by eletron tunneling from one metalli FMpolaron to a neighboring one via an insulating AFM orPM barrier in the regime of nanosale phase separationin the eletron subsystem. It would be interesting toompare these two mehanisms for resistivity in layeredmanganites in more detail.We also onsider other mehanisms of heavy massenhanement di�erent from the EPE and �nd a verypronouned e�et in 3D onneted with a momentumdependene of the self-energy of heavy eletrons due tothe �heavy�light� interation. In the strong-ouplinglimit, this e�et ould provide even larger ratios ofm�h=mh than the EPE does. It leads to negative om-pressibility of heavy partiles and thus reveals the ten-deny towards phase separation or at least harge re-distribution between the bands for a large density mis-math nh � nL, in qualitative agreement with the re-sults in [14℄.In the �nal setion, we study the leading SC in-stability that arises in the two-band model in the 2Dase. The leading instability at low density is proved tobe towards the triplet p-wave pairing. It desribes thepairing of heavy eletrons via polarization of light ele-trons [15; 16℄ in the framework of the enhaned Kohn�Luttinger [4℄ mehanism of SC and provides rather re-alisti ritial temperatures in the 2D or layered ase,espeially for the situation of geometrially separatedbands belonging to neighboring layers.
2. THE TWO-BAND HUBBARD MODEL WITHONE NARROW BANDThe Hamiltonian of the two-band Hubbard modelis given by180



ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011 Anomalous resistivity and the origin of heavy mass : : :Ĥ 0 = �th Xhiji� a+i�aj� � tL Xhiji� b+i�bj� �� "0Xi� nhi� � �Xi� (nLi� + nhi�) ++ UhhXi n"ihn#ih + ULLXi n"iLn#iL ++ UhL2 Xi niLnih; (1)where Uhh and ULL are intraband Hubbard intera-tions for heavy and light eletrons respetively UhL isthe interband Hubbard interation between heavy andlight eletrons, th and tL are transfer integrals for heavyand light eletrons, n�ih = a+i�ai� , n�iL = b+i�bi� are thedensities of heavy and light eletrons on site i with spinprojetion �, and � is the hemial potential. We notethat �"0 is the enter of gravity of the heavy band, andthe di�erene � between the bottoms of the bands isgiven by� = �"0 + WL �Wh2 = Ehmin �ELmin:After the Fourier transformation, we obtainĤ 0 =Xp� "h(p)a+p�ap� +Xp� "L(p)b+p�bp� ++ UhhXpp0q a+p"a+p0#ap�q#ap0+q" ++ ULLXpp0q b+p"b+p0#bp�q#bp0+q" ++ UhL2 Xpp0q��0 a+p�(b+p0�0bp�q�0 )ap0+q� ; (2)where in D dimensions for the hyperubi lattie,"h(p) = �2th DXa=1 os(pad)� "0 � �and "L(p) = �2tL DXa=1 os(pad)� �are the quasipartile energies for heavy and light bands(see Fig. 1), and pa = fpx; py; : : : g are Cartesian pro-jetions of the momentum. For low densities of heavyand light omponents ntotdD = (nh + nL) dD � 1, thequasipartile spetra are"h(p) = �Wh2 + th(p2d2)� "0 � �;"L(p) = �WL2 + tL(p2d2)� �; (3)
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Fig. 1. Band struture in the two-band model with onenarrow band. Wh andWL are the bandwidths of heavyand light eletrons, "Fh and "FL are the Fermi ener-gies, � = �"0+(WL�Wh)=2 is the energy di�erenebetween the bottoms of the heavy and light bands, with(�"0) being the enter of gravity of the heavy band.The enter of gravity of the light band is at zero. � ishemial potentialwhereWh = 4Dth andWL = 4DtL are the bandwidthsof heavy and light eletrons for the D-dimensional hy-perubi lattie and d is the intersite distane. Hene,introduing the bare masses of heavy and light ompo-nents mh = 12thd2 ; mL = 12tLd2 (4)and Fermi energies"Fh = p2Fh2mh = Wh2 + �+ "0; "FL = WL2 + �; (5)we �nally obtain the quasipartile spetra for T ! 0 as"h(p) = p22mh � "Fh; "L(p) = p22mL � "FL: (6)In deriving (4)�(6) we impliitly assumed that the dif-ferene between the bottom of the bands � in Fig. 1 isnot too large, and hene the paraboli approximationfor the spetra of both bands is still valid. We notethat there is no one-partile hybridization in Hamilto-nians (1) and (2), but there is a strong two-partilehybridization UhL2 Xi nhi nLi :We assume that mh � mL, and thereforeWh=WL = mL=mh � 1: (7)We also assume that the strong-oupling situationUhh � ULL � UhL � WL � Wh ours (UhL is largebeause in reality light partiles experiene strong sat-tering on the heavy ones as if on a quasiresonane level).Finally we onsider the simplest ase where the densi-ties of the bands are of the same order: nh � nL (in3D, n = p3F =3�2, while in 2D, n = p2F =2�).181
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Fig. 2. T -matries Thh, TLL, and ThL for the two-bandmodel with heavy (h) and light (L) eletrons, Uhh andULL are the intraband Hubbard interations, and UhLis the interband Hubbard interation between heavyand light partiles3. THE KANAMORI T -MATRIXAPPROXIMATIONAording to the renormalization sheme of Kana-mori, the strong Hubbard interations [17℄ in the aseof low eletron density (almost empty lattie) shouldbe desribed in terms of the orresponding vauum T -matries (see Fig. 2). In the 3D ase, the solution ofthe orresponding Bethe�Salpeter integral equations inthe vauum yields for the T -matries (see [15�17℄)Thh = Uhhd31� Uhhd3Kvahh (0; 0) � Uhhd31 + Uhh=8�th ;ThL � UhLd31 + UhL=8�t�hL ; TLL � ULLd31 + ULL=8�tL ; (8)where Kvahh (0; 0) � � Z d3p(2�)3 mhp2is a Cooper loop for heavy partiles in the vauum (theprodut of two vauum Green's funtions of heavy par-tiles in a Cooper hannel for the total frequeny andtotal momentum equal to zero),m�hL = 12t�hLd2 = mhmLmh +mL � mLfor mh � mL is an e�etive mass for the T -matrix ThL(for sattering of light eletrons on heavy ones) and,aordingly, t�hL � tL is an e�etive transfer integral;Ud3 plays the role of the zeroth Fourier omponent in3D. As a result, for Uhh � ULL � UhL � WL � Wh,we haveThh � 8�thd3; ThL � TLL � 8�tLd3: (9)

The s-wave sattering length for the Hubbard model[15℄ is de�ned as a = mT=4� = T=8�td2, and heneahh = ahL = aLL � d (10)in the strong-oupling ase.Correspondingly, the gas parameter of Galitskiif0 = 2apF=� [18; 19℄ in the ase of equal densities ofheavy and light bands nL = nh is given byf0 = (fL0 � 2dpFL=�) = (fh0 � 2dpFh=�) �� 2dpF=� (11)(it is onvenient to inlude the fator 2=� in the def-inition of the gas parameter in 3D). In the 2D, asefor strong Hubbard interations and low densities,with logarithmi auray, the vauum T -matries fornL = nh are given by [15; 16℄Thh � Uhhd21 + Uhh8�th �1=d2Z�p2F dp2p2 �
� Uhhd21 + Uhh8�th ln 1p2F d2 ;TLL � ULLd21 + ULL8�tL ln 1p2F d2 ;ThL � UhLd21 + UhL8�tL ln 1p2F d2 ;

(12)
where Ud2 plays the role of the zeroth Fourier om-ponent of the Hubbard potential in 2D. As a result,in the strong-oupling ase, the 2D gas parameter ofBloom [20℄ for equal densities nL = nh isf0 = f0L = f0h � 12 ln(1=pFd) : (13)4. EVALUATION OF THE SELF-ENERGIES OFHEAVY AND LIGHT BANDSWe evaluate the imaginary part Im� of self-energiesin the two-band Hubbard model onsidering the leanase (no impurities) and taking only the eletron�elet-ron sattering into aount. It is important for evalua-tion of the sattering times for heavy and light eletronsand the subsequent alulation of the resistivity R(T ).In the two-band model (see Fig. 3),�h = �hh +�hL and �L = �LL +�Lh: (14)182
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h h h hFig. 3. The T -matrix approximation for the self-energyof a heavy partile. Thh and ThL are the full T -matriesin substane. The diagrams for �L are similarIn the 3D ase, the full T -matries in substane thatenter in the diagrams for �hh in Fig. 3 have the formThh(
;p) = Uhhd31� Uhhd3Khh(
;p) ; (15)whereKhh(
;p) == Z d3p0(2�)3 1� nFh ("p0+p)� nFh ("�p0)
� "h(p0 + p)� "h(�p0) + i0 (16)is a Cooper loop in substane (the produt of twoGreen's funtions in the Cooper hannel), nFh (") is theFermi�Dira distribution funtion for heavy partiles,and similarly for the full T -matries ThL, TLh, and TLLand Cooper loops KhL, KLh, and KLL.If we expand the T -matrix for heavy partiles in the�rst two orders in the gas parameter, then aording toGalitskii [18℄ we obtainThh(
;p) = 4�ahmh +�4�ahmh �2 (Khh �Kvahh ) ++ o"�4�ahmh �3 (Khh �Kvahh )2# ; (17)where 4�ahmh � Uhhd31� Uhhd3Kvahh (18)oinides with the Kanamori approximation for thevauum T -matrix andKvahh (
;p) � Z d3p0=(2�)3
� (p0 + p)22mh � p022mhis the Cooper loop in the vauum (rigorously speaking,the sattering length is de�ned by Kvahh (0; 0), but thedi�erene between Kvahh (
;p) and Kvahh (0; 0) is pro-portional to the gas parameter ahpFh and is small).Khh in (17) is the full Cooper loop (ooperon) in sub-stane for heavy partiles given by (16). If we onsider

low densities and the energies lose to "F , we an showthat the terms negleted in Thh are small with respetto the gas parameter4�ahmh (Khh �Kvahh ) � ahpFh:The self-energy of heavy partiles �hh in the �rst twoorders of the gas parameter is given by�hh(p) =Xk Thh(k+p)Gh(k) � 4�ahmh Xk Gh(k)���4�ahmh �2Xk (Khh�Kvahh )Gh(k)+o(ahpFh)3: (19)The �rst term beomes 4�ahnh=mh, whih is just theHartree�Fok ontribution. In the seond term, we anmake an analyti ontinuation i!n ! ! + io for thebosoni propagator Khh and the fermioni propagatorGh. As a result (bearing in mind that ImKvahh = 0),we obtain the imaginary part of �(2)hh asIm�(2)hh (";p) = �4�ahmh �2 ��Xk ImKhh("k+";k+p) [nB("k+")+nF ("k)℄ == ��4�ahmh �2 � Z d3k(2�)3 Z d3p0(2�)3 �� �1� nFh (p+ p0 + k) � nFh (�p0)��� [nB("k + ") + nF ("k)℄�� Æ ["+ "h(k) � "h(p+ p0 + k)� "h(�p0)℄ (20)and similarly for the real part of P(2)hh :Re�(2)hh (";p) = �4�ahmh �2 ��Xk [ReKhh("k + ";k+ p) �� ReKvahh ("k + "p;k+ p)℄�� [nB("k + ") + nF ("k)℄ ; (21)where for the real part of a Cooper loop in vauum,ReKvahh ("k + "p;k+ p) = Z d3p0(2�)3 �� P 2mhk2 + p2 � (p0 + k+ p)2 � p02 (22)is alulated at resonane for 
 = "k+"p (or for " = "p),and P is the prinipal value. In (20) and (21), nB(
) == 1=(e
=T � 1) and nF (
) = 1=(e
=T + 1) are thebosoni and fermioni distribution funtions, and henenB("k + ") + nF ("k) = 12 �th "k + "2T � th "k2T � : (23)183
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ThhFig. 4. An exhange-type diagram for the self-energy��hh that ontains the matrix element a+� a+� a�a� andis therefore absent in the Hubbard modelThe real part of the Cooper loop in substane for heavypartiles is given byReKhh("k + ";k+ p) = Z d3p0(2�)3 �� 1� nFh (p+ p0 + k)� nFh (�p0)"+ "h(k)� "h(p+ p0 + k)� "h(�p0) :The analyti ontinuation for �(2)hh in the 2D ase issimilar to the one in the 3D ase.We note that for 
=T � 1, the bosoni distribu-tion funtion nB(
)! 0 and the fermioni distributionfuntion nF (
) ! �(
) is the step-funtion. Heneat low temperatures Im�hh and Re�hh aquire thestandard form [18; 19; 21℄. In fat for low tempera-tures T � Wh � WL, the most onvenient way isto evaluate Im�(2)hh (") for T ! 0, whih yields thestandard Fermi-liquid result Im�(2)hh (") � "2, and thenmake the temperature averaging with the orrespond-ing fermioni distribution funtion nF ("). Therefore," � T for the sattering times of the quasipartiles.The evaluation of �hL, �Lh, and �LL at low temper-atures in the �rst two orders in the gas parameter issimilar to the evaluation of �hh in both 3D and 2Dases.But for higher temperatures, we should keep inmind that nB(
) ! T=
 for T � 
. The fermionidistribution funtion is �washed out� by temperature.Aordingly, nF (
) = (1�
=2T )=2. These approxima-tions are important when we evaluate Im� for highertemperatures T > Wh [22℄.We note that in ontrast to the model of a slightlynonideal Fermi gas (see [18; 19; 21℄), the Hubbardmodel does not ontain an exhange-type diagram for�hh (see Fig. 4) beause the T -matrix in this diagramorresponds to the inoming and outgoing heavy par-tiles with the same spin projetion a+� a+� a�a� , whilethe Hubbard model ontains only the matrix elementsa+" a+# a#a".

We also note that when we expand the T -matrixup to seond order in the gas parameter, we impliitlyassume that the T -matrix itself does not have a sim-ple pole struture of the type of a bosoni propagator.This is the ase for a partially �lled band nhdD � 1and the low-energy setor where 0 < " < Wh � Uhh.E�etively, we neglet the lattie in this expansion.However, taking the lattie into aount produestwo poles for the full (unexpanded) T -matrix of heavypartiles in (15). The �rst one is onneted with theso-alled antibound state predited by Hubbard [17℄and Anderson [23℄ and orresponds to a large positiveenergy " � Uhh > 0: (24)Physially, it desribes an antibound pair of two heavypartiles with the energy Uhh on the same lattie site.It therefore re�ets the presene of the upper Hubbardband already at low densities nhdD � 1. But the inten-sity of the upper Hubbard band is small at low densitiesand for the low-energy setor.A seond pole in the full T -matrix found by in [24℄orresponds to a negative energy and in the 2D aseyields " � �2"Fh � 2"2FhWh < 0: (25)It desribes the bound state of two holes below thebottom of the heavy band (" < �2"Fh). Therefore,it has zero imaginary part and does not ontribute toImT . (This mode produes nonanalyti orretions toRe�hh � j"j5=2 in 2D). We an neglet these two on-tributions for the self-energy when we alulate the ef-fetive masses and sattering times in the forthomingsetions. The more rigorous approah to the general-ization of Galitskii results for the self-energy [18℄ tothe ase of �nite temperatures (whih is important forkineti appliations) will be a subjet of a separate pub-liation.5. ELECTRON POLARON EFFECTFor T ! 0, the Green's funtions for heavy andlight eletrons are given byGh(!;q) = 1! � "h(q)� �h(!;q) �� Zh! � "�h(q) + io ;GL(!;q) � ZL! � "�L(q) + io ; (26)where"�h(q) = q2 � p2Fh2m�h ; "�L(q) = q2 � p2FL2m�L (27)184



ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011 Anomalous resistivity and the origin of heavy mass : : :are renormalized quasipartile spetra, andZ�1h = 0�1� �Re�(2)h (!;q)�! ����� !!0q!pFh1A ;Z�1L = 0�1� �Re�(2)L (!;q)�! ����� !!0q!pFL1A (28)are Z-fators of heavy and light eletrons. Substitu-tion of the leading ontribution from Re�(2)hL(!;q) (de-sribed by a formula similar to (21)) to Re�(2)h (!;q)in (28) yieldslim!!0q!pFh � Re�(2)hL(!;q)�! � ��4�ahLm�hL �2 ZZ dDp(2�)D�� dDp0(2�)D �1�nFL(p0+p)�nFh (�p0)�nFL(p�q)["L(p�q)�"L(p0+p)�"h(�p0)℄2 ; (29)where nB(
)! 0, nF (
) is a step funtion for 
=T �� 1, ahL � d in 3D is onneted with the vauumT -matrix ThL and m�hL � mL. ReplaingdDp(2�)D dDp0(2�)Din (29) with N2L(0) d"L(p) d"L(p0) (where NL(0) is thedensity of states for light partiles), and taking intoaount that "L(p � q) < 0 while "L(p0 + p) > 0, wean easily verify that for mh � mL (or equivalently for"FL � "Fh) this expression ontains a large logarithm(see [2℄). Hene, the Z-fator of the heavy partiles inthe leading approximation is given byZ�1h � 1 + 2f20 ln mhmL ; (30)where f0 = 2pFLd=� is the gas parameter in 3D andequivalently f0 � 1=2 ln(1=pFLd) in 2D. We note thatthe ontribution to Zh from Re�(2)hh does not ontaina large logarithm. Correspondingly, for the e�etivemass of a heavy partile in (26), aording to [19; 21℄,we obtainmhm�h = Zh0�1 + � Re�(2)hL ("h(q);q)�"h(q) �����"h(q)!01A : (31)Therefore, as usual, the Z-fator ontributes to the en-hanement of the heavy mass:m�hmh � Z�1h � �1 + 2f20 ln mhmL� : (32)The analogous alulations for ZL with Re�Lh andRe�LL yields only m�L=mL � Z�1L � (1 + f20 ). If the

e�etive parameter 2f20 ln(mh=mL) > 1, we are in thesituation of a strong eletron polaron e�et. To ob-tain the orret polaron exponent in this region of pa-rameters diagrammatially, we should at least sum upthe so-alled maximally rossed diagrams for Re�hL.But the exponent an also be evaluated in a di�erenttehnique, based on the nonadiabati part of the many-partile wave funtion [2℄ that desribes a heavy par-tile dressed in a loud of eletron�hole pairs of lightpartiles. This yieldsm�hmh � Z�1h = �mhmL�b=(1�b) ; (33)where b = 2f20 . For b = 1=2 or, equivalently, for f0 == 1=2 (as for the oupling onstant of the sreenedCoulomb interation in the RPA sheme), we are in theso-alled unitary limit. In this limit, aording to [2℄,the polaron exponent is b1� b = 1; (34)and hene m�h=mh = mh=mL (35)or, equivalently,m�h=mL = (mh=mL)2: (36)Thus, starting from the ratio between the bare massesmh=mL � 10 (obtained, for instane, in LDA approxi-mation), we �nish in the unitary limit with m�h=mL �� 100 (due to the many-body EPE), whih is a typialratio for uranium-based heavy-fermion (HF) systems.5.1. Other mehanisms of heavy massenhanementWe note that rigorously speaking (see (31)), the mo-mentum dependene of Re�(2)hL("h(q);q) is also veryimportant for the evaluation of the e�etive mass.Very preliminary estimates by Prokof'ev and a presentauthors show that in the zeroth approximation inmL=mh, in the 3D ase lose to the Fermi surfae (for"h(q) = (q2 � p2Fh)=2mh ! 0 and q ! pFh),Re�(2)hL("h(q);q) � 2�4�ahLmL �2 �� Z d3p(2�)3 �LL(0;p)nFh (p� q); (37)where�LL(0;p) = Z d3p0(2�)3 nFL("p0+p)� nFL("p0)"L(p0)� "L(p0 + p) (38)185



M. Yu. Kagan, V. V. Val'kov ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011is the stati polarization operator for light partiles.Having in mind that jp�qj < pFh and q � pFh in (37),we an see that p! 0 and use the asymptoti form for�LL(0;p) at small p � pFL (if the densities of heavyand light bands are not very di�erent and pFL � pFh):limp!0�LL(0;p) = NL(0)�1� p212p2FL� ; (39)where NL(0) = mLpFL=2�2 is the density ofstates for light eletrons in 3D. The substitutionof limp!0�LL(0;p) from (39) in (37) yieldsRe�(2)hL("h(q);q) � Re�(2)hL(0; pFh)�� (q2 � p2Fh)2mh f209 mhnhmLnL ; (40)where f0 � 2dpFL=� is the 3D gas parameter and nh == p3Fh=3�2 and nL = p3FL=3�2 are the densities ofheavy and light bands.The �rst term in (40) desribes Re�(2)hL("h(q);q) onthe Fermi surfae (for "h(q) = 0 and q = pFh):Re�(2)hL(0; pFh) � 4f203 nhnL �� "FL�1� 2p2Fh15p2FL� > 0 for pFh � pFL: (41)It is a renormalization of the e�etive hemial poten-tial of the heavy band in the seond order in the gasparameter due to the interation of light and heavypartiles.We note that aording to [18; 19℄, the renormalizedheavy-partile spetrum is given by"�h(q) = � q22mh � �effh �+ 2�mL nL(�) ahL ++Re�(2)hL("h(q);q) = q2 � p2Fh2m�h ; (42)where the sattering length ahL � d, the e�etive hem-ial potential �effh = �h +Wh=2 + "0 is ounted fromthe bottom of the heavy band, and the Hartree�Fokterm (2�=mL)nL(�) ahL represents the ontribution tothe self-energy Re�(1)hL in the �rst order in the gas pa-rameter. From (42), olleting the terms proportionalto "h(q) = (q2 � p2Fh)=2mh, we obtainq2 � p2Fh2m�h = "h(q)�1� f209 mhnhmLnL� : (43)Correspondingly, the e�etive mass of a heavy partileis given by

mhm�h =  1 + � Re�(2)hL("h(q);q)�"h(q) �����"h!0! == 1� f209 mhnhmLnL : (44)As a result, we obtain a muh more dramati en-hanement of m�h than in the EPE, whih yields onlymh=m�h � �1� 2f20 ln(mh=mL)� due to the Z-fator ofa heavy partile. For mh=mL � 10, the ontributionto m�h in (44) beomes larger than the ontributionfrom the Z-fator in (32) for a large density mismathnh � 5nL between the heavy and light bands. We notethat the ontribution to m�h=mh from Re�(2)hh ("h(q);q)assoiated with the �heavy�heavy� interation is smallin omparison with the ontribution tom�h from Re�(2)hL(whih is assoiated with the �heavy�light� interation)due to the smallness of the ratio between the baremasses: mL=mh � 1. We an now ollet the termsthat do not depend on "h(q) in (42). This gives thee�etive hemial potential of heavy eletrons�effh = p2Fh2mh + 2�mL nL(�) ahL +Re�(2)hL(0; pFh): (45)We note that the ontributions to �effh from theHartree�Fok term (2�=mh)nh(�) ahh of heavy ele-trons and from Re�(2)hh (0; pFh) (whih is onnetedwith �heavy�heavy� interations) are small in ompar-ison with �heavy�light� ontributions due to the small-ness of the ratio between the bare masses: mL=mh � 1.In 2D, the stati polarization operator is�LL(0;p) = mL2� 0�1�Res1� 4p2FLp2 1A ;and hene for p < 2pFL, �LL(0;p) = mL=2� does notontain any dependene on p2, in ontrast to the 3Dase. Thus, the EPE in 2D is a dominant mehanismof the heavy mass enhanement.A more aurate evaluation of the momentum de-pendene of Re�(2)hL("h(q);q) for the larger densities inthe bands together with the summation of the higher-order ontributions to Re�hL will be a subjet of aseparate investigation.We note that for the light partiles, the momen-tum dependenes of Re�(2)Lh and Re�(2)LL yield onlym�L=mL � 1 + f20 , and hene the light mass is notstrongly enhaned in both 3D and 2D ases.5.2. The tendeny towards phase separationWe also note that for larger densities of the heavyband nh � nC � 1 (and large di�erene in densi-186



ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011 Anomalous resistivity and the origin of heavy mass : : :ties between the bands, nL � nh, whene ntotdD == (nh + nL) dD � 1), another mehanisms of heavymass enhanement beome more e�etive. Namely, forthese densities and a large mismath between nh andnL, we ould have a tendeny towards phase separationin a two-band model [14℄.We note that if we analyze the e�etive hemialpotential of the heavy band in (45) in the limit of thelarge density mismath nh � nL in 3D and evaluatethe partial ompressibility (the sound veloity of heavypartiles squared)��1hh � 2h = nhmh ��h�nh ;we already see the tendeny towards phase separation(towards negative ompressibility) in the strong-oup-ling limit and low densities for f20mhpFh=mLpFL & 1,in qualitative agreement with the results in [14℄. Amore areful analysis of all the partial ompressibili-ties in the system at larger f0 and a large mismathbetween the densities will be reported elsewhere.In the end of this setion, we emphasize that thephysis of the EPE and evaluation of Zh in [2℄ are tosome extent onneted with the well-known results ofNozieres et al. [25℄ on infrared divergenes in the de-sription of the Brownian motion of a heavy partile ina Fermi liquid and on the infrared divergenes for theproblem of X-ray photoemission from the deep ele-tron levels, as well as with the famous results of An-derson [26℄ on the orthogonality atastrophe for the 1Dhain of N eletrons under the addition of one impurityto the system.Finally, we mention a ompeting mehanism pro-posed in [27℄ �rst for an explanation of the e�etivemass in praseodymium (Pr) and in some uranium-based moleules like U(C8H8)2. Later on, Fulde et al.[27℄ generalized this mehanism to some other uranium-based HF-ompounds with loalized and deloalized or-bitals. This mehanism has a quantum hemial natureand is based on the sattering of ondutive eletronson loalized orbitals as if on two-level systems. Themass enhanement is here governed by non-diagonalmatrix elements of the Coulomb interation, whih arenot ontained in the simple version of a two-band modelin (1). In this ontext, we also mention [28℄, where theauthors onsidered the mass enhanement of ondu-tivity eletrons due to their sattering on loal f -levelssplitted by the rystalline �eld.We note that dHvA experiments [29℄ together withARPES experiments [30℄ and thermodynami measure-ments [31℄ are the main instruments to reonstrutthe Fermi surfae for HF ompounds and to deter-

mine the e�etive mass (thus verifying the preditionsof di�erent theories regarding the mass enhanementin uranium-based HF ompounds).6. TEMPERATURE DEPENDENCE OF THERESISTIVITY6.1. Imaginary parts of self-energies in thehomogeneous ase for low temperaturesT <WhIn the homogeneous ase, after averagingIm�(2)("(q);q) in (20) with the fermioni distri-bution funtion nF ("(q)=T ), we obtain the followingexpression for Im�(2)(T ) of heavy and light eletronsat low temperatures T � Wh and for equal densitiesnh = nL in the heavy and light bands:Im�(2)LL(T ) = f20 T 2"FL ;Im�(2)Lh(T ) = f20 T 2"Fh mhmL (46)and aordingly:Im�(2)hh (T ) = f20 T 2"Fh ; Im�(2)hL(T ) = f20 T 2"Fh : (47)It follows that all Im�(2)(T ) behave in the standardFermi-liquid fashion Im�(2)(T ) � T 2.Moreover, Im�(2)Lh(T )� Im�(2)LL(T ), and heneIm�(2)L (T ) = Im�(2)Lh(T ) + Im�(2)LL(T ) �� Im�(2)Lh(T ): (48)We an now estimate the Drude ondutivity for thelight band: �L = nLe2�LmL ; (49)where a naive estimate for �L yieldsL = 1=�L = Im�(2)L (T ) = Im�(2)Lh(T ); (50)whene 1=�L � 1=�Lh. Correspondingly, we obtain theondutivity�L � �Lh = nLe2�LhmL = nLe2f20T 2 "FhmLmhmL == nLe2f20 p2Fh �"FhT �2 : (51)Introduing the minimal Mott�Regel ondutivities�min = �e2~ � pF in 3Dand �min = �e2~ � in 2D (52)187



M. Yu. Kagan, V. V. Val'kov ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011and working in the units where ~ = 1, in the ase ofequal densities of heavy and light bands, nh = nL, weobtain �L � �Lh = �minf20 �"FhT �2 : (53)We note that, stritly speaking, the nondiagonal on-dutivity �Lh (whih is de�ned by the sattering oflight eletrons on the heavy ones) is �nite only due toan aount of umklapp proesses:p1L + p2h = p3L + p4h +K; (54)where K � �=d is the wave vetor of the reiproal lat-tie. For pFh � pFL, this means that densities in thelight and heavy bands annot be very small (otherwisethe ondutivity �Lh would be exponentially large).Hene, within the auray of our estimates,�Lh = �minf20 �WhT �2 : (55)The situation with the ondutivity of the heavy bandis a slightly more triky sine Im�(2)hh (T ) � Im�(2)hL(T )and hene �hh � �hL. However, for a rude estimate,we an again onsider only the nondiagonal part of theondutivity �hL and take umklapp proesses (54) intoaount. Then�hL � �Lh � �minf20 �WhT �2 : (56)We note that estimates (56) for �Lh and �hL an be ver-i�ed using the exat solution of oupled kineti equa-tions for heavy and light partiles with an aount ofumklapp proesses [22℄.The total resistivity is given byR = 1�h + �L � f20�min � TWh�2 : (57)It behaves in a Fermi-liquid manner R(T ) � T 2 for lowtemperatures T < Wh. For m�h � mh, we an replaeWh with W �h in (56) and (57).6.2. The hemial potential at highertemperatures T > W �hIf T > W �h , the heavy band is totally destroyed(more preisely, it is destroyed for f20T = W �h as we seeshortly). To be aurate, we �rst alulate the e�etivehemial potential �effh = �+Wh=2 + "0 in (3) in thissituation.Generally speaking, nh + nL = ntot = onst,i.e., only the total density is onserved. In our ase,

however, for large di�erene between the bare massesmh � mL, eah density of the band is onserved pra-tially independently, nh � onst and nL � onst. Forheavy partiles, all the states in the band are uniformlyoupied at these temperatures. For T > Wh (assum-ing m�h=mh � 1), the e�etive hemial potential of theheavy partiles is given by�effh = �+ Wh2 + "0 � �T ln� 1nhdD� : (58)Hene, we have the Boltzman behavior for �effh . TheFermi�Dira distribution funtion for heavy partiles isnh(") = 1exp p2 � 2mh � �effhT !+ 1 �� 1�1 + p22mhT � exp ��effhT !+ 1 �� exp(�effh =T )1 + p22mhT � exp �effhT ! = onst: (59)For light partiles for the temperatures Wh � T �� WL, beause mh � mL, the e�etive hemialpotential has approximately the same position as forT = 0. Indeed, for �Leff = �+WL=2 we havenL(") = 1exp p2 � 2mL � �effhT !+ 1 �� 1exp�p2 � p2FL2mLT �+ 1 �� �� p22mL � "FL� ; T � "FL; (60)and hene the e�etive hemial potential of light par-tiles is �Leff � "FL: (61)6.3. Evaluation of the imaginary parts of theself-energies at higher temperaturesW �h < T <WLFor light partiles, Im�(2)LL(T ) = f20T 2=WL does nothange. ButIm�(2)Lh(T ) = f20WhmhmL � Im�(2)LL(T ) (62)188



ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011 Anomalous resistivity and the origin of heavy mass : : :for W �h < T < WL (for T < WL, T 2=WL << Whmh=mL).This desribes almost elasti sattering of light ele-trons on the heavy ones as if on immobile (stati) im-purities in the zeroth order in Wh=WL. We note thatWhmh = W �hm�h. For heavy eletrons, we should a-ount for the bosoni ontribution nB(
) � T=
 andthe fermioni ontribution nF (
) � (1 � 
=2T )=2 for
=T � 1 to Im�(2) and thus to sattering times. Thisyields Im�(2)hh (T ) = f20Wh; (63)whih desribes sattering of heavy eletrons on eahother in the situation when they uniformly oupy theheavy band and an transfer to eah other only an en-ergy �Wh [2℄. Beause m�h � mh, we an replae Whwith W �h in (63). At the same time, for sattering ofheavy partiles on the light ones, we haveIm�(2)hL(T ) = f20T � Im�(2)hh (T ); (64)whih desribes the marginal Fermi-liquid behavior fordi�usive motion of heavy eletrons in the surroundingof light eletrons.We note that to derive (64) for WL > T > Whand in the zeroth order in the mass ratio mL=mh � 1,we rewrote expression (20) for Im�(2)hL("h(p);p) in theformIm�(2)hL("h(p);p) = ���4�ahLmL �2N2L(0)�� ZZ d"Lp0d"LkÆ("Lk � "Lp0)nF ("Lk)�� [1� nF ("Lp0)℄ ; (65)whih after the Æ-funtion integration yieldedIm�(2)hL("h(p);p) � �f20 Z d"LknF ("Lk)�� [1� nF ("Lk)℄ �� �f20 1Z�1 d" e"=T(1 + e"=T )2 � f20T: (66)6.4. Resistivity for T >W �h in the 3D aseFrom the previous setion, we have the satteringtimes of heavy and light partiles for T > W �h given by1�L � 1�Lh = f20WhmhmL : (67)We note that f20Whmh=mL = f20W �hm�h=mL � f20WLin (67). In the same time,1�h � 1�hL = f20T; (68)

and hene the heavy omponent is marginal, but thelight one is not. The light band ondutivity is givenby �L = nLe2�LmL � nLe2�LhmL = �minf20 : (69)For the heavy band, the Drude formula must be mod-i�ed �nh=�T � W �h=T beause of T > W �h . We thenimmediately obtain�h = �minf20 �W �hT �2 : (70)As a result, the resistivity isR = 1�h + �L = f20�min (T=W �h )21 + (T=W �h )2 == f20�min 11 + (W �h=T )2 : (71)For T > W �h , the resistivity R � f20 =�min saturates.We thus obtain a residual resistivity at high tempera-tures due to the ondutivity of the light band. This isa very nontrivial result.6.5. Disussion of the obtained results forresistivity at higher temperaturesWhen W �h < 1=�h or, equivalently, f20T > W �h , theoherent motion in the heavy band is totally destroyed.The heavy partiles begin to move di�usively in the sur-rounding of light partiles. In this regime, rigorouslyspeaking, the diagram tehnique an be used only forlight partiles and not for heavy ones.But the exat solution of the density matrix equa-tion obtained in [2℄ shows that 1=�hL is qualitatively thesame for f20T > W �h as in our estimates, and the inversesattering time 1=�Lh is also qualitatively the same dueto its physial meaning (sattering of light eletronson heavy ones as if on immobile impurities). That iswhy �h and �L and hene R(T ) behave smoothly forf20T �W �h .6.6. An idea of a hidden heavy band for HTSCThe resistivity R(T ) in 3D aquires a form (seeFig. 5) that is frequently obtained in uranium-based HF(for example, UNi2Al3). We note that R(T ) mimis alinear behavior in the rossover region of intermediatetemperatures T �W �h between T 2 and onst (with theresistivity saturating for T � W �h ). The same holds189
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ÆÝÒÔ, òîì 140, âûï. 1 (7), 2011 Anomalous resistivity and the origin of heavy mass : : :of light partiles beomes muh slower (also of the dif-fusive type) and two harateristi lengths appear inthe theory: the elasti lengthl = vFL�Lh (75)and the di�usive lengthL' =pDL�' ; (76)where DL is the di�usion oe�ient for light eletronsand vFL is the Fermi veloity for light eletrons.That is why in a more rigorous theory, aordingto [3℄ we should replae the inverse sattering time1�LL(") � "Z0 d! !Z0 d"0 1Z0 a2LLm2L q dq(vFLq)2 = f20 T 2WL (77)with 1~�LL(") � "Z0 d! !Z0 d"0 1Z0 a2LLm2L q dq(i"0 +DLq2)2 ; (78)where the sattering length aLL � d. In fat, we re-plae vFLq with the �ooperon� pole (i"0 + DLq2) inAltshuler�Aronov terminology. Hene, the harate-risti wave vetors in the evaluation of ~�LL are q ��p"=DL, where " is an energy variable. The Altshu-ler�Aronov e�et in 2D yields1~�LL(") = f20 "NL(0)DL ; (79)where NL(0) = mL=2� is the 2D density of states forlight eletrons. For the di�usion oe�ient, we an usethe estimate DL = v2FL�Lh (80)and hene, having in mind that aording to (68) theinverse sattering time is 1=�Lh(") = f20Whmh=mL �� f20WL, we obtain1~�LL(") � f20 f20WLmLv2FL=� " � f40 ": (81)Therefore, 1=~�LL also beomes marginal for " � T . Forlogarithmi orretions to the ondutivity, we have�'� = ~�LL�Lh = WLf20T � 1; (82)and hene �loL = �minf20 �1� f20 ln WLf20T � : (83)

For f20T �Wh, ln(WL=f20T ) � ln(WL=Wh) andZh = �loL�L = 1� f20 ln WLWh : (84)Therefore, for f20T � Wh, an enhanement of theheavy-partileZ-fator due to the EPE and loalizationof light partiles due to Altshuler�Aronov orretionsare governed by the same parameter f20 ln(mh=mL)in 2D.7.1. Justi�ation of the expression forloalization orretions in 2DIn priniple, the impurities (heavy partiles) aremobile and have some reoil energy. That is why theformula �loL =�L = 1� f20 ln(WL=f20T ) should be justi-�ed (at least as regards the temperature exponent un-der logarithm, T or T�). For the justi�ation, we needto estimate the loss of energy by one light partile be-fore it ollides with another light partile. The numberof ollisions with heavy partiles between the satteringof a light partile on light one is L'=l. The maximalloss of energy in one ollision is W �h . The total loss isW �hL'=l = W �hpWL=T . The energy of light partileitself is T . This means that for W �hpWL=T < T or,equivalently, forT > W �h � WLf20W �h �1=3 ; (85)the loss of energy is small and heavy partiles an beregarded as immobile impurities. Hene, the exponent� under the logarithm is 1.7.2. Resistivity in the 2D aseQualitatively, the resistivity behaves in 2D asR = f20�min 1(W �h=T )2 + 1� f20 ln(WL=f20T ) : (86)It has a maximum at Tmax � W �h=f0 and a loaliza-tion tail at higher temperatures (see Fig. 8). It wouldbe very interesting to �nd the magnetoresistane in the2D or layered ase in a two-band model with one narrowband for a strong quantizing magneti �eld H orientedperpendiular to the layers [33℄.8. SUPERCONDUCTIVITY IN THETWO-BAND MODEL WITH ONE NARROWBANDIn the end of this paper, we mention brie�y that theleading SC mehanism at the low eletron density or-responds to p-wave pairing and is governed, espeially191
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In the situation of a weak EPE for f20 lnmh=mL << 1, Zh � mh=m�h � 1 and "�Fh � "Fh, and aordingto [15; 16℄, the maximal TC1 is given byTC1 � "Fh exp�� 12f20mh=mL� : (87)Therefore, the e�etive gas parameter that governsTC1 in ase of a weak EPE is f0(mh=mL)1=2. At thesame time, in the unitary limit for f0 ! 1=2 andm�h=mL � (mh=mL)2, the estimates show thatTC1 � "�Fh expf�1=2f20g � "�Fh expf�2g: (88)It follows that for "�Fh � 50 K, TC1 an reah 5 K,whih is quite nie.When we inrease the density of the heavy bandand ome loser to half-�lling (nh ! 1), the d-waveSC paring (as in UPt3) beomes more bene�ial inthe framework of the spin-�utuation theory in theheavy band [40; 41℄. The more exoti mehanisms of SCin heavy-fermion ompounds inluding odd-frequenypairing [5; 42℄ are also possible.We note that in the 2D ase, where only the EPEe�et is present for the mass enhanement of heavyeletrons, the restritions on the homogeneous ase aremilder than in 3D.9. DISCUSSION AND CONCLUSIONSWe analyzed harateristi features of the two-band Hubbard model with one narrow band taking theeletron�eletron sattering into aount in the leanase (no impurities) for low eletron densities. We on-sidered the eletron polaron e�et and other meha-nisms of heavy mass enhanement related to the mo-mentum dependene of self-energies.In the 3D ase, the dominant mehanism of heavymass enhanement is related to the momentum depen-dene of the real part of a �heavy�light� self-energyand leads to a heavy mass renormalization that is lin-ear in the mass ratio. In the 2D ase, the dominantmehanism of heavy mass enhanement is the EPE,whih leads to a logarithmi renormalization of theheavy partile Z-fator. In the unitary limit, if we startwith mh=mL � 10 for the bare-mass ratio in the LDAsheme, we an �nish with m�h=mL � 100 due to many-body e�ets, whih is quite natural for uranium-basedHF systems.The important role of the interband (�heavy�light�)Hubbard repulsion UhL for the formation of a heavymass m� � 100me in a two-band Hubbard model wasalso emphasized in [34℄ for the LiV2O4 HF ompound.192
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